[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7074593B2 - 物体検出装置 - Google Patents

物体検出装置 Download PDF

Info

Publication number
JP7074593B2
JP7074593B2 JP2018126779A JP2018126779A JP7074593B2 JP 7074593 B2 JP7074593 B2 JP 7074593B2 JP 2018126779 A JP2018126779 A JP 2018126779A JP 2018126779 A JP2018126779 A JP 2018126779A JP 7074593 B2 JP7074593 B2 JP 7074593B2
Authority
JP
Japan
Prior art keywords
evaluation
unit
region
distance
evaluation value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018126779A
Other languages
English (en)
Other versions
JP2020008310A (ja
Inventor
正和 池田
好浩 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2018126779A priority Critical patent/JP7074593B2/ja
Publication of JP2020008310A publication Critical patent/JP2020008310A/ja
Application granted granted Critical
Publication of JP7074593B2 publication Critical patent/JP7074593B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)

Description

本開示は、複数のセンサにより物体を検出する技術に関する。
複数のセンサにより物体を検出する技術として、例えば特許文献1には、3つ以上のセンサのうち2組の異なるセンサの組み合わせのそれぞれにおいて、物体からの電波の到達時間の差を測定し、各組の到達時間差がセンサと物体との距離の差により生じることに基づいて物体の位置を検出する技術が記載されている。
各組のセンサが測定する到達時間の差に基づいて物体の位置を検出する場合、複数の信号が混信したり、センサを有する受信機に雑音が発生したりするために、各組のセンサにより複数の異なる到達時間差が測定されることがある。
そこで、特許文献1に記載の技術では、各組のセンサにより複数の異なる到達時間差が測定されると、基準となるセンサに対し他のセンサが受信した電波信号をそれぞれの到達時間差だけシフトし、シフトした電波信号同士の内積を算出する。正しい到達時間差同士の電波信号であれば、電波信号を到達時間差だけシフトすると、各組のセンサにとって同じ時刻に到達する電波信号になるので、他の到達時間差同士の電波信号同士の内積よりも大きい値になる。
そして、特許文献1に記載の技術では、内積の値が大きく相関の高い組み合わせの電波信号の到達時間差に基づいて、物体の位置を検出しようとしている。
特開2014-44160号公報
物体の位置を検出する場合、特許文献1に記載の技術のように、電波信号の到達時間差に基づいて、つまりセンサと物体との距離に基づいて物体の位置を検出する場合、複数のセンサの設置範囲内に物体が存在しているのであれば、複数のセンサのそれぞれと物体と距離の交点の位置を物体の位置として検出できる。
これに対し、複数のセンサの設置範囲の外側に物体が存在している場合、物体までの距離に対してセンサ同士の距離が近いと、物体までの距離は高精度に測定できるものの、センサに対する方位方向、つまり角度方向において、複数のセンサのそれぞれから物体までの距離の交点の位置を特定することは困難である。そのため、物体の位置の検出精度が低下するという課題がある。
本開示は、複数のセンサの設置範囲の外側に存在する物体の位置を高精度に検出する技術を提供することが望ましい。
本開示の物体検出装置(10、40、50)は、複数のセンサ(2)が設置された設置範囲(4)の外側の検出領域(100、110)に存在する物体の位置を、複数のセンサが少なくとも測定するセンサと物体との距離情報に基づいて検出する物体検出装置であって、情報取得部(12)と、評価部(20)と、ピーク抽出部(30)と、物体検出部(32)と、を備えている。
情報取得部は、複数のセンサから距離情報を取得する。評価部は、情報取得部が取得する距離情報に基づいて、検出領域が分割された複数の評価領域(102、112、150、160、162、170、172)のそれぞれにおいて、物体が存在する確からしさを表す評価値を設定する。
ピーク抽出部は、評価領域のそれぞれにおいて評価部が設定する評価値に基づいて、周囲の評価領域よりも物体が存在する確からしさが高いピークの評価値を有する評価領域を抽出する。物体検出部は、ピーク抽出部が抽出する評価領域の評価値に基づいて、評価領域に物体が存在するか否かを判定する。
上記の本開示の構成によれば、複数のセンサが設置された設置範囲の外側の検出領域を複数の評価領域に分割し、複数のセンサが検出する物体との距離情報に基づいて、評価領域に物体が存在する確からしさを表す評価値を設定する。そして、周囲の評価領域に対しピークの評価値を有する評価領域を抽出する。
これにより、複数のセンサが設置された設置範囲の外側の検出領域に存在し、複数のセンサがそれぞれ検出する距離の差が小さい物体であっても、周囲の評価領域に対してピークの評価値を有する評価領域の評価値に基づいて、評価領域に物体が存在するか否かを判定できる。したがって、複数のセンサが設置された設置範囲の外側に存在する物体の位置を高精度に検出できる。
尚、この欄および特許請求の範囲に記載した括弧内の符号は、一つの態様として後述する実施形態に記載の具体的手段との対応関係を示すものであって、本開示の技術的範囲を限定するものではない。
第1実施形態の物体検出装置を示すブロック図。 測位距離に基づく物体の検出方法を示す模式図。 測位距離に基づく複数の物体の検出方法を示す模式図。 検出領域を評価領域に分割した一例を示す模式図。 検出領域を評価領域に分割した他の例を示す模式図。 距離誤差と距離分散とに基づく物体の検出方法を示す模式図。 第2実施形態の複数の部分検出領域を示す模式図。 第3実施形態の物体検出装置を示すブロック図。 物体の検出された評価領域の分割を示す模式図。 第4実施形態の物体検出装置を示すブロック図。 大きさの異なる評価領域の一例を示す模式図。 大きさの異なる評価領域の他の例を示す模式図。
以下、本開示の実施形態を図に基づいて説明する。
[1.第1実施形態]
[1-1.構成]
図1に示す物体検出装置10は、例えば車両等の移動体に搭載され、移動体の周囲に存在する物体の位置を検出する。物体検出装置10は、物体の位置を測定する測位センサとして複数のミリ波レーダ2から、ミリ波レーダ2と物体との距離情報を取得する。尚、図1では3つのミリ波レーダ2を図示しているが、ミリ波レーダ2の数は複数であれば2つであってもよいし、3つより多くてもよい。
図2に示すように、ミリ波レーダ2は、ミリ波レーダ2が設置された設置範囲4の外側に存在する物体までの距離6を検出する。
物体検出装置10は、CPUと、RAM、ROM、フラッシュメモリ等の半導体メモリと、入出力インターフェースと、を備えるマイクロコンピュータを中心に構成されている。以下、半導体メモリを単にメモリとも言う。物体検出装置10は1つのマイクロコンピュータを搭載してもよいし、複数のマイクロコンピュータを搭載してもよい。
物体検出装置10の各種機能は、CPUが非遷移的実体的記録媒体に記憶されているプログラムを実行することにより実現される。この例では、メモリが、プログラムを格納した非遷移的実体的記録媒体に該当する。このプログラムをCPUが実行することで、プログラムに対応する方法が実行される。
物体検出装置10は、CPUがプログラムを実行することで実現される機能の構成として、情報取得部12と、評価部20と、ピーク抽出部30と、物体検出部32とを備えている。物体検出装置10を構成するこれらの要素を実現する手法はソフトウェアに限るものではなく、その一部または全部の要素について、一つあるいは複数のハードウェアを用いて実現してもよい。例えば、上記機能がハードウェアである電子回路によって実現される場合、その電子回路は多数の論理回路を含むデジタル回路、またはアナログ回路、あるいはこれらの組合せによって実現してもよい。
情報取得部12は、ミリ波レーダ2から、物体までの距離を測定した距離情報を取得する。情報取得部12がミリ波レーダ2から取得する物体までの距離情報に基づいて、距離の交点の位置を検出しようとすると、図2に示すように、交点までの距離は特定できるが、ミリ波レーダ2に対して方位方向、つまり角度方向に交点が重なる範囲8が生じる。
つまり、ミリ波レーダ2に対して角度方向において、物体の位置の誤差が大きくなっている。このままでは、物体の位置を高精度に検出できない。
図3に示すように、「+」が示す位置に物体が実際に複数存在する場合も同様に、ミリ波レーダ2に対して、実際に物体が存在する位置以外にも、距離の交点が重なる範囲が生じる。したがって、物体が存在する位置を検出することは困難である。
そこで、本実施形態では、例えば図4に示すように、車両の前方に対して左右にそれぞれ90°、かつ車両から50mの範囲に検出領域100を設定し、角度方向に10°間隔、距離方向に5m間隔で検出領域100を複数の扇状の評価領域102に分割する。
図4に示す検出領域100と評価領域102との設定以外にも、図5に示すように、ミリ波レーダ2に対して前方方向と左右方向とに50mの矩形の検出領域110を設定し、5m間隔の格子状に分割した評価領域112を設定してもよい。
尚、検出領域100、110を複数の評価領域に分割するときの評価領域の大きさは、要求される物体の位置の検出精度によって適宜決定される。小さい評価領域に分割されるほど、物体の位置の検出精度は高くなる。実際には、検出領域100、110を分割して設定される評価領域の大きさは、図4、図5に示す大きさよりも小さい。
評価部20は、評価領域102または評価領域112において、物体が存在する確からしさを表す評価値を設定する。評価部20は、評価値を設定するために、誤差評価部22と分散評価部24とを備えている。
誤差評価部22は、評価領域102、112毎に、ミリ波レーダ2が検出する物体までの距離誤差を算出する。以下、図4に示す評価領域102において、誤差評価部22が算出する距離誤差について説明する。
まず、ミリ波レーダ2の数をNs、物体の数をNo、距離方向の検出領域100の分割数をNr、評価領域102の距離方向の長さをΔr、距離方向の評価領域102のインデックスをnr=1、・・・、Nr、角度方向の検出領域100の分割数をNp、評価領域102の角度方向の角度をΔp、角度方向の評価領域102のインデックスをnp=1、・・・、Np、ミリ波レーダ2のインデックスをn=1、・・・、Ns、n番目のミリ波レーダ2によるNo個の物体に対する測位距離をRn=(rn1、・・・、rnNo)、n番目のミリ波レーダ2の座標をLradar_n=(xn、yn)とする。
インデックス(nr、np)の評価領域102の座標Lmesh(nr、np)は次式(1)で表される。
Figure 0007074593000001
そして、各ミリ波レーダ2と各評価領域102との距離rmesh(nr、np、n)は次式(2)で表される。
Figure 0007074593000002
尚、式(2)は、各ミリ波レーダ2のxy座標と各評価領域102のxy座標とのそれぞれの差の2乗の和の平方根を求めていることを表している。
次に、インデックス(nr、np)の評価領域102において、n番目のミリ波レーダ2が検出する複数の物体までの距離Rn=(rn1、・・・、rnNo)のそれぞれと、評価領域102とn番目のミリ波レーダ2との距離rmesh(nr、np、n)との差が最小となる最小距離誤差δ(nr、np、n)は、次式(3)から算出される。
Figure 0007074593000003
そして、各評価領域102において式(3)で算出した最小距離誤差を、すべてのミリ波レーダ2について加算した合計である各評価領域102の距離誤差ε(nr、np)は、次式(4)から算出される。
Figure 0007074593000004
式(4)が示す距離誤差ε(nr、np)の値が小さいほど、該当する評価領域に物体が存在する確からしさが高いことを表している。
次に説明する図6では、「+」が示す点の密集度が高い箇所が、物体が存在する確からしさが高い箇所を表している。図6の上段には、距離誤差に基づいた物体が存在する確からしさが示されている。
尚、図6では、「+」が示す点の密集度によって物体が存在する確からしさを示しているが、色の濃淡、あるいは異なる色により、物体が存在する確からしさを画像データで表示してもよい。
図6の上段から分かるように、式(4)が表す距離誤差は、ミリ波レーダ2に対して距離方向の精度は高いが、ミリ波レーダ2に対して方位方向、つまり角度方向の精度は低い。
そこで、分散評価部24は、次式(5)により、各評価領域102において、式(3)で算出した最小距離誤差δ(nr、np、n)の分散を表す距離分散σ(nr、np)を算出する。式(5)において、E(δ(nr、np))は、各評価領域102における複数のレーダ2に対応する最小距離誤差の平均を表している。
Figure 0007074593000005
式(5)が示す距離分散σ(nr、np)の値が小さいほど、該当する評価領域102に物体が存在する確からしさが高いことを表している。
図6の中段から分かるように、式(5)が表す距離分散は、ミリ波レーダ2に対して角度方向の精度は高いが、ミリ波レーダ2に対して距離方向の精度は低いことを表している。
次に、図6の上段に示す距離誤差と図6の中段に示す距離分散とを加算する。距離誤差と距離分散とを加算する場合、物体の誤検出を抑制するために、各評価領域において、距離誤差が、評価領域102の距離方向の長さΔrをミリ波レーダ2の数で割った値Δr/Nsより大きい場合、その評価領域102における距離誤差には無限大が設定される。
さらに、各評価領域102において、距離分散が、評価領域の距離方向の長さΔrを所定の除数σthで割った値Δr/σthより大きい場合、その評価領域における距離分散には無限大が設定される。尚、除数σthは、誤検出の抑制の程度によって経験的に設定される。除数σthが大きいほど物体の誤検出を抑制できるが、存在している物体を検出できない場合もある。
図6の下段に、距離誤差と距離分散とを加算した値を評価領域102の評価値とした結果を示す。ピーク抽出部30は、残った評価領域102のうち、物体が存在する確からしさの高さが、例えば前後の距離方向と左右の角度方向に存在する周囲の評価領域102よりも高いピークの評価値を有する評価領域102を、検出領域100から抽出する。
本実施形態では、ピーク抽出部30は、周囲の評価領域102よりも評価値の低いピークの評価値を有する評価領域を検出領域100から抽出する。
尚、距離誤差と距離分散とに対し重視する精度に応じて重み付けを行ってから、距離誤差と距離分散とを加算してもよい。例えば、距離精度よりも方位精度を重視するのであれば、方位精度を表す距離分散を式(5)から算出される値よりも大きくしてから距離誤差と距離分散とを加算してもよい。
また、ミリ波レーダ2に対して距離方向よりも角度方向に物体を誤検出する可能性が高いので、ピーク抽出部30は、ピークの評価値を有する評価領域102と評価値を比較する周囲の評価領域102について、角度方向の評価領域102の数を距離方向の評価領域102の数よりも多くすることが望ましい。例えば、距離方向の評価領域102の数を前後にそれぞれ1つにすると、角度方向の評価領域102の数を左右にそれぞれ2つにする。
図6の下段に示すように、物体検出部32は、ピーク抽出部30が抽出したピークの評価値を有する点線の円120で示される位置の評価領域102に物体が存在すると判定する。
[1-3.効果]
以上説明した第1実施形態では、以下の効果を得ることができる。
(1a)物体が存在する可能性として、物体が存在する距離方向の精度は高いが角度方向の精度は低い距離誤差と、物体が存在する角度方向の精度は高いが距離方向の精度は低い距離分散とを加算することにより、距離方向の精度と角度方向との両方において物体が存在する精度の高い評価領域を抽出することができる。
これにより、複数のミリ波レーダ2が設置された設置範囲4の外側の検出領域100、110に存在する物体の位置を、距離を測定するミリ波レーダ2の検出結果に基づいて高精度に検出できる。
(1b)各評価領域において、距離誤差が、評価領域の距離方向の長さΔrをミリ波レーダ2の数で割った値Δr/Nsより大きい場合、その評価領域における距離誤差に無限大が設定され、距離分散が、評価領域の距離方向の長さΔrを所定の除数σthで割った値Δr/σthより大きい場合、その評価領域における距離分散に無限大が設定される。これにより、無限大が設定された評価領域には物体が存在しないと判定できるので、物体の誤検出を抑制できる。
[2.第2実施形態]
[2-1.第1実施形態との相違点]
第2実施形態の基本的な構成は第1実施形態と同様であるため、相違点について以下に説明する。なお、第1実施形態と同じ符号は、同一の構成を示すものであって、先行する説明を参照する。
図7に示すように、検出領域100は3つの部分検出領域130、132、134に分割されている。物体検出装置10は、1回の物体検出処理で検出領域100から物体を検出するのではなく、部分検出領域130、132、134のそれぞれについて順次、物体検出処理を実行する。
部分検出領域130、132、134のそれぞれについて、分割して生成される評価領域の形状は、図4に示す扇状、あるいは図5に示す格子状のいずれであってもよい。
隣接する部分検出領域130と部分検出領域132とは領域が重なる重複領域140を有し、隣接する部分検出領域132と部分検出領域134とは領域が重なる重複領域142を有している。
情報取得部12は、部分検出領域130、132、134のそれぞれについて、図7の矢印が示すように順次、第1実施形態と同様にミリ波レーダ2から物体の距離情報を取得する。
ピーク抽出部30は、取得した距離情報から算出される距離誤差と距離分散とを加算した評価値に基づいて、物体が存在する確からしさが周囲の評価領域よりも高いピークの評価値を有する評価領域を抽出し、抽出した結果をメモリに記憶する。
そして、ピーク抽出部30は、次の部分検出領域において、物体が存在する確からしさが周囲の評価領域よりも高いピークの評価値を有する評価領域を抽出し、抽出した結果をメモリに記憶する。
物体検出部32は、重複領域140、142のそれぞれにおいて、同じ評価領域がピークの評価値を有する評価領域として抽出されている場合、重複領域140であれば部分検出領域130、132のそれぞれの評価領域の距離誤差と距離分散とを加算した値を平均し、重複領域142であれば部分検出領域132、134のそれぞれの評価領域の距離誤差と距離分散とを加算した値の平均値を算出し、該当する評価領域の評価値とする。
あるいは、物体検出部32は、重複領域140であれば部分検出領域130、132の評価領域の距離誤差と距離分散とを加算した値のうち一方の値として、例えば小さい値を選択し、重複領域142であれば部分検出領域132、134のそれぞれの評価領域の距離誤差と距離分散とを加算した値のうち小さい値を選択し、該当する評価領域の評価値とする。
そして、物体検出部32は、検出領域100において、該当する評価領域の評価値に基づいて、該当する評価領域に物体が存在するか否かを判定する。
[2-2.効果]
以上説明した第2実施形態では、第1実施形態の効果(1a)、(1b)に加え、以下の効果(2a)を得ることができる。
(2a)検出領域100に存在する物体を1回の物体検出処理で検出するのではなく、検出領域100を複数の部分検出領域130、132、134に分割し、それぞれの部分検出領域に対して順次、物体検出処理を実行するので、物体を検出するために使用するメモリ量を低減できる。
したがって、部分検出領域130、132、134のそれぞれを分割して生成される評価領域の大きさを、第1実施形態の評価領域102、112より小さくしても、物体を検出するために使用するメモリ量を低減できる。
上記第2実施形態において、重複領域140、142は、部分検出領域130、132、134同士の境界の評価領域に対応する。
[3.第3実施形態]
[3-1.第1実施形態との相違点]
第3実施形態の基本的な構成は第1実施形態と同様であるため、相違点について以下に説明する。なお、第1実施形態と同じ符号は、同一の構成を示すものであって、先行する説明を参照する。
図8に示す第3実施形態の物体検出装置40は、第1実施形態の物体検出装置10の構成に加え、分割部42を備えている。
そして、第3実施形態の検出領域110は、図9の上段に示すように、第1実施形態の評価領域112よりも大きな評価領域150に分割されている。
分割部42は、物体が存在すると物体検出部32が判定した評価領域150を、評価領域150よりも小さい複数の小領域152に分割する。
ピーク抽出部30は、物体が検出された評価領域150の複数の小領域152のそれぞれに対して算出された距離誤差と距離分散とを加算した評価値に基づいて、物体が存在する確からしさが周囲の評価領域よりも高いピークの評価値を有する小領域152を抽出する。
物体検出部32は、ピーク抽出部30により抽出されたピークの評価値を有する小領域152の評価値に基づいて、小領域に152に物体が存在するか否かを判定する。
[3-2.効果]
以上説明した第3実施形態では、第1実施形態の効果(1a)、(1b)に加え、以下の効果(3a)を得ることができる。
(3a)検出領域100において物体の存在が検出された評価領域150については、評価領域150をさらに分割した小領域152について物体を検出する。これにより、検出領域100を最初から小さな小領域152に分割して物体を検出するよりも、使用するメモリ量と計算時間とを低減できる。
[4.第4実施形態]
[4-1.第1実施形態との相違点]
第4実施形態の基本的な構成は第1実施形態と同様であるため、相違点について以下に説明する。なお、第1実施形態と同じ符号は、同一の構成を示すものであって、先行する説明を参照する。
図10に示す第4実施形態の物体検出装置50は、第1実施形態の物体検出装置10の構成に加え、分割部52を備えている。
分割部52は、評価部20が評価領域の評価値を設定する処理の前に、情報取得部12が取得するミリ波レーダ2が測定する距離情報に基づいて、図11、図12に示すように、検出領域110において、物体が存在する可能性が低い箇所は大きい評価領域160、170に分割し、物体が存在する可能性が高い箇所は評価領域160、170よりも小さい評価領域162、172に分割する。
物体検出部32は、ピークの評価値を有する評価領域160、162、170、172の評価値に基づいて、評価領域160、162、170、172に物体が存在するか否かを判定する。
[4-2.効果]
以上説明した第4実施形態では、第1実施形態の効果(1a)、(1b)に加え、以下の効果(4a)を得ることができる。
(4a)検出領域100において、物体が存在する可能性が低い箇所は大きい評価領域160、170に分割し、物体が存在する可能性が高い箇所は小さい評価領域162、172に分割する。これにより、検出領域100を最初から小さな評価領域162、172に分割して物体を検出するよりも、使用するメモリ量と計算時間とを低減できる。
[5.他の実施形態]
以上、本開示の実施形態について説明したが、本開示は上記実施形態に限定されることなく、種々変形して実施することができる。
(1)上記実施形態では、物体までの距離を測位する測位センサとして、ミリ波レーダ2を使用した。ミリ波レーダ2以外にも、探査波を照射して物体までの距離を測位する測位センサであれば、LiDAR、ソナー等を使用してもよい。
(2)上記実施形態では、物体検出装置が搭載される移動体として車両以外に、自転車、車椅子、ロボット等の移動体に物体検出装置を搭載してもよい。
(3)物体検出装置は移動体に限らず、静止物体等の固定位置に設置されてもよい。
(4)上記実施形態では、ピーク抽出部30は、距離誤差と距離分散とを加算した値を評価領域の評価値とし、周囲の評価領域102よりも物体が存在する確からしさが高いピークの評価値を有する評価領域を抽出した。これに対し、評価値として、距離誤差と距離分散との両方が周囲の評価領域102よりも物体が存在する確からしさが高いピークを有する評価領域を抽出してもよい。
(5)上記第2実施形態では、検出領域100を分割した部分検出領域130、132、134同士が重なっている重複領域の評価領域を、部分検出領域同士の境界の評価領域とした。これに対し、検出領域を分割した互いに隣接して重複領域を持たない部分検出領域同士の隣接する評価領域を、部分検出領域同士の境界の評価領域としてもよい。
(6)上記第2実施形態では、検出領域100を分割した部分検出領域130、132、134同士が重なっている重複領域の評価領域を、部分検出領域同士の境界の評価領域とした。これに対し、ミリ波レーダ2が測定した物体までの測位距離に基づいて、測位距離を含み前後の領域を部分検出領域としてもよい。例えば、測位距離が10m、40m、100mであれば、測位距離の前後5mの範囲を部分検出領域としてもよい。
ただし、複数のミリ波レーダ2の設置間隔のうち最大の間隔以上に前後に幅のある部分検出領域を設定することが望ましい。例えば、複数のミリ波レーダ2の設置間隔のうち最大の間隔が2mであれば、±2m以上の部分検出領域を設定する。
(7)上記第4実施形態では、分割部52は、ミリ波レーダ2が測定する距離情報に基づいて、大小の評価領域を生成する位置を決定した。
これに対し、分割部52は、例えば、自車両が走行する道路に存在する物体の位置を検出するために、情報取得部12がミリ波レーダ2から距離情報を取得する前に、自車両の位置とナビゲーション装置の地図データとに基づいて、自車両が走行する道路の範囲の評価領域を小さくし、道路以外の範囲の評価領域を道路の範囲の評価領域より大きくしてもよい。
(8)上記実施形態における一つの構成要素が有する複数の機能を複数の構成要素によって実現したり、一つの構成要素が有する一つの機能を複数の構成要素によって実現したりしてもよい。また、複数の構成要素が有する複数の機能を一つの構成要素によって実現したり、複数の構成要素によって実現される一つの機能を一つの構成要素によって実現したりしてもよい。また、上記実施形態の構成の一部を省略してもよい。また、上記実施形態の構成の少なくとも一部を、他の上記実施形態の構成に対して付加又は置換してもよい。尚、特許請求の範囲に記載した文言のみによって特定される技術思想に含まれるあらゆる態様が本開示の実施形態である。
(9)上述した物体検出装置10、40、50の他、当該物体検出装置10、40、50を構成要素とするシステム、当該物体検出装置10、40、50としてコンピュータを機能させるための物体検出プログラム、この物体検出プログラムを記録した記録媒体、物体検出方法など、種々の形態で本開示を実現することもできる。
2:ミリ波レーダ(センサ)、4:設置範囲、10、40、50:物体検出装置、12:情報取得部、20:評価部、22:誤差評価部、24:分散評価部、30:ピーク抽出部、32:物体検出部、42、52:分割部、100、110:検出領域、102、112、150、160、162、170、172:評価領域、130~134:部分検出領域、140、142:重複領域(境界の評価領域)、152:小領域

Claims (4)

  1. 複数のセンサ(2)が設置された設置範囲(4)の外側の検出領域(100、110)に存在する物体の位置を、前記複数のセンサが少なくとも測定する前記センサと前記物体との距離情報に基づいて検出する物体検出装置(10、40、50)であって、
    前記複数のセンサから前記距離情報を取得するように構成された情報取得部(12)と、
    前記情報取得部が取得する前記距離情報に基づいて、前記検出領域が分割された複数の評価領域(102、112、150、160、162、170、172)のそれぞれにおいて、前記物体が存在する確からしさを表す評価値を設定するように構成された評価部(20)と、
    前記評価領域のそれぞれにおいて前記評価部が設定する前記評価値に基づいて、周囲の前記評価領域よりも前記確からしさが高いピークの前記評価値を有する前記評価領域を抽出するように構成されたピーク抽出部(30)と、
    前記ピーク抽出部が抽出する前記評価領域の前記評価値に基づいて、前記評価領域に前記物体が存在するか否かを判定するように構成された物体検出部(32)と、
    を備え
    前記評価部は、
    前記評価領域のそれぞれにおいて、前記複数のセンサの各センサと前記物体との距離と、前記評価領域と前記各センサとの距離との差が最小となる最小距離誤差を算出し、前記各センサに対応した前記最小距離誤差の合計を算出して前記評価領域の誤差評価値とするように構成された誤差評価部(22)と、
    前記評価領域のそれぞれにおいて、前記誤差評価部が算出する前記複数のセンサに対応した前記最小距離誤差の分散を算出して前記評価領域の分散評価値とするように構成された分散評価部(24)と、
    を備え、
    前記ピーク抽出部は、前記評価値として、前記誤差評価部が算出する前記誤差評価値と、前記分散評価部が算出する前記分散評価値とに基づいて、ピークの前記評価値を有する前記評価領域を抽出するように構成されている、
    物体検出装置。
  2. 請求項1に記載の物体検出装置であって、
    前記検出領域は複数の前記評価領域に分割された複数の部分検出領域に分割されており、
    前記評価部は、前記複数の部分検出領域のそれぞれにおいて順次、前記評価領域の前記評価値を設定するように構成されており、
    前記ピーク抽出部は、前記部分検出領域のそれぞれにおいて順次、前記評価部が設定した前記評価値に基づいてピークの前記評価値を有する前記評価領域を抽出するように構成されている、
    物体検出装置。
  3. 請求項2に記載の物体検出装置であって、
    前記物体検出部は、隣接しているか、または一部が重なっている前記部分検出領域同士の境界の前記評価領域のそれぞれがピークの前記評価値を有する場合、境界の前記評価領域の一方の前記評価値を選択するか、あるいは境界の前記評価領域の前記評価値の平均値を前記評価値とするように構成されている、
    物体検出装置。
  4. 請求項1から3のいずれか1項に記載の物体検出装置であって、
    前記ピーク抽出部が抽出するピークを有する前記評価領域(150)をさらに小さな複数の小領域(152)に分割するように構成された分割部(42、52)をさらに備え、
    ピークを有する前記評価領域において、
    前記情報取得部は、前記複数のセンサから前記距離情報を取得するように構成されており
    前記評価部は、前記距離情報に基づいて前記複数の小領域のそれぞれにおいて前記評価値を設定するように構成されており、
    前記ピーク抽出部は、前記小領域のそれぞれにおいて、前記評価値に基づいて、周囲の前記小領域よりも前記確からしさが高いピークの前記評価値を有する前記小領域を抽出するように構成されており、
    前記物体検出部は、前記ピーク抽出部が抽出する前記小領域の前記評価値に基づいて、前記小領域に前記物体が存在するか否かを判定するように構成されている、
    物体検出装置。
JP2018126779A 2018-07-03 2018-07-03 物体検出装置 Active JP7074593B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018126779A JP7074593B2 (ja) 2018-07-03 2018-07-03 物体検出装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018126779A JP7074593B2 (ja) 2018-07-03 2018-07-03 物体検出装置

Publications (2)

Publication Number Publication Date
JP2020008310A JP2020008310A (ja) 2020-01-16
JP7074593B2 true JP7074593B2 (ja) 2022-05-24

Family

ID=69151232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018126779A Active JP7074593B2 (ja) 2018-07-03 2018-07-03 物体検出装置

Country Status (1)

Country Link
JP (1) JP7074593B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7409959B2 (ja) * 2020-05-01 2024-01-09 株式会社Soken 物体検出装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001118200A (ja) 1999-10-21 2001-04-27 Fujitsu Ten Ltd 情報処理装置、情報入手装置、情報統合装置、制御装置、物体検出装置、および情報処理方法
JP2005515444A (ja) 2002-01-09 2005-05-26 メイコム インコーポレイテッド 複数センサからの距離読み取りに基づいて複数の物体の位置を決定する方法及び装置
US20060125680A1 (en) 2004-12-15 2006-06-15 Thackray Robert G Method and system for detecting an object using a composite evidence grid
JP2007064655A (ja) 2005-08-29 2007-03-15 Yokogawa Denshikiki Co Ltd 移動体測定システム
JP2010152546A (ja) 2008-12-24 2010-07-08 Nissan Motor Co Ltd 追従制御装置及び追従制御方法
JP2014020569A (ja) 2012-07-12 2014-02-03 Hitachi Appliances Inc 空気調和機
WO2017057056A1 (ja) 2015-09-30 2017-04-06 ソニー株式会社 情報処理装置、情報処理方法、及び、プログラム
JP2017129410A (ja) 2016-01-19 2017-07-27 パナソニック株式会社 物体検出装置および物体検出方法
JP2018054328A (ja) 2016-09-26 2018-04-05 日立建機株式会社 鉱山用作業機械及びその障害物検出装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3564897B2 (ja) * 1996-10-03 2004-09-15 スズキ株式会社 障害物認識装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001118200A (ja) 1999-10-21 2001-04-27 Fujitsu Ten Ltd 情報処理装置、情報入手装置、情報統合装置、制御装置、物体検出装置、および情報処理方法
JP2005515444A (ja) 2002-01-09 2005-05-26 メイコム インコーポレイテッド 複数センサからの距離読み取りに基づいて複数の物体の位置を決定する方法及び装置
US20060125680A1 (en) 2004-12-15 2006-06-15 Thackray Robert G Method and system for detecting an object using a composite evidence grid
JP2007064655A (ja) 2005-08-29 2007-03-15 Yokogawa Denshikiki Co Ltd 移動体測定システム
JP2010152546A (ja) 2008-12-24 2010-07-08 Nissan Motor Co Ltd 追従制御装置及び追従制御方法
JP2014020569A (ja) 2012-07-12 2014-02-03 Hitachi Appliances Inc 空気調和機
WO2017057056A1 (ja) 2015-09-30 2017-04-06 ソニー株式会社 情報処理装置、情報処理方法、及び、プログラム
JP2017129410A (ja) 2016-01-19 2017-07-27 パナソニック株式会社 物体検出装置および物体検出方法
JP2018054328A (ja) 2016-09-26 2018-04-05 日立建機株式会社 鉱山用作業機械及びその障害物検出装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
友納 正裕,第3章 SLAMの入出力,SLAM入門,第1版,日本,株式会社オーム社,2018年03月05日,Pages: 25-34,ISBN: 978-4-274-22166-8

Also Published As

Publication number Publication date
JP2020008310A (ja) 2020-01-16

Similar Documents

Publication Publication Date Title
CN110531357B (zh) 估计移动目标在水平面中速度大小的方法和雷达检测系统
WO2020095819A1 (ja) 物体検出装置
JP2006234513A (ja) 障害物検出装置
US11360207B2 (en) Apparatus and method for tracking object based on radar image reconstruction
CN112119330A (zh) 物体检测装置及物体检测方法
JP2018022270A (ja) 路肩検出方法及び路肩検出装置
JP5509615B2 (ja) 車両検出装置、車両検出方法、および車両検出プログラム
JP7074593B2 (ja) 物体検出装置
US11841419B2 (en) Stationary and moving object recognition apparatus
JP2020537138A (ja) 車両レーダシステムを用いた駐車列の検出
JP7244325B2 (ja) 物体検出装置
US11454698B2 (en) Radar mount-angle calibration
JP6818902B2 (ja) 車両検知システム
US20230186648A1 (en) Vehicle lidar system and object detection method thereof
KR101392222B1 (ko) 표적 윤곽을 추출하는 레이저 레이더, 그것의 표적 윤곽 추출 방법
JP6686776B2 (ja) 段差検出方法及び段差検出装置
US11609307B2 (en) Object detection apparatus, vehicle, object detection method, and computer readable medium
JP7254243B2 (ja) 物体検知システムおよび物体検知方法
US11983937B2 (en) Intersecting road estimation device
KR101890482B1 (ko) 레이더 스펙트럼을 이용한 정지 및 이동 물체 판별 장치 및 그 방법
JP7409959B2 (ja) 物体検出装置
US20230023199A1 (en) Method and system for detecting lane line based on lidar data
WO2022102371A1 (ja) 物体検出装置、物体検出方法
JP7505381B2 (ja) 物体検出装置および物体検出方法
WO2021131260A1 (ja) 遮蔽検出装置および遮蔽検出プログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220512

R150 Certificate of patent or registration of utility model

Ref document number: 7074593

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150