JP7084587B2 - Polymers, electrode active materials and secondary batteries - Google Patents
Polymers, electrode active materials and secondary batteries Download PDFInfo
- Publication number
- JP7084587B2 JP7084587B2 JP2018200532A JP2018200532A JP7084587B2 JP 7084587 B2 JP7084587 B2 JP 7084587B2 JP 2018200532 A JP2018200532 A JP 2018200532A JP 2018200532 A JP2018200532 A JP 2018200532A JP 7084587 B2 JP7084587 B2 JP 7084587B2
- Authority
- JP
- Japan
- Prior art keywords
- polymer
- electrode
- electrode active
- active material
- battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0561—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
- H01M10/0562—Solid materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0568—Liquid materials characterised by the solutes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/137—Electrodes based on electro-active polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1399—Processes of manufacture of electrodes based on electro-active polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/60—Selection of substances as active materials, active masses, active liquids of organic compounds
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
Description
特許法第30条第2項適用 平成30年6月18日に、http://ispe-16.jp/_img/program/Abstract_Book_Data_for_web_rev.pdfを通じて The 16th International Symposium on Polymer Electrolytesの予稿集において公開 平成30年6月26日に、The 16th International Symposium on Polymer Electrolytesにおいて公開 平成30年10月24日に、http://main.spsj.or.jp/ipc2018/tentative_program.pdfを通じて The 12th SPSJ International Polymer Conferenceの暫定予稿集においてタイトルのみ公開Application of Article 30,
本発明は、ポリマー、特に1,2,4,5-テトラアミノ-p-ベンゾキノンとトリキノイル水和物とを縮合重合させて得られるポリマー、電極活物質及び二次電池に関する。 The present invention relates to polymers, particularly polymers obtained by condensation polymerization of 1,2,4,5-tetraamino-p-benzoquinone and triquinoyl hydrate, electrode active materials and secondary batteries.
有機二次電池は、有機電荷貯蔵材料を二次電池における電極活物質として用いた電池であり、高レート特性、充放電サイクルに伴う高容量維持率、軽量薄膜、フレキシブル化が可能等の特長から、大きな注目を集めている。有機電荷貯蔵材料としては、ニトロキシラジカル基を含有する化合物がよく用いられるが(非特許文献1、2、特許文献1)、有機硫黄ポリマー(非特許文献3、4)、キノンポリマー(特許文献2)、キノイド系材料(特許文献3、4、5)、ジオン系材料(特許文献6)、ルベアン酸系材料(特許文献7)等についても報告がなされている。
An organic secondary battery is a battery that uses an organic charge storage material as an electrode active material in a secondary battery, and has features such as high rate characteristics, high capacity retention rate associated with charge / discharge cycles, lightweight thin film, and flexibility. , Is getting a lot of attention. As the organic charge storage material, a compound containing a nitroxy radical group is often used (
また、近年、無機電極活物質と共存させて用いることにより、リチウムイオン電池の高速充放電時における容量及び電圧維持率(以下、レート特性という。)向上、充放電サイクルにおける容量維持率(以下、サイクル特性という。)向上が可能であることが示され(非特許文献5)、適用用途及び手法が拡大している。 Further, in recent years, by using it in coexistence with an inorganic electrode active material, the capacity and voltage retention rate (hereinafter referred to as rate characteristics) of a lithium ion battery during high-speed charging / discharging are improved, and the capacity retention rate during charging / discharging cycle (hereinafter referred to as “rate characteristic”) is improved. It has been shown that improvement is possible (referred to as cycle characteristics) (Non-Patent Document 5), and its applications and methods are expanding.
しかし、ニトロキシラジカル系電荷貯蔵材料を電極活物質として用いた電池は、無機系電極活物質を用いたそれと比較して電荷貯蔵容量が小さく、有機硫黄ポリマー等の容量の高い有機電荷貯蔵材料を用いた場合は、電気化学的安定性が低く、充分なサイクル特性が得られない、また電圧が低いという課題があった。また、他の有機電荷貯蔵材料においても、電極活物質として単独で用いる場合、あるいは無機電極活物質と併用する場合において、上記課題に加えて、電解液に対する溶出耐性、充分なイオンの出入りを可能にする膨潤性、イオン伝導性、無機電極活物質や集電体との結着性等が不足することにより、二次電池、特にリチウムイオン電池として充分な性能が得られない場合があった。 However, a battery using a nitroxy radical-based charge storage material as an electrode active material has a smaller charge storage capacity than that using an inorganic electrode active material, and can use a high-capacity organic charge storage material such as an organic sulfur polymer. When used, there are problems that the electrochemical stability is low, sufficient cycle characteristics cannot be obtained, and the voltage is low. Further, in other organic charge storage materials, when used alone as an electrode active material or in combination with an inorganic electrode active material, in addition to the above-mentioned problems, elution resistance to an electrolytic solution and sufficient ion inflow / outflow are possible. Due to lack of swelling property, ionic conductivity, binding property with an inorganic electrode active material and a current collector, etc., sufficient performance may not be obtained as a secondary battery, particularly a lithium ion battery.
本発明は、このような事情に鑑みてなされたものであり、電極活物質として用いた場合に、高容量、高レート特性及び高サイクル特性を有する高性能な電池を与え得る、電荷貯蔵性を有する材料を提供することを目的とする。 The present invention has been made in view of such circumstances, and when used as an electrode active material, has a charge storage property that can provide a high-performance battery having high capacity, high rate characteristics and high cycle characteristics. The purpose is to provide the material to have.
本発明者らは、上記目的を達成するため鋭意検討を重ねた結果、アザアントラキノン骨格を有するポリマーを有する特定のポリマーが、電荷貯蔵材料として機能し、これを電極活物質として用いた場合に、上記課題を克服して高容量、高レート特性及び高サイクル特性を示す二次電池を与えることを見出し、本発明を完成させた。 As a result of diligent studies to achieve the above object, the present inventors have obtained a case where a specific polymer having a polymer having an azaanthraquinone skeleton functions as a charge storage material and is used as an electrode active material. The present invention has been completed by finding that a secondary battery exhibiting high capacity, high rate characteristics and high cycle characteristics can be provided by overcoming the above problems.
すなわち、本発明は、下記電荷貯蔵材料、電極活物質及び二次電池を提供する。
1. アザアントラキノン骨格を有するポリマーであって、下記式(1)~(3)で表される繰り返し単位から選ばれる少なくとも1種を含むことを特徴とするポリマー。
3. 1又は2のポリマーからなる電荷貯蔵材料。
4. 3の電荷貯蔵材料を含む電極活物質。
5. 4の電極活物質、及び溶媒を含む電極スラリー。
6. 4の電極活物質を含む薄膜。
7. 5の電極スラリーから得られる薄膜。
8. 4の電極活物質を含む電極。
9. 6又は7の薄膜を含む電極。
10. 8又は9の電極を含む二次電池。
11. 8又は9の電極を含むリチウムイオン電池。
12. 電解質の濃度が0.001~2mol/Lである電解液を含む11のリチウムイオン二次電池。
13. イオン伝導度が10-7~10-3S/cmである固体電解質を含む全固体電池である10の二次電池。
14. 1,2,4,5-テトラアミノ-p-ベンゾキノンとトリキノイル水和物とを縮合重合させることを含む1のポリマーの製造方法。
That is, the present invention provides the following charge storage materials, electrode active materials, and secondary batteries.
1. 1. A polymer having an azaanthraquinone skeleton and comprising at least one selected from repeating units represented by the following formulas (1) to (3).
3. 3. A charge storage material consisting of 1 or 2 polymers.
4. Electrode active material containing 3 charge storage materials.
5. An electrode slurry containing the electrode active material of No. 4 and a solvent.
6. A thin film containing the electrode active material of 4.
7. A thin film obtained from the electrode slurry of 5.
8. An electrode containing the electrode active material of 4.
9. An electrode containing a thin film of 6 or 7.
10. A secondary battery containing 8 or 9 electrodes.
11. A lithium ion battery comprising 8 or 9 electrodes.
12. 11 lithium ion secondary batteries containing an electrolytic solution having an electrolyte concentration of 0.001 to 2 mol / L.
13. A secondary battery of 10 which is an all-solid-state battery containing a solid electrolyte having an ionic conductivity of 10 -7 to 10 -3 S / cm.
14. 1. A method for producing a polymer, which comprises polycondensation polymerizing 1,2,4,5-tetraamino-p-benzoquinone and triquinoyl hydrate.
本発明に係るポリマーは、電荷貯蔵の主体としてアザアントラキノン骨格を有し、発生するアニオンラジカルが連続するピリジン縮環構造によって安定化されるために電気化学的安定性が高く、電荷貯蔵材料として有用である。 The polymer according to the present invention has an azaanthraquinone skeleton as a main component of charge storage, and has high electrochemical stability because the generated anion radicals are stabilized by a continuous pyridine fused ring structure, and is useful as a charge storage material. Is.
上記ポリマーを電極活物質として用いることで、高容量、高レート特性及び高サイクル特性を有する二次電池を作製することが可能である。上記ポリマーは、特にリチウムイオン電池の電極活物質として好適である。一般的な二次電池においては、無機系材料又は炭素材料が電極活物質として用いられるが、正極又は負極のどちらか一方を本発明の電荷貯蔵材料を含有する電極に置き換えて使用することもでき、無機材料系あるいは炭素材料系電極活物質と併用して用いることもできる。 By using the above polymer as an electrode active material, it is possible to manufacture a secondary battery having high capacity, high rate characteristics and high cycle characteristics. The above polymer is particularly suitable as an electrode active material for a lithium ion battery. In a general secondary battery, an inorganic material or a carbon material is used as an electrode active material, but either the positive electrode or the negative electrode can be replaced with an electrode containing the charge storage material of the present invention. It can also be used in combination with an inorganic material-based or carbon material-based electrode active material.
[ポリマー]
本発明のポリマーは、下記式(1)~(3)で表される繰り返し単位から選ばれる少なくとも1種を含む。
[polymer]
The polymer of the present invention contains at least one selected from the repeating units represented by the following formulas (1) to (3).
ポリマー全体としての構造は、式(1)~(3)で表される繰り返し単位の含有比率によって異なるものとなる。例えば、式(1)及び式(2)で表される繰り返し単位を多く含む場合は、ラダー型ポリマーとなり、さらに式(1)で表される繰り返し単位の比率が高いほど直線性が高いラダー型ポリマーとなる。また、式(3)で表される繰り返し単位を含む場合は、分岐構造を含む分岐型ポリマーとなり、当該繰り返し単位の比率が高いほど高分岐型ポリマーとなる。 The structure of the polymer as a whole differs depending on the content ratio of the repeating units represented by the formulas (1) to (3). For example, when a large number of repeating units represented by the formulas (1) and (2) are contained, the polymer becomes a ladder type polymer, and the higher the ratio of the repeating units represented by the formula (1), the higher the linearity. It becomes a polymer. When the repeating unit represented by the formula (3) is contained, the polymer is a branched polymer containing a branched structure, and the higher the ratio of the repeating units, the higher the branched polymer.
本発明では、上記ポリマーは、上記式(1)~(3)で表される繰り返し単位のうち、式(2)及び(3)で表される繰り返し単位から選ばれる少なくとも1種を必ず含むポリマーがより好ましい。さらに、電気化学的安定性の観点から、特に式(1)で表される繰り返し単位の含有比率が高いラダー型ポリマー又は式(3)で表される繰り返し単位の含有比率が高い高分岐型ポリマーであることが好ましい。 In the present invention, the polymer always contains at least one selected from the repeating units represented by the formulas (2) and (3) among the repeating units represented by the formulas (1) to (3). Is more preferable. Further, from the viewpoint of electrochemical stability, a ladder type polymer having a high content ratio of a repeating unit represented by the formula (1) or a highly branched polymer having a high content ratio of a repeating unit represented by the formula (3). Is preferable.
上記ポリマーは、例えば、下記式(4-1)~(4-11)に示すようなオリゴマーに由来する部分構造を含むものが好ましいが、これらに限定されない。 The polymer preferably contains, for example, a partial structure derived from an oligomer as shown in the following formulas (4-1) to (4-11), but is not limited thereto.
上記ポリマーは、例えば、1,2,4,5-テトラアミノ-p-ベンゾキノンとトリキノイル水和物とをポリリン酸中で縮合重合させることによって合成することができる。なお、1,2,4,5-テトラアミノ-p-ベンゾキノンは、例えば、米国特許第3051725号明細書に記載された方法を参考に合成することができる。また、トリキノイル水和物は、市販品を使用することができ、例えば、トリキノイル水和物(東京化成工業(株)製)が挙げられる。 The polymer can be synthesized, for example, by condensation polymerization of 1,2,4,5-tetraamino-p-benzoquinone and triquinoyl hydrate in polyphosphoric acid. It should be noted that 1,2,4,5-tetraamino-p-benzoquinone can be synthesized, for example, with reference to the method described in US Pat. No. 3,017,725. As the triquinoyl hydrate, a commercially available product can be used, and examples thereof include triquinoyl hydrate (manufactured by Tokyo Chemical Industry Co., Ltd.).
1,2,4,5-テトラアミノ-p-ベンゾキノンとトリキノイル水和物との仕込み比(モル比)は、目的とする構造や分子量等を考慮して適宜決定されるため一概に規定できないが、ラダー型のポリマーを得る場合は、両成分のモル数を同量程度にすることが好ましい。具体的には、トリキノイル水和物1モルに対して、1,2,4,5-テトラアミノ-p-ベンゾキノンを0.80~1.20モルとすることが好ましく、0.90~1.10モルとすることがより好ましく、0.95~1.05モルとすることがより一層好ましい。 The charging ratio (molar ratio) of 1,2,4,5-tetraamino-p-benzoquinone and triquinoyl hydrate cannot be unconditionally specified because it is appropriately determined in consideration of the target structure, molecular weight, etc. In the case of obtaining a ladder type polymer, it is preferable that the number of moles of both components is about the same. Specifically, it is preferable that 1,2,4,5-tetraamino-p-benzoquinone is 0.80 to 1.20 mol, and 0.90 to 1.20 mol, per 1 mol of triquinoyl hydrate. It is more preferably 10 mol, and even more preferably 0.95 to 1.05 mol.
また、分岐型のポリマーを得る場合は、トリキノイル水和物に対して、1,2,4,5-テトラアミノ-p-ベンゾキノンを過剰量使用することが好ましい。具体的には、トリキノイル水和物1モルに対して、1,2,4,5-テトラアミノ-p-ベンゾキノンを1.20モル超とすることが好ましく、1.30~2.20モルがより好ましく、1.40~2.20モルがより一層好ましく、1.50~2.20モルがさらに好ましく、特に1.50以上とすることにより高分岐型のポリマーをより得やすくなる。なお、1,2,4,5-テトラアミノ-p-ベンゾキノンの使用量を上記範囲の上限以下とすることで、末端に1,2,4,5-テトラアミノ-p-ベンゾキノンに由来するアミノ基を有する低分子量の化合物が過剰に生成せず、目的とする分子量のポリマーを得やすい。 In addition, when obtaining a branched polymer, it is preferable to use an excess amount of 1,2,4,5-tetraamino-p-benzoquinone with respect to triquinoyl hydrate. Specifically, the amount of 1,2,4,5-tetraamino-p-benzoquinone is preferably more than 1.20 mol, and 1.30 to 2.20 mol is preferable with respect to 1 mol of triquinoyl hydrate. More preferably, 1.40 to 2.20 mol is even more preferable, 1.50 to 2.20 mol is further preferable, and in particular, 1.50 or more makes it easier to obtain a highly branched polymer. By setting the amount of 1,2,4,5-tetraamino-p-benzoquinone to be used below the upper limit of the above range, amino acids derived from 1,2,4,5-tetraamino-p-benzoquinone at the terminal ends. Low molecular weight compounds having a group are not excessively produced, and it is easy to obtain a polymer having a desired molecular weight.
上記重合反応においては、溶媒としてポリリン酸、硫酸、五酸化二リン等を使用できる。本発明においては、ポリリン酸を好適に使用できる。溶媒の使用量は、テトラアミノベンゾキノン1当量に対して15~30当量程度が好ましい(例えば、テトラアミノベンゾキノン500mgに対して溶媒2~5mL)。 In the above polymerization reaction, polyphosphoric acid, sulfuric acid, diphosphorus pentoxide and the like can be used as the solvent. In the present invention, polyphosphoric acid can be preferably used. The amount of the solvent used is preferably about 15 to 30 equivalents with respect to 1 equivalent of tetraaminobenzoquinone (for example, 2 to 5 mL of solvent with respect to 500 mg of tetraaminobenzoquinone).
反応温度は、通常の条件を採用することができ、特に制限されるものではないが、通常、20~100℃程度、好ましくは75~100℃とすることができる。反応時間についても、通常の条件を採用することができ、特に制限されるものではないが、通常、1~1,000時間程度、好ましくは24~72時間とすることができる。 The reaction temperature can be usually set to about 20 to 100 ° C, preferably about 75 to 100 ° C, although normal conditions can be adopted and is not particularly limited. As for the reaction time, ordinary conditions can be adopted, and the reaction time is not particularly limited, but is usually about 1 to 1,000 hours, preferably 24 to 72 hours.
本発明のポリマーの重量平均分子量(Mw)は、電解液への溶出を抑制する観点から、1,000以上が好ましく、2,000以上がより好ましい。また、Mwは、後述する電極スラリー用溶媒への膨潤性の観点から、50,000以下が好ましく、10,000以下がより好ましい。また、分散度(Mw/Mn)は、1.0~2.0が好ましい。なお、本発明において、Mwは、N,N-ジメチルホルムアミド(DMF)を溶媒として用いたゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算測定値である。 The weight average molecular weight (Mw) of the polymer of the present invention is preferably 1,000 or more, more preferably 2,000 or more, from the viewpoint of suppressing elution into the electrolytic solution. Further, Mw is preferably 50,000 or less, more preferably 10,000 or less, from the viewpoint of swellability to the solvent for electrode slurry described later. The dispersity (Mw / Mn) is preferably 1.0 to 2.0. In the present invention, Mw is a polystyrene-equivalent measured value by gel permeation chromatography (GPC) using N, N-dimethylformamide (DMF) as a solvent.
本発明のポリマーの構造は、元素分析により炭素と窒素の比率(モル比)を定量することにより推定することができる。例えば、得られたポリマーが、式(1)又は(2)で表される繰り返し単位からなるラダー型ポリマーである場合、炭素と窒素のモル比は、おおむね炭素:窒素=3:1となり、式(3)で表される繰り返し単位からなる高分岐型ポリマーである場合は、おおむね炭素:窒素=5:2となる。本発明のポリマーにおいて、上記モル比は、式(1)~(3)で表される繰り返し単位の含有比率に応じて変動し、3:1に近づくほどラダー型ポリマーに近くなり、5:2に近づくほど高分岐型ポリマーに近くなる。 The structure of the polymer of the present invention can be estimated by quantifying the ratio (molar ratio) of carbon and nitrogen by elemental analysis. For example, when the obtained polymer is a ladder-type polymer composed of repeating units represented by the formula (1) or (2), the molar ratio of carbon to nitrogen is approximately carbon: nitrogen = 3: 1, and the formula is In the case of a highly branched polymer composed of the repeating unit represented by (3), the ratio is generally carbon: nitrogen = 5: 2. In the polymer of the present invention, the molar ratio varies depending on the content ratio of the repeating units represented by the formulas (1) to (3), and the closer to 3: 1 the closer to the ladder type polymer, the closer to 5: 2 The closer it is, the closer it is to a highly branched polymer.
なお、本発明において、上記ポリマーは、式(1)~(3)で表される繰り返し単位以外の繰り返し単位を含んでいてもよい。 In the present invention, the polymer may contain repeating units other than the repeating units represented by the formulas (1) to (3).
[電荷貯蔵材料]
本発明のポリマーは、電荷貯蔵材料として好適に使用できる。電荷貯蔵材料とは電荷を貯蔵することができる材料のことであり、これは、例えば、二次電池の電極活物質として有用である。
[Charge storage material]
The polymer of the present invention can be suitably used as a charge storage material. The charge storage material is a material capable of storing electric charge, which is useful, for example, as an electrode active material for a secondary battery.
[二次電池]
本発明の二次電池は、上述したポリマーからなる電荷貯蔵材料を電極活物質として用いることに特徴があり、その他の電池素子の構成部材は従来公知のものから適宜選択して用いればよい。
[Secondary battery]
The secondary battery of the present invention is characterized in that a charge storage material made of the above-mentioned polymer is used as an electrode active material, and other components of the battery element may be appropriately selected from conventionally known components and used.
一例として、一般的な二次電池について説明する。
二次電池は、一般的に、正極層と、負極層と、正極層及び負極層の間に配されるセパレータ層と、これら全てを含む電池素子内部に充填される電解液とから構成される。正極層及び負極層は、集電体である基板上に、電極活物質と、必要に応じて電極層の導電性向上のために炭素等からなる導電助剤と、更に必要に応じて成膜均一性向上、イオン伝導性向上、電解液への溶出抑制等のためにバインダーとを含む薄膜を形成することで構成される。電解液は、イオン伝導の本体である塩からなる電解質と溶媒等とから構成される。
As an example, a general secondary battery will be described.
The secondary battery is generally composed of a positive electrode layer, a negative electrode layer, a separator layer arranged between the positive electrode layer and the negative electrode layer, and an electrolytic solution filled inside the battery element including all of them. .. The positive electrode layer and the negative electrode layer are formed on a substrate, which is a current collector, with an electrode active material, a conductive auxiliary agent made of carbon or the like to improve the conductivity of the electrode layer, if necessary, and further, if necessary. It is composed of forming a thin film containing a binder for improving uniformity, improving ionic conductivity, suppressing elution into an electrolytic solution, and the like. The electrolytic solution is composed of an electrolyte composed of a salt, which is the main body of ionic conduction, and a solvent and the like.
この正極層又は負極層の電極活物質として、本発明の電荷貯蔵材料が用いられる。上記電極活物質を正極層、負極層のいずれの電極層に使用するかは特に限定されず、相対する電極の電位の貴、卑によって決定される。また、両極ともに上記電極活物質を使用してもよい。 The charge storage material of the present invention is used as the electrode active material of the positive electrode layer or the negative electrode layer. Whether the electrode active material is used for the positive electrode layer or the negative electrode layer is not particularly limited, and is determined by the potential of the opposing electrodes. Moreover, you may use the said electrode active material for both poles.
二次電池の形態は特に限定されず、リチウムイオン電池、ニッケル水素電池、マンガン電池、空気電池等のいずれの形態を用いてもよい。ラミネート方法や生産方法についても特に限定されない。 The form of the secondary battery is not particularly limited, and any form such as a lithium ion battery, a nickel hydrogen battery, a manganese battery, and an air battery may be used. The laminating method and the production method are not particularly limited.
上記電極層は、本発明の電荷貯蔵材料、溶媒、必要に応じて導電助剤、バインダー、従来公知の他の電極活物質等を混合して電極スラリーを調製し、これを用いて基板上に薄膜を形成することで作製することができる。上記薄膜の形成方法としては、特に限定されず、従来公知の各種方法を用いることができる。例えば、電荷貯蔵材料を含む材料を溶媒に溶解又は懸濁したスラリーを用いたオフセット印刷、スクリーン印刷、グラビア印刷等の各種印刷法、ディップコート法、スピンコート法、バーコート法、スリット(ダイ)コート法、インクジェット法等が挙げられる。 The electrode layer is prepared by mixing the charge storage material of the present invention, a solvent, a conductive auxiliary agent, a binder, other conventionally known electrode active materials, etc. as necessary to prepare an electrode slurry, which is used on a substrate. It can be produced by forming a thin film. The method for forming the thin film is not particularly limited, and various conventionally known methods can be used. For example, various printing methods such as offset printing, screen printing, and gravure printing using a slurry in which a material including a charge storage material is dissolved or suspended in a solvent, a dip coating method, a spin coating method, a bar coating method, and a slit (die). Examples include a coating method and an inkjet method.
上記電極層の下地に用いられる集電体としては、例えば、アルミニウム、銅、リチウム、ステンレス鋼、鉄、クロム、白金、金等の金属箔あるいは基板、これらの金属の任意の組み合わせからなる合金箔あるいは基板、インジウム錫酸化物(ITO)、インジウム亜鉛酸化物(IZO)、アンチモン錫酸化物(ATO)等の酸化物基板、グラッシーカーボン、パイロリティックグラファイト、カーボンフェルト等の炭素基板、カーボン材料を上記金属箔にコートしたカーボンコート箔等が挙げられる。 Examples of the current collector used as the base of the electrode layer include metal foils such as aluminum, copper, lithium, stainless steel, iron, chromium, platinum, and gold, or substrates, and alloy foils made of any combination of these metals. Alternatively, the substrate, an oxide substrate such as indium tin oxide (ITO), indium zinc oxide (IZO), antimony tin oxide (ATO), a carbon substrate such as glassy carbon, pyrolytic graphite, carbon felt, and a carbon material can be used as described above. Examples thereof include carbon coated foil coated on metal foil.
上記導電助剤としては、グラファイト、カーボンブラック、アセチレンブラック、気相成長炭素繊維(VGCF)、カーボンナノチューブ、カーボンナノホーン、グラフェン等の炭素材料、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリアセン等の導電性高分子等が挙げられる。上記導電助剤は、1種単独で又は2種以上組み合わせて用いることができる。 Examples of the conductive auxiliary agent include carbon materials such as graphite, carbon black, acetylene black, vapor-grown carbon fiber (VGCF), carbon nanotubes, carbon nanohorns, and graphene, and highly conductive materials such as polyaniline, polypyrrole, polythiophene, polyacetylene, and polyacetylene. Examples include molecules. The conductive auxiliary agent can be used alone or in combination of two or more.
上記バインダーとしては、ポリテトラフルオロエチレン、ポリフッ化ビニリデン(PVDF)、ポリヘキサフルオロプロピレン、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体、ポリ塩化ビニル、ポリカーボネート、ポリスチレン、ポリアクリル酸、ポリアクリル酸塩、ポリアクリル酸エステル、ポリメタクリル酸、ポリメタクリル酸塩、ポリメタクリル酸エステル、ポリエステル、ポリスルホン、ポリフェニレンオキシド、ポリブタジエン、ポリ(N-ビニルカルバゾール)、炭化水素樹脂、ケトン樹脂、フェノキシ樹脂、ポリアミド、エチルセルロース、酢酸ビニル、ABS樹脂、SBR樹脂、ポリウレタン樹脂、メラミン樹脂、不飽和ポリエステル樹脂、アルキド樹脂、エポキシ樹脂、シリコン樹脂、又はこれらの任意の組み合わせからなる共重合体やブレンドポリマー等が挙げられる。 Examples of the binder include polytetrafluoroethylene, polyvinylidene fluoride (PVDF), polyhexafluoropropylene, vinylidene fluoride-hexafluoropropylene copolymer, polyvinyl chloride, polycarbonate, polystyrene, polyacrylic acid, and polyacrylic acid salt. Polyacrylic acid ester, polymethacrylic acid, polymethacrylate, polymethacrylic acid ester, polyester, polysulfone, polyphenylene oxide, polybutadiene, poly (N-vinylcarbazole), hydrocarbon resin, ketone resin, phenoxy resin, polyamide, ethyl cellulose, Examples thereof include vinyl acetate, ABS resin, SBR resin, polyurethane resin, melamine resin, unsaturated polyester resin, alkyd resin, epoxy resin, silicon resin, or a copolymer or blend polymer composed of any combination thereof.
上記電極スラリー用溶媒としては、N-メチル-2-ピロリドン(NMP)、ジメチルスルホキシド、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、γ-ブチロラクトン(GBL)、テトラヒドロフラン(THF)、ジオキソラン、スルホラン、DMF、N,N-ジメチルアセトアミド等が挙げられる。 Examples of the solvent for the electrode slurry include N-methyl-2-pyrrolidone (NMP), dimethyl sulfoxide, ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, γ-butyrolactone (GBL) and tetrahydrofuran (THF). Examples thereof include dioxolane, THFolan, DMF, N, N-dimethylacetamide and the like.
本発明の電荷貯蔵材料を含む電極活物質を正極層に使用する場合、負極層内に含まれる負極活物質としては、グラファイト、カーボンブラック、アセチレンブラック、VGCF、カーボンナノチューブ、カーボンナノホーン、グラフェン等の炭素材料、Li、Li-Al、Li-Si、Li-Sn等のリチウム合金、Si、SiO、SiO2、Si-SiO2複合体、Sn、SnO、SnO2、PbO、PbO2、GeO、GeO2、WO2、MoO2、Fe2O3、Nb2O5、TiO2、Li4Ti5O12、Li2Ti3O7等が挙げられる。 When the electrode active material containing the charge storage material of the present invention is used for the positive electrode layer, the negative electrode active material contained in the negative electrode layer includes graphite, carbon black, acetylene black, VGCF, carbon nanotubes, carbon nanohorns, graphene and the like. Carbon material, lithium alloy such as Li, Li-Al, Li-Si, Li-Sn, Si, SiO, SiO 2 , Si-SiO 2 composite, Sn, SnO, SnO 2 , PbO, PbO 2 , GeO, GeO 2 , WO 2 , MoO 2 , Fe 2 O 3 , Nb 2 O 5 , TIO 2 , Li 4 Ti 5 O 12 , Li 2 Ti 3 O 7 and the like.
本発明の電荷貯蔵材料を含む電極活物質を負極層に使用する場合、正極層内に含まれる正極活物質としては、ニトロキシラジカル基を含有する化合物、有機硫黄ポリマー、本発明の電荷貯蔵材料以外のキノンポリマー、キノイド系材料、ジオン系材料、ルベアン酸系材料等の有機電極活物質、LiCoO2、LiMn2O4、LiNiO2、LiNi0.5Mn0.5O2、Li(NiaCobMnc)O2(ただし、0<a<1、0<b<1、0<c<1、a+b+c=1)、LiFePO4、LiMnPO4、LiCoPO4、Fe2(SO4)3、LiMnSiO4、V2O5等の無機電極活物質等が挙げられる。 When the electrode active material containing the charge storage material of the present invention is used for the negative electrode layer, the positive electrode active material contained in the positive electrode layer includes a compound containing a nitroxy radical group, an organic sulfur polymer, and the charge storage material of the present invention. Other than quinone polymers, quinoid materials, dione materials, organic electrode active materials such as rubianic acid materials, LiCoO 2 , LiMn 2 O 4 , LiNiO 2 , LiNi 0.5 Mn 0.5 O 2 , Li (Ni a Co b Mn c) ) O 2 (However, 0 <a <1, 0 <b <1, 0 <c <1, a + b + c = 1), LiFePO 4 , LiMnPO 4 , LiCoPO 4 , Fe 2 (SO 4 ) 3 , LiMnSiO 4 , V. 2 Examples include inorganic electrode active materials such as O5.
本発明の電荷貯蔵材料を含む電極活物質を負極層に使用する場合、上記負極活物質と併用してもよい。また、本発明の電荷貯蔵材料を含む電極活物質を正極層に使用する場合、上記正極活物質と併用してもよい。 When the electrode active material containing the charge storage material of the present invention is used for the negative electrode layer, it may be used in combination with the negative electrode active material. Further, when the electrode active material containing the charge storage material of the present invention is used for the positive electrode layer, it may be used in combination with the positive electrode active material.
本発明の電荷貯蔵材料を含む電極活物質を空気極(正極)とし、空気電池として用いてもよい。この場合、負極層内に含まれる負極活物質としては、上記の負極活物質に加え、ナトリウム、マグネシウム、アルミニウム、カルシウム、亜鉛等を用いることができる。 The electrode active material containing the charge storage material of the present invention may be used as an air electrode (positive electrode) and used as an air battery. In this case, as the negative electrode active material contained in the negative electrode layer, sodium, magnesium, aluminum, calcium, zinc or the like can be used in addition to the above-mentioned negative electrode active material.
なお、正極を空気極とし、空気電池として用いる場合、正極層内に含まれる酸化還元補助材として、本発明の電荷貯蔵材料に加え、酸化マンガン等の無機材料、2,2,6,6-テトラメチルピペリジン-N-オキシルポリマー等のニトロキシラジカル材料を併用してもよい。 When the positive electrode is used as an air electrode and used as an air battery, as an oxidation-reduction auxiliary material contained in the positive electrode layer, in addition to the charge storage material of the present invention, an inorganic material such as manganese oxide, 2,2,6,6- A nitroxy radical material such as tetramethylpiperidin-N-oxyl polymer may be used in combination.
上記電極層の膜厚は、特に限定されないが、好ましくは0.01~1,000μm程度、より好ましくは0.1~100μm程度である。 The film thickness of the electrode layer is not particularly limited, but is preferably about 0.01 to 1,000 μm, and more preferably about 0.1 to 100 μm.
上記セパレータ層に使用される材料としては、例えば、多孔質ポリオレフィン、ポリアミド、ポリエステル等が挙げられる。 Examples of the material used for the separator layer include porous polyolefins, polyamides, polyesters and the like.
上記電解液を構成する電解質としては、例えば、LiPF6、LiBF4、LiN(C2F5SO2)2、LiAsF6、LiSbF6、LiAlF4、LiGaF4、LiInF4、LiClO4、LiN(CF3SO2)2、LiCF3SO3、LiSiF6、LiN(CF3SO2)(C4F9SO2)等のリチウム塩、LiI、NaI、KI、CsI、CaI2等の金属ヨウ化物、4級イミダゾリウム化合物のヨウ化物塩、テトラアルキルアンモニウム化合物のヨウ化物塩及び過塩素酸塩、LiBr、NaBr、KBr、CsBr、CaBr2等の金属臭化物等が挙げられる。 Examples of the electrolyte constituting the electrolytic solution include LiPF 6 , LiBF 4 , LiN (C 2 F 5 SO 2 ) 2 , LiAsF 6 , LiSbF 6 , LiAlF 4 , LiGaF 4 , LiInF 4 , LiClO 4 , and LiN (CF). 3 SO 2 ) 2 , LiCF 3 SO 3 , LiSiF 6 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ) and other lithium salts, LiI, NaI, KI, CsI, CaI 2 and other metal iodides, Examples thereof include iodide salts of quaternary imidazolium compounds, iodide salts and perchlorates of tetraalkylammonium compounds, and metal bromides such as LiBr, NaBr, KBr, CsBr and CaBr 2 .
上記電解液を構成する溶媒は、電池を構成する物質に対して腐食や分解を生じさせて性能を劣化させるものでなく、上記電解質を溶解するものであれば特に限定されない。例えば、非水系の溶媒として、エチレンカーボネート(EC)、プロピレンカーボネート、ブチレンカーボネート、GBL等の環状エステル類;THF、ジメトキシエタン等のエーテル類;ジメチルカーボネート、ジエチルカーボネート(DEC)、エチルメチルカーボネート等の鎖状エステル類等が用いられる。これらの溶媒は、1種単独で又は2種以上混合して用いることができる。 The solvent constituting the electrolytic solution does not cause corrosion or decomposition of the substance constituting the battery to deteriorate the performance, and is not particularly limited as long as it dissolves the electrolyte. For example, as a non-aqueous solvent, cyclic esters such as ethylene carbonate (EC), propylene carbonate, butylene carbonate and GBL; ethers such as THF and dimethoxyethane; dimethyl carbonate, diethyl carbonate (DEC), ethylmethyl carbonate and the like. Chain esters and the like are used. These solvents can be used alone or in admixture of two or more.
上記電解液中の電解質の濃度は0.001~2mol/Lであることが好ましく、0.001~1.2mol/Lであることがより好ましく、より高い電池性能を発揮する電池を得る観点から、上記電解質の濃度は0.1mol/L以上とすることがより一層好ましく、0.5mol/L以上とすることが更に好ましい。このような濃度の電解液を用いることで、良好な電池性能を発揮することができる。本発明では、特に上記ポリマーを電極活物質として用いることで、電解質の濃度が0.1mol/L未満の低濃度領域においてもその電気化学的安定性によって良好な電池性能を発揮し得る電池を得ることができる。 The concentration of the electrolyte in the electrolytic solution is preferably 0.001 to 2 mol / L, more preferably 0.001 to 1.2 mol / L, and from the viewpoint of obtaining a battery exhibiting higher battery performance. The concentration of the electrolyte is more preferably 0.1 mol / L or more, and further preferably 0.5 mol / L or more. By using an electrolytic solution having such a concentration, good battery performance can be exhibited. In the present invention, particularly by using the above polymer as an electrode active material, a battery capable of exhibiting good battery performance due to its electrochemical stability even in a low concentration region where the concentration of the electrolyte is less than 0.1 mol / L can be obtained. be able to.
本発明では、固体電解質を用いてもよく、硫化物系固体電解質及び酸化物系固体電解質等の無機固体電解質や、高分子系電解質等の有機固体電解質を好適に用いることができる。これらの固体電解質を用いることで電解液を使用しない全固体電池を得ることができる。 In the present invention, a solid electrolyte may be used, and an inorganic solid electrolyte such as a sulfide-based solid electrolyte and an oxide-based solid electrolyte, or an organic solid electrolyte such as a polymer-based electrolyte can be preferably used. By using these solid electrolytes, an all-solid-state battery that does not use an electrolytic solution can be obtained.
上記硫化物系固体電解質としては、Li2S-SiS2-リチウム化合物(ここで、リチウム化合物はLi3PO4、LiIおよびLi4SiO4からなる群より選ばれる少なくとも1種である)、Li2S-P2O5、Li2S-B2S5、Li2S-P2S5-GeS2等のチオリシコン系材料等を挙げることができる。
上記酸化物系固体電解質としては、ナトリウム/アルミナ等を挙げることができる。
上記高分子系固体電解質としては、ポリエチレンオキシド系材料や、ヘキサフルオロプロピレン、テトラフルオロエチレン、トリフルオロエチレン、エチレン、プロピレン、アクリロニトリル、塩化ビニリデン、アクリル酸、メタクリル酸、メチルアクリレート、エチルアクリレート、メチルメタクリレート、スチレン及びフッ化ビニリデン等のモノマーを重合又は共重合して得られる高分子化合物等を挙げることができる。なお、上記高分子系固体電解質には、支持塩及び可塑剤を含んでいてもよい。
本発明において、上記固体電解質のイオン伝導度は、10-7~10-3S/cmが好ましく、10-5~10-3S/cmがより好ましい。
Examples of the sulfide-based solid electrolyte include Li 2 S-SiS 2 -lithium compound (here, the lithium compound is at least one selected from the group consisting of Li 3 PO 4, Li I and Li 4 SiO 4 ) and Li. 2 SP 2 O 5, Li 2 SB 2 S 5, Li 2 SP 2 S 5 -GeS 2 and the like can be mentioned.
Examples of the oxide-based solid electrolyte include sodium / alumina and the like.
Examples of the polymer-based solid electrolyte include polyethylene oxide-based materials, hexafluoropropylene, tetrafluoroethylene, trifluoroethylene, ethylene, propylene, acrylonitrile, vinylidene chloride, acrylic acid, methacrylic acid, methyl acrylate, ethyl acrylate, and methyl methacrylate. , Polymer compounds obtained by polymerizing or copolymerizing monomers such as styrene and vinylidene fluoride can be mentioned. The polymer-based solid electrolyte may contain a supporting salt and a plasticizer.
In the present invention, the ionic conductivity of the solid electrolyte is preferably 10 -7 to 10 -3 S / cm, more preferably 10 -5 to 10 -3 S / cm.
上記高分子系固体電解質に含まれる支持塩としては、リチウム(フルオロスルホニルイミド)等を挙げることができ、可塑剤としては、スクシノニトリル等を挙げることができる。 Examples of the supporting salt contained in the polymer-based solid electrolyte include lithium (fluorosulfonylimide), and examples of the plasticizer include succinonitrile.
以下、実施例及び比較例を挙げて本発明をより具体的に説明するが、本発明は下記実施例に限定されない。なお、使用した装置及び測定条件は以下のとおりである。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples. The equipment used and the measurement conditions are as follows.
(1)自転・公転ミキサー
(株)シンキー製、あわとり練太郎AR-100
(2)ボールミル混錬
FRISCH社製、Mini-Mill pulverisette23
(3)1H-NMRスペクトル
日本電子(株)製、核磁気共鳴装置ECX-500(溶媒:ジメチルスルホキシド-d6(DMSO-d6)、内部標準:テトラメチルシラン)
(4)IRスペクトル
日本分光(株)製、フーリエ変換赤外分光光度計FT/IR-6100
(5)元素分析
Perkin Elmer社製、元素分析装置PE2400 II
(6)分子量の測定
(株)島津製作所製 RID-10A/CBM-20A/DGU-20A3/LC-20AD/SPD-20A/CTO-20A搭載(カラム:(株)島津製作所製 TSgel SuperAW-H、カラム温度:50℃、溶媒:DMF、検出器:UV(275nm)・RI検出器(内臓)、検量線:標準ポリスチレン)
(7)CV測定
ビー・エー・エス(株)製、ALSCH1760EW
(8)電池の特性評価
ビー・エー・エス(株)製、ALSCH1760EW
(1) Rotation / Revolution Mixer Made by Shinky Co., Ltd., Awatori Rentaro AR-100
(2) Ball mill kneading Mini-Mill vulvisette 23 manufactured by FRISCH
(3) 1 H-NMR spectrum, manufactured by JEOL Ltd., nuclear magnetic resonance apparatus ECX-500 (solvent: dimethyl sulfoxide-d 6 (DMSO-d 6 ), internal standard: tetramethylsilane)
(4) IR spectrum Fourier transform infrared spectrophotometer FT / IR-6100 manufactured by Nippon Kogaku Co., Ltd.
(5) Elemental analysis Elemental analyzer PE2400 II manufactured by PerkinElmer.
(6) Measurement of molecular weight
Equipped with RID-10A / CBM-20A / DGU-20A3 / LC-20AD / SPD-20A / CTO-20A manufactured by Shimadzu Corporation (column: TSgel SuperAW-H manufactured by Shimadzu Corporation, column temperature: 50 ° C., Solvent: DMF, detector: UV (275nm) / RI detector (built-in), calibration curve: standard polystyrene)
(7) CV measurement ALSCH1760EW manufactured by BAS Co., Ltd.
(8) Battery characteristic evaluation ALSCH1760EW manufactured by BAS Co., Ltd.
[1]ポリマーAの合成
[合成例1]1,2,4,5-テトラアミノ-p-ベンゾキノンの合成
1,2,4,5-テトラアミノ-p-ベンゾキノンは、米国特許第3051725号明細書に記載された方法を参考にして、以下のように合成した。
100mLフラスコに、テトラクロロ-p-ベンゾキノン(別名クロラニル、東京化成工業(株)製)1.0g(4.07mmol)及びフタルイミドカリウム3.77g(20.35mmol)を加え、脱水DMFを20mL加えた後、70℃で6時間反応させた。反応終了後、沈殿物をろ別し、温純水及び温エタノールの順で洗浄し、真空乾燥を経て1,2,4,5-テトラフタルイミドキノンを黄緑色固体として得た。得られた1,2,4,5-テトラフタルイミドキノン2g(2.90mmol)を100mLフラスコに入れ、超純水12mL及びヒドラジン一水和物を8mL加えて、70℃で1時間反応させた。反応終了後、沈殿物をろ別し、純水及びエタノールの順で洗浄し、真空乾燥を経て1,2,4,5-テトラアミノ-p-ベンゾキノンを紫色固体として得た。図1(a)に、得られた1,2,4,5-テトラアミノ-p-ベンゾキノンの1H-NMR測定結果を示す。その結果、4.5ppm付近にアミン由来のプロトンピークが確認された。
[1] Synthesis of Polymer A [Synthesis Example 1] Synthesis of 1,2,4,5-tetraamino-p-
To a 100 mL flask, 1.0 g (4.07 mmol) of tetrachloro-p-benzoquinone (also known as chloranil, manufactured by Tokyo Chemical Industry Co., Ltd.) and 3.77 g (20.35 mmol) of phthalimide potassium were added, and 20 mL of dehydrated DMF was added. After that, it was reacted at 70 ° C. for 6 hours. After completion of the reaction, the precipitate was filtered off, washed in the order of warm pure water and warm ethanol, and vacuum dried to obtain 1,2,4,5-tetraphthalimide quinone as a yellow-green solid. 2 g (2.90 mmol) of the obtained 1,2,4,5-tetraphthalimide quinone was placed in a 100 mL flask, 12 mL of ultrapure water and 8 mL of hydrazine monohydrate were added, and the mixture was reacted at 70 ° C. for 1 hour. After completion of the reaction, the precipitate was filtered off, washed in the order of pure water and ethanol, and vacuum dried to give 1,2,4,5-tetraamino-p-benzoquinone as a purple solid. FIG. 1A shows the 1 H-NMR measurement results of the obtained 1,2,4,5-tetraamino-p-benzoquinone. As a result, an amine-derived proton peak was confirmed around 4.5 ppm.
[実施例1]ポリマーAの合成
100mLフラスコに、合成例1で得た1,2,4,5-テトラアミノ-p-ベンゾキノン(500.0mg、2.97mmol)、トリキノイル水和物(東京化成工業(株)製)(499.7mg、2.97mmol)及びポリリン酸(富士フイルム和光純薬工業(株)製)4gを加えて、強制撹拌機で攪拌しながら80℃で17時間反応させた。反応溶液を100mLの純水に滴下し、沈殿した固体をろ別し、メタノールによるソックスレー精製を経て不溶物を回収し、真空乾燥を経てポリマーAを黒色固体として得た。得られた固体の熱DMSOへの溶解部を1H-NMR測定したところ、4.5ppm付近に現れていたアミン由来のプロトンピークが消失したことから、反応が進行して本発明のポリマーが合成されたことが確認された(図1(b)参照)。また、IR測定より1,622cm-1にC=O由来のピークが観測されたことから、末端官能基がカルボニル基であることが示唆された。元素分析より、炭素及び窒素のモル比は、炭素:窒素=2.55:1であった。ポリマーAの数平均分子量Mnは1,156、重量平均分子量Mwは1,394、分散度Mw/Mnは1.20であった。
[Example 1] Synthesis of Polymer A In a 100 mL flask, 1,2,4,5-tetraamino-p-benzoquinone (500.0 mg, 2.97 mmol) obtained in Synthesis Example 1 and triquinoyl hydrate (Tokyo Kasei). (499.7 mg, 2.97 mmol) manufactured by Kogyo Co., Ltd. and 4 g of polyphosphoric acid (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) were added and reacted at 80 ° C. for 17 hours while stirring with a forced stirrer. .. The reaction solution was added dropwise to 100 mL of pure water, the precipitated solid was filtered off, the insoluble material was recovered by Soxhlet purification with methanol, and the polymer A was obtained as a black solid by vacuum drying. When the dissolved part of the obtained solid in thermal DMSO was measured by 1 H-NMR, the proton peak derived from the amine that appeared near 4.5 ppm disappeared, so that the reaction proceeded and the polymer of the present invention was synthesized. It was confirmed that this was done (see FIG. 1 (b)). In addition, an IR measurement showed a peak derived from C = O at 1,622 cm -1 , suggesting that the terminal functional group is a carbonyl group. From elemental analysis, the molar ratio of carbon and nitrogen was carbon: nitrogen = 2.55: 1. The number average molecular weight Mn of the polymer A was 1,156, the weight average molecular weight Mw was 1,394, and the dispersity Mw / Mn was 1.20.
[2]ポリマーを含む電極及び電池の評価
[実施例2]ポリマーAを用いた薄膜電極のCV測定
ボールミルにポリマーA5mg、気相成長炭素繊維40mg及び2質量%PVDFのNMP溶液250mgを加え15分間混錬し、電極スラリーを得た。得られた電極スラリーをGC基板上に塗布し、これを80℃で16時間加熱真空乾燥して薄膜電極(膜厚約20μm)を得た。
次に、得られた電極を電解液に浸して、電極中の空隙に電解液を染み込ませた。電解液としては、1mol/LのLiClO4のGBL溶液を用いた。
上記薄膜電極を作用極11に、白金電極を対極12に、Ag/AgCl電極を参照極13に用い、これらをビーカー内に設置し、この中に上記と同様の電解液14を加えて、図2に示すようなビーカーセル1を作製した。
このビーカーセル1を用いて、スキャンレート10mV/secでCV測定を行った。結果を図3に示す。図3に示すようにポリマーAを用いて作製した薄膜電極は、E1/2=0.057V、-0.57に酸化還元波が現れ、繰り返し掃引の後も安定であった。
[2] Evaluation of Electrode and Battery Containing Polymer [Example 2] CV measurement of thin film electrode using
Next, the obtained electrode was immersed in the electrolytic solution, and the voids in the electrode were impregnated with the electrolytic solution. As the electrolytic solution, a GBL solution of 1 mol / L LiClO 4 was used.
The thin film electrode is used as the working
Using this
[実施例3]ポリマーAを電極に用いた電池の特性評価1(コインセル)
実施例1で合成したポリマーA/炭素複合電極を正極、金属リチウムを負極とし、電解液は1mol/Lのヘキサフルオロリン酸リチウムのEC/DEC(=3/7(v/v))溶液を選択しポリマーリチウム二次電池を作製した。なお、ポリマーリチウム二次電池は以下の手法で作製した。アルミ箔上にポリマー/炭素複合電極を作製し半径6mmに、セパレータは半径8.5mmにそれぞれ切り抜いた。プラス端子ケース上にプラスチック製ガスケット、炭素複合電極、セパレータ、金属リチウム、スペーサー及びワッシャーの順に積層し、キャップをはめカシメ機ホルダーを用いて充分にカシメることでポリマーリチウム二次電池を作製した。
作製した電池を4.04μA(0.2C)の定電流で電圧が4.0Vになるまで充電し、その後、4.04μA(0.2C)で放電を行った。その結果、電圧が2.0V付近で秒間ほぼ一定となった後、急速に低下し、放電容量は145mAh/g(理論容量比72%)となった。クーロン効率は約90%であった。これにより、ポリマーAが効果的な電荷貯蔵材料として動作していることを確認した。電圧が4.0Vまで上昇したところで再び充電を行い、更に2.0~4.0Vの範囲で充放電を240回繰り返した。充放電量を変化させた場合の基準電極との電位差の測定結果を図4に、及び充放電した時のサイクル特性を図5に示す。充放電を100回繰り返した後も充放電容量は95%以上を維持した。
[Example 3] Characteristic evaluation 1 (coin cell) of a battery using polymer A as an electrode
The polymer A / carbon composite electrode synthesized in Example 1 is used as a positive electrode, metallic lithium is used as a negative electrode, and the electrolytic solution is a 1 mol / L lithium hexafluorophosphate EC / DEC (= 3/7 (v / v)) solution. Selected polymer lithium secondary batteries were made. The polymer lithium secondary battery was manufactured by the following method. A polymer / carbon composite electrode was prepared on aluminum foil and cut out to a radius of 6 mm and a separator to a radius of 8.5 mm. A polymer lithium secondary battery was manufactured by laminating a plastic gasket, a carbon composite electrode, a separator, metallic lithium, a spacer, and a washer in this order on a positive terminal case, fitting a cap, and sufficiently caulking using a caulking machine holder.
The prepared battery was charged with a constant current of 4.04 μA (0.2 C) until the voltage became 4.0 V, and then discharged at 4.04 μA (0.2 C). As a result, after the voltage became almost constant for a second at around 2.0 V, it rapidly decreased, and the discharge capacity became 145 mAh / g (theoretical capacity ratio 72%). The Coulomb efficiency was about 90%. This confirmed that Polymer A was operating as an effective charge storage material. When the voltage rose to 4.0 V, charging was performed again, and charging / discharging was repeated 240 times in the range of 2.0 to 4.0 V. FIG. 4 shows the measurement result of the potential difference from the reference electrode when the charge / discharge amount is changed, and FIG. 5 shows the cycle characteristics when the charge / discharge amount is changed. Even after repeating charging / discharging 100 times, the charging / discharging capacity was maintained at 95% or more.
[実施例4]ポリマーAを電極に用いた電池の特性評価2(コインセル)
電解液の濃度を0.001mol/Lとしたこと以外は実施例3と同様の手順でポリマーリチウム二次電池を作製した。作製した電池について、実施例3と同様の条件で充放電を240回繰り返した。充放電量を変化させた場合の基準電極との電位差の測定結果を図6に示す。その結果、低濃度の電解液を用いた場合でも良好な電池性能が得られることが確認された。
[Example 4] Characteristic evaluation 2 (coin cell) of a battery using polymer A as an electrode
A polymer lithium secondary battery was produced by the same procedure as in Example 3 except that the concentration of the electrolytic solution was 0.001 mol / L. The produced battery was repeatedly charged and discharged 240 times under the same conditions as in Example 3. FIG. 6 shows the measurement result of the potential difference from the reference electrode when the charge / discharge amount is changed. As a result, it was confirmed that good battery performance can be obtained even when a low-concentration electrolytic solution is used.
[実施例5]ポリマーAを電極に用いた電池の特性評価3(コインセル)
電解質としてポリエチレンオキシド(PEO)、支持塩としてリチウム(フルオロスルホニルイミド)、可塑剤としてスクシノニトリルを用いたPEO系固体電解質(イオン伝導度1.1×10-5S/cm)を電解液兼セパレーターに用いたこと以外は同様のポリマーリチウム全固体電池を作製した。作製した電池について、58℃以上1時間加熱し、室温に戻した後に充放電試験を実施した。結果を図7に示す。その結果、低レートでは100mAh/g以上の容量を確認し、リチウムイオン伝導性の低い全固体電池としても良好な性能が得られることを確認された。
[Example 5] Characteristic evaluation 3 (coin cell) of a battery using polymer A as an electrode
A PEO-based solid electrolyte (ion conductivity 1.1 x 10 -5 S / cm) using polyethylene oxide (PEO) as the electrolyte, lithium (fluorosulfonylimide) as the supporting salt, and succinonitrile as the plasticizing agent is also used as the electrolyte. A similar polymer lithium all-solid-state battery was produced except that it was used for the separator. The prepared battery was heated at 58 ° C. or higher for 1 hour, returned to room temperature, and then a charge / discharge test was performed. The results are shown in FIG. As a result, it was confirmed that the capacity was 100 mAh / g or more at a low rate, and that good performance could be obtained even as an all-solid-state battery having low lithium ion conductivity.
1 ビーカーセル
11 作用極(薄膜電極)
12 対極
13 参照極
14 電解液
1
12
Claims (14)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018200532A JP7084587B2 (en) | 2018-10-25 | 2018-10-25 | Polymers, electrode active materials and secondary batteries |
PCT/JP2019/023675 WO2020084828A1 (en) | 2018-10-25 | 2019-06-14 | Polymer, electrode active substance and secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018200532A JP7084587B2 (en) | 2018-10-25 | 2018-10-25 | Polymers, electrode active materials and secondary batteries |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020066681A JP2020066681A (en) | 2020-04-30 |
JP7084587B2 true JP7084587B2 (en) | 2022-06-15 |
Family
ID=70330461
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018200532A Active JP7084587B2 (en) | 2018-10-25 | 2018-10-25 | Polymers, electrode active materials and secondary batteries |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7084587B2 (en) |
WO (1) | WO2020084828A1 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7150799B2 (en) * | 2020-11-19 | 2022-10-11 | プライムプラネットエナジー&ソリューションズ株式会社 | Non-aqueous electrolyte secondary battery |
JP2024531355A (en) * | 2021-08-19 | 2024-08-29 | マサチューセッツ インスティテュート オブ テクノロジー | Fused aromatic molecules as electrode materials |
CN114204020A (en) * | 2021-11-29 | 2022-03-18 | 华中科技大学 | Organic electrode material universal for alkali metal ion battery and application thereof |
CN115505122B (en) * | 2022-10-09 | 2023-12-08 | 南京理工大学 | Imine polymer positive electrode material synthesized by solvent-free method and application thereof |
CN116425645B (en) * | 2023-01-10 | 2024-08-27 | 浙江理工大学嵊州创新研究院有限公司 | Preparation method and application of 2,3,5, 6-tetra-aminobenzoquinone |
CN115873192A (en) * | 2023-02-10 | 2023-03-31 | 吉林大学 | Covalent organic framework material water-based calcium ion battery cathode material rich in active sites, preparation method and application thereof |
CN116891569B (en) * | 2023-07-17 | 2024-10-29 | 吉林大学 | Reduced graphene oxide/hexaazatriphenylene organic compound positive electrode material, preparation method and application thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000516037A (en) | 1996-07-26 | 2000-11-28 | ジェムプリュス エス.セー.アー. | Ferromagnetic material having magnetic organic molecules and manufacturing method thereof |
JP2001512526A (en) | 1997-12-02 | 2001-08-21 | アセップ インコーポレイティド | New electrode materials obtained from polyquinone-based ionic compounds and their use in electrochemical generators |
-
2018
- 2018-10-25 JP JP2018200532A patent/JP7084587B2/en active Active
-
2019
- 2019-06-14 WO PCT/JP2019/023675 patent/WO2020084828A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000516037A (en) | 1996-07-26 | 2000-11-28 | ジェムプリュス エス.セー.アー. | Ferromagnetic material having magnetic organic molecules and manufacturing method thereof |
JP2001512526A (en) | 1997-12-02 | 2001-08-21 | アセップ インコーポレイティド | New electrode materials obtained from polyquinone-based ionic compounds and their use in electrochemical generators |
Also Published As
Publication number | Publication date |
---|---|
WO2020084828A1 (en) | 2020-04-30 |
JP2020066681A (en) | 2020-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7084587B2 (en) | Polymers, electrode active materials and secondary batteries | |
JP6402174B2 (en) | Positive electrode for lithium battery | |
US9722249B2 (en) | Use of conductive polymers in battery electrodes | |
EP2725644B1 (en) | Binder for electrode of electrochemical element, composition for electrode of electrochemical element, electrode of electrochemical element, and electrochemical element | |
US6576370B1 (en) | Positive electrode and lithium battery using the same | |
JPH11144732A (en) | Battery composite electrode and its manufacture | |
EP3182501B1 (en) | Electrolyte for nonaqueous secondary battery and nonaqueous secondary battery using the same | |
JPH09259864A (en) | Electrode containing organic disulfide compound, and manufacture thereof | |
Lewandowski et al. | Li+ conducting polymer electrolyte based on ionic liquid for lithium and lithium-ion batteries | |
US20210143475A1 (en) | Solid Polymer Electrolyte for Batteries | |
JP5076884B2 (en) | Secondary battery electrode and secondary battery employing the electrode | |
JPWO2019194094A1 (en) | Separator for power storage device, power storage device and manufacturing method thereof | |
JP2005340165A (en) | Positive electrode material for lithium secondary cell | |
US20130252102A1 (en) | Nonaqueous Electrolyte Rechargeable Battery Having Electrode Containing Conductive Polymer | |
Swiderska-Mocek et al. | Compatibility of polymer electrolyte based on N-methyl-N-propylpiperidinium bis (trifluoromethanesulphonyl) imide ionic liquid with LiMn2O4 cathode in Li-ion batteries | |
JP5280806B2 (en) | Secondary battery active material and secondary battery | |
JP3723140B2 (en) | Power storage device using quinoxaline compound | |
Xu et al. | Synthesis and characterization of viologen functionalized fluorene-containing poly (arylene ether ketone) s for polymer batteries | |
CN109863633B (en) | Electrochemical device | |
JP5471324B2 (en) | Secondary battery | |
KR20150088131A (en) | Polyaniline nanopaste and preparation method thereof | |
CN109792087A (en) | Electrochemical appliance | |
WO2021106834A1 (en) | Electrode material | |
JP3444463B2 (en) | Electrode containing organic disulfide compound and method for producing the same | |
JP2002164083A (en) | Electrolyte for electrochemical device, its electrolyte solution or solid electrolyte, and battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7426 Effective date: 20181120 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20181120 |
|
A80 | Written request to apply exceptions to lack of novelty of invention |
Free format text: JAPANESE INTERMEDIATE CODE: A80 Effective date: 20181120 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210913 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220517 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220526 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7084587 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |