[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7081285B2 - 虚像表示装置、スクリーン部材及びスクリーン部材の製造方法 - Google Patents

虚像表示装置、スクリーン部材及びスクリーン部材の製造方法 Download PDF

Info

Publication number
JP7081285B2
JP7081285B2 JP2018080811A JP2018080811A JP7081285B2 JP 7081285 B2 JP7081285 B2 JP 7081285B2 JP 2018080811 A JP2018080811 A JP 2018080811A JP 2018080811 A JP2018080811 A JP 2018080811A JP 7081285 B2 JP7081285 B2 JP 7081285B2
Authority
JP
Japan
Prior art keywords
wavelength
light
wavelengths
wavelength selection
hologram
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018080811A
Other languages
English (en)
Other versions
JP2019191263A (ja
Inventor
和幸 石原
浩 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2018080811A priority Critical patent/JP7081285B2/ja
Publication of JP2019191263A publication Critical patent/JP2019191263A/ja
Application granted granted Critical
Publication of JP7081285B2 publication Critical patent/JP7081285B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mechanical Optical Scanning Systems (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Holo Graphy (AREA)
  • Instrument Panels (AREA)

Description

この明細書による開示は、虚像表示装置、スクリーン部材及びスクリーン部材の製造方法に関する。
従来、投影部へ画像を投影することにより、画像を視認可能に虚像表示する虚像表示装置が知られている。特許文献1の虚像表示装置は、互いに離散した複数の波長の光源光を発する光源部と、複数の波長の光源光が入射することで画像が形成されると共に、光源光を投影部側へ導光するスクリーン部と、を備えている。スクリーン部は、アレイ状に配列された複数の凸構造を有している。
特開2017-3803号公報
特許文献1では、光源光が凸構造に入射すると、当該光源光の拡がり角が拡大される。この結果、光源光が広い範囲に到達し、観察者が画像を虚像として視認可能となる視認領域を、拡大させることができる。しかしその一方で、虚像を視認する観察者の目は、視認領域のうち一部箇所に位置することとなるため、観察者の瞳孔に入射する光源光は、発散された光源光全体に対して僅かである。そのため、凸構造を有するスクリーン部は、非常に開口率の低いスクリーンとみなすことができ、観察者からは凸構造の一部分だけが発光しているように見える。したがって、アレイ状に配列された凸構造間において、発光していないように見える隙間部分が多くなり、虚像に粒状感が認識されるという問題があり、虚像の視認性に改善の余地があった。
開示されるひとつの目的は、虚像の視認性が良好な虚像表示装置を提供することにある。
また、開示されるひとつの目的は、視認性良好に画像を表示可能なスクリーン部材及びスクリーン部材の製造方法を提供することにある。
ここに開示されたひとつの態様は、投影部(3a)へ画像を投影することにより、画像を視認可能に虚像表示する虚像表示装置であって、
複数の波長を含む光源光を発する光源部(10)と、
複数の波長の光源光が入射することで画像が形成されると共に、光源光を投影部側へ導光するスクリーン部(20,220,320)と、を備え、
スクリーン部は、複数の波長のうち特定の波長に対して、他の波長よりも相互作用が大きな波長選択性を有し、光源光の拡がり角を拡大させる径方向の導光特性分布を有する波長選択部(22r,22g,22b,222)を、複数有し、
複数の波長選択部にて、特定の波長を互いに異ならせており、かつ、導光特性分布において極値をとる極値位置(Cr,Cg,Cb)を径方向にずらして配置されている波長選択部の組み合わせが、存在する。
このような態様によると、相互作用が大きな特定の波長が互いに異なる波長選択部の組み合わせにおいて、当該波長選択部の導光特性分布の極値位置は、径方向にずれて配置されている。したがって、複数の波長を含む光源光が入射したスクリーン部において、この組み合わせにおける異なる波長同士の光源光の拡がり特性が、互いに径方向にずれたものとなる。このため、視認領域のうち一部箇所に目が位置する観察者が虚像を視認した場合、発光位置を、異なる波長同士で完全に重ならずに、径方向にずれたように視認させることができる。故に、発光位置が複数の波長間で分散し、発光していないように見えてしまう部分が意図から外れて生じてしまうことを抑制することができる。以上により、当該虚像の視認性が良好な虚像表示装置を提供することができる。
また、開示された他のひとつの態様は、投影部(3a)へ画像を投影することにより、画像を視認可能に虚像表示する虚像表示装置であって、
複数の波長を含む光源光を発する光源部(10)と、
複数の波長の光源光が入射することで画像が形成されると共に、光源光を投影部側へ導光するスクリーン部(20)と、を備え、
スクリーン部は、複数の波長のうち特定の波長に対して、他の波長よりも相互作用が大きな波長選択性を有し、光源光の拡がり角を拡大させる径方向の周期性構造を有する波長選択部(22r,22g,22b,222)を、複数有し、
複数の波長選択部にて、特定の波長を互いに異ならせており、かつ、周期性構造の周期を互いに合わせて設定されていると共に、周期性構造における位相をずらして配置されている波長選択部の組み合わせが、存在する。
このような態様によると、相互作用が大きな特定の波長が互いに異なる波長選択部の組み合わせにおいて、当該波長選択部の周期性構造における位相は、ずれて配置されている。したがって、複数の波長を含む光源光が入射したスクリーン部において、この組み合わせにおける異なる波長同士の光源光の拡がり特性が、互いに径方向にずれたものとなる。このため、視認領域のうち一部箇所に目が位置する観察者が虚像を視認した場合、周期的に並び得る発光位置が、上記組み合わせの異なる波長の光源光間において、径方向に若干ずれて視認される。故に、発光位置が複数の波長間で分散し、発光していないように見える隙間部分の存在が抑制される。以上により、虚像の粒状感を低減することができ、当該虚像の視認性が良好な虚像表示装置を提供することができる。
また、開示された他のひとつの態様は、光が投影されることで画像を形成するスクリーン部材であって、
特定の波長に対して、他の波長よりも相互作用が大きな波長選択性を有し、光の拡がり角を拡大させる径方向の周期性構造を有する波長選択部(22r,22g,22b,222)を、複数有し、
複数の波長選択部のうち、特定の波長を互いに異ならせており、かつ、周期性構造の周期を互いに合わせて設定されていると共に、周期性構造における位相を径方向にずらして配置されている波長選択部の組み合わせが、存在する。
このような態様によると、相互作用が大きな特定の波長が互いに異なる波長選択部の組み合わせにおいて、当該波長選択部の周期性構造における位相は、ずれて配置されている。したがって、複数の波長を含む光源光が入射したスクリーン部材において、この組み合わせにおける異なる波長同士の光源光の拡がり特性が、互いに径方向にずれたものとなる。このため、スクリーン部材を用いて表示された画像を観察者が視認した場合、周期的に並び得る発光位置が、上記組み合わせの異なる波長の光源光間において、径方向に若干ずれて視認され得る。故に、発光位置が複数の波長間で分散し、発光していないように見える隙間部分の存在が抑制される。以上により、画像表示における粒状感を低減することができ、視認性良好に画像を表示可能なスクリーン部材を提供することができる。
また、開示された他のひとつの態様は、光が投影されることで画像を形成するスクリーン部材(220a,320a)の製造方法であって、
互いに離散した複数の波長の光に対して露光感度を有する板状のホログラム材料(90)を用意する材料用意工程(S21)と、
複数の波長のうち1つの波長の光によって、ホログラム材料を露光する前段露光工程(S22)と、
前段露光工程の後、光の光軸と交差する径方向にホログラム材料をずらすずらし工程(S23,S25)と、
ずらし工程の後、複数の波長のうち既に露光を実施した波長とは別の1つの波長の光によって、ホログラム材料を露光する後段露光工程(S24,S26)と、を含む。
このような態様によると、ホログラム材料を径方向にずらして、各波長の露光が行なわれる。こうした多重露光によって、ホログラム材料に記録された干渉縞による各波長の導光特性分布では、各波長間において、その極値位置を径方向にずらすことが可能となる。この結果、スクリーン部材を用いて表示された画像を観察者が視認した場合に、発光位置を、異なる波長同士で完全に重ならずに、径方向にずれたように視認させることができる。故に、発光位置が複数の波長間で分散し、発光していないように見えてしまう部分が意図から外れて生じてしまうことを抑制することができる。故に、視認性良好に画像を表示可能なスクリーン部材を、製造することができる。
また、開示された他のひとつの態様は、光が投影されることで画像を形成するスクリーン部材(20a,320a)の製造方法であって、
互いに離散した複数の波長のうち、特定の波長の光に対して露光感度を有し、かつ、特定の波長が互いに異なる板状の複数のホログラム材料(90)を用意する材料用意工程(S11)と、
各ホログラム材料に個別に対応する特定の波長の光によって、各ホログラム材料を順次入れ替えて同じ位置にて露光する露光工程(S12)と、
露光工程の後、光の光軸と交差する径方向に各ホログラム材料を互いにずらして積層するずらし積層工程(S13)と、を含む。
このような態様によると、各波長に対応する複数のホログラム材料を、それぞれ露光した後、互いに径方向にずらして積層する。このようなずらし積層によって、ホログラム材料に記録された干渉縞による各波長の導光特性分布では、各波長間において、その極値位置を径方向にずらすことが可能となる。この結果、スクリーン部材を用いて表示された画像を観察者が視認した場合に、発光位置を、異なる波長同士で完全に重ならずに、径方向にずれたように視認させることができる。故に、発光位置が複数の波長間で分散し、発光していないように見えてしまう部分が意図から外れて生じてしまうことを抑制することができる。故に、視認性良好に画像を表示可能なスクリーン部材を、製造することができる。
なお、括弧内の符号は、後述する実施形態の部分との対応関係を例示的に示すものであって、技術的範囲を限定することを意図するものではない。
第1実施形態のHUD装置の構成を示す図である。 第1実施形態の光源部及びスクリーン部材を示す図である。 第1実施形態のスクリーン部材の断面図である。 第1実施形態の緑色波長を特定の波長とするホログラム層における回折効率の波長依存性を示すグラフである。 実施例1の位相のずれを説明するための図である。 実施例2の位相のずれを説明するための図である。 実施例3の位相のずれを説明するための図である。 実施例4の位相のずれを説明するための図である。 実施例5の位相のずれを説明するための図である。 実施例6の位相のずれを説明するための図である。 実施例7の位相のずれを説明するための図である。 第1実施形態の虚像の発光点のずれを説明するための参考図である。 第1実施形態のスクリーン部材の製造方法を示すフローチャートである。 第1実施形態の露光工程を説明するための図である。 第2実施形態のスクリーン部材の断面図である。 第2実施形態のスクリーン部材の製造方法を示すフローチャートである。 第3実施形態のHUD装置の構成を示す図である。 第3実施形態のスクリーン部材の製造方法を示すフローチャートである。 第3実施形態のマスターホログラム作成工程を説明するための図である。 第3実施形態の透過型ホログラム作成工程を説明するための図である。
以下、複数の実施形態を図面に基づいて説明する。なお、各実施形態において対応する構成要素には同一の符号を付すことにより、重複する説明を省略する場合がある。各実施形態において構成の一部分のみを説明している場合、当該構成の他の部分については、先行して説明した他の実施形態の構成を適用することができる。また、各実施形態の説明において明示している構成の組み合わせばかりではなく、特に組み合わせに支障が生じなければ、明示していなくても複数の実施形態の構成同士を部分的に組み合せることができる。
(第1実施形態)
図1に示すように、本開示の第1実施形態による虚像表示装置は、車両に用いられ、当該車両のインストルメントパネル2内に収容されることにより、当該車両に搭載されているヘッドアップディスプレイ装置(以下、HUD装置)100となっている。HUD装置100は、車両のウインドシールド3に設定された投影部3aへ画像を投影することにより、画像を観察者としての乗員により視認可能に虚像表示する。すなわち、投影部3aにて反射される画像の表示光が、車両の室内に設けられた視認領域EBに到達することにより、視認領域EBにアイポイントEPが位置する乗員が当該表示光を虚像VRIとして知覚する。そして、乗員は、虚像VRIとして表示される各種情報を認識することができる。虚像表示される各種情報としては、例えば車両の速度、燃料残量等の車両の状態を示す情報、又は視界補助情報、道路情報等のナビゲーション情報等が挙げられる。
以下において、特に断り書きが無い限り、前方、後方、前後方向、上方、下方、上下方向、左方、右方、及び左右方向の表記は、水平面上の車両を基準として記載される。
車両のウインドシールド3は、例えばガラスないしは合成樹脂により透光性の板状に形成され、インストルメントパネル2よりも上方に配置されている。ウインドシールド3は、表示光が投影される投影部3aを、滑らかな凹面状又は平面状に形成している。なお、投影部3aは、ウインドシールド3に設けられていなくてもよい。例えば車両と別体となっているコンバイナを車両内に設置して、当該コンバイナに投影部3aが設けられていてもよい。
視認領域EBは、HUD装置100により表示される虚像VRIが所定の規格(例えば虚像VRI全体を所定の輝度以上で視認できる)を満たすように視認可能となる空間領域であって、アイボックスとも称される。視認領域EBは、典型的には、車両に設定されたアイリプスと重なるように設定される。アイリプスは、乗員のアイポイントEPの空間分布を統計的に表したアイレンジに基づいて、楕円体状に設定されている。
このようなHUD装置100の具体的構成を、図2,3も用いて、以下に説明する。HUD装置100は、図1に示すように、光源部10、スクリーン部20及び拡大導光部30等により構成されている。これら構成要素は、例えば、中空形状に形成された遮光性を有するハウジング9の内部に、収容されている。
光源部10は、互いに離散した(例えば20nm以上離れた)複数の波長を含む光源光を発する。特に本実施形態の光源部10には、レーザスキャナが採用されている。光源部10は、図2に示すように、レーザ投射部11及び走査部15を有している。
レーザ投射部11は、複数のレーザ発振器12a,12b,12c、複数の集光レンズ13a,13b,13c、折り返しミラー14a、及び複数のダイクロイックミラー14b,14cを有している。本実施形態では、レーザ発振器12a,12b,12c及び集光レンズ13a,13b,13cは3つずつ設けられており、ダイクロイックミラー14b,14cは2つ設けられている。
3つのレーザ発振器12a,12b,12cは、波長が互いに異なるレーザ光束を発振する。具体的に、レーザ発振器12aは、例えばピーク波長が500~560nmの範囲、好ましくは540nmである緑色波長のレーザ光束を発振するようになっている。レーザ発振器12bは、例えばピーク波長が430~470nmの範囲、好ましくは450nmである青色波長のレーザ光束を発振するようになっている。レーザ発振器12cは、例えばピーク波長が600~650nmの範囲、好ましくは640nmである赤色波長のレーザ光束を発振するようになっている。各レーザ発振器12a,12b,12cから発振された各レーザ光束は、それぞれ対応する集光レンズ13a,13b,13cに入射する。
3つの集光レンズ13a,13b,13cは、それぞれ対応するレーザ発振器12a,12b,12cに対して、各レーザ光束の進行方向に所定の間隔をあけて配置されている。各集光レンズ13a,13b,13cは、例えば合成樹脂ないしはガラス等により、透光性を有して形成されており、正の光学パワーを有する。各集光レンズ13a,13b,13cは、対応する色のレーザ光束を屈折により集光して、各レーザ光束のビームウエストが、スクリーン部20近傍、より好ましくはスクリーン部20上に、位置するように、調整する。
折り返しミラー14aは、集光レンズ13aに対して、レーザ光束の進行方向に所定の間隔をあけて配置され、集光レンズ13aを透過した緑色のレーザ光束を反射する。
2つのダイクロイックミラー14b,14cは、それぞれ対応する集光レンズ13b,13cに対して、各レーザ光束の進行方向に所定の間隔をあけて配置されている。各ダイクロイックミラー14b,14cは、対応する集光レンズ13b,13cを透過した各レーザ光束のうち、特定波長のレーザ光束を反射し、その他のレーザ光束を透過させる。具体的には、集光レンズ13bに対応するダイクロイックミラー14bは、青色のレーザ光束を反射し、緑色のレーザ光束を透過させる。集光レンズ13cに対応するダイクロイックミラー14cは、赤色のレーザ光束を反射し、緑色及び青色のレーザ光束を透過させる。
ここで、折り返しミラー14aによる反射後の緑色のレーザ光束の進行方向には、ダイクロイックミラー14bが所定の間隔をあけて配置されている。また、ダイクロイックミラー14bによる反射後の青色のレーザ光束の進行方向には、ダイクロイックミラー14cが所定の間隔をあけて配置されている。これら配置形態により、折り返しミラー14aによる反射後の緑色のレーザ光束が、ダイクロイックミラー14bを透過し、ダイクロイックミラー14bによる反射後の青色のレーザ光束と重ね合される。また、緑色のレーザ光束と青色のレーザ光束とが、ダイクロイックミラー14cを透過し、ダイクロイックミラー14cによる反射後の赤色のレーザ光束と重ね合される。
また、各レーザ発振器12a,12b,12cは、コントローラ17と電気的に接続されている。各レーザ発振器12a,12b,12cは、コントローラ17からの電気信号に従って、レーザ光束を発振する。そして、各レーザ発振器12a,12b,12cから発振される3色のレーザ光束を加色混合することで、種々の色の再現が可能となる。こうしてレーザ投射部11は、互いに波長が異なるレーザ光束を、重ね合わせた状態で、走査部15へ向けて発する。
走査部15は、走査ミラー16を有している。走査ミラー16は、電気微小機械システム(Micro Electro Mechanical Systems;MEMS)を用い、レーザ光束を時間的に走査可能に構成されたMEMSミラーである。走査ミラー16において、ダイクロイックミラー14cと所定の間隔を空けて対向する面には、アルミニウムの金属蒸着等により、反射面16aが形成されている。反射面16aは、当該反射面16aに沿って、互いに実質直交する2つの回転軸Ax,Ayまわりに回動可能となっている。
このような走査ミラー16は、コントローラ17と電気的に接続されており、その走査信号によって回動することで、反射面16aの向きを変えることができる。こうして走査部15は、走査ミラー16がコントローラ17により制御されることで、レーザ投射部11と連動して、例えばレーザ光束の反射面16aへの入射箇所である偏向点TPを起点として、時間的にレーザ光束の投射方向を偏向することが可能となっている。偏向点TPでの偏向によって走査部15に走査されたレーザ光束は、スクリーン部20に入射するようになっている。
スクリーン部20は、各レーザ光束が入射することで画像が形成されると共に、当該レーザ光束を反射することにより、当該レーザ光束を画像の表示光として、光路上の投影部3a側へ導光する反射型のスクリーン部材20aである。
スクリーン部20は、例えば矩形状の外輪郭を有する板状に形成されていることで、径方向に沿って延設されている。ここでいう径方向とは、光学系において、光軸方向OADとは交差する方向(すなわち光軸方向OADと直交する方向に限定されない)を意味し、光軸方向OADに対して交差する仮想面上の任意の方向を意味するように、広義に解釈される。本実施形態における光軸方向OADは、レーザ光束の投射方向の平均値が示す方向、換言すると画像及び虚像VRIの中心位置を通る光線の進行方向によって定義され得る。
スクリーン部20において径方向に拡がる投射領域PARには、走査部15に走査されたレーザ光束の入射により、画像が描画される。具体的に、走査部15は、コントローラ17による制御により、複数の走査線SLに沿って順次走査される。その結果、投射領域PARにおいてレーザ光束が入射する位置が移動されつつ、レーザ光束が断続的にパルス照射されることで、画像が描画されることとなる。投射領域PARにおいて描画される画像は、例えば走査線SLに沿ったxs方向に720画素かつ走査線SLとは実質垂直なys方向に240画素を有する画像として、毎秒60フレーム描画される。このxs方向は、虚像VRIにおける左右方向に対応し、ys方向は、虚像VRIにおける上下方向に対応する。
また、xs方向及びys方向を含む面は、光軸方向OADに対して交差しているので、このxs方向及びys方向、並びにxs方向及びys方向を含む面上の任意の方向は、上述の径方向に該当する。
ここで、スクリーン部20に入射するレーザ光束は、後に詳述するスクリーン部20の導光特性分布によって、反射されると共に拡がり角を拡大させつつ、光路上の投影部3a側、より詳細には拡大導光部30へ向けて、導光される。
拡大導光部30は、図1に示すように、スクリーン部20からの表示光をウインドシールド3の投影部3aへと導光する。拡大導光部30は、拡大ミラー31を有している。拡大ミラー31は、例えば合成樹脂ないしはガラス等からなる基材の表面へのアルミニウムの金属蒸着等により、反射面31aを形成している。反射面31aは、中心が凹むことで、凹状に湾曲する凹面状に形成されている。そして、拡大ミラー31は、スクリーン部20からの表示光を投影部3aへと反射することで、虚像VRIを投射領域PARでの画像のサイズに対して拡大する機能を有する。
また、拡大ミラー31は、左右方向に延びる回転軸まわりに回動可能となっており、虚像VRIの上下方向の位置を調整することができるようになっている。
こうして拡大ミラー31の反射面31aに反射された表示光は、ハウジング9の開口部に配置された透光性の防塵シート9aを通過することでHUD装置100の外部へ射出され、投影部3aに入射する。投影部3aに反射された表示光が乗員のアイポイントEPに到達すると、当該乗員は虚像VRIを視認可能となるのである。
以下では、本実施形態のスクリーン部20について詳細に説明する。スクリーン部20は、図3に示すように、複数の波長選択ユニット21r,21g,21bが互いに厚み方向に積層された状態で形成されている。特に本実施形態では、複数の波長選択ユニット21r,21g,21bは、各レーザ光束の波長に個別に対応して、レーザ発振器12a,12b,12cの設置個数と同数である3つ設けられている。本実施形態のスクリーン部20における厚み方向は、径方向がなす仮想面に実質直交するように、定義される。
各波長選択ユニット21r,21g,21bは、それぞれ体積ホログラムとなっている。各波長選択ユニット21r,21g,21bは、それぞれのホログラム層22r,22g,22bを、例えば合成樹脂ないしはガラス等からなり、透光性を有する一対の透光基板層23によって挟むことにより、薄板状に形成されている。各ホログラム層22r,22g,22bは、ホログラム材料90に物体光の振幅及び位相の情報が参照光との干渉縞として記録された状態で形成されている(図14も参照)。ホログラム材料90には、合成樹脂を主体とした材料、ゼラチン感光材料、又は銀塩感光材料等、屈折率の変調によって物体光の振幅及び位相の情報を記録可能な材料が選択的に採用され得る。
各波長選択ユニット21r,21g,21bのホログラム層22r,22g,22bは、各レーザ光束の波長のうち個別に対応している特定の波長に対して、他の波長よりも実質的な相互作用が大きな波長選択性を有することにより、波長選択部として機能している。すなわち、各ホログラム層22r,22g,22bは、実質的な相互作用が大きな特定の波長を互いに異ならせている。特定の波長を赤色波長としたホログラム層22rは、赤色波長選択部として機能し、特定の波長を緑色波長としたホログラム層22gは、緑色波長選択部として機能し、特定の波長を青色波長としたホログラム層22bは、青色波長選択部として機能している。
具体的に、各ホログラム層22r,22g,22bは、対応している特定の波長のレーザ光束の拡がり角を拡大させるために、特定の波長に対して高い回折効率を有しており、径方向に拡がる導光特性分布を有している。特に体積ホログラムを用いている本実施形態の導光特性分布とは、ホログラム層22r,22g,22bが特定の波長のレーザ光束に対し、実質的な相互作用として、干渉による回折作用を及ぼすための、当該特定の波長に対する各ホログラム層22r,22g,22bの厚み方向、及び径方向の屈折率分布を意味する。
すなわち、各ホログラム層22r,22g,22bは、反射型の体積ホログラムとして構成されており、ブラッグ反射に起因する回折効率の高い波長依存性を有している。例えば、各ホログラム層22r,22g,22bの回折効率は、対応する特定の波長に対して80%以上となり、当該特定の波長の近傍波長(例えば特定の波長±5nm)に対して20%以上となり、他の波長にて20%より小さい又は略0%となっている(図4のホログラム層22gの例を参照)。
各ホログラム層22r,22g,22bは、同一のマスターマイクロミラーアレイ91からの物体光が記録されていることにより、径方向に周期性を有する周期性構造を、周期を互いに合わせた状態で、屈折率分布によって有している。より詳細に、各ホログラム層22r,22g,22bの周期及び周期性は、互いに合わせられており、実質同一に設定されている。
この周期性構造の周期性は、マスター光学素子としてのマスターマイクロミラーアレイ91の周期性が実質的に転写されたものとなる。したがって、マスターマイクロミラーアレイ91が矩形状の曲面ミラー素子を互いに実質直交する2軸に沿って配列した構造であれば、各ホログラム層22r,22g,22bの周期性構造は、矩形格子状に形成される。マスターマイクロミラーアレイ91が六角形状の曲面ミラー素子を敷き詰めた構造であれば、各ホログラム層22r,22g,22bの周期性構造は、六方格子状に形成される。
この周期性構造における1周期は、各レーザ光束のビームウエストにおけるスポット直径程度に設定されることが好ましく、例えば50~200μmの範囲、好ましくは100μmに設定される。
このような周期性構造における1周期を定義付けるセル24(図5~11も参照)の外輪郭形状は、視認領域EBに対して絞りの如く機能する。したがって、周期性構造が矩形格子状である場合、矩形状のセル24によってレーザ光束の拡がり角が拡大されて構成される視認領域EBの形状は、矩形状となり、周期性構造が六方格子状である場合、六角形状のセル24によってレーザ光束の拡がり角が拡大されて構成される視認領域EBの形状は、六角形状となる。
各セル24における特定の波長に対する屈折率分布は、それぞれのセル24の中心位置Cr,Cb,Cbから放射状に遠ざかるに従って、屈折率の変調間隔が漸次増大又は漸次減少するように、形成されている。
複数のホログラム層22r,22g,22bには、導光特性分布において極値をとる極値位置(例えばセル24の中心位置Cr,Cg,Cb)を互いに径方向にずらして配置されたホログラム層の組み合わせが存在する。より詳細には、複数のホログラム層22r,22g,22bには、周期性構造における位相を互いにずらして配置されているホログラム層の組み合わせが存在する。特に本実施形態では、ホログラム層22r,22g,22bの全ての組み合わせにおいて、周期性構造における位相は、互いにずれて配置されている。つまり、赤色波長に対応するホログラム層22rと緑色波長に対応するホログラム層22gとの組み合わせにおいても、周期性構造における位相は、互いにずれている。
この結果、画像が虚像VRIして結像して表示される発光表示位置は、複数のレーザ光束の波長間において周期性構造の1周期分よりも小さな範囲で、位相のずれに応じて互いに径方向にずれたものとなる。図12に参考として示すように、虚像VRIの発光表示位置としての発光点Br,Bg,Bbがレーザ光束の波長毎にずれるため、発光点Br,Bg,Bb間の隙間の発生が抑制される。
以下、第1実施形態のバリエーションとして認められる周期性構造及び位相のずれについての詳細を、各実施例1~7に例示する。なお、各実施例では、各レーザ光のうち、比視感度が最も高い緑色波長を特定の波長とするホログラム層22gを、基準の波長選択部とし、ホログラム層22r,22bを他の波長選択部として説明する。
<実施例1>
図5に示す実施例1の周期性構造は、矩形格子状に形成されている。図5には、基準の波長選択部としてのホログラム層22gの周期性構造におけるセル24が、破線で示されている。ホログラム層22gの各セル24の中心位置Cgが円形のマーカによって示されている。ホログラム層22gの任意のセル24の中心位置Cgから、xs方向に隣接するセル24の中心位置Cgへ向かうベクトルをPx=(x,0)と定義する。ホログラム層22gの任意のセル24の中心位置Cgから、ys方向に隣接するセル24の中心位置Cgへ向かうベクトルをPy=(0,y)と定義する。これらベクトルPx,Pyは、径方向がなす実空間のこの周期性構造における基本並進ベクトルと呼んで差支えない。
図5には、ホログラム層22r,22bの周期性構造におけるセル24の図示は、省略されている。その一方で、ホログラム層22rの各セル24の中心位置Crが四角形のマーカによって示され、ホログラム層22bの各セルの中心位置Cbが三角形のマーカによって示される。誰でも、この中心位置Cr,Cbのマーカ図示から各セル24の配置を量り知ることができる。
実施例1にて、ホログラム層22gに対するホログラム層22rの周期性構造の位相差を示すベクトルの成分は、(-x/3,+y/3)となる。ホログラム層22gに対するホログラム層22bの周期性構造の位相差を示すベクトルの成分は、(+x/3,+y/3)となる。したがって、各ホログラム層22r,22g,22bは、xs方向及びys方向にそれぞれ1/3周期ずれていることで、xs方向及びys方向に対して斜め45度方向にずれている。基準のホログラム層22gの周期性構造に対して、各ホログラム層22r,22bの周期性構造の位相のずれが基本並進ベクトルの各方向において1/2周期よりも小さなずれとなっている。
<実施例2>
図6に示す実施例2の周期性構造も、実施例1と同様に矩形格子状に形成されている。このため、ベクトルPx,Pyも実施例1と同様に定義される。
実施例2にて、ホログラム層22gに対するホログラム層22rの周期性構造の位相差を示すベクトルの成分は、(-x/3,0)となる。ホログラム層22gに対するホログラム層22bの周期性構造の位相差を示すベクトルの成分は、(+x/3,0)となる。したがって、各ホログラム層22r,22g,22bは、xs方向だけに1/3周期ずれている。基準のホログラム層22gの周期性構造に対して、各ホログラム層22r,22bの周期性構造の位相のずれが基本並進ベクトルの各方向において1/2周期よりも小さなずれとなっている。
<実施例3>
図7に示す実施例3の周期性構造も、実施例1と同様に矩形格子状に形成されている。このため、ベクトルPx,Pyも実施例1と同様に定義される。
実施例3にて、ホログラム層22gに対するホログラム層22rの周期性構造の位相差を示すベクトルの成分は、(0,+y/3)となる。ホログラム層22gに対するホログラム層22bの周期性構造の位相差を示すベクトルの成分は、(0,-y/3)となる。したがって、各ホログラム層22r,22g,22bは、ys方向だけに1/3周期ずれている。基準のホログラム層22gの周期性構造に対して、各ホログラム層22r,22bの周期性構造の位相のずれが基本並進ベクトルの各方向において1/2周期よりも小さなずれとなっている。
<実施例4>
図8に示す実施例4の周期性構造も、実施例1と同様に矩形格子状に形成されている。このため、ベクトルPx,Pyも実施例1と同様に定義される。
実施例4にて、ホログラム層22gに対するホログラム層22rの周期性構造の位相差を示すベクトルの成分は、(0,+y/2)となる。ホログラム層22gに対するホログラム層22bの周期性構造の位相差を示すベクトルの成分は、(+x/2,-y/4)となる。したがって、ホログラム層22rとホログラム層22gとは、ys方向に1/2周期ずれている。これと共に、ホログラム層22gとホログラム層22bとは、xs方向に対して30度の角度をなす斜め方向にずれている。
実施例4では、基準のホログラム層22gの周期性構造に対して、基本並進ベクトルのいずれかの方向において1/2周期以上の位相のずれが生じるホログラム層22r,22bが、存在している。
<実施例5>
図9に示す実施例5の周期性構造も、実施例1と同様に矩形格子状に形成されている。このため、ベクトルPx,Pyも実施例1と同様に定義される。
実施例5にて、ホログラム層22gに対するホログラム層22rの周期性構造の位相差を示すベクトルの成分は、(+x/2,0)となる。ホログラム層22gに対するホログラム層22bの周期性構造の位相差を示すベクトルの成分は、(+x/4,+y/2)となる。したがって、ホログラム層22rとホログラム層22gとは、xs方向に1/2周期ずれている。これと共に、ホログラム層22gとホログラム層22bとは、ys方向に対して30度の角度をなす斜め方向にずれている。
実施例5では、基準のホログラム層22gの周期性構造に対して、基本並進ベクトルのいずれかの方向において1/2周期以上の位相のずれが生じるホログラム層22r,22bが、存在している。
<実施例6>
図10に示す実施例6の周期性構造も、実施例1と同様に矩形格子状に形成されている。図10では、各ホログラム層22r,22g,22bの周期性構造は、径方向に正三角形を描くように、位相をずらして配置されている。
<実施例7>
図11に示す実施例7の周期性構造は、六方格子状に形成されている。この構造において、ホログラム層22gの任意のセル24の中心位置Cgから、xs方向に隣接する各セル24の中心位置Cgへ向かう2つの基本並進ベクトルPa,Pbが互いに60度の角度をなすように定義できる。
このとき、ホログラム層22gに対するホログラム層22rの周期性構造の位相差を示すベクトルは、+1/3(Pa-Pb)と表記できる。ホログラム層22gに対するホログラム層22bの周期性構造の位相差を示すベクトルは、-1/3(Pa-Pb)と表記できる。このように位相のずれを設定すると、3つのホログラム層22r,22g,22bを実質均一にばらつかせることができる。
なお、図5~11に示されるセル24、中心位置Cr,Cg,Cbは、その一部にのみ符号が付されている。
以下、図13のフローチャートを用いて、第1実施形態のスクリーン部材20aの製造方法を説明する。
まず、材料用意工程S11では、互いに離散した複数の波長のうち、特定の波長の光に対して露光感度を有し、かつ、特定の波長が互いに異なる薄板状の複数のホログラム材料90を用意する。特に本実施形態では、各レーザ光束の波長に対応した3つのホログラム材料90を用意する。各ホログラム材料90は、透光基板層23に挟まれた単一の波長選択ユニットに対応した形態で用意される。
次に、露光工程S12では、各ホログラム材料90に個別に対応する特定の波長の光によって、各ホログラム材料90を順次入れ替えて同じ位置にて露光する。具体的に、図14に示すように、実際の設置角度でマスターマイクロミラーアレイ91を設置し、実際の走査ミラー16の偏向点TPに対応する位置から、レーザ光束を照射できるように、レーザ光源92を設置する。そして、3つのホログラム材料90のうち1つを、マスターマイクロミラーアレイ91の近傍に配置する。そして、例えば赤色波長のレーザ光束をレーザ光源92から照射する。
このようにすると、レーザ光束からホログラム材料90を透過する光を参照光とすることができる。さらに、マスターマイクロミラーアレイ91により反射されて参照光とは反対側からホログラム材料90を透過する光を物体光とすることができる。そして、上述のように、ホログラム材料90に物体光の振幅及び位相の情報が参照光との干渉縞として記録することができる。これにより1つ目のホログラム材料90の露光が完了する。
露光が完了した1つ目のホログラム材料90を取り除き、2つ目のホログラム材料90を同様の位置に配置して、緑色波長のレーザ光束を照射して、2つ目のホログラム材料90の露光が完了する。さらに、3つ目のホログラム材料90についても同様の露光を実施する。
次に、ずらし積層工程S13では、露光した位置を基準として、各ホログラム材料90を互いに径方向にずらして積層する。実際には、各波長選択ユニット21r,21g,21bを、各実施例1~7において選択的に実施されるような所望の位相のずれに対応したずらし方向及びずらし量を以って積層する。周期性構造間の位相がずれていればよいので、ずらし量は、周期性構造の1周期よりも小さな量でなくてもよく、位相差にn周期分を加算した値であってもよい。ここで、nは自然数である。以上により、スクリーン部材20aが完成する。
(作用効果)
以上説明した第1実施形態の作用効果を以下に改めて説明する。
第1実施形態のHUD装置100によると、相互作用が大きな特定の波長が互いに異なる波長選択部の組み合わせにおいて、当該波長選択部の導光特性分布の極値位置は、径方向にずれて配置されている。したがって、複数の波長を含む光源光が入射したスクリーン部20において、この組み合わせにおける異なる波長同士の光源光の拡がり特性が、互いに径方向にずれたものとなる。このため、視認領域EBのうち一部箇所に目が位置する観察者が虚像VRIを視認した場合、発光位置を、異なる波長同士で完全に重ならずに、径方向にずれたように視認させることができる。故に、発光位置が複数の波長間で分散し、発光していないように見えてしまう部分が意図から外れて生じてしまうことを抑制することができる。以上により、当該虚像VRIの視認性が良好なHUD装置100を提供することができる。
また、第1実施形態のHUD装置100によると、相互作用が大きな特定の波長が互いに異なる波長選択部の組み合わせにおいて、当該波長選択部の周期性構造における位相は、ずれて配置されている。したがって、複数の波長を含む光源光が入射したスクリーン部20において、この組み合わせにおける異なる波長同士の光源光の拡がり特性が、互いに径方向にずれたものとなる。このため、視認領域EBのうち一部箇所に目が位置する観察者が虚像VRIを視認した場合、周期的に並び得る発光位置が、上記組み合わせの異なる波長の光源光間において、径方向に若干ずれて視認される。故に、発光位置が複数の波長間で分散し、発光していないように見える隙間部分の存在が抑制される。以上により、虚像VRIの粒状感を低減することができ、当該虚像VRIの視認性が良好なHUD装置100を提供することができる。
また、第1実施形態によると、赤色波長選択部と緑色波長選択部との組み合わせにおいて、当該波長選択部の周期性構造における位相は、ずれて配置されている。比視感度が比較的高い赤色波長と緑色波長との間で、発光位置を径方向にずらして虚像表示することができるので、発光していないように見える部分を効果的に抑制することができ、虚像VRIの粒状感の低減効果を高めることができる。
また、第1実施形態によると、基準の波長選択部の周期性構造に対して、全ての他の波長選択部の位相のずれは、各基本並進ベクトルに沿った各方向において、1/2周期よりも小さく設定されていることが開示されている。このような設定により、1つのセル24の内部で発光位置がずれているように虚像表示されるので、画像の画素間を発光位置が跨いで表示される事態を抑制することができ、色滲みを感じさせにくくすることがきる。故に、虚像VRIの視認性を高めることができる。
また、第1実施形態によると、基準の波長選択部の周期性構造に対して、各基本並進ベクトルに沿ったいずれかの方向において、位相のずれを1/2周期以上に設定されていることが開示されている。このような設定により、発光位置が1つのセル24からはみ出すようにずれて虚像表示されるので、セル24間での隙間部分の発生を抑制することができる。したがって、発光位置がより均一的に分散されたようになり、虚像VRIの粒状感の低減効果を高めることができる。
また、第1実施形態によると、波長選択部の周期性構造を矩形格子状にすることにより、視認領域EBを矩形状に構成できるので、観察者の両目を視認領域EB内に容易に納めることができ、虚像VRIの視認性を高めることができる。
また、第1実施形態によると、波長選択部の周期性構造を六方格子状にすることにより、複数の波長に光の三原色を採用した場合に、3つの波長選択部の周期性構造において、発光位置を均一に分散するための位相のずれの実現が容易となるため、虚像VRIの粒状感を一層低減することができる。
また、第1実施形態によると、各波長選択部は、厚み方向、及び径方向の屈折率分布をもつ体積ホログラムとなっている。体積ホログラムを採用することで、厚み方向にも屈折率分布を与えることができ、特定の波長に対してピーキーな回折効率の波長選択性を、容易に実現することができる。
また、第1実施形態のスクリーン部材20aによると、相互作用が大きな特定の波長が互いに異なる波長選択部の組み合わせにおいて、当該波長選択部の周期性構造における位相は、ずれて配置されている。したがって、複数の波長を含む光源光が入射したスクリーン部材20aにおいて、この組み合わせにおける異なる波長同士の光源光の拡がり特性が、互いに径方向にずれたものとなる。このため、スクリーン部材20aを用いて表示された画像を観察者が視認した場合、周期的に並び得る発光位置が、上記組み合わせの異なる波長の光源光間において、径方向に若干ずれて視認され得る。故に、発光位置が複数の波長間で分散し、発光していないように見える隙間部分の存在が抑制される。以上により、画像表示における粒状感を低減することができ、視認性良好に画像を表示可能なスクリーン部材20aを提供することができる。
また、第1実施形態のスクリーン部材20aの製造方法によると、各波長に対応する複数のホログラム材料90を、それぞれ露光した後、互いに径方向にずらして積層する。このようなずらし積層によって、ホログラム材料90に記録された干渉縞による各波長の導光特性分布では、各波長間において、その極値位置を径方向にずらすことが可能となる。この結果、スクリーン部材20aを用いて表示された画像を観察者が視認した場合に、発光位置を、異なる波長同士で完全に重ならずに、径方向にずれたように視認させることができる。故に、発光位置が複数の波長間で分散し、発光していないように見えてしまう部分が意図から外れて生じてしまうことを抑制することができる。故に、視認性良好に画像を表示可能なスクリーン部材20aを、製造することができる。
(第2実施形態)
図15,16に示すように、第2実施形態は第1実施形態の変形例である。第2実施形態について、第1実施形態とは異なる点を中心に説明する。
第2実施形態のスクリーン部220は、第1実施形態と同様に、反射型のスクリーン部材220aである。ただし図15に示すように、第2実施形態のスクリーン部220は、複数の波長選択ユニット21r,21g,21bが積層されたものではなく、1層のホログラム層222を、透光性を有する一対の透光基板層23によって挟むことにより、薄板状に形成されている。
ホログラム層222は、各レーザ光束の波長による多重露光にて、ホログラム材料90に物体光の振幅及び位相の情報が参照光との干渉縞として記録された状態で形成されている。したがって、ホログラム層222は、全てのレーザ光束の波長に対応していることで、赤色波長選択部として機能し、緑色波長選択部として機能し、さらに青色波長選択部としても機能する。すなわち、各波長選択部の機能が、1層のホログラム層222に共有されている。
以下、図16のフローチャートを用いて、第2実施形態のスクリーン部材220aの製造方法を説明する。
まず、材料用意工程S21では、互いに離散した複数の波長の光に対して露光感度を有する薄板状のホログラム材料90を用意する。特に本実施形態では、各レーザ光束の波長に対応した1つのホログラム材料90を用意する。ホログラム材料90は、透光基板層23に挟まれた形態で用意される。
次に、前段露光工程S22では、複数の波長のうち1つの波長の光によって、ホログラム材料90を露光する。具体的に、第1実施形態の露光工程S12と同様に、実際の設置角度でマスターマイクロミラーアレイ91を設置し、実際の走査ミラー16の偏向点TPに対応する位置から、レーザ光束を照射できるように、レーザ光源92を設置する。そして、ホログラム材料90を、マスターマイクロミラーアレイ91の近傍に配置する。そして、例えば赤色波長のレーザ光束をレーザ光源92から照射する。
そして、赤色波長について、ホログラム材料90に物体光の振幅及び位相の情報が参照光との干渉縞として記録することができる。これにより1つ目の波長によるホログラム材料90の露光が完了する。
次に、第1ずらし工程S23では、ホログラム材料90を径方向にずらす。実際には、ホログラム材料90を、第1実施形態の各実施例1~7において選択的に実施されるような所望の位相のずれに対応したずらし方向及びずらし量を以って移動させる。ずらし量は、周期性構造の1周期よりも小さな量でなくてもよく、位相差にn周期分を加算した値であってもよい。ここで、nは自然数である。
次に、第1後段露光工程S24では、複数の波長のうち既に露光を実施した波長とは別の1つの波長の光によって、ホログラム材料90を露光する。例えば緑色波長のレーザ光束をレーザ光源92から照射する。これにより2つ目の波長によるホログラム材料90の露光が完了する。
次に、第2ずらし工程S25では、第1ずらし工程S23と同様に、ホログラム材料90を径方向にずらす。このとき、ホログラム材料90の位置を、前段露光工程S22での位置に戻すのではなく、別の位置にずらすことが好ましい。
次に、第2後段露光工程S26では、第1後段露光工程S24と同様に、複数の波長のうち既に露光を実施した波長とは別の1つの波長の光によって、ホログラム材料90を露光する。例えば青色波長のレーザ光束をレーザ光源92から照射する。これにより3つ目の波長によるホログラム材料90の露光が完了する。以上により、多重露光が完了し、スクリーン部材220aが完成する。
以上説明した第2実施形態によると、ホログラム材料90を径方向にずらして、各波長の露光が行なわれる。こうした多重露光によって、ホログラム材料90に記録された干渉縞による各波長の導光特性分布では、各波長間において、その極値位置を径方向にずらすことが可能となる。この結果、スクリーン部材220aを用いて表示された画像を観察者が視認した場合に、発光位置を、異なる波長同士で完全に重ならずに、径方向にずれたように視認させることができる。故に、発光位置が複数の波長間で分散し、発光していないように見えてしまう部分が意図から外れて生じてしまうことを抑制することができる。故に、視認性良好に画像を表示可能なスクリーン部材220aを、製造することができる。
(第3実施形態)
図17~20に示すように、第3実施形態は第1実施形態又は第2実施形態の変形例である。第3実施形態について、第1実施形態とは異なる点を中心に説明する。
図17に示すように、第3実施形態のスクリーン部320は、第1実施形態とは異なり、透過型のスクリーン部材320aである。すなわちスクリーン部320は、入射するレーザ光束を、透過させると共に拡がり角を拡大させつつ、光路上の投影部側、より詳細には拡大導光部30へ向けて、導光する。
以下、図18のフローチャートを用いて、第1実施形態のスクリーン部材320aの製造方法を説明する。
まず、マスターホログラム作成工程S31では、図19に示すように、第1実施形態又は第2実施形態のスクリーン部20,220の製造方法を用いて、スクリーン部20,220と同様の構成である反射型のマスターホログラム93を作成する。ただし、マスターホログラム93は、第1実施形態又は第2実施形態のスクリーン部20,220の製造方法における「ホログラム材料」に対応するものである。
次に、透過型ホログラム作成工程S32では、反射型のマスターホログラム93を用いて、透過型ホログラムを作成する。具体的に図20に示すように、マスターホログラム93に、当該マスターホログラム93作成時に照射したレーザ光束の共役波を、レーザ光源92を用いて照射光として入射させることにより、マスターホログラム93の実像を再生する。ここで共役波とは、マスターホログラム93作成時の参照光の逆進行波を意味する。
そして、マスターホログラム93の実像の再生位置に、ホログラム材料90を配置する。すなわち、ホログラム材料90には、マスターホログラム93が反射した光(以下、再生光)が入射する。これと共に、レーザ光源92からの照射光の一部を、参照光用ミラー94を用いて再生光の入射と同じ側からマスターホログラム93に入射させる。
この結果、再生光を物体光とし、参照光用ミラー94で反射した照射光を参照光とすることができる。ホログラム材料90に物体光の振幅及び位相の情報を参照光との干渉縞として記録することができる。これによりホログラム材料90の露光が完了し、透過型のスクリーン部材320aが完成する。
(他の実施形態)
以上、複数の実施形態について説明したが、本開示は、それらの実施形態に限定して解釈されるものではなく、本開示の要旨を逸脱しない範囲内において種々の実施形態及び組み合わせに適用することができる。
具体的に変形例1としては、走査部15とスクリーン部20との間に、レンズ等の光学素子を追加してもよい。
第1実施形態に関する変形例2として、各波長選択ユニット21r,21g,21bは、一体的なスクリーン部材20aを形成していなくてもよく、互いに離間して配置されていてもよい。
第1実施形態に関する変形例3としては、波長選択ユニット21gと波長選択ユニット21bは、第2実施形態のように、共通の波長選択ユニットに纏められていてもよい。すなわち、緑色波長選択部の機能と青色波長選択部の機能が、1層のホログラム層に共有されていてもよい。
変形例4としては、矩形格子状又は六方格子状の周期性構造において、例えばys方向の寸法がxs方向の寸法よりも長くなるように、偏平したセル24が形成されていてもよい。
変形例5としては、周期性構造の周期は、少し変調していてもよい。
変形例6としては、ホログラム層22r,22g,22b,222は、ランダムに曲面ミラー素子が配置された光学素子を物体光とした干渉縞が記録されることにより、非周期性構造を有していてもよい。
変形例7としては、波長選択部として、体積ホログラムに代えて、径方向にのみ屈折率分布をもつホログラムが採用されてもよく、ホログラム以外の例として回折格子が採用されてもよい。
変形例8としては、波長選択部の全ての組み合わせにおいて、周期性構造における位相は、互いにずれて配置されていなくてもよい。すなわち、周期性構造における位相が互いに一致する波長選択部の組み合わせが一部に存在していてもよい。
変形例9として、光源部10が発する光源光において、互いに離散した複数の波長は、2つの波長でもよく、4つ以上の波長であってもよい。
第3実施形態に関する変形例10としては、マスターホログラム作成工程S31においてマスターホログラム93をずらさずに、透過型ホログラム作成工程S32においてホログラム材料90をずらしてもよい。
変形例11としては、虚像表示装置は、航空機、船舶、あるいは移動しない筐体(例えばゲーム筐体)等の各種の乗り物に適用することができる。
100 HUD装置(虚像表示装置)、3a 投影部、10 光源部、20,220,320 スクリーン部、20a,220a,320a スクリーン部材、22r,22g,22b,222 ホログラム層(波長選択部)、90 ホログラム材料、S11 材料用意工程、S12 露光工程、S13 ずらし積層工程、S21 材料用意工程、S22 前段露光工程、S23 第1ずらし工程(ずらし工程)、S24 第1後段露光工程(後段露光工程)、S25 第2ずらし工程(ずらし工程)、S26 第2後段露光工程(後段露光工程)、Cr,Cg,Cb 中心位置(極値位置)

Claims (12)

  1. 投影部(3a)へ画像を投影することにより、前記画像を視認可能に虚像表示する虚像表示装置であって、
    複数の波長を含む光源光を発する光源部(10)と、
    前記複数の波長の光源光が入射することで前記画像が形成されると共に、前記光源光を前記投影部側へ導光するスクリーン部(20,220,320)と、を備え、
    前記スクリーン部は、前記複数の波長のうち特定の波長に対して、他の波長よりも相互作用が大きな波長選択性を有し、前記光源光の拡がり角を拡大させる径方向の導光特性分布を有する波長選択部(22r,22g,22b,222)を、複数有し、
    複数の前記波長選択部にて、前記特定の波長を互いに異ならせており、かつ、前記導光特性分布において極値をとる極値位置(Cr,Cg,Cb)を前記径方向にずらして配置されている前記波長選択部の組み合わせが、存在する虚像表示装置。
  2. 投影部(3a)へ画像を投影することにより、前記画像を視認可能に虚像表示する虚像表示装置であって、
    複数の波長を含む光源光を発する光源部(10)と、
    前記複数の波長の光源光が入射することで前記画像が形成されると共に、前記光源光を前記投影部側へ導光するスクリーン部(20)と、を備え、
    前記スクリーン部は、前記複数の波長のうち特定の波長に対して、他の波長よりも相互作用が大きな波長選択性を有し、前記光源光の拡がり角を拡大させる径方向の周期性構造を有する波長選択部(22r,22g,22b,222)を、複数有し、
    複数の前記波長選択部にて、前記特定の波長を互いに異ならせており、かつ、前記周期性構造の周期を互いに合わせて設定されていると共に、前記周期性構造における位相をずらして配置されている前記波長選択部の組み合わせが、存在する虚像表示装置。
  3. 前記組み合わせは、前記特定の波長を赤色波長とする赤色波長選択部と、前記特定の波長を緑色波長とする緑色波長選択部との前記波長選択部の組み合わせを、含んでいる請求項2に記載の虚像表示装置。
  4. 複数の前記波長選択部を比較して、最も比視感度が高い波長を前記特定の波長とする前記波長選択部を、基準の波長選択部と定義し、前記基準の波長選択部以外の前記波長選択部を、他の波長選択部と定義し、前記周期性構造における1周期を表す2つの基本並進ベクトルを定義すると、
    前記基準の波長選択部の前記周期性構造に対して、全ての前記他の波長選択部の位相のずれは、各前記基本並進ベクトルに沿った各方向において、1/2周期よりも小さく設定されている請求項2又は3に記載の虚像表示装置。
  5. 複数の前記波長選択部を比較して、最も比視感度が高い波長を前記特定の波長とする前記波長選択部を、基準の波長選択部と定義し、前記基準の波長選択部以外の前記波長選択部を、他の波長選択部と定義し、前記周期性構造における1周期を表す2つの基本並進ベクトルを定義すると、
    前記基準の波長選択部の前記周期性構造に対して、各前記基本並進ベクトルに沿ったいずれかの方向において、位相のずれを1/2周期以上に設定されている前記他の波長選択部が、存在する請求項2又は3に記載の虚像表示装置。
  6. 前記周期性構造は、矩形格子状に形成されている請求項2から5のいずれか1項に記載の虚像表示装置。
  7. 前記周期性構造は、六方格子状に形成されている請求項2から5のいずれか1項に記載の虚像表示装置。
  8. 各前記波長選択部は、前記径方向及び厚み方向の屈折率分布をもつ体積ホログラムである請求項1から7のいずれか1項に記載の虚像表示装置。
  9. 前記画像が虚像(VRI)として表示される発光表示位置(Br,Bg,Bb)は、前記複数の波長間にて互いに前記径方向にずれている請求項1から8のいずれか1項に記載の虚像表示装置。
  10. 光が投影されることで画像を形成するスクリーン部材であって、
    特定の波長に対して、他の波長よりも相互作用が大きな波長選択性を有し、前記光の拡がり角を拡大させる径方向の周期性構造を有する波長選択部(22r,22g,22b,222)を、複数有し、
    複数の前記波長選択部のうち、前記特定の波長を互いに異ならせており、かつ、前記周期性構造の周期を互いに合わせて設定されていると共に、前記周期性構造における位相を前記径方向にずらして配置されている前記波長選択部の組み合わせが、存在するスクリーン部材。
  11. 光が投影されることで画像を形成するスクリーン部材(220a,320a)の製造方法であって、
    互いに離散した複数の波長の光に対して露光感度を有する板状のホログラム材料(90)を用意する材料用意工程(S21)と、
    前記複数の波長のうち1つの波長の光によって、前記ホログラム材料を露光する前段露光工程(S22)と、
    前記前段露光工程の後、前記光の光軸と交差する径方向に前記ホログラム材料をずらすずらし工程(S23,S25)と、
    前記ずらし工程の後、前記複数の波長のうち既に露光を実施した波長とは別の1つの波長の光によって、前記ホログラム材料を露光する後段露光工程(S24,S26)と、を含むスクリーン部材の製造方法。
  12. 光が投影されることで画像を形成するスクリーン部材(20a,320a)の製造方法であって、
    互いに離散した複数の波長のうち、特定の波長の光に対して露光感度を有し、かつ、前記特定の波長が互いに異なる板状の複数のホログラム材料(90)を用意する材料用意工程(S11)と、
    各前記ホログラム材料に個別に対応する前記特定の波長の光によって、各前記ホログラム材料を順次入れ替えて同じ位置にて露光する露光工程(S12)と、
    前記露光工程の後、前記光の光軸と交差する径方向に各前記ホログラム材料を互いにずらして積層するずらし積層工程(S13)と、を含むスクリーン部材の製造方法。
JP2018080811A 2018-04-19 2018-04-19 虚像表示装置、スクリーン部材及びスクリーン部材の製造方法 Active JP7081285B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018080811A JP7081285B2 (ja) 2018-04-19 2018-04-19 虚像表示装置、スクリーン部材及びスクリーン部材の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018080811A JP7081285B2 (ja) 2018-04-19 2018-04-19 虚像表示装置、スクリーン部材及びスクリーン部材の製造方法

Publications (2)

Publication Number Publication Date
JP2019191263A JP2019191263A (ja) 2019-10-31
JP7081285B2 true JP7081285B2 (ja) 2022-06-07

Family

ID=68390098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018080811A Active JP7081285B2 (ja) 2018-04-19 2018-04-19 虚像表示装置、スクリーン部材及びスクリーン部材の製造方法

Country Status (1)

Country Link
JP (1) JP7081285B2 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996002862A1 (fr) 1994-07-15 1996-02-01 Matsushita Electric Industrial Co., Ltd. Dispositif de visualisation tete haute, dispositif d'affichage a cristaux liquides et leur procede de fabrication
WO2004109390A1 (ja) 2003-06-06 2004-12-16 Matsushita Electric Industrial Co., Ltd. レーザ投射装置
US20050200962A1 (en) 2004-03-10 2005-09-15 Dmitry Voloschenko Head-up display
WO2015125283A1 (ja) 2014-02-21 2015-08-27 パイオニア株式会社 光学素子、及び、ヘッドアップディスプレイ
CN106019594A (zh) 2016-07-26 2016-10-12 天衍智能装备科技(天津)有限公司 大型装卸机车观察视窗且显示全息影像的装置
DE102016207236A1 (de) 2016-04-28 2017-11-02 Robert Bosch Gmbh Projektionssystem

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01114430U (ja) * 1988-01-29 1989-08-01
JP3216721B2 (ja) * 1990-09-21 2001-10-09 富士通株式会社 ホログラフィックヘッドアップディスプレイ装置
JPH06230225A (ja) * 1993-02-03 1994-08-19 Nissan Motor Co Ltd 表示装置
JPH09138396A (ja) * 1995-11-14 1997-05-27 Toppan Printing Co Ltd 反射型液晶表示装置
JPH11174232A (ja) * 1997-12-12 1999-07-02 Sharp Corp 拡散反射板、および、それを用いたプロジェクタ用スクリーンならびに液晶表示素子

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996002862A1 (fr) 1994-07-15 1996-02-01 Matsushita Electric Industrial Co., Ltd. Dispositif de visualisation tete haute, dispositif d'affichage a cristaux liquides et leur procede de fabrication
WO2004109390A1 (ja) 2003-06-06 2004-12-16 Matsushita Electric Industrial Co., Ltd. レーザ投射装置
US20050200962A1 (en) 2004-03-10 2005-09-15 Dmitry Voloschenko Head-up display
WO2015125283A1 (ja) 2014-02-21 2015-08-27 パイオニア株式会社 光学素子、及び、ヘッドアップディスプレイ
DE102016207236A1 (de) 2016-04-28 2017-11-02 Robert Bosch Gmbh Projektionssystem
CN106019594A (zh) 2016-07-26 2016-10-12 天衍智能装备科技(天津)有限公司 大型装卸机车观察视窗且显示全息影像的装置

Also Published As

Publication number Publication date
JP2019191263A (ja) 2019-10-31

Similar Documents

Publication Publication Date Title
JP6212683B2 (ja) 立体画像投影装置、立体画像投影方法、及び立体画像投影システム
JP2013522667A (ja) ヘッドアップカラー表示装置用回折型コンバイナ
JP2017167181A (ja) 表示装置および導光装置
JP2018512077A (ja) 裸眼3dレーザー表示装置
JP2005533291A (ja) 自動立体視投影装置
US11429064B2 (en) Holographic display apparatus for providing expanded viewing window
JP2004226619A (ja) 映像表示装置
JP5569198B2 (ja) 立体画像提示方法および提示装置
TWI227808B (en) 3-D image display unit
KR20160066942A (ko) 홀로그래픽 광학 소자의 제조 방법 및 장치
WO2018180094A1 (ja) 画像表示装置、及び画像表示素子
JP2019191313A (ja) ヘッドアップディスプレイ装置
WO2019174447A1 (zh) 衍射显示系统
JPH04298710A (ja) 表示装置
US20220299937A1 (en) Complex light modulator, holographic display apparatus, and method of generating hologram pattern
US20230036326A1 (en) Image display apparatus
JP7081285B2 (ja) 虚像表示装置、スクリーン部材及びスクリーン部材の製造方法
JP2007199587A (ja) 3次元像表示装置
JP6456189B2 (ja) 立体画像表示装置
CN113534477B (zh) 光学组件、显示系统及制造方法
KR20030025279A (ko) 홀로그램 작성 방법
JP5982993B2 (ja) ホログラム作製装置およびホログラム作製方法
CN113534476B (zh) 光学组件、显示系统及制造方法
US20230418089A1 (en) Display apparatus
US20230039906A1 (en) Image display apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220509

R151 Written notification of patent or utility model registration

Ref document number: 7081285

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151