[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7070099B2 - Near-infrared absorbing polyester resin composition and its manufacturing method and near-infrared absorbing polyester resin molded product - Google Patents

Near-infrared absorbing polyester resin composition and its manufacturing method and near-infrared absorbing polyester resin molded product Download PDF

Info

Publication number
JP7070099B2
JP7070099B2 JP2018103572A JP2018103572A JP7070099B2 JP 7070099 B2 JP7070099 B2 JP 7070099B2 JP 2018103572 A JP2018103572 A JP 2018103572A JP 2018103572 A JP2018103572 A JP 2018103572A JP 7070099 B2 JP7070099 B2 JP 7070099B2
Authority
JP
Japan
Prior art keywords
polyester resin
infrared absorbing
boiling point
point solvent
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018103572A
Other languages
Japanese (ja)
Other versions
JP2019206669A5 (en
JP2019206669A (en
Inventor
博貴 中山
健二 福田
賢一 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2018103572A priority Critical patent/JP7070099B2/en
Publication of JP2019206669A publication Critical patent/JP2019206669A/en
Publication of JP2019206669A5 publication Critical patent/JP2019206669A5/ja
Application granted granted Critical
Publication of JP7070099B2 publication Critical patent/JP7070099B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Description

本発明は、可視光領域の光をよく透過し、近赤外線領域の光を吸収する複合タングステン酸化物微粒子を含有する近赤外線吸収ポリエステル樹脂成形体の製造に用いられる近赤外線吸収ポリエステル樹脂組成物とその製造方法に係り、特に、複合タングステン酸化物微粒子が凝集せずにポリエステル樹脂中に均一に分散された近赤外線吸収ポリエステル樹脂成形体の製造を可能とする近赤外線吸収ポリエステル樹脂組成物とその製造方法および近赤外線吸収ポリエステル樹脂成形体に関するものである。 INDUSTRIAL APPLICABILITY The present invention relates to a near-infrared absorbing polyester resin composition used for producing a near-infrared absorbing polyester resin molded body containing composite tungsten oxide fine particles that transmit light in the visible light region well and absorb light in the near infrared region. A near-infrared absorbing polyester resin composition capable of producing a near-infrared absorbing polyester resin molded body in which composite tungsten oxide fine particles are uniformly dispersed in a polyester resin without agglomeration, and its production thereof, depending on the manufacturing method. It relates to a method and a near-infrared absorbing polyester resin molded body.

各種建築物や車両の窓、ドア等のいわゆる開口部分から入射する太陽光線には可視光線の他に紫外線や赤外線が含まれている。この太陽光線に含まれている赤外線のうち波長800~2500nmの近赤外線は熱線と呼ばれ、開口部分から進入することにより室内の温度を上昇させる原因になる。これを解消するため、近年、各種建築物や車両の窓材等の分野では、可視光線を十分に取り入れながら熱線を遮蔽し、明るさを維持しつつ室内の温度上昇を抑制する近赤外線遮蔽成形体の需要が急増しており、近赤外線遮蔽成形体に関する特許が多く提案されている。 In addition to visible light, ultraviolet rays and infrared rays are included in the sunlight incident from so-called openings such as windows and doors of various buildings and vehicles. Of the infrared rays contained in the sun's rays, near-infrared rays having a wavelength of 800 to 2500 nm are called heat rays, and when they enter through the opening portion, they cause the temperature in the room to rise. In order to solve this problem, in recent years, in fields such as window materials for various buildings and vehicles, near-infrared shielding molding that shields heat rays while sufficiently taking in visible light and suppresses indoor temperature rise while maintaining brightness. The demand for bodies is increasing rapidly, and many patents on near-infrared shielding molded bodies have been proposed.

例えば、透明樹脂フィルムに、金属若しくは金属酸化物を蒸着してなる熱線反射フィルムを、ガラス、アクリル板、ポリカーボネート板、ポリエチレンテレフタレート板等の透明成形体に接着した近赤外線遮蔽板が提案されている。しかし、この近赤外線遮蔽板においては、熱線反射フィルム自体が非常に高価でかつ接着工程等の煩雑な工程を要するため高コストになる。また、透明成形体と熱線反射フィルムの接着性が良好でないため、経時変化によりフィルム剥離が生じるといった欠点を有している。 For example, a near-infrared shielding plate has been proposed in which a heat ray-reflecting film formed by depositing a metal or a metal oxide on a transparent resin film is bonded to a transparent molded body such as a glass, an acrylic plate, a polycarbonate plate, or a polyethylene terephthalate plate. .. However, in this near-infrared shielding plate, the heat ray reflecting film itself is very expensive and requires a complicated process such as an bonding process, so that the cost is high. Further, since the adhesiveness between the transparent molded body and the heat ray reflecting film is not good, there is a drawback that the film peels off due to aging.

また、透明成形体表面に、金属若しくは金属酸化物を直接蒸着してなる近赤外線遮蔽板も数多く提案されている。しかし、この近赤外線遮蔽板の製造に際しては、高真空で精度の高い雰囲気制御を要する蒸着装置が必要となるため、量産性が悪く、汎用性に乏しいという問題を有している。 In addition, many near-infrared shielding plates in which a metal or a metal oxide is directly deposited on the surface of a transparent molded body have been proposed. However, in the production of this near-infrared shielding plate, a thin-film deposition apparatus that requires high vacuum and highly accurate atmosphere control is required, so that there is a problem that mass productivity is poor and versatility is poor.

この他、例えば、ポリエチレンテレフタレート樹脂、ポリカーボネート樹脂、アクリル樹脂、ポリエチレン樹脂、ポリスチレン樹脂等の熱可塑性透明樹脂にフタロシアニン系化合物、アントラキノン系化合物に代表される有機近赤外線吸収剤を練り込んだ近赤外線遮蔽板およびフィルムが提案されている。しかし、これ等の近赤外線遮蔽板およびフィルムにおいては、熱線を十分に遮蔽するには多量の有機近赤外線吸収剤を配合しなければならず、有機近赤外線吸収剤を多量に配合すると、可視光線透過能が低下してしまうという課題が残っていた。更に、近赤外線吸収剤として有機化合物を使用しているため、直射日光に常時曝される建築物や車両の窓材等への適用は耐候性に難があり、必ずしも適当であるとはいえなかった。 In addition, for example, near-infrared shielding in which an organic near-infrared absorber typified by a phthalocyanine-based compound or anthraquinone-based compound is kneaded into a thermoplastic transparent resin such as a polyethylene terephthalate resin, a polycarbonate resin, an acrylic resin, a polyethylene resin, or a polystyrene resin. Boards and films have been proposed. However, in these near-infrared shielding plates and films, a large amount of organic near-infrared absorber must be blended in order to sufficiently shield heat rays, and if a large amount of organic near-infrared absorber is blended, visible light There remained the problem that the permeability was reduced. Furthermore, since an organic compound is used as a near-infrared absorber, its application to windows of buildings and vehicles that are constantly exposed to direct sunlight has difficulty in weather resistance and is not always appropriate. rice field.

このような技術的背景の下、本出願人は、耐候性に難のある有機系の近赤外線吸収剤に代えて、一般式WOx(但し、2.45≦x≦2.999)で示されるタングステン酸化物微粒子および/または一般式MyWOz(但し、MはH、He、アルカリ金属、アルカリ土類金属、希土類金属、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Reの内から選択される1種以上の元素、0.1≦y≦0.5、2.2≦z≦3.0)で示されかつ六方晶の結晶構造を持つ複合タングステン酸化物微粒子を近赤外線吸収微粒子として適用し、該近赤外線吸収微粒子を熱可塑性樹脂に分散させた近赤外線吸収(遮蔽)樹脂成形体等を既に提案している。すなわち、特許文献1において、熱線遮蔽透明樹脂成形体を製造するために用いられる高耐熱性マスターバッチの製造方法を提案し、特許文献2において、近赤外線遮蔽ポリエステル樹脂成形体を製造するために用いられる近赤外線遮蔽ポリエステル樹脂組成物を提案している。 Against this technical background, Applicants are represented by the general formula WOx (provided, 2.45 ≦ x ≦ 2.999) instead of the organic near-infrared absorber having difficulty in weather resistance. Tungsten oxide fine particles and / or general formula MyWOz (where M is H, He, alkali metal, alkaline earth metal, rare earth metal, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, Nb, One or more elements selected from V, Mo, Ta, and Re, 0.1≤y≤0.5, 2.2≤z≤3.0) and having a hexagonal crystal structure. We have already proposed a near-infrared absorbing (shielding) resin molded body in which composite tungsten oxide fine particles are applied as near-infrared absorbing fine particles and the near-infrared absorbing fine particles are dispersed in a thermoplastic resin. That is, Patent Document 1 proposes a method for producing a highly heat-resistant masterbatch used for producing a heat ray-shielding transparent resin molded product, and Patent Document 2 uses it for producing a near-infrared shielded polyester resin molded product. We are proposing a near-infrared shielding polyester resin composition.

特許文献1で提案した高耐熱性マスターバッチの製造方法は、近赤外線吸収微粒子と高耐熱性分散剤をトルエン等の溶媒に加え、粉砕・分散処理して微粒子分散液を得る工程と、該微粒子分散液に上記高耐熱性分散剤を所定量添加した後、トルエン等の溶媒を除去して「微粒子分散粉」を得る工程と、得られた「微粒子分散粉」とアクリル樹脂、ポリカーボネート樹脂、ポリスチレン樹脂、ポリエーテルスルホン樹脂、フッ素系樹脂、ポリオレフィン樹脂およびポリエステル樹脂等の熱可塑性樹脂を混合し、溶融混練し、成形する工程を具備する方法であった。また、熱線遮蔽透明樹脂成形体は、高耐熱性マスターバッチと、該マスターバッチに含まれる熱可塑性樹脂と同種の熱可塑性樹脂または相溶性を有する異種の熱可塑性樹脂とを混合し、所定の形状に成形して得られるものであった。 The method for producing a highly heat-resistant master batch proposed in Patent Document 1 includes a step of adding near-infrared absorbing fine particles and a high heat-resistant dispersant to a solvent such as toluene, and pulverizing and dispersing to obtain a fine particle dispersion liquid. A step of adding a predetermined amount of the above heat-resistant dispersant to the dispersion liquid and then removing a solvent such as toluene to obtain a "fine particle dispersion powder", and the obtained "fine particle dispersion powder" and an acrylic resin, a polycarbonate resin, and a polystyrene. It was a method including a step of mixing a thermoplastic resin such as a resin, a polyether sulfone resin, a fluororesin, a polyolefin resin and a polyester resin, melt-kneading, and molding. Further, the heat ray-shielding transparent resin molded body is obtained by mixing a highly heat-resistant masterbatch with a thermoplastic resin of the same type as the thermoplastic resin contained in the masterbatch or a different type of thermoplastic resin having compatibility, and forming a predetermined shape. It was obtained by molding into.

また、特許文献2で提案した近赤外線遮蔽ポリエステル樹脂組成物は、特許文献1と同様にして製造した上記「微粒子分散粉」とポリエステル樹脂を均一に混合し、二軸押出機で溶融混練し、押出されたストランドをペレット状にカットしたものである。また、近赤外線遮蔽ポリエステル樹脂成形体は、ペレット状にカットされた近赤外線遮蔽ポリエステル樹脂組成物を一軸押出機で溶融混練した後、Tダイより押し出し、二軸延伸加工して、得られるものであった。 Further, in the near-infrared shielding polyester resin composition proposed in Patent Document 2, the above-mentioned "fine particle dispersion powder" produced in the same manner as in Patent Document 1 and the polyester resin are uniformly mixed and melt-kneaded by a twin-screw extruder. Extruded strands are cut into pellets. The near-infrared ray-shielding polyester resin molded product is obtained by melt-kneading a near-infrared ray-shielding polyester resin composition cut into pellets with a uniaxial extruder, extruding it from a T-die, and biaxially stretching it. there were.

更に、特許文献3には、可視光に対して高い透明性と同時に熱線遮蔽機能を有する成形体とこの製造に供されるポリマー組成物の製造方法等が開示されている。 Further, Patent Document 3 discloses a molded product having high transparency to visible light and at the same time having a heat ray shielding function, and a method for producing a polymer composition used for the production thereof.

すなわち、可視光に対し高い透明性と熱線遮蔽機能を有する成形体の製造に用いられる上記ポリマー組成物は、ナノ粒子状IR吸収剤(金属ホウ化物、ATO、ITO、ナノスケールのカーボンブラック等)と、液状担持媒体(アルキンカルボン酸およびアリールカルボン酸のエステル、アリールカルボン酸とアルカノールとの水素化エステル、一価若しくは多価のアルコール、エーテルアルコール、ポリエーテルポリオール、エーテル、非環状および環状の飽和炭化水素、鉱油誘導体、シリコーン油、非プロトン性極性溶剤等)と、熱可塑性ポリマー[ポリオレフィン、ポリオレフィンコポリマー、ポリビニルアルコール、ポリビニルエステル、ポリビニルアルカナール、ポリビニルケタール、ポリアミド、ポリイミド、ポリカーボネート、ポリカーボネートブレンド、ポリエステル、ポリエステルブレンド、ポリ(メタ)アクリレート、ポリ(メタ)アクリレート―スチレンコポリマーブレンド、ポリ(メタ)アクリレート―ポリビニリデンフルオリドブレンド、ポリウレタン、ポリスチレン、スチレンコポリマー、ポリエーテル、ポリエーテルケトン、ポリスルホン、ポリビニルクロリド等]を含有するものであった。 That is, the polymer composition used for producing a molded product having high transparency to visible light and a heat ray shielding function is a nanoparticulate IR absorber (metal borohydride, ATO, ITO, nanoscale carbon black, etc.). And liquid carrying media (esters of alkyne carboxylic acid and aryl carboxylic acid, hydride ester of aryl carboxylic acid and alkanol, monovalent or polyvalent alcohol, ether alcohol, polyether polyol, ether, acyclic and cyclic saturation. Hydrocarbons, mineral oil derivatives, silicone oils, aprotonic polar solvents, etc.) and thermoplastic polymers [polyolefins, polyolefin copolymers, polyvinyl alcohols, polyvinyl esters, polyvinyl alkanaals, polyvinyl ketals, polyamides, polyimides, polycarbonates, polycarbonate blends, polyesters , Polyester blends, poly (meth) acrylates, poly (meth) acrylate-styrene copolymer blends, poly (meth) acrylate-polyvinylidene fluoride blends, polyurethanes, polystyrenes, styrene copolymers, polyethers, polyether ketones, polysulfones, polyvinyl chlorides Etc.] was contained.

特開2011-001551号公報(特許請求の範囲参照)Japanese Unexamined Patent Publication No. 2011-001551 (see claims) 特開2011-26440号公報(実施例1参照)Japanese Unexamined Patent Publication No. 2011-26440 (see Example 1) WO2010/092013号公報(特許請求の範囲、段落0009参照)WO2010 / 092013 (Claims, paragraph 0009)

ところで、特許文献1と特許文献2に記載された近赤外線吸収(遮蔽)樹脂成形体においては、有機系の近赤外線吸収剤に代えて、タングステン酸化物微粒子および/または複合タングステン酸化物微粒子を近赤外線吸収微粒子として適用しているため、耐候性に関する課題は確かに改善されている。 By the way, in the near-infrared absorbing (shielding) resin molded bodies described in Patent Document 1 and Patent Document 2, tungsten oxide fine particles and / or composite tungsten oxide fine particles are used instead of the organic near-infrared absorbing agent. Since it is applied as infrared absorbing fine particles, the problem of weather resistance is certainly improved.

しかし、特許文献1の高耐熱性マスターバッチは、高耐熱性分散剤と近赤外線吸収微粒子からなる「微粒子分散粉」を、アクリル樹脂、ポリカーボネート樹脂、ポリスチレン樹脂、ポリエーテルスルホン樹脂、フッ素系樹脂、ポリオレフィン樹脂、ポリエステル樹脂等の熱可塑性樹脂と溶融混練して製造されているが、「微粒子分散粉」と熱可塑性樹脂を均一に混練することは難しく、特に、熱可塑性樹脂がポリエステル樹脂の場合に顕著であった。このため、ポリエステル樹脂中に近赤外線吸収微粒子を均一に分散させることが難しいことから、近赤外線遮蔽ポリエステル樹脂成形体のヘイズ値が高くなり、可視光透過率も低下する問題が存在した。更に、可視光透過率が高くかつ近赤外線領域に強い吸収を有する近赤外線遮蔽ポリエステル樹脂成形体を製造するには、ポリエステル樹脂(熱可塑性樹脂)中に近赤外線吸収微粒子が良好に分散されることを要するため、その分、多量の高耐熱性分散剤を配合する必要がある。しかし、高耐熱性分散剤が多量に含まれるマスターバッチを用いて製造された近赤外線遮蔽ポリエステル樹脂成形体は、分散剤を多量に含有する分、機械的強度が低下してしまう問題があった。 However, the high heat-resistant master batch of Patent Document 1 uses a "fine particle dispersion powder" composed of a high heat-resistant dispersant and near-infrared absorbing fine particles as an acrylic resin, a polycarbonate resin, a polystyrene resin, a polyether sulfone resin, and a fluororesin. It is manufactured by melt-kneading with thermoplastic resins such as polyolefin resin and polyester resin, but it is difficult to uniformly knead "fine particle dispersion powder" and thermoplastic resin, especially when the thermoplastic resin is polyester resin. It was remarkable. For this reason, it is difficult to uniformly disperse the near-infrared absorbing fine particles in the polyester resin, so that there is a problem that the haze value of the near-infrared shielding polyester resin molded body becomes high and the visible light transmittance also decreases. Further, in order to produce a near-infrared shielding polyester resin molded body having high visible light transmittance and strong absorption in the near-infrared region, near-infrared absorbing fine particles are well dispersed in the polyester resin (thermoplastic resin). Therefore, it is necessary to add a large amount of highly heat-resistant dispersant accordingly. However, the near-infrared ray-shielding polyester resin molded product manufactured by using a masterbatch containing a large amount of a high heat-resistant dispersant has a problem that the mechanical strength is lowered due to the large amount of the dispersant. ..

また、近赤外線遮蔽ポリエステル樹脂成形体の製造に用いられる特許文献2に係る近赤外線遮蔽ポリエステル樹脂組成物も、特許文献1と同様、高耐熱性分散剤と近赤外線吸収微粒子からなる「微粒子分散粉」をポリエステル樹脂と溶融混練して製造されているため、「微粒子分散粉」とポリエステル樹脂を均一に混練することが難しく、ポリエステル樹脂中に近赤外線吸収微粒子を均一に分散させることが困難な課題が存在した。そして、近赤外線吸収微粒子をポリエステル樹脂中に均一に分散させることが困難なことから、近赤外線遮蔽ポリエステル樹脂成形体のヘイズ値が高くなり、可視光透過率も低下する問題が存在し、ヘイズ値を下げるために多量の高耐熱性分散剤を配合した場合、近赤外線遮蔽ポリエステル樹脂成形体の機械的強度が低下してしまう問題があった。 Further, the near-infrared shielding polyester resin composition according to Patent Document 2 used for manufacturing the near-infrared shielding polyester resin molded body is also a “fine particle dispersion powder” composed of a highly heat-resistant dispersant and near-infrared absorbing fine particles, as in Patent Document 1. Is manufactured by melt-kneading with polyester resin, it is difficult to uniformly knead "fine particle dispersion powder" and polyester resin, and it is difficult to uniformly disperse near-infrared absorbing fine particles in polyester resin. Was present. Since it is difficult to uniformly disperse the near-infrared absorbing fine particles in the polyester resin, there is a problem that the haze value of the near-infrared shielded polyester resin molded body is high and the visible light transmission rate is also lowered. When a large amount of highly heat-resistant dispersant is blended in order to reduce the amount of light, there is a problem that the mechanical strength of the near-infrared ray shielding polyester resin molded body is lowered.

特許文献3においては、多種の液状担持媒体中でナノ粒子状IR吸収剤を粉砕若しくは分散して「微粒子分散液」を調製した後、熱可塑性樹脂と「微粒子分散液」を溶融混練してポリマー組成物を製造している。このため、「微粒子分散粉」と熱可塑性樹脂(ポリエステル樹脂)を溶融混練する特許文献1~2の方法と異なり、熱可塑性樹脂中におけるナノ粒子状IR吸収剤の凝集は起こり難い。しかし、熱可塑性樹脂が溶融温度の高いポリエステル樹脂の場合、溶融混練時において液状担持媒体の気化が起こり易いため、混練ムラやヘイズ悪化の原因となる問題が存在した。また、粘性の高い液状担持媒体中でナノ粒子状IR吸収剤を粉砕若しくは分散して「微粒子分散液」を調製することは作業性に難があり、効率も非常に悪いという問題があった。 In Patent Document 3, a nanoparticulate IR absorber is pulverized or dispersed in various liquid-carrying media to prepare a “fine particle dispersion”, and then a thermoplastic resin and the “fine particle dispersion” are melt-kneaded to form a polymer. Manufactures compositions. Therefore, unlike the methods of Patent Documents 1 and 2 in which the "fine particle dispersion powder" and the thermoplastic resin (polyester resin) are melt-kneaded, aggregation of the nanoparticulate IR absorber in the thermoplastic resin is unlikely to occur. However, when the thermoplastic resin is a polyester resin having a high melting temperature, the liquid-carrying medium tends to vaporize during melt-kneading, which causes problems such as uneven kneading and deterioration of haze. Further, it is difficult to prepare a "fine particle dispersion liquid" by pulverizing or dispersing a nanoparticulate IR absorber in a highly viscous liquid-carrying medium, and there is a problem that the efficiency is very poor.

本発明は、このような問題点に着目してなされたもので、その課題とするところは、複合タングステン酸化物微粒子で構成される近赤外線吸収微粒子が凝集せずにポリエステル樹脂中に均一に分散された近赤外線吸収ポリエステル樹脂成形体の製造を可能とする近赤外線吸収ポリエステル樹脂組成物とその製造方法および近赤外線吸収ポリエステル樹脂成形体を提供することにある。 The present invention has been made by paying attention to such a problem, and the problem thereof is that the near-infrared absorbing fine particles composed of the composite tungsten oxide fine particles are uniformly dispersed in the polyester resin without agglomeration. It is an object of the present invention to provide a near-infrared absorbing polyester resin composition capable of producing the near-infrared absorbing polyester resin molded body, a method for producing the same, and a near-infrared absorbing polyester resin molded body.

そこで、上記課題を解決するため、本発明者等が実験と分析を繰り返した結果、ポリエステル樹脂と溶融混練する「微粒子分散液」の溶媒に関し、沸点が195℃以上でかつ分子両末端に水酸基を有する室温で液状のジオール化合物(高沸点溶媒)を用いたところ、複合タングステン酸化物微粒子で構成される近赤外線吸収微粒子が凝集せずにポリエステル樹脂中に均一に分散されることを発見するに至った。更に、高沸点溶媒の微粒子分散液とポリエステル樹脂を溶融混練して製造された近赤外線吸収ポリエステル樹脂組成物を成形して得られた近赤外線吸収ポリエステル樹脂成形体は、ヘイズ値が低いと共に、可視光透過率が高くかつ近赤外線領域に強い吸収を有することを見出すに至った。本発明はこのような技術的発見と分析により完成されたものである。 Therefore, in order to solve the above problems, as a result of repeated experiments and analyzes by the present inventors, the solvent of the "fine particle dispersion" to be melt-kneaded with the polyester resin has a boiling point of 195 ° C. or higher and hydroxyl groups at both ends of the molecule. When a diol compound (high boiling point solvent) that is liquid at room temperature was used, it was discovered that the near-infrared absorbing fine particles composed of the composite tungsten oxide fine particles were uniformly dispersed in the polyester resin without agglomeration. rice field. Further, the near-infrared absorbing polyester resin molded body obtained by molding a near-infrared absorbing polyester resin composition produced by melt-kneading a fine particle dispersion of a high boiling point solvent and a polyester resin has a low haze value and is visible. We have found that it has high light transmittance and strong absorption in the near infrared region. The present invention has been completed by such technical discoveries and analyzes.

すなわち、本発明に係る第1の発明は、
近赤外線吸収ポリエステル樹脂成形体を製造するために用いられる近赤外線吸収ポリエステル樹脂組成物において、
ポリエステル樹脂と近赤外線吸収微粒子と高沸点溶媒を含有し、
上記近赤外線吸収微粒子が、一般式MyWOz(但し、Mは、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In,Tl、Si、Ge、Sn、Pb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Reの内から選択される1種類以上の元素、Wはタングステン、Oは酸素、0.1≦y≦0.5、2.2≦z≦3.0)で示されかつ六方晶の結晶構造を持つ複合タングステン酸化物微粒子で構成されると共に、
上記高沸点溶媒が、沸点が195℃以上でかつ分子両末端に水酸基を有する室温で液状のジオール化合物であるポリエステルポリオール類で構成されることを特徴とするものである。
That is, the first invention according to the present invention is
In a near-infrared absorbing polyester resin composition used for producing a near-infrared absorbing polyester resin molded product,
Contains polyester resin, near-infrared absorbing fine particles and high boiling point solvent,
The near-infrared absorbing fine particles are the general formula MyWOz (where M is H, He, alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni. , Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, B, F, P, S, Se, Br, Te, Ti, Nb, V , Mo, Ta, Re, one or more elements selected from, W is tungsten, O is oxygen, 0.1 ≦ y ≦ 0.5, 2.2 ≦ z ≦ 3.0) It is composed of composite tungsten oxide fine particles with a hexagonal crystal structure and
The high boiling point solvent is characterized by being composed of polyester polyols which are diol compounds having a boiling point of 195 ° C. or higher and liquid at room temperature having hydroxyl points at both ends of the molecule.

また、本発明に係る第の発明は、
第1の発明に記載の近赤外線吸収ポリエステル樹脂組成物において、
上記近赤外線吸収微粒子に含まれるM元素が、Cs、Rb、K、Tl、In、Ba、Li、Ca、Sr、Fe、Sn、Al、Cuから選択される少なくとも1種類以上であることを特徴とし、
の発明は、
第1の発明または第2の発明に記載の近赤外線吸収ポリエステル樹脂組成物において、
上記ポリエステル樹脂中に存在する近赤外線吸収微粒子の平均粒子径が1nm以上800nm以下であることを特徴とし、
の発明は、
第1の発明~第の発明のいずれかに記載の近赤外線吸収ポリエステル樹脂組成物において、
上記ポリエステル樹脂が、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレートから選択される樹脂であることを特徴とし、
の発明は、
第1の発明~第の発明のいずれかに記載の近赤外線吸収ポリエステル樹脂組成物において、
熱分解温度が200℃以上の分散剤を含むことを特徴とし、
また、第の発明は、
の発明に記載の近赤外線吸収ポリエステル樹脂組成物において、
上記近赤外線吸収ポリエステル樹脂組成物中における近赤外線吸収微粒子の質量をA、ポリエステル樹脂の質量をB、高沸点溶媒の質量をC、および、分散剤の質量をDとした場合、
0.1≦[D/A]≦10、
0.5≦[(C+D)/A]≦50、
5≦[(B+C+D)/A]≦1000
を満たすことを特徴とするものである。
Further, the second invention according to the present invention is
In the near-infrared absorbing polyester resin composition according to the first invention,
The M element contained in the near-infrared absorbing fine particles is at least one selected from Cs, Rb, K, Tl, In, Ba, Li, Ca, Sr, Fe, Sn, Al, and Cu. year,
The third invention is
In the near-infrared absorbing polyester resin composition according to the first invention or the second invention .
The feature is that the average particle size of the near-infrared absorbing fine particles present in the polyester resin is 1 nm or more and 800 nm or less.
The fourth invention is
In the near-infrared absorbing polyester resin composition according to any one of the first invention to the third invention.
The polyester resin is characterized by being a resin selected from polyethylene terephthalate, polyethylene naphthalate, and polybutylene terephthalate.
The fifth invention is
In the near-infrared absorbing polyester resin composition according to any one of the first to fourth inventions.
It is characterized by containing a dispersant having a thermal decomposition temperature of 200 ° C. or higher.
Moreover, the sixth invention is
In the near-infrared absorbing polyester resin composition according to the fifth invention,
When the mass of the near-infrared absorbing fine particles in the near-infrared absorbing polyester resin composition is A, the mass of the polyester resin is B, the mass of the high boiling point solvent is C, and the mass of the dispersant is D.
0.1 ≤ [D / A] ≤ 10,
0.5 ≤ [(C + D) / A] ≤ 50,
5 ≦ [(B + C + D) / A] ≦ 1000
It is characterized by satisfying.

次に、本発明に係る第の発明は、
近赤外線吸収ポリエステル樹脂成形体において、
第1の発明~第の発明のいずれかに記載の近赤外線吸収ポリエステル樹脂組成物を、成形して得られることを特徴とし、
の発明は、
の発明に記載の近赤外線吸収ポリエステル樹脂成形体において、
上記ポリエステル樹脂成形体中に存在する近赤外線吸収微粒子の平均粒子径が1nm以上800nm以下であることを特徴とし、
の発明は、
の発明または第の発明に記載の近赤外線吸収ポリエステル樹脂成形体において、
厚さ50μm以下に成形された上記ポリエステル樹脂成形体のヘイズ値が2.0%以下であることを特徴とする。
Next, the seventh invention according to the present invention is
In the near-infrared absorbing polyester resin molded product
The near-infrared absorbing polyester resin composition according to any one of the first to sixth inventions is obtained by molding.
The eighth invention is
In the near-infrared absorbing polyester resin molded product according to the seventh invention.
The feature is that the average particle size of the near-infrared absorbing fine particles present in the polyester resin molded product is 1 nm or more and 800 nm or less.
The ninth invention is
In the near-infrared absorbing polyester resin molded product according to the seventh invention or the eighth invention.
The polyester resin molded product molded to a thickness of 50 μm or less has a haze value of 2.0% or less.

また、第10の発明は、
第1の発明~第の発明のいずれかに記載の近赤外線吸収ポリエステル樹脂組成物を製造する方法において、
近赤外線吸収微粒子と低沸点溶媒を混合し、湿式媒体ミルを用いて近赤外線吸収微粒子を粉砕かつ分散処理して低沸点溶媒の微粒子分散液を得る工程と、
得られた低沸点溶媒の微粒子分散液に高沸点溶媒を添加する工程と、
高沸点溶媒が添加された上記微粒子分散液から低沸点溶媒を除去して高沸点溶媒の微粒子分散液を得る工程と、
高沸点溶媒の微粒子分散液にポリエステル樹脂を配合し、溶融混練装置を用いて上記微粒子分散液とポリエステル樹脂を溶融混練する工程、
を具備することを特徴とし、
11の発明は、
の発明~第の発明のいずれかに記載の近赤外線吸収ポリエステル樹脂組成物を製造する方法において、
近赤外線吸収微粒子と低沸点溶媒および分散剤を混合し、湿式媒体ミルを用いて近赤外線吸収微粒子を粉砕かつ分散処理して低沸点溶媒の微粒子分散液を得る工程と、
得られた低沸点溶媒の微粒子分散液に高沸点溶媒を添加する工程と、
高沸点溶媒が添加された上記微粒子分散液から低沸点溶媒を除去して高沸点溶媒の微粒子分散液を得る工程と、
高沸点溶媒の微粒子分散液にポリエステル樹脂を配合し、溶融混練装置を用いて上記微粒子分散液とポリエステル樹脂を溶融混練する工程、
を具備することを特徴とするものである。
Moreover, the tenth invention is a tenth invention.
In the method for producing a near-infrared absorbing polyester resin composition according to any one of the first to fourth inventions.
A step of mixing near-infrared absorbing fine particles and a low boiling point solvent and crushing and dispersing the near infrared absorbing fine particles using a wet medium mill to obtain a fine particle dispersion of the low boiling point solvent.
The step of adding the high boiling point solvent to the obtained fine particle dispersion of the low boiling point solvent, and
A step of removing the low boiling point solvent from the above fine particle dispersion to which the high boiling point solvent is added to obtain a fine particle dispersion of the high boiling point solvent.
A step of blending a polyester resin with a fine particle dispersion of a high boiling point solvent and melt-kneading the fine particle dispersion and the polyester resin using a melt-kneading device.
It is characterized by having
The eleventh invention is
In the method for producing the near-infrared absorbing polyester resin composition according to any one of the fifth to sixth inventions.
A step of mixing near-infrared absorbing fine particles with a low boiling point solvent and a dispersant, and crushing and dispersing the near infrared absorbing fine particles using a wet medium mill to obtain a fine particle dispersion of a low boiling point solvent.
The step of adding the high boiling point solvent to the obtained fine particle dispersion of the low boiling point solvent, and
A step of removing the low boiling point solvent from the above fine particle dispersion to which the high boiling point solvent is added to obtain a fine particle dispersion of the high boiling point solvent.
A step of blending a polyester resin with a fine particle dispersion of a high boiling point solvent and melt-kneading the fine particle dispersion and the polyester resin using a melt-kneading device.
It is characterized by having.

高沸点溶媒の微粒子分散液とポリエステル樹脂を溶融混練して製造される本発明に係る近赤外線吸収ポリエステル樹脂組成物は、
ポリエステル樹脂と近赤外線吸収微粒子と高沸点溶媒を含有し、
上記近赤外線吸収微粒子が、一般式MyWOz(但し、Mは、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In,Tl、Si、Ge、Sn、Pb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Reの内から選択される1種類以上の元素、Wはタングステン、Oは酸素、0.1≦y≦0.5、2.2≦z≦3.0)で示されかつ六方晶の結晶構造を持つ複合タングステン酸化物微粒子で構成されると共に、
上記高沸点溶媒が、沸点が195℃以上でかつ分子両末端に水酸基を有する室温で液状のジオール化合物であるポリエステルポリオール類で構成されることを特徴としている。
The near-infrared absorbing polyester resin composition according to the present invention, which is produced by melt-kneading a fine particle dispersion of a high boiling point solvent and a polyester resin, is used.
Contains polyester resin, near-infrared absorbing fine particles and high boiling point solvent,
The near-infrared absorbing fine particles are the general formula MyWOz (where M is H, He, alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni. , Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, B, F, P, S, Se, Br, Te, Ti, Nb, V , Mo, Ta, Re, one or more elements selected from, W is tungsten, O is oxygen, 0.1 ≦ y ≦ 0.5, 2.2 ≦ z ≦ 3.0) It is composed of composite tungsten oxide fine particles with a hexagonal crystal structure and
The high boiling point solvent is characterized by being composed of polyester polyols which are diol compounds having a boiling point of 195 ° C. or higher and liquid at room temperature having hydroxyl points at both ends of the molecule.

そして、上記高沸点溶媒の微粒子分散液は、分子両末端に水酸基を有する高沸点溶媒の作用により近赤外線吸収微粒子の凝集が防止され、分散液中において近赤外線吸収微粒子が均一に分散されているため、上記高沸点溶媒の微粒子分散液とポリエステル樹脂を溶融混練して製造される近赤外線吸収ポリエステル樹脂組成物中においても近赤外線吸収微粒子の凝集は防止され、ポリエステル樹脂中において複合タングステン酸化物微粒子で構成される上記近赤外線吸収微粒子は均一に分散されている。 In the fine particle dispersion liquid of the high boiling point solvent, the aggregation of the near-infrared absorbing fine particles is prevented by the action of the high boiling point solvent having hydroxyl groups at both ends of the molecule, and the near-infrared absorbing fine particles are uniformly dispersed in the dispersion liquid. Therefore, aggregation of the near-infrared absorbing fine particles is prevented even in the near-infrared absorbing polyester resin composition produced by melt-kneading the fine particle dispersion of the high boiling point solvent and the polyester resin, and the composite tungsten oxide fine particles are prevented in the polyester resin. The near-infrared absorbing fine particles composed of the above are uniformly dispersed.

従って、本発明に係る近赤外線吸収ポリエステル樹脂組成物を成形して得られる近赤外線吸収ポリエステル樹脂成形体においても、複合タングステン酸化物微粒子で構成される近赤外線吸収微粒子がポリエステル樹脂中に均一に分散されているため、ヘイズ値が低く、可視光透過率が高く、かつ、近赤外線領域に強い吸収を有する近赤外線吸収ポリエステル樹脂成形体を提供できる効果を有する。 Therefore, even in the near-infrared absorbing polyester resin molded body obtained by molding the near-infrared absorbing polyester resin composition according to the present invention, the near-infrared absorbing fine particles composed of the composite tungsten oxide fine particles are uniformly dispersed in the polyester resin. Therefore, it has an effect of being able to provide a near-infrared absorbing polyester resin molded product having a low haze value, high visible light transmittance, and strong absorption in the near infrared region.

更に、ポリエステル樹脂と溶融混練する微粒子分散液の溶媒は高沸点溶媒で構成され、溶融混練時における高沸点溶媒の気化が起こり難いため、混練ムラや近赤外線吸収ポリエステル樹脂組成物のヘイズ悪化を防止できる効果を有する。 Further, the solvent of the fine particle dispersion liquid to be melt-kneaded with the polyester resin is composed of a high boiling point solvent, and vaporization of the high boiling point solvent during melt-kneading is unlikely to occur, so that uneven kneading and deterioration of haze of the near-infrared absorbing polyester resin composition are prevented. Has the effect that can be done.

以下、本発明の実施の形態について詳細を説明する。 Hereinafter, embodiments of the present invention will be described in detail.

本発明の第一実施形態に係る近赤外線吸収ポリエステル樹脂組成物は、
ポリエステル樹脂と近赤外線吸収微粒子と高沸点溶媒を含有し、
上記近赤外線吸収微粒子が、一般式MyWOz(但し、Mは、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In,Tl、Si、Ge、Sn、Pb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Reの内から選択される1種類以上の元素、Wはタングステン、Oは酸素、0.1≦y≦0.5、2.2≦z≦3.0)で示されかつ六方晶の結晶構造を持つ複合タングステン酸化物微粒子で構成されると共に、
上記高沸点溶媒が、沸点が195℃以上でかつ分子両末端に水酸基を有する室温で液状のジオール化合物であるポリエステルポリオール類で構成されることを特徴とし、
本発明の第二実施形態に係る近赤外線吸収ポリエステル樹脂組成物は、
ポリエステル樹脂と近赤外線吸収微粒子と高沸点溶媒および熱分解温度が200℃以上の分散剤を含有し、
上記近赤外線吸収微粒子が、一般式MyWOz(但し、Mは、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In,Tl、Si、Ge、Sn、Pb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Reの内から選択される1種類以上の元素、Wはタングステン、Oは酸素、0.1≦y≦0.5、2.2≦z≦3.0)で示されかつ六方晶の結晶構造を持つ複合タングステン酸化物微粒子で構成されると共に、
上記高沸点溶媒が、沸点が195℃以上でかつ分子両末端に水酸基を有する室温で液状のジオール化合物であるポリエステルポリオール類で構成されることを特徴とする。
The near-infrared absorbing polyester resin composition according to the first embodiment of the present invention is
Contains polyester resin, near-infrared absorbing fine particles and high boiling point solvent,
The near-infrared absorbing fine particles are the general formula MyWOz (where M is H, He, alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni. , Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, B, F, P, S, Se, Br, Te, Ti, Nb, V , Mo, Ta, Re, one or more elements selected from, W is tungsten, O is oxygen, 0.1 ≦ y ≦ 0.5, 2.2 ≦ z ≦ 3.0) It is composed of composite tungsten oxide fine particles with a hexagonal crystal structure and
The high boiling point solvent is characterized by being composed of polyester polyols which are diol compounds having a boiling point of 195 ° C. or higher and liquid at room temperature having hydroxyl points at both ends of the molecule.
The near-infrared absorbing polyester resin composition according to the second embodiment of the present invention is
Contains polyester resin, near-infrared absorbing fine particles, a high boiling point solvent, and a dispersant having a thermal decomposition temperature of 200 ° C. or higher.
The near-infrared absorbing fine particles are the general formula MyWOz (where M is H, He, alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni. , Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, B, F, P, S, Se, Br, Te, Ti, Nb, V , Mo, Ta, Re, one or more elements selected from, W is tungsten, O is oxygen, 0.1 ≦ y ≦ 0.5, 2.2 ≦ z ≦ 3.0) It is composed of composite tungsten oxide fine particles with a hexagonal crystal structure and
The high boiling point solvent is characterized by being composed of polyester polyols which are diol compounds having a boiling point of 195 ° C. or higher and liquid at room temperature having hydroxyl points at both ends of the molecule.

また、第一実施形態に係る近赤外線吸収ポリエステル樹脂組成物の製造方法は、
近赤外線吸収微粒子と低沸点溶媒を混合し、湿式媒体ミルを用いて近赤外線吸収微粒子を粉砕かつ分散処理して低沸点溶媒の微粒子分散液を得る工程と、
得られた低沸点溶媒の微粒子分散液に高沸点溶媒を添加する工程と、
高沸点溶媒が添加された上記微粒子分散液から低沸点溶媒を除去して高沸点溶媒の微粒子分散液を得る工程と、
高沸点溶媒の微粒子分散液にポリエステル樹脂を配合し、溶融混練装置を用いて上記微粒子分散液とポリエステル樹脂を溶融混練する工程、
を具備することを特徴とし、
第二実施形態に係る近赤外線吸収ポリエステル樹脂組成物の製造方法は、
近赤外線吸収微粒子と低沸点溶媒および分散剤を混合し、湿式媒体ミルを用いて近赤外線吸収微粒子を粉砕かつ分散処理して低沸点溶媒の微粒子分散液を得る工程と、
得られた低沸点溶媒の微粒子分散液に高沸点溶媒を添加する工程と、
高沸点溶媒が添加された上記微粒子分散液から低沸点溶媒を除去して高沸点溶媒の微粒子分散液を得る工程と、
高沸点溶媒の微粒子分散液にポリエステル樹脂を配合し、溶融混練装置を用いて上記微粒子分散液とポリエステル樹脂を溶融混練する工程、
を具備することを特徴とする。
Further, the method for producing the near-infrared absorbing polyester resin composition according to the first embodiment is as follows.
A step of mixing near-infrared absorbing fine particles and a low boiling point solvent and crushing and dispersing the near infrared absorbing fine particles using a wet medium mill to obtain a fine particle dispersion of the low boiling point solvent.
The step of adding the high boiling point solvent to the obtained fine particle dispersion of the low boiling point solvent, and
A step of removing the low boiling point solvent from the above fine particle dispersion to which the high boiling point solvent is added to obtain a fine particle dispersion of the high boiling point solvent.
A step of blending a polyester resin with a fine particle dispersion of a high boiling point solvent and melt-kneading the fine particle dispersion and the polyester resin using a melt-kneading device.
It is characterized by having
The method for producing the near-infrared absorbing polyester resin composition according to the second embodiment is
A step of mixing near-infrared absorbing fine particles with a low boiling point solvent and a dispersant, and crushing and dispersing the near infrared absorbing fine particles using a wet medium mill to obtain a fine particle dispersion of a low boiling point solvent.
The step of adding the high boiling point solvent to the obtained fine particle dispersion of the low boiling point solvent, and
A step of removing the low boiling point solvent from the above fine particle dispersion to which the high boiling point solvent is added to obtain a fine particle dispersion of the high boiling point solvent.
A step of blending a polyester resin with a fine particle dispersion of a high boiling point solvent and melt-kneading the fine particle dispersion and the polyester resin using a melt-kneading device.
It is characterized by having.

以下、(1)近赤外線吸収ポリエステル樹脂組成物、(2)近赤外線吸収ポリエステル樹脂成形体、(3)近赤外線吸収ポリエステル樹脂組成物の構成成分、すなわち(3-1)近赤外線吸収微粒子、(3-2)ポリエステル樹脂、(3-3)分散剤、(3-4)高沸点溶媒、および、(4)近赤外線吸収ポリエステル樹脂組成物の製造方法について順次説明する。 Hereinafter, (1) a near-infrared absorbing polyester resin composition, (2) a near-infrared absorbing polyester resin molded body, (3) constituent components of the near-infrared absorbing polyester resin composition, that is, (3-1) near-infrared absorbing fine particles, ( A method for producing a 3-2) polyester resin, (3-3) dispersant, (3-4) high boiling point solvent, and (4) near-infrared absorbing polyester resin composition will be sequentially described.

(1)近赤外線吸収ポリエステル樹脂組成物
本発明の第一実施形態に係る近赤外線吸収ポリエステル樹脂組成物は、上述したようにポリエステル樹脂と近赤外線吸収微粒子と高沸点溶媒を含有し、
上記近赤外線吸収微粒子が複合タングステン酸化物微粒子で構成されると共に、
上記高沸点溶媒が、沸点が195℃以上でかつ分子両末端に水酸基を有する室温で液状のジオール化合物であるポリエステルポリオール類で構成されることを特徴とする。
(1) Near-infrared absorbing polyester resin composition
As described above, the near-infrared absorbing polyester resin composition according to the first embodiment of the present invention contains a polyester resin, near-infrared absorbing fine particles, and a high boiling point solvent.
The near-infrared absorbing fine particles are composed of composite tungsten oxide fine particles, and
The high boiling point solvent is characterized by being composed of polyester polyols which are diol compounds having a boiling point of 195 ° C. or higher and liquid at room temperature having hydroxyl points at both ends of the molecule.

また、本発明の第二実施形態に係る近赤外線吸収ポリエステル樹脂組成物は、上述したようにポリエステル樹脂と近赤外線吸収微粒子と高沸点溶媒および熱分解温度が200℃以上の分散剤を含有し、
上記近赤外線吸収微粒子が、複合タングステン酸化物微粒子で構成されると共に、
上記高沸点溶媒が、沸点が195℃以上でかつ分子両末端に水酸基を有する室温で液状のジオール化合物であるポリエステルポリオール類で構成されることを特徴とする。
Further, the near-infrared absorbing polyester resin composition according to the second embodiment of the present invention contains a polyester resin, near-infrared absorbing fine particles, a high boiling point solvent, and a dispersant having a thermal decomposition temperature of 200 ° C. or higher, as described above.
The near-infrared absorbing fine particles are composed of composite tungsten oxide fine particles, and at the same time,
The high boiling point solvent is characterized by being composed of polyester polyols which are diol compounds having a boiling point of 195 ° C. or higher and liquid at room temperature having hydroxyl points at both ends of the molecule.

尚、第二実施形態に係る近赤外線吸収ポリエステル樹脂組成物において、近赤外線吸収微粒子の質量をA、ポリエステル樹脂の質量をB、高沸点溶媒の質量をC、および、分散剤の質量をDとした場合、5≦[(B+C+D)/A]≦1000の条件を満たすことが好ましい。当該質量比が5以上であれば、近赤外線吸収ポリエステル樹脂組成物を用いて製造される近赤外線吸収ポリエステル樹脂成形体自体の機械特性(引張強度、曲げ強度、表面硬度)が大きく損なわれることがなく、当該質量比が1000以下であれば、十分な近赤外線吸収特性が得られるため十分な近赤外線遮蔽特性も得られるからである。 In the near-infrared absorbing polyester resin composition according to the second embodiment, the mass of the near-infrared absorbing fine particles is A, the mass of the polyester resin is B, the mass of the high boiling point solvent is C, and the mass of the dispersant is D. If so, it is preferable to satisfy the condition of 5 ≦ [(B + C + D) / A] ≦ 1000. If the mass ratio is 5 or more, the mechanical properties (tensile strength, bending strength, surface hardness) of the near-infrared absorbing polyester resin molded body manufactured by using the near-infrared absorbing polyester resin composition may be significantly impaired. However, if the mass ratio is 1000 or less, sufficient near-infrared absorption characteristics can be obtained, so that sufficient near-infrared shielding characteristics can also be obtained.

また、第一実施形態および第二実施形態に係る近赤外線吸収ポリエステル樹脂組成物の製造工程で用いられる低沸点溶媒の上記近赤外線吸収ポリエステル樹脂組成物中における残留量は5質量%以下であることが好ましい。低沸点溶媒の残留量が5質量%以下であれば、近赤外線吸収ポリエステル樹脂成形体に加工した際、低沸点溶媒に起因する気泡が発生せず、外観や光学特性が良好に保たれるからである。 Further, the residual amount of the low boiling point solvent used in the manufacturing process of the near-infrared absorbing polyester resin composition according to the first embodiment and the second embodiment in the near-infrared absorbing polyester resin composition is 5% by mass or less. Is preferable. When the residual amount of the low boiling point solvent is 5% by mass or less, bubbles due to the low boiling point solvent are not generated when the molded body is processed into a near-infrared absorbing polyester resin molded body, and the appearance and optical characteristics are kept good. Is.

更に、第一実施形態および第二実施形態に係る近赤外線吸収ポリエステル樹脂組成物に、一般的な添加剤を配合することも可能である。例えば、必要に応じて任意の色調を与えるため、アゾ系染料、シアニン系染料、キノリン系染料、ペリレン系染料、カーボンブラック等、熱可塑性樹脂の着色に一般的に利用されている染料、顔料の有効発現量を上記樹脂組成物に配合してもよい。また、ヒンダードフェノール系、りん系等の安定剤、離型剤、ヒドロキシベンゾフェノン系、サリチル酸系、HALS系、トリアゾール系、トリアジン系等の紫外線吸収剤、カップリング剤、界面活性剤、および、帯電防止剤等についてその有効発現量を上記樹脂組成物に配合してもよい。 Further, it is also possible to add a general additive to the near-infrared absorbing polyester resin composition according to the first embodiment and the second embodiment. For example, dyes and pigments generally used for coloring thermoplastic resins, such as azo dyes, cyanine dyes, quinoline dyes, perylene dyes, and carbon black, in order to give an arbitrary color tone as needed. The effective expression level may be blended with the above resin composition. In addition, stabilizers such as hindered phenols and phosphorus, mold release agents, hydroxybenzophenones, salicylic acid, HALS, triazoles, triazines and other UV absorbers, coupling agents, surfactants, and antistatic agents. The effective expression level of the inhibitor or the like may be added to the above resin composition.

また、第一実施形態および第二実施形態に係る近赤外線吸収ポリエステル樹脂組成物について、ベント式一軸若しくは二軸の押出機で混練し、ペレット状に加工することで、近赤外線吸収ポリエステル樹脂成形体用のマスターバッチとしてもよい。尚、上述した一般的な添加剤をマスターバッチに配合することも可能である。 Further, the near-infrared absorbing polyester resin composition according to the first embodiment and the second embodiment is kneaded with a vent type uniaxial or biaxial extruder and processed into pellets to form a near infrared absorbing polyester resin molded product. It may be a masterbatch for. It is also possible to add the above-mentioned general additives to the masterbatch.

(2)近赤外線吸収ポリエステル樹脂成形体
本発明に係る近赤外線吸収ポリエステル樹脂成形体は、該成形体を構成するポリエステル樹脂の可視光領域における光線透過率が高く透明性に優れていることから、建造物、自動車、電車、航空機等の開口部に使用される窓材(貼り付けフィルムを含む)、および、フラットパネルディスプレイの近赤外線吸収フィルター等に用いられる。
(2) Near-infrared absorbing polyester resin molded product
The near-infrared absorbing polyester resin molded body according to the present invention has high light transmittance in the visible light region of the polyester resin constituting the molded body and is excellent in transparency. It is used for window materials (including pasting films) used for openings, near-infrared absorption filters for flat panel displays, and the like.

そして、本発明に係る近赤外線吸収ポリエステル樹脂成形体は、第一実施形態および第二実施形態に係る近赤外線吸収ポリエステル樹脂組成物を、所定の形状に成形することによって得られる。また、上記近赤外線吸収ポリエステル樹脂組成物のマスターバッチを、該マスターバッチに含まれるポリエステル樹脂と同種のポリエステル樹脂または相溶性を有する異種の熱可塑性樹脂とを混合し、希釈・混練した後、所定の形状に成形することによって得られる。 The near-infrared absorbing polyester resin molded product according to the present invention is obtained by molding the near-infrared absorbing polyester resin composition according to the first embodiment and the second embodiment into a predetermined shape. Further, the masterbatch of the near-infrared absorbing polyester resin composition is mixed with a polyester resin of the same type as the polyester resin contained in the masterbatch or a different type of thermoplastic resin having compatibility, diluted and kneaded, and then predetermined. It is obtained by molding into the shape of.

近赤外線吸収ポリエステル樹脂成形体の形状は、任意の形状に成形可能であり、平面状および曲面状に成形することが可能である。また、近赤外線吸収ポリエステル樹脂成形体の厚さについては、板状からフィルム状まで必要に応じて任意に調整可能である。更に、平面状に形成した樹脂シートは、後加工によって球面状等の任意の形状に成形することができる。また、上記近赤外線吸収ポリエステル樹脂成形体の成形方法としては、射出成形、押出成形、圧縮成形または回転成形等の任意の方法を例示できる。特に、射出成形により成形品を得る方法と、押出成形により成形品を得る方法が好適に採用される。 The shape of the near-infrared absorbing polyester resin molded body can be formed into any shape, and can be formed into a planar shape or a curved surface shape. Further, the thickness of the near-infrared absorbing polyester resin molded product can be arbitrarily adjusted from a plate shape to a film shape as needed. Further, the resin sheet formed in a flat shape can be formed into an arbitrary shape such as a spherical shape by post-processing. Further, as the molding method of the near-infrared absorbing polyester resin molded body, any method such as injection molding, extrusion molding, compression molding or rotary molding can be exemplified. In particular, a method of obtaining a molded product by injection molding and a method of obtaining a molded product by extrusion molding are preferably adopted.

押出成形により板状、フィルム状の成形品を得るには、Tダイ等の押出機を用いて押出した溶融樹脂組成物を冷却ロールで冷却しながら引き取る方法により製造される。また、必要に応じて延伸加工し、成形品の厚みを調製することも可能である。押出成形により得られた板状品は、アーケードやカーポート等の建造物用に好適に使用され、フィルム状の成形品は、窓ガラスの貼り付け用、フラットパネルディスプレイの近赤外線吸収フィルター用に好適に使用される。 In order to obtain a plate-shaped or film-shaped molded product by extrusion molding, the molten resin composition extruded using an extruder such as a T-die is manufactured by a method of taking it while cooling it with a cooling roll. It is also possible to adjust the thickness of the molded product by stretching it as needed. Plate-shaped products obtained by extrusion molding are suitably used for buildings such as arcades and carports, and film-shaped molded products are used for attaching windowpanes and near-infrared absorption filters for flat panel displays. It is preferably used.

そして、本発明に係る近赤外線吸収ポリエステル樹脂成形体においては、高沸点溶媒の作用により近赤外線吸収微粒子の凝集が防止されるため、ポリエステル樹脂中に近赤外線吸収微粒子が均一に分散されている。このため、可視光領域における光線透過率が高くなるように上記樹脂成形体の厚さを50μm(0.05mm)以下に設定しても、ポリエステル樹脂中に均一に分散された近赤外線吸収微粒子により近赤外線が吸収(遮蔽)され、かつ、ヘイズ値も2.0%以下に調整することが可能となる。 In the near-infrared absorbing polyester resin molded body according to the present invention, the near-infrared absorbing fine particles are uniformly dispersed in the polyester resin because the aggregation of the near-infrared absorbing fine particles is prevented by the action of the high boiling point solvent. Therefore, even if the thickness of the resin molded body is set to 50 μm (0.05 mm) or less so that the light transmittance in the visible light region is high, the near-infrared absorbing fine particles uniformly dispersed in the polyester resin Near infrared rays are absorbed (shielded), and the haze value can be adjusted to 2.0% or less.

また、近赤外線吸収ポリエステル樹脂成形体は、それ自体のみを、上述した建造物、自動車、電車、航空機等の構造材に使用することができるほか、無機ガラス、樹脂ガラス、樹脂フィルム等の他の透明成形体に任意の方法で積層し、一体化した近赤外線吸収ポリエステル樹脂積層体として構造材に使用することもできる。例えば、予めフィルム状に成形した近赤外線吸収ポリエステル樹脂成形体を、熱ラミネート法により無機ガラスに積層一体化することで、近赤外線遮蔽機能、飛散防止機能を有する近赤外線吸収ポリエステル樹脂積層体を得ることができる。また、熱ラミネート法、共押出法、プレス成形法、射出成形法等により近赤外線吸収ポリエステル樹脂成形体の成形と同時に、他の透明成形体に積層一体化することで、近赤外線吸収ポリエステル樹脂積層体を得ることも可能である。上記近赤外線吸収ポリエステル樹脂積層体は、相互の成形体の持つ利点を有効に発揮させつつ、相互の欠点を補完することで、より有用な構造材として使用することができる。 In addition, the near-infrared absorbing polyester resin molded body itself can be used for the above-mentioned structural materials such as buildings, automobiles, trains, and aircraft, as well as other inorganic glass, resin glass, resin film, and the like. It can also be laminated on a transparent molded body by any method and used as a structural material as an integrated near-infrared absorbing polyester resin laminated body. For example, by laminating and integrating a near-infrared absorbing polyester resin molded body previously molded into a film shape with inorganic glass by a thermal laminating method, a near-infrared absorbing polyester resin laminated body having a near-infrared shielding function and a scattering prevention function can be obtained. be able to. In addition, by molding a near-infrared absorbing polyester resin molded body by a thermal laminating method, coextrusion method, press molding method, injection molding method, etc., and at the same time laminating and integrating it with another transparent molded body, the near-infrared absorbing polyester resin is laminated. It is also possible to get a body. The near-infrared absorbing polyester resin laminate can be used as a more useful structural material by effectively utilizing the advantages of the mutual molded bodies and complementing the mutual shortcomings.

また、上記近赤外線吸収ポリエステル樹脂成形体は、当該成形体の表面に近赤外線吸収能を有する微粒子が含まれる塗料を塗布し、近赤外線吸収膜を形成することで近赤外線吸収能を調整することも可能である。近赤外線吸収能を有する微粒子として、六ホウ化物微粒子、アンチモンドープ酸化錫微粒子等が挙げられる。例えば、六ホウ化ランタン微粒子分散液をUV硬化樹脂と混合して得られた塗布液を、上記近赤外線吸収ポリエステル樹脂成形体に塗布し、その後硬化させて近赤外線吸収膜を形成することにより近赤外線吸収能を更に向上させることが可能となる。 Further, in the near-infrared absorbing polyester resin molded body, the near-infrared absorbing ability is adjusted by applying a paint containing fine particles having a near-infrared absorbing ability to the surface of the molded body to form a near-infrared absorbing film. Is also possible. Examples of the fine particles having a near-infrared absorbing ability include hexaboride fine particles, antimony-doped tin oxide fine particles, and the like. For example, a coating liquid obtained by mixing a hexaborated lanthanum fine particle dispersion with a UV curable resin is applied to the near-infrared absorbing polyester resin molded product and then cured to form a near-infrared absorbing film. It is possible to further improve the infrared absorption capacity.

(3)近赤外線吸収ポリエステル樹脂組成物の構成成分
(3-1)近赤外線吸収微粒子
本発明に係る近赤外線吸収ポリエステル樹脂組成物は、近赤外線吸収(遮蔽)機能を有する近赤外線吸収微粒子(複合タングステン酸化物微粒子)を含有する。
(3) Constituents of the near-infrared absorbing polyester resin composition
(3-1) Near-infrared absorbing fine particles The near-infrared absorbing polyester resin composition according to the present invention contains near-infrared absorbing fine particles (composite tungsten oxide fine particles) having a near-infrared absorbing (shielding) function.

複合タングステン酸化物微粒子は、近赤外線領域、特に波長1000nm付近の光を大きく吸収する。太陽光線は様々な波長から構成されているが、大きく紫外線、可視光線、赤外線に分類でき、中でも赤外線が約46%を占めていることが知られている。そして、上述したように複合タングステン酸化物微粒子は、近赤外線領域、特に波長1000nm付近の光を大きく吸収する。 The composite tungsten oxide fine particles largely absorb light in the near infrared region, particularly in the vicinity of a wavelength of 1000 nm. Although the sun's rays are composed of various wavelengths, they can be broadly classified into ultraviolet rays, visible rays, and infrared rays, and it is known that infrared rays occupy about 46% of them. As described above, the composite tungsten oxide fine particles largely absorb light in the near infrared region, particularly in the vicinity of a wavelength of 1000 nm.

ここで、近赤外線吸収性は、太陽光線の透過率、すなわち日射透過率で評価することができる。日射透過率が低い場合、近赤外領域の光をよく吸収していることから、近赤外線吸収性が優れていると判断できる。そして、吸収された近赤外線は熱に変換される。 Here, the near-infrared absorption can be evaluated by the transmittance of the sun's rays, that is, the solar radiation transmittance. When the solar transmittance is low, it can be judged that the near-infrared absorption is excellent because the light in the near-infrared region is well absorbed. Then, the absorbed near infrared rays are converted into heat.

[粒子径]
本発明に係る近赤外線吸収ポリエステル樹脂組成物および近赤外線吸収ポリエステル樹脂成形体のポリエステル樹脂中に存在する近赤外線吸収微粒子(複合タングステン酸化物微粒子)の平均粒子径は1nm以上800nm以下であり、好ましくは10nm以上100nm以下、より好ましくは10nm以上80nm以下、更に好ましくは10nm以上60nm以下、最も好ましくは10nm以上40nm以下である。平均粒子径が10nm以上40nm以下の範囲であれば、最も優れた赤外線吸収特性を発揮でき、同時に効率よく透明性を保持することができるからである。
[Particle size]
The average particle size of the near-infrared absorbing fine particles (composite tungsten oxide fine particles) present in the near-infrared absorbing polyester resin composition and the polyester resin of the near-infrared absorbing polyester resin molded product according to the present invention is preferably 1 nm or more and 800 nm or less. Is 10 nm or more and 100 nm or less, more preferably 10 nm or more and 80 nm or less, further preferably 10 nm or more and 60 nm or less, and most preferably 10 nm or more and 40 nm or less. This is because when the average particle size is in the range of 10 nm or more and 40 nm or less, the most excellent infrared absorption characteristics can be exhibited, and at the same time, transparency can be efficiently maintained.

ここで、平均粒子径とは、個々の近赤外線吸収微粒子がもつ粒子径の平均値であり、後述する微粒子分散液の近赤外線吸収微粒子における凝集体の径を含む「分散粒子径」とは異なるものである。 Here, the average particle size is an average value of the particle size of each near-infrared absorbing fine particle, and is different from the "dispersed particle size" including the diameter of the aggregate in the near-infrared absorbing fine particles of the fine particle dispersion liquid described later. It is a thing.

上記平均粒子径は近赤外線吸収微粒子の電子顕微鏡像から算出される。すなわち、近赤外線吸収ポリエステル樹脂組成物および近赤外線吸収ポリエステル樹脂成形体のポリエステル樹脂中に存在する近赤外線吸収微粒子(複合タングステン酸化物微粒子)の平均粒子径は、近赤外線吸収ポリエステル樹脂組成物または近赤外線吸収ポリエステル樹脂成形体を樹脂包埋した後、薄片化を行い、薄片化試料の透過型電子顕微鏡(TEM)像から、複合タングステン酸化物微粒子100個の粒子径を、画像処理装置を用いて測定し、その平均値を算出することで求めることができる。上記薄片化を行う断面加工には、ミクロトーム、クロスセクションポリッシャ、集束イオンビーム(FIB)装置等を用いることができる。尚、近赤外線吸収ポリエステル樹脂組成物および近赤外線吸収ポリエステル樹脂成形体のポリエステル樹脂中に存在する近赤外線吸収微粒子(複合タングステン酸化物微粒子)の平均粒子径とは、マトリックスである固体媒体(ポリエステル樹脂)中で分散している複合タングステン酸化物微粒子における粒子径の平均値である。 The average particle size is calculated from an electron microscope image of near-infrared absorbing fine particles. That is, the average particle size of the near-infrared absorbing fine particles (composite tungsten oxide fine particles) present in the near-infrared absorbing polyester resin composition and the polyester resin of the near-infrared absorbing polyester resin molded product is the near-infrared absorbing polyester resin composition or the near-infrared absorbing fine particles. After embedding the infrared-absorbing polyester resin molded body in resin, it is sliced, and the particle size of 100 composite tungsten oxide fine particles is obtained from a transmission electron microscope (TEM) image of the sliced sample using an image processing device. It can be obtained by measuring and calculating the average value. A microtome, a cross-section polisher, a focused ion beam (FIB) device, or the like can be used for the cross-section processing for thinning. The average particle size of the near-infrared absorbing fine particles (composite tungsten oxide fine particles) present in the near-infrared absorbing polyester resin composition and the polyester resin of the near-infrared absorbing polyester resin molded body is a solid medium (polyester resin) which is a matrix. ) Is the average value of the particle size of the composite tungsten oxide fine particles dispersed in.

一方、上記「分散粒子径」とは、後述する低沸点溶媒若しくは高沸点溶媒の微粒子分散液中に分散した近赤外線吸収微粒子(複合タングステン酸化物微粒子)の単体粒子や、当該複合タングステン酸化物微粒子が凝集した凝集粒子の粒子径を意味する概念である。当該分散粒子径は、市販されている種々の粒度分布計で測定することができる。例えば、当該複合タングステン酸化物微粒子分散液のサンプルを採取し、当該サンプルを動的光散乱法に基づく粒径測定装置(大塚電子株式会社製ELS-8000)を用いて測定することができる。 On the other hand, the above-mentioned "dispersed particle size" refers to a single particle of near-infrared absorbing fine particles (composite tungsten oxide fine particles) dispersed in a fine particle dispersion of a low boiling point solvent or a high boiling point solvent described later, or the composite tungsten oxide fine particles. Is a concept that means the particle size of aggregated particles. The dispersed particle size can be measured with various commercially available particle size distribution meters. For example, a sample of the composite tungsten oxide fine particle dispersion can be taken and measured using a particle size measuring device (ELS-8000 manufactured by Otsuka Electronics Co., Ltd.) based on a dynamic light scattering method.

そして、近赤外線吸収ポリエステル樹脂組成物および近赤外線吸収ポリエステル樹脂成形体のポリエステル樹脂中に存在する近赤外線吸収微粒子(複合タングステン酸化物微粒子)の粒子径は、その使用目的によって選宜選定することができる。例えば、本発明に係る近赤外線吸収ポリエステル樹脂形成体を、可視光領域の透明性を重視する用途に使用する場合には、近赤外線吸収微粒子による散乱の低減を重視して、当該近赤外線吸収微粒子の平均粒子径は、200nm以下、好ましくは100nm以下がよい。この理由は、粒子の平均粒子径が小さければ、幾何学散乱若しくはミー散乱による波長400nm~780nmの可視光領域の光の散乱が低減される結果、鮮明な透明性が得られる。すなわち、平均粒子径が200nm以下になると、上記幾何学散乱若しくはミー散乱が低減し、レイリー散乱領域なる。レイリー散乱領域では、散乱光は粒子径の6乗に比例しているため、平均粒子径の減少に伴い散乱が低減し透明性が向上するからである。 The particle size of the near-infrared absorbing fine particles (composite tungsten oxide fine particles) present in the near-infrared absorbing polyester resin composition and the polyester resin of the near-infrared absorbing polyester resin molded product can be selectively selected according to the purpose of use. can. For example, when the near-infrared absorbing polyester resin forming body according to the present invention is used for an application in which transparency in the visible light region is emphasized, the near-infrared absorbing fine particles are emphasized in reducing scattering by the near-infrared absorbing fine particles. The average particle size of the above is preferably 200 nm or less, preferably 100 nm or less. The reason for this is that if the average particle size of the particles is small, the scattering of light in the visible light region having a wavelength of 400 nm to 780 nm due to geometric scattering or Mie scattering is reduced, and as a result, clear transparency is obtained. That is, when the average particle size is 200 nm or less, the geometrical scattering or Mie scattering is reduced, and a Rayleigh scattering region is formed. This is because in the Rayleigh scattering region, the scattered light is proportional to the sixth power of the particle size, so that the scattering is reduced and the transparency is improved as the average particle size decreases.

更に平均粒子径が100nm以下になると、散乱光は非常に少なくなり好ましい。光の散乱を回避する観点からは、平均粒子径が小さい方が好ましく、平均粒子径が1nm以上であれば工業的な製造は容易である。 Further, when the average particle size is 100 nm or less, the scattered light becomes very small, which is preferable. From the viewpoint of avoiding light scattering, it is preferable that the average particle size is small, and if the average particle size is 1 nm or more, industrial production is easy.

以下、複合タングステン酸化物微粒子の組成と製造方法について説明する。 Hereinafter, the composition and production method of the composite tungsten oxide fine particles will be described.

[組成]
本発明に係る近赤外線吸収微粒子の組成について説明する。
[composition]
The composition of the near-infrared absorbing fine particles according to the present invention will be described.

本発明に係る近赤外線吸収微粒子は、上述したように、一般式MyWOz(但し、Mは、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In,Tl、Si、Ge、Sn、Pb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Reの内から選択される1種類以上の元素、Wはタングステン、Oは酸素、0.1≦y≦0.5、2.2≦z≦3.0)で示されかつ六方晶の結晶構造を持つ複合タングステン酸化物微粒子で構成される。 As described above, the near-infrared absorbing fine particles according to the present invention have the general formula MyWOz (where M is H, He, alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr, Mn, Fe, Ru). , Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, B, F, P, S, Se, Br , Te, Ti, Nb, V, Mo, Ta, Re, one or more elements, W is tungsten, O is oxygen, 0.1 ≦ y ≦ 0.5, 2.2 ≦ z ≦ It is composed of composite tungsten oxide fine particles shown in 3.0) and having a hexagonal crystal structure.

上記複合タングステン酸化物微粒子に含まれるM元素が、Cs、Rb、K、Tl、In、Ba、Li、Ca、Sr、Fe、Sn、Al、Cuから選択される少なくとも1種類以上を含むような近赤外線吸収微粒子が好ましい。 The M element contained in the composite tungsten oxide fine particles contains at least one selected from Cs, Rb, K, Tl, In, Ba, Li, Ca, Sr, Fe, Sn, Al, and Cu. Near infrared absorbing fine particles are preferable.

添加元素Mの添加量は、0.1≦y≦0.5が好ましく、更に好ましくはy=0.33付近である。これは六方晶の結晶構造から理論的に算出される値が0.33であり、この前後の添加量で好ましい光学特性が得られるからである。また、酸素の含有量は、2.2≦z≦3.0が好ましい。これは、MyWOzで表記される複合タングステン酸化物材料において、zの値が2.2以上であれば、当該複合タングステン酸化物微粒子中に目的外であるWO2の結晶相が現れるのを回避できると共に、材料の化学的安定性を得ることができるのに加え、z≦3.0においても、上記元素Mの添加による自由電子の供給があるためである。もっとも、光学特性の観点からより好ましくは、2.2≦z≦2.99、更に好ましくは、2.45≦z≦2.99である。 The amount of the added element M added is preferably 0.1 ≦ y ≦ 0.5, more preferably around y = 0.33. This is because the value theoretically calculated from the hexagonal crystal structure is 0.33, and preferable optical characteristics can be obtained with the addition amount before and after this value. The oxygen content is preferably 2.2 ≦ z ≦ 3.0. This is because, in the composite tungsten oxide material represented by My WOz, if the value of z is 2.2 or more, it is possible to prevent the unintended crystal phase of WO 2 from appearing in the composite tungsten oxide fine particles. At the same time, in addition to being able to obtain the chemical stability of the material, even at z ≦ 3.0, there is a supply of free electrons due to the addition of the element M. However, from the viewpoint of optical characteristics, 2.2 ≦ z ≦ 2.99, and even more preferably 2.45 ≦ z ≦ 2.99.

当該複合タングステン酸化物材料の典型的な例としては、Cs0.33WO3、Rb0.33WO3、K0.33WO3Ba 0.33 WO 3 を挙げることができる。 Typical examples of the composite tungsten oxide material include Cs 0.33 WO 3 , Rb 0.33 WO 3 , K 0.33 WO 3 , and Ba 0.33 WO 3 .

[製造方法]
上記複合タングステン酸化物微粒子は、タングステン化合物を出発原料とし、タングステン化合物に元素Mを添加して得られる混合粉体を、不活性ガス雰囲気または還元性ガス雰囲気中で熱処理して得ることができる。
[Production method]
The composite tungsten oxide fine particles can be obtained by heat-treating a mixed powder obtained by adding an element M to a tungsten compound using a tungsten compound as a starting material in an inert gas atmosphere or a reducing gas atmosphere.

タングステン化合物は、三酸化タングステン粉末、二酸化タングステン粉末、または酸化タングステンの水和物、または、六塩化タングステン粉末、またはタングステン酸アンモニウム粉末、または、六塩化タングステンをアルコール中に溶解させた後乾燥して得られるタングステン酸化物の水和物粉末、または六塩化タングステンをアルコール中に溶解させた後水を添加して沈殿させこれを乾燥して得られるタングステン化合物粉末、金属タングステン粉末、から選ばれたいずれか1種類以上であることが好ましい。 The tungsten compound is prepared by dissolving tungsten trioxide powder, tungsten dioxide powder, or hydrate of tungsten oxide, or tungsten hexachloride powder, or ammonium ammonium tungsten powder, or tungsten hexachloride in alcohol and then drying. Either the hydrate powder of the obtained tungsten oxide, or the tungsten compound powder or the metallic tungsten powder obtained by dissolving tungsten hexachloride in alcohol, adding water to precipitate, and drying the mixture. It is preferable that there is at least one type.

また、元素Mの化合物としては、元素Mの酸化物、水酸化物、硝酸塩、硫酸塩、シュウ酸塩、塩化物塩、炭酸塩から選ばれる1種以上を用いることが好ましい。 Further, as the compound of the element M, it is preferable to use one or more selected from the oxide, hydroxide, nitrate, sulfate, oxalate, chloride salt and carbonate of the element M.

上述したタングステン化合物と上述した元素Mの化合物は、水や有機溶剤等の溶媒に溶解するものが好ましく、溶液の形で混合することにより、各成分が均一な混合溶液が得られる。そして、得られた混合溶液を乾燥することにより、タングステン化合物と元素Mの化合物との混合粉体が得られる。得られた混合粉体を不活性ガス雰囲気または還元性ガス雰囲気中で熱処理して、複合タングステン酸化物微粒子を含有する近赤外線吸収微粒子を得ることができる。 The above-mentioned tungsten compound and the above-mentioned element M compound are preferably dissolved in a solvent such as water or an organic solvent, and by mixing in the form of a solution, a mixed solution in which each component is uniform can be obtained. Then, by drying the obtained mixed solution, a mixed powder of the tungsten compound and the compound of the element M can be obtained. The obtained mixed powder can be heat-treated in an inert gas atmosphere or a reducing gas atmosphere to obtain near-infrared absorbing fine particles containing the composite tungsten oxide fine particles.

次に、不活性ガス雰囲気または還元性ガス雰囲気中における熱処理について説明する。まず、上述の方法で得られた混合粉体を還元性ガス雰囲気中にて100℃以上650℃以下で熱処理し、次いで不活性ガス雰囲気中にて650℃以上1200℃以下の温度で熱処理することがよい。このときの還元性ガスは、特に限定されないが、H2が好ましい。そして、還元性ガスとしてH2を用いる場合は、還元性雰囲気の組成として、例えば、Ar、N2等の不活性ガスにH2を体積比で0.1%以上を混合することが好ましく、更に好ましくは0.2%以上混合したものである。H2が体積比で0.1%以上であれば効率よく還元を進めることができる。 Next, the heat treatment in the inert gas atmosphere or the reducing gas atmosphere will be described. First, the mixed powder obtained by the above method is heat-treated at 100 ° C. or higher and 650 ° C. or lower in a reducing gas atmosphere, and then heat-treated at a temperature of 650 ° C. or higher and 1200 ° C. or lower in an inert gas atmosphere. Is good. The reducing gas at this time is not particularly limited, but H 2 is preferable. When H 2 is used as the reducing gas, it is preferable to mix H 2 with an inert gas such as Ar or N 2 in a volume ratio of 0.1% or more as the composition of the reducing atmosphere. More preferably, it is a mixture of 0.2% or more. If H 2 is 0.1% or more by volume, the reduction can be efficiently promoted.

(3-2)ポリエステル樹脂
本発明の近赤外線吸収ポリエステル樹脂成形体に使用されるポリエステル樹脂としては、可視光領域の光線透過率が高い透明なポリエステル樹脂であれば特に制限はない。例えば、0.05mm厚の板状成形体としたときのJISR3106(1998)記載の可視光透過率が70%以上で、JISK7136(2000)記載のヘイズが3%以下のものが好ましいものとして挙げられる。具体的には、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレートを挙げることができる。
(3-2) Polyester Resin The polyester resin used in the near-infrared absorbing polyester resin molded product of the present invention is not particularly limited as long as it is a transparent polyester resin having high light transmittance in the visible light region. For example, it is preferable that the visible light transmittance described in JIS R3106 (1998) is 70% or more and the haze described in JIS K7136 (2000) is 3% or less when a plate-shaped molded product having a thickness of 0.05 mm is formed. .. Specific examples thereof include polyethylene terephthalate, polyethylene naphthalate, and polybutylene terephthalate.

上記近赤外線吸収ポリエステル樹脂成形体を各種建築物や車両の窓材等に適用することを目的とした場合、透明性、耐衝撃性、耐候性等を考慮すると、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレートが好ましい。また、フラットパネルディスプレイの近赤外線吸収フィルター等にすることを目的とした場合、汎用性等を考慮すると、ポリエチレンナフタレートがより好ましい。 When the above near-infrared absorbing polyester resin molded body is intended to be applied to window materials of various buildings and vehicles, polyethylene terephthalate, polyethylene naphthalate, poly, etc. are taken into consideration in terms of transparency, impact resistance, weather resistance, etc. Butylene terephthalate is preferred. Further, when the purpose is to make a near-infrared absorbing filter or the like for a flat panel display, polyethylene naphthalate is more preferable in consideration of versatility and the like.

(3-3)分散剤
本発明に係る分散剤は、上述した近赤外線吸収微粒子(複合タングステン酸化物微粒子)の表面に吸着し、当該複合タングステン酸化物微粒子の凝集を防ぎ、後述する低沸点溶媒若しくは高沸点溶媒の微粒子分散液中で、および、近赤外線吸収ポリエステル樹脂組成物および近赤外線吸収ポリエステル樹脂成形体のポリエステル樹脂中で、これ等の微粒子を均一に分散させる効果を発揮するものである。各種の高分子分散剤、界面活性剤、シランカップリング剤等が適用可能である。また、後述する高沸点溶媒の種類によっては、高沸点溶媒それ自体が複合タングステン酸化物微粒子に対して分散剤として機能する。本発明で用いる分散剤は、ポリエステル樹脂として、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート等、溶融混練温度が高い樹脂を使用するため、熱分解温度が200℃以上である高耐熱性有することが好ましい。熱分解温度は、例えばTG-DTA等の熱分析を行うことで測定できる。このときの昇温速度は5℃/min~20℃/minが適当であるが、昇温速度が穏やかであるほど、測定精度が向上する。また、測定雰囲気は窒素等の不活性ガスが好ましい。
(3-3) Dispersant The dispersant according to the present invention adsorbs on the surface of the above-mentioned near-infrared absorbing fine particles (composite tungsten oxide fine particles) to prevent aggregation of the composite tungsten oxide fine particles, and is a low boiling point solvent described later. Alternatively, it exerts the effect of uniformly dispersing these fine particles in a fine particle dispersion liquid of a high boiling point solvent and in the polyester resin of the near-infrared absorbing polyester resin composition and the near-infrared absorbing polyester resin molded product. .. Various polymer dispersants, surfactants, silane coupling agents and the like can be applied. Further, depending on the type of the high boiling point solvent described later, the high boiling point solvent itself functions as a dispersant for the composite tungsten oxide fine particles. Since the dispersant used in the present invention uses a resin having a high melt-kneading temperature such as polyethylene terephthalate, polyethylene naphthalate, and polybutylene terephthalate as the polyester resin, it has high heat resistance with a thermal decomposition temperature of 200 ° C. or higher. preferable. The thermal decomposition temperature can be measured by performing thermal analysis such as TG-DTA. The temperature rise rate at this time is appropriately 5 ° C./min to 20 ° C./min, but the gentler the temperature rise rate, the better the measurement accuracy. The measurement atmosphere is preferably an inert gas such as nitrogen.

尚、第二実施形態に係る近赤外線吸収ポリエステル樹脂組成物において、近赤外線吸収微粒子の質量をA、ポリエステル樹脂の質量をB、高沸点溶媒の質量をC、および、分散剤の質量をDとした場合、0.1≦[D/A]≦10の範囲であることが好ましい。質量比が0.1以上あれば、近赤外線吸収微粒子を十分に分散することができるので、微粒子同士の凝集が発生せず、充分な光学特性が得られるからである。また、上記質量比が10以下であれば、近赤外線吸収ポリエステル樹脂組成物を用いて製造される近赤外線吸収ポリエステル樹脂成形体自体の機械特性(引張強度、曲げ強度、表面硬度)が大きく損なわれることがない。 In the near-infrared absorbing polyester resin composition according to the second embodiment, the mass of the near-infrared absorbing fine particles is A, the mass of the polyester resin is B, the mass of the high boiling point solvent is C, and the mass of the dispersant is D. If so, it is preferable that the range is 0.1 ≦ [D / A] ≦ 10. This is because when the mass ratio is 0.1 or more, the near-infrared absorbing fine particles can be sufficiently dispersed, so that the fine particles do not aggregate with each other and sufficient optical characteristics can be obtained. Further, when the mass ratio is 10 or less, the mechanical properties (tensile strength, bending strength, surface hardness) of the near-infrared absorbing polyester resin molded body manufactured by using the near-infrared absorbing polyester resin composition are significantly impaired. Never.

本発明に係る分散剤としては、特に限定されるものではなく、例えば高分子分散剤であることが好ましく、ポリエステル系、ポリエーテル系、ポリアクリル系、ポリウレタン系、ポリアミン系、ポリスチレン系、脂肪族系から選択されるいずれかの主鎖、あるいはポリエステル系、ポリエーテル系、ポリアクリル系、ポリウレタン系、ポリアミン系、ポリスチレン系、脂肪族系から選択される2種類以上の単位構造が共重合した主鎖を有する分散剤、等であることがより好ましい。 The dispersant according to the present invention is not particularly limited, and is preferably a polymer dispersant, for example, which is polyester-based, polyether-based, polyacrylic-based, polyurethane-based, polyamine-based, polystyrene-based, or aliphatic. A main chain selected from any of the systems, or a main chain in which two or more unit structures selected from polyester, polyether, polyacrylic, polyurethane, polyamine, polystyrene, and aliphatic are copolymerized. More preferably, it is a dispersant having a chain, or the like.

また、分散剤は、アミンを含有する基、水酸基、カルボキシル基、カルボキシル基を含有する基、スルホ基、りん酸基、または、エポキシ基から選択される1種類以上を官能基として有することが好ましい。特にアミンを含有する基を官能基として有するポリアクリル系が好ましい。上述のいずれかの官能基を有する分散剤は、複合タングステン酸化物微粒子の表面に吸着し、複合タングステン酸化物微粒子の凝集をより確実に防ぐことができる。従って、複合タングステン酸化物微粒子をより均一に分散させることができるため、好適に用いることができる。 Further, the dispersant preferably has at least one selected from an amine-containing group, a hydroxyl group, a carboxyl group, a carboxyl group-containing group, a sulfo group, a phosphoric acid group, and an epoxy group as a functional group. .. In particular, a polyacrylic acid system having an amine-containing group as a functional group is preferable. The dispersant having any of the above-mentioned functional groups can be adsorbed on the surface of the composite tungsten oxide fine particles, and the aggregation of the composite tungsten oxide fine particles can be prevented more reliably. Therefore, since the composite tungsten oxide fine particles can be dispersed more uniformly, it can be preferably used.

このような分散剤には、日本ルーブリゾール株式会社製ソルスパース(登録商標)(以下同じ)9000、12000、17000、20000、21000、24000、26000、27000、28000、32000、35100、54000、ソルシックス250、エフカアディティブズ社製EFKA(登録商標)(以下同じ)4008、EFKA4009、EFKA4010、EFKA4015、EFKA4046、EFKA4047、EFKA4060、EFKA4080、EFKA7462、EFKA4020、EFKA4050、EFKA4055、EFKA4585、EFKA4400、EFKA4401、EFKA4402、EFKA4403、EFKA4300、EFKA4320、EFKA4330、EFKA4340、EFKA6220、EFKA6225、EFKA6700、EFKA6780、EFKA6782、EFKA8503、味の素ファインテクノ株式会社製アジスパー(登録商標)(以下同じ)PB821、アジスパーPB822、アジスパーPB824、アジスパーPB881、フェイメックスL-12、ビックケミー・ジャパン株式会社製DisperBYK(登録商標)(以下同じ)101、DisperBYK106、DisperBYK108、DisperBYK116、DisperBYK130、DisperBYK140、DisperBYK142、DisperBYK145、DisperBYK161、DisperBYK162、DisperBYK163、DisperBYK164、DisperBYK166、DisperBYK167、DisperBYK168DisperBYK171、DisperBYK180、DisperBYK182、DisperBYK2000、DisperBYK2001、DisperBYK2009、DisperBYK2013、DisperBYK2022、DisperBYK2025、DisperBYK2050、DisperBYK2155、DisperBYK2164、BYK350、BYK354、BYK355、BYK356、BYK358、BYK361、BYK381、BYK392、BYK394、BYK300、BYK3441、楠本化成株式会社製ディスパロン(登録商標)(以下同じ)1831、ディスパロン1850、ディスパロン1860、ディスパロンDA-400N、ディスパロンDA-703-50、ディスパロンDA-725、ディスパロンDA-705、ディスパロンDA-7301、ディスパロンDN-900、ディスパロンNS-5210、ディスパロンNVI-8514L、大塚化学株式会社製TERPLUS(登録商標) MD1000、D 1180、D 1130が挙げられる。 Such dispersants include Solsparse (registered trademark) manufactured by Japan Lubrizol Co., Ltd. (same below) 9000, 12000, 17000, 20000, 21000, 24000, 26000, 27000, 28000, 32000, 35100, 54000, Solsix 250. , EFKA (registered trademark) (registered trademark) 4008, EFKA4009, EFKA4010, EFKA4015, EFKA4046, EFKA4047, EFKA4060, EFKA4080, EFKA7462, EFKA4020, EFKA4020, EFKA4050 EFKA4300, EFKA4320, EFKA4330, EFKA4340, EFKA6220, EFKA6225, EFKA6700, EFKA6780, EFKA6782, EFKA8503, Ajinomoto Fine Techno Co., Ltd. 12、ビックケミー・ジャパン株式会社製DisperBYK(登録商標)(以下同じ)101、DisperBYK106、DisperBYK108、DisperBYK116、DisperBYK130、DisperBYK140、DisperBYK142、DisperBYK145、DisperBYK161、DisperBYK162、DisperBYK163、DisperBYK164、DisperBYK166、DisperBYK167、DisperBYK168DisperBYK171、DisperBYK180、DisperBYK182 、DisperBYK2000、DisperBYK2001、DisperBYK2009、DisperBYK2013、DisperBYK2022、DisperBYK2025、DisperBYK2050、DisperBYK2155、DisperBYK2164、BYK350、BYK354、BYK355、BYK356、BYK358、BYK361、BYK381、BYK392、BYK394、BYK300、BYK3441、楠本化成株式会社製ディスパロン(登録商標) (Same below) 1831, Disparon 1850, Disparon 1860, Disparon D A-400N, Disparon DA-703-50, Disparon DA-725, Disparon DA-705, Disparon DA-7301, Disparon DN-900, Disparon NS-5210, Disparon NVI-8514L, TERPLUS (registered trademark) manufactured by Otsuka Chemical Co., Ltd. ) MD1000, D 1180, D 1130.

上述したいずれかの官能基を有する分散剤として、例えば、アミンを含有する基を官能基として有するアクリル系分散剤、および、カルボキシル基を官能基として有するアクリル-スチレン共重合体系分散剤等が挙げられる。アミンを含有する基を官能基として有する分散剤は、分子量Mwが2000以上200000以下であることが好ましく、アミン価が5mgKOH/g以上100mgKOH/g以下であることが好ましい。一方、カルボキシル基を官能基として有する分散剤は、分子量Mwが2000以上200000以下であることが好ましく、酸価が1mgKOH/g以上100mgKOH/g以下であることが好ましい。 Examples of the dispersant having any of the above-mentioned functional groups include an acrylic dispersant having an amine-containing group as a functional group, an acrylic-styrene copolymer system dispersant having a carboxyl group as a functional group, and the like. Be done. The dispersant having an amine-containing group as a functional group preferably has a molecular weight Mw of 2000 or more and 200,000 or less, and an amine value of 5 mgKOH / g or more and 100 mgKOH / g or less. On the other hand, the dispersant having a carboxyl group as a functional group preferably has a molecular weight Mw of 2000 or more and 200,000 or less, and an acid value of 1 mgKOH / g or more and 100 mgKOH / g or less.

(3-4)高沸点溶媒
本発明の高沸点溶媒は、沸点が195℃以上でかつ分子両末端に水酸基を有する室温で液状のジオール化合物で構成されている。
(3-4) High Boiling Solvent The high boiling point solvent of the present invention is composed of a diol compound having a boiling point of 195 ° C. or higher and having hydroxyl groups at both ends of the molecule and liquid at room temperature.

そして、ポリエステル樹脂と溶融混練する高沸点溶媒の微粒子分散液は、分子両末端に水酸基を有する高沸点溶媒の作用により近赤外線吸収微粒子の凝集が防止され、分散液中において近赤外線吸収微粒子が均一に分散されているため、高沸点溶媒の微粒子分散液とポリエステル樹脂を溶融混練して製造される近赤外線吸収ポリエステル樹脂組成物中においても近赤外線吸収微粒子の凝集は防止され、ポリエステル樹脂中において複合タングステン酸化物微粒子で構成される上記近赤外線吸収微粒子は均一に分散されている。 In the fine particle dispersion of the high boiling point solvent that is melt-kneaded with the polyester resin, the near-infrared absorbing fine particles are prevented from agglomerating by the action of the high boiling point solvent having hydroxyl groups at both ends of the molecule, and the near-infrared absorbing fine particles are uniform in the dispersion. Even in the near-infrared absorbing polyester resin composition produced by melt-kneading the fine particle dispersion liquid of the high boiling point solvent and the polyester resin, the agglomeration of the near-infrared absorbing fine particles is prevented and the composite is formed in the polyester resin. The near-infrared absorbing fine particles composed of tungsten oxide fine particles are uniformly dispersed.

また、ポリエステル樹脂と溶融混練する微粒子分散液の上記溶媒は高沸点溶媒で構成され、溶融混練時における高沸点溶媒の気化が起こり難いため、混練ムラや近赤外線吸収ポリエステル樹脂組成物のヘイズ悪化を防止することができる。 Further, the solvent of the fine particle dispersion liquid to be melt-kneaded with the polyester resin is composed of a high boiling point solvent, and vaporization of the high boiling point solvent during melt-kneading is unlikely to occur. Can be prevented.

尚、分子両末端に水酸基を有する高沸点溶媒により近赤外線吸収微粒子の凝集が防止される理由については、複合タングステン酸化物微粒子(近赤外線吸収微粒子)の表面に水酸基を介して「ジオール化合物」が吸着され、分散剤と類似した作用によるものと推察している。また、「室温で液状」の高沸点溶媒が適用される理由は、近赤外線吸収ポリエステル樹脂組成物の調製時における作業性を考慮したものである。 The reason why the high boiling point solvent having hydroxyl groups at both ends of the molecule prevents the aggregation of the near-infrared absorbing fine particles is that the "diol compound" is present on the surface of the composite tungsten oxide fine particles (near-infrared absorbing fine particles) via the hydroxyl group. It is presumed that it is adsorbed and has an action similar to that of the dispersant. Further, the reason why the "liquid at room temperature" high boiling point solvent is applied is that the workability at the time of preparing the near-infrared absorbing polyester resin composition is taken into consideration.

そして、沸点が195℃以上でかつ分子両末端に水酸基を有する室温で液状の上記「ジオール化合物」は、ポリエステルポリオール類から選択される。 The "diol compound" having a boiling point of 195 ° C. or higher and having hydroxyl groups at both ends of the molecule and liquid at room temperature is selected from polyester polyols.

以下、具体例を説明する。 A specific example will be described below.

(3-4-1)ポリエステルポリオール類
ポリエステルポリオール類は、ポリカルボン酸と多価アルコール(後述する脂肪族ジオール)を脱水縮合して製造される化合物であり、下記化学構造で示されるポリ[(3-メチル-1,5-ペンタンジオール)-alt-(アジピン酸)]が例示される。

Figure 0007070099000001
(3-4-1) Polyester polyols Polyester polyols are compounds produced by dehydration condensation of polycarboxylic acid and polyhydric alcohols (aliphatic diols described later), and are poly [polyesters having the following chemical structure. (3-Methyl-1,5-pentanediol) -alt- (azipic acid)] is exemplified.
Figure 0007070099000001

そして、上記ポリカルボン酸としては、例えば、シュウ酸、マロン酸(C344)、コハク酸(C464)、イタコン酸(メチレンコハク酸:C564)、グルタル酸(C584)、アジピン酸(C6104)、ピメリン酸(C7124)、スベリン酸(C8144)、アゼライン酸(C9164)、セバシン酸(C10184)、ドデカン二酸(C12224)、マレイン酸(C444、鎖状不飽和ジカルボン酸)、フマル酸(C444、鎖状不飽和ジカルボン酸)、シトラコン酸(C564、鎖状不飽和ジカルボン酸、メサコン酸のシス体)、イソフタル酸(C864)、テレフタル酸、無水コハク酸、無水マレイン酸等の脂肪族ジカルボン酸およびその無水物等が挙げられる。 Examples of the polycarboxylic acid include oxalic acid, malonic acid (C 3 H 4 O 4 ), succinic acid (C 4 H 6 O 4 ), and itaconic acid (methylene succinic acid: C 5 H 6 O 4 ). , Glutalic acid (C 5 H 8 O 4 ), Adipic acid (C 6 H 10 O 4 ), Pimelic acid (C 7 H 12 O 4 ), Sveric acid (C 8 H 14 O 4 ), Azelaic acid (C 9 ) H 16 O 4 ), sebacic acid (C 10 H 18 O 4 ), dodecanedic acid (C 12 H 22 O 4 ), maleic acid (C 4 H 4 O 4 , chain unsaturated dicarboxylic acid), fumaric acid ( C 4 H 4 O 4 , chain unsaturated dicarboxylic acid), citraconic acid (C 5 H 6 O 4 , chain unsaturated dicarboxylic acid, cis form of mesaconic acid), isophthalic acid (C 8 H 6 O 4 ), Examples thereof include aliphatic dicarboxylic acids such as terephthalic acid, succinic anhydride and maleic anhydride, and their anhydrides.

上記ポリエステルポリオール類には、ポリ[(3-メチル-1,5-ペンタンジオール)-alt-(アジピン酸)]として、株式会社クラレ社製のクラレポリオールP510(Mn=500)、クラレポリオールP1010(Mn=1,000)、クラレポリオールP2010(Mn=2,000)、クラレポリオールP3010(Mn=3,000)、クラレポリオールP4010(Mn=4,000)、クラレポリオールP5010(Mn=5,000)、クラレポリオールP6010(Mn=6,000)等が挙げられ、ポリ[(3-メチル-1,5-ペンタンジオール)-alt-(セバシン酸)]として、クラレポリオールP2050(Mn=2,000)、クラレポリオールP3050(Mn=3,000)、クラレポリオールP4050(Mn=4,000)等が挙げられ、ポリ[(1,9-ノナンジオール)-alt-(アジピン酸)]として、クラレポリオールN2010(Mn=2,000)、クラレポリオールN4010(Mn=4,000)、クラレポリオールPNOA1010(Mn=1,000)、クラレポリオールPNOA2014(Mn=2,000)等が挙げられ、ポリ[(3-メチル-1,5-ペンタンジオール)-alt-(アジピン酸;イソフタル酸)]として、クラレポリオールP1012(Mn=1,000)、クラレポリオールP2012(Mn=2,000)等が挙げられ、ポリ[(3-メチル-1,5-ペンタンジオール)-alt-(アジピン酸;テレフタル酸)]として、クラレポリオールP1013(Mn=1,000)、クラレポリオールP2013(Mn=2,000)等が挙げられ、ポリ[(3-メチル-1,5-ペンタンジオール)-alt-(テレフタル酸)]として、クラレポリオールP1020(Mn=1,000)、クラレポリオールP2020(Mn=2,000)等が挙げられ、ポリ[(3-メチル-1,5-ペンタンジオール)-alt-(イソフタル酸)]として、クラレポリオールP530(Mn=500)、クラレポリオールP1030(Mn=1,000)、クラレポリオールP2030(Mn=2,000)等が挙げられる。 The polyester polyols include poly [(3-methyl-1,5-pentanediol) -alt- (adipic acid)] as clare polyol P510 (Mn = 500) and clare polyol P1010 manufactured by Kuraray Co., Ltd. Mn = 1,000), Clare polyol P2010 (Mn = 2,000), Clare polyol P3010 (Mn = 3,000), Clare polyol P4010 (Mn = 4,000), Clare polyol P5010 (Mn = 5,000) , Clare polyol P6010 (Mn = 6,000) and the like, and as poly [(3-methyl-1,5-pentanediol) -alt- (sevacinic acid)], Clare polyol P2050 (Mn = 2,000). , Clare polyol P3050 (Mn = 3,000), Clare polyol P4050 (Mn = 4,000) and the like, and as poly [(1,9-nonanediol) -alt- (adipic acid)], Clare polyol N2010. (Mn = 2,000), clare polyol N4010 (Mn = 4,000), clare polyol PNOA1010 (Mn = 1,000), clare polyol PNOA2014 (Mn = 2,000) and the like, and poly [(3--2,000). Methyl-1,5-pentanediol) -alt- (adipic acid; isophthalic acid)] includes clare polyol P1012 (Mn = 1,000), clare polyol P2012 (Mn = 2,000), and the like, and poly [ (3-Methyl-1,5-pentanediol) -alt- (adipic acid; terephthalic acid)] includes clarepolyol P1013 (Mn = 1,000), clarepolyol P2013 (Mn = 2,000) and the like. , Poly [(3-methyl-1,5-pentanediol) -alt- (terephthalic acid)] include clare polyol P1020 (Mn = 1,000), clare polyol P2020 (Mn = 2,000) and the like. , Poly [(3-methyl-1,5-pentanediol) -alt- (isophthalic acid)], clarepolyol P530 (Mn = 500), clarepolyol P1030 (Mn = 1,000), clarepolyol P2030 (Mn). = 2,000) and the like.

また、伊藤製油社製のURIC H-62(Mn=430)、URIC Y-202(Mn=980)、URIC Y-332(Mn=910)、URIC AC-005(Mn=550)、URIC AC-006(Mn=650)等、また、ダイセル社製のPLACCEL 205(Mn=530)、協和発酵ケミカル社製のキョーワポール2000BA(Mn=2,000)、キョーワポール5000PA(Mn=5,000)等、DIC社製のポリライト(登録商標)OD-X-221(Mn=2,000)、ポリライトOD-X-2586(Mn=850)、ポリライトOD-X-2420(Mn=2,000)、ポリライトOD-X-2722(Mn=2,000)等、日立化成社製のファントール(登録商標) SV-298(Mn=450)、ファントール SV-208(Mn=480)、ファントール TA22-735A(Mn=1,400)、ファントール TA22-735C(Mn=1,450)等、アデカ社製のアデカニューエース(登録商標)F18-62(Mn=1,000)、アデカニューエースF7-67(Mn=2,000)、アデカニューエース YT-101(Mn=680)、アデカニューエースY9-10(Mn=1,000)等、川崎化成工業社製のMAXMOL(登録商標) RDK-133(Mn=360)、MAXMOL RDK-142(Mn=280)等、CRODA社製のプリプラスト(登録商標)1900(Mn=2,000)、プリプラスト1838(Mn=2,000)、プリプラスト3186(Mn=1,700)、プリプラスト3199(Mn=2,000)等が挙げられる。 In addition, URIC H-62 (Mn = 430), URIC Y-202 (Mn = 980), URIC Y-332 (Mn = 910), URIC AC-005 (Mn = 550), URIC AC- manufactured by Ito Oil Co., Ltd. 006 (Mn = 650), etc., PLACCEL 205 (Mn = 530) manufactured by Daisel Co., Ltd., Kyowapole 2000BA (Mn = 2,000) manufactured by Kyowa Hakko Chemical Co., Ltd., Kyowapole 5000PA (Mn = 5,000), etc. , DIC Polylite (registered trademark) OD-X-221 (Mn = 2,000), Polylite OD-X-2586 (Mn = 850), Polylite OD-X-2420 (Mn = 2,000), Polylite OD-X-2722 (Mn = 2,000), etc., Fantall (registered trademark) SV-298 (Mn = 450), Fantall SV-208 (Mn = 480), Fantall TA22-735A manufactured by Hitachi Chemical Co., Ltd. (Mn = 1,400), Fantall TA22-735C (Mn = 1,450), etc. Adeca New Ace (registered trademark) F18-62 (Mn = 1,000), Adeca New Ace F7-67 (Mn = 2,000), Adecane Ace YT-101 (Mn = 680), Adecane Ace Y9-10 (Mn = 1,000), etc., MAXMOL (registered trademark) RDK-133 manufactured by Kawasaki Kasei Kogyo Co., Ltd. Mn = 360), MAXMOL RDK-142 (Mn = 280), etc. CRODA's Preplast (registered trademark) 1900 (Mn = 2,000), Preplast 1838 (Mn = 2,000), Preplast 3186 (Mn = 1) , 700), preplast 3199 (Mn = 2,000) and the like.

更に、豊国製油社製のHS2H-201AP(Mn=2,000)、HS2H-351A(Mn=3,500)、HS2H-451A(Mn=4,500)、HS2H-851A(Mn=8,500)、HS2H-179A(Mn=1,750)、HS2H-359T・CR(Mn=3,500)、HS2H-458T(Mn=4,500)、HS2F-131A(Mn=1,000)、HS2F-231AS(Mn=2,000)、HS2F-431A(Mn=3,500)、HS2F-136P(Mn=1,000)、HS2F-306P(Mn=3,000)、HS2E-581A(Mn=5,500)、HS2D-121A(Mn=1,000)、HS2F-237P(Mn=2,000)、HSポリオール1000(Mn=3,500)、HSポリオール2000(Mn=3,500)、HS2N-221A(Mn=2,000)、HS2N-521A(Mn=5,000)、HS2N-220S(Mn=2,000)、HS2N-226P(Mn=2,000)、HS2B-222A(Mn=2,000)、HOKOKUOL HT-110(Mn=1,000)、HOKOKUOL HT-210(Mn=2,000)、HOKOKUOL HT-12(Mn=2,000)、HOKOKUOL HT-250(Mn=2,500)、HOKOKUOL HT-310(Mn=3,000)、HOKOKUOL HT-40M(Mn=4,000)等が挙げられ、および、日立化成社製のテスラック(登録商標)2460(Mn=2,000)、テスラック2450(Mn=2,000)、テスラック2462(Mn=2,000)、テスラック2464(Mn=1,000)、テスラック2469(Mn=3,000)、テスラック2471(Mn=2,000)、テスラック2477(Mn=1,750)、テスラックTA22-558(Mn=2,000)、テスラックTA22-559(Mn=2,500)等が挙げられ、また、テスラック2455(Mn=2,000)、テスラック2459(Mn=2,000)、テスラック2461(Mn=2,000)等が挙げられる。 Further, HS2H-201AP (Mn = 2,000), HS2H-351A (Mn = 3,500), HS2H-451A (Mn = 4,500), HS2H-851A (Mn = 8,500) manufactured by Toyokuni Seiyu Co., Ltd. , HS2H-179A (Mn = 1,750), HS2H-359T · CR (Mn = 3,500), HS2H-458T (Mn = 4,500), HS2F-131A (Mn = 1,000), HS2F-231AS (Mn = 2,000), HS2F-431A (Mn = 3,500), HS2F-136P (Mn = 1,000), HS2F-306P (Mn = 3,000), HS2E-581A (Mn = 5,500) ), HS2D-121A (Mn = 1,000), HS2F-237P (Mn = 2,000), HS polyol 1000 (Mn = 3,500), HS polyol 2000 (Mn = 3,500), HS2N-221A ( Mn = 2,000), HS2N-521A (Mn = 5,000), HS2N-220S (Mn = 2,000), HS2N-226P (Mn = 2,000), HS2B-222A (Mn = 2,000) , HOKOKUOL HT-110 (Mn = 1,000), HOKOKUOL HT-210 (Mn = 2,000), HOKOKUOL HT-12 (Mn = 2,000), HOKOKUOL HT-250 (Mn = 2,500), HOKOKUOL HT-310 (Mn = 3,000), HOKOKUOL HT-40M (Mn = 4,000), etc., and Hitachi Chemical Co., Ltd. Tesslac® 2460 (Mn = 2,000), Tesslac 2450. (Mn = 2,000), Tesslac 2462 (Mn = 2,000), Tesslac 2464 (Mn = 1,000), Tesslac 2469 (Mn = 3,000), Tesslac 2471 (Mn = 2,000), Tesslac 2477 (Mn = 1,750), Tesslac TA22-558 (Mn = 2,000), Tesslac TA22-559 (Mn = 2,500) and the like, and Tesslac 2455 (Mn = 2,000), Tesslac 2459. (Mn = 2,000), Tesslac 2461 (Mn = 2,000) and the like.

尚、ポリエステルポリオール類の分子量(Mn)は3,000以下が好ましい。ポリエステルポリオール類の分子量(Mn)が3,000を超えた場合、分子両末端の水酸基が相対的に少なくなるため近赤外線吸収微粒子を分散させる作用が低下するからである。 The molecular weight (Mn) of the polyester polyols is preferably 3,000 or less. This is because when the molecular weight (Mn) of the polyester polyols exceeds 3,000, the number of hydroxyl groups at both ends of the molecule is relatively small, so that the action of dispersing the near-infrared absorbing fine particles is reduced.

上記多価アルコールである脂肪族ジオール類としては、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、プロピレングリコール、ジプロピレングリコール、1,3-プロパンジオール、2-メチル-1,3-プロパンジオール、2-ブチル-2-エチル-1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、3-ブチル-3-エチル-1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、2,4-ジエチル-1,5-ペンタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール、2-エチル-1,3-ヘキサンジオール、3,3’-ジメチロールヘプタン、1,8-オクタンジオール、2-メチル-1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール(C10222)、1,12-ドデカンジオール(C12262)、1,4-テトラコサンジオール(C24502)、1,6-テトラコサンジオール(C24502)、1,4-ヘキサコサンジオール(C26542)、1,6-オクタコサンジオール(C28582)等が例示される。 Examples of the aliphatic diols that are polyhydric alcohols include ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, propylene glycol, dipropylene glycol, 1,3-propanediol, and 2-methyl-1,3-propanediol. , 2-Butyl-2-ethyl-1,3-propanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, 3-butyl-3-ethyl-1,5-pentane Diol, 3-methyl-1,5-pentanediol, 2,4-diethyl-1,5-pentanediol, neopentyl glycol, 1,6-hexanediol, 2-ethyl-1,3-hexanediol, 3, 3'-Dimethylol heptane, 1,8-octanediol, 2-methyl-1,8-octanediol, 1,9-nonanediol, 1,10-decanediol (C 10 H 22 O 2 ), 1,12 -Dodecanediol (C 12 H 26 O 2 ), 1,4-tetracosandiol (C 24 H 50 O 2 ), 1,6-tetracosandiol (C 24 H 50 O 2 ), 1,4-hexacosandi Examples thereof include all (C 26 H 54 O 2 ) and 1,6-octacosanediol (C 28 H 58 O 2 ).

尚、第二実施形態に係る近赤外線吸収ポリエステル樹脂組成物において、近赤外線吸収微粒子の質量をA、ポリエステル樹脂の質量をB、高沸点溶媒の質量をC、および、分散剤の質量をDとした場合、0.5≦[(C+D)/A]≦50の範囲であることが好ましい。質量比が0.5以上あれば、近赤外線吸収微粒子を十分に分散することができるので、微粒子同士の凝集が発生せず、充分な光学特性が得られるからである。また、上記質量比が50以下であれば、近赤外線吸収ポリエステル樹脂組成物を用いて製造される近赤外線吸収ポリエステル樹脂成形体自体の機械特性(引張強度、曲げ強度、表面硬度)が大きく損なわれることがない。 In the near-infrared absorbing polyester resin composition according to the second embodiment, the mass of the near-infrared absorbing fine particles is A, the mass of the polyester resin is B, the mass of the high boiling point solvent is C, and the mass of the dispersant is D. If so, it is preferable that the range is 0.5 ≦ [(C + D) / A] ≦ 50. This is because when the mass ratio is 0.5 or more, the near-infrared absorbing fine particles can be sufficiently dispersed, so that the fine particles do not aggregate with each other and sufficient optical characteristics can be obtained. Further, when the mass ratio is 50 or less, the mechanical properties (tensile strength, bending strength, surface hardness) of the near-infrared absorbing polyester resin molded body manufactured by using the near-infrared absorbing polyester resin composition are significantly impaired. Never.

(4)近赤外線吸収ポリエステル樹脂組成物の製造方法
上述したように第一実施形態に係る近赤外線吸収ポリエステル樹脂組成物の製造方法は、
近赤外線吸収微粒子と低沸点溶媒を混合し、湿式媒体ミルを用いて近赤外線吸収微粒子を粉砕かつ分散処理して低沸点溶媒の微粒子分散液を得る工程と、
得られた低沸点溶媒の微粒子分散液に高沸点溶媒を添加する工程と、
高沸点溶媒が添加された上記微粒子分散液から低沸点溶媒を除去して高沸点溶媒の微粒子分散液を得る工程と、
高沸点溶媒の微粒子分散液にポリエステル樹脂を配合し、溶融混練装置を用いて上記微粒子分散液とポリエステル樹脂を溶融混練する工程、
を具備することを特徴とし、
第二実施形態に係る近赤外線吸収ポリエステル樹脂組成物の製造方法は、
近赤外線吸収微粒子と低沸点溶媒および分散剤を混合し、湿式媒体ミルを用いて近赤外線吸収微粒子を粉砕かつ分散処理して低沸点溶媒の微粒子分散液を得る工程と、
得られた低沸点溶媒の微粒子分散液に高沸点溶媒を添加する工程と、
高沸点溶媒が添加された上記微粒子分散液から低沸点溶媒を除去して高沸点溶媒の微粒子分散液を得る工程と、
高沸点溶媒の微粒子分散液にポリエステル樹脂を配合し、溶融混練装置を用いて上記微粒子分散液とポリエステル樹脂を溶融混練する工程、
を具備することを特徴とする。
(4) Method for Producing Near Infrared Absorbent Polyester Resin Composition
As described above, the method for producing the near-infrared absorbing polyester resin composition according to the first embodiment is
A step of mixing near-infrared absorbing fine particles and a low boiling point solvent and crushing and dispersing the near infrared absorbing fine particles using a wet medium mill to obtain a fine particle dispersion of the low boiling point solvent.
The step of adding the high boiling point solvent to the obtained fine particle dispersion of the low boiling point solvent, and
A step of removing the low boiling point solvent from the above fine particle dispersion to which the high boiling point solvent is added to obtain a fine particle dispersion of the high boiling point solvent.
A step of blending a polyester resin with a fine particle dispersion of a high boiling point solvent and melt-kneading the fine particle dispersion and the polyester resin using a melt-kneading device.
It is characterized by having
The method for producing the near-infrared absorbing polyester resin composition according to the second embodiment is
A step of mixing near-infrared absorbing fine particles with a low boiling point solvent and a dispersant, and crushing and dispersing the near infrared absorbing fine particles using a wet medium mill to obtain a fine particle dispersion of a low boiling point solvent.
The step of adding the high boiling point solvent to the obtained fine particle dispersion of the low boiling point solvent, and
A step of removing the low boiling point solvent from the above fine particle dispersion to which the high boiling point solvent is added to obtain a fine particle dispersion of the high boiling point solvent.
A step of blending a polyester resin with a fine particle dispersion of a high boiling point solvent and melt-kneading the fine particle dispersion and the polyester resin using a melt-kneading device.
It is characterized by having.

尚、近赤外線吸収微粒子と低沸点溶媒、および、近赤外線吸収微粒子と低沸点溶媒と分散剤を混合し、湿式媒体ミルを用いて近赤外線吸収微粒子を粉砕かつ分散処理して低沸点溶媒の微粒子分散液を調製している理由は、高沸点溶媒中に近赤外線吸収微粒子を直接分散させる方法に較べて効率的に高沸点溶媒の微粒子分散液を調製できるからである。 The near-infrared absorbing fine particles and the low boiling point solvent, and the near-infrared absorbing fine particles, the low boiling point solvent and the dispersant are mixed, and the near-infrared ray absorbing fine particles are crushed and dispersed using a wet medium mill to obtain fine particles of the low boiling point solvent. The reason for preparing the dispersion is that it is possible to efficiently prepare the fine particle dispersion of the high boiling point solvent as compared with the method of directly dispersing the near infrared ray absorbing fine particles in the high boiling point solvent.

以下に、第二実施形態に係る近赤外線吸収ポリエステル樹脂組成物の製造に供される高沸点溶媒の微粒子分散液について説明する。尚、この微粒子分散液には、近赤外線吸収微粒子(複合タングステン酸化物微粒子)、分散剤、低沸点溶媒、および、高沸点溶媒を含んでいる。 Hereinafter, the fine particle dispersion of the high boiling point solvent used for producing the near-infrared absorbing polyester resin composition according to the second embodiment will be described. The fine particle dispersion liquid contains near-infrared absorbing fine particles (composite tungsten oxide fine particles), a dispersant, a low boiling point solvent, and a high boiling point solvent.

[低沸点溶媒の微粒子分散液を調製する工程](粉砕・分散処理工程)
近赤外線吸収微粒子に低沸点溶媒と分散剤を添加してスラリーを調製し、かつ、湿式媒体ミルを用いてスラリー中の近赤外線吸収微粒子を粉砕かつ分散処理して低沸点溶媒の微粒子分散液を調製する。
[Step of preparing fine particle dispersion of low boiling point solvent] (Milling / dispersion treatment step)
A low boiling point solvent and a dispersant are added to the near-infrared absorbing fine particles to prepare a slurry, and the near-infrared absorbing fine particles in the slurry are crushed and dispersed using a wet medium mill to obtain a fine particle dispersion of the low boiling point solvent. Prepare.

低沸点溶媒としては、ケトン類、芳香族化合物、アルコール(エタノール、イソブチルアルコール等)類が好ましく、特に、メチルエチルケトン、メチルイソブチルケトン(MIBK)、キシレン、トルエンがより好ましい。 As the low boiling point solvent, ketones, aromatic compounds, alcohols (ethanol, isobutyl alcohol, etc.) are preferable, and methyl ethyl ketone, methyl isobutyl ketone (MIBK), xylene, and toluene are more preferable.

低沸点溶媒の添加量は特に限定されないが、低沸点溶媒と近赤外線吸収微粒子(複合タングステン酸化物微粒子)の質量比(低沸点溶媒/近赤外線吸収微粒子)が0.8以上4.0以下とすることが好ましい。これは、上記質量比(低沸点溶媒/近赤外線吸収微粒子)を0.8以上とすることで、微粒子分散液としての保存性を担保し易く、その後の高沸点溶媒と混合する際の作業性を高めることもできる。また、上記質量比を4.0以下とすることで、後述する近赤外線吸収ポリエステル樹脂組成物を製造する際に容易に低沸点溶媒を除去できる。 The amount of the low boiling point solvent added is not particularly limited, but the mass ratio (low boiling point solvent / near infrared ray absorbing fine particles) of the low boiling point solvent and the near infrared ray absorbing fine particles (composite tungsten oxide fine particles) is 0.8 or more and 4.0 or less. It is preferable to do so. By setting the mass ratio (low boiling point solvent / near infrared ray absorbing fine particles) to 0.8 or more, it is easy to ensure the storage stability as a fine particle dispersion, and the workability when mixing with the high boiling point solvent thereafter is achieved. Can also be increased. Further, by setting the mass ratio to 4.0 or less, the low boiling point solvent can be easily removed when producing the near-infrared absorbing polyester resin composition described later.

粉砕・分散処理は、ビーズミル、ボールミル、サンドミル、超音波分散等の公知の湿式媒体ミルを用いればよい。 For the pulverization / dispersion treatment, a known wet medium mill such as a bead mill, a ball mill, a sand mill, or an ultrasonic dispersion may be used.

低沸点溶媒中に分散された近赤外線吸収微粒子の「分散粒子径」は、使用目的によって選宜選定することができるが、1nm以上800nm以下の範囲が好ましい。 The "dispersed particle size" of the near-infrared absorbing fine particles dispersed in the low boiling point solvent can be selectively selected depending on the purpose of use, but is preferably in the range of 1 nm or more and 800 nm or less.

[高沸点溶媒の微粒子分散液を調製する工程](真空加熱混合工程)
前工程で得られた低沸点溶媒の微粒子分散液に高沸点溶媒を添加し、該微粒子分散液から低沸点溶媒を除去して高沸点溶媒の微粒子分散液を調製する。
[Step of preparing fine particle dispersion of high boiling point solvent] (Vacuum heating mixing step)
A high boiling point solvent is added to the fine particle dispersion of the low boiling point solvent obtained in the previous step, and the low boiling point solvent is removed from the fine particle dispersion to prepare a fine particle dispersion of the high boiling point solvent.

高沸点溶媒の微粒子分散液中における低沸点溶媒の含有量は5質量%以下が好ましい。低沸点溶媒の含有量が5質量%を超えた場合、高沸点溶媒の微粒子分散液とポリエステル樹脂とを溶融混練する工程において低沸点溶媒が気化し、近赤外線吸収ポリエステル樹脂組成物のヘイズ値を悪化させる可能性があるからである。 The content of the low boiling point solvent in the fine particle dispersion of the high boiling point solvent is preferably 5% by mass or less. When the content of the low boiling point solvent exceeds 5% by mass, the low boiling point solvent is vaporized in the step of melt-kneading the fine particle dispersion of the high boiling point solvent and the polyester resin, and the haze value of the near infrared absorbing polyester resin composition is increased. This is because it can make it worse.

低沸点溶媒を除去する方法としては、真空加熱混合機等の公知の方法を用いることができる。 As a method for removing the low boiling point solvent, a known method such as a vacuum heating mixer can be used.

[近赤外線吸収ポリエステル樹脂組成物を得る工程](溶融混練工程)
前工程で得られた高沸点溶媒の微粒子分散液とポリエステル樹脂の粉粒体またはペレットとを溶融混練することにより近赤外線吸収ポリエステル樹脂組成物が得られる。
[Step to obtain near-infrared absorbing polyester resin composition] (melt kneading step)
A near-infrared absorbing polyester resin composition can be obtained by melt-kneading the fine particle dispersion of the high boiling point solvent obtained in the previous step with the powders or pellets of the polyester resin.

尚、高沸点溶媒の微粒子分散液とポリエステル樹脂を溶融混練する際、必要に応じて、紫外線吸収剤、カップリング剤、界面活性剤、帯電防止剤、樹脂改質剤等を添加してもよい。近赤外線吸収微粒子がポリエステル樹脂に均一に分散すればよく、溶融混練の方法としては、バンバリーミキサー、ニーダー、ロール、ニーダールーダー、一軸押出機、二軸押出機等の混合機を使用することができる。 When the fine particle dispersion of the high boiling point solvent and the polyester resin are melt-kneaded, an ultraviolet absorber, a coupling agent, a surfactant, an antistatic agent, a resin modifier, or the like may be added, if necessary. .. The near-infrared absorbing fine particles may be uniformly dispersed in the polyester resin, and as a method of melt-kneading, a mixer such as a Banbury mixer, a kneader, a roll, a kneader luder, a single-screw extruder, or a twin-screw extruder can be used. ..

以下に、本発明の実施例を比較例と共に具体的に説明する。但し、本発明は以下の実施例に限定されるものではない。 Hereinafter, examples of the present invention will be specifically described together with comparative examples. However, the present invention is not limited to the following examples.

尚、各実施例において、分散剤の熱分解温度は、熱重量示差熱同時測定装置(ブルカーAX社製、TG-DTA2020SR)を用いて、窒素雰囲気下、昇温速度5℃/minで室温から500℃まで重量変化を測定した。 In each embodiment, the pyrolysis temperature of the dispersant is measured from room temperature at a heating rate of 5 ° C./min under a nitrogen atmosphere using a thermogravimetric differential heat simultaneous measuring device (TG-DTA2020SR manufactured by Bruker AX). The weight change was measured up to 500 ° C.

また、複合タングステン酸化物微粒子分散液(高沸点溶媒の微粒子分散液)に含まれる低沸点溶媒の残留量は、電子水分計(島津製作所社製「MOC63u」)を用い、140℃に10分間保持した際の重量変化を測定することで得た。 The residual amount of the low boiling point solvent contained in the composite tungsten oxide fine particle dispersion liquid (fine boiling point solvent fine particle dispersion liquid) is maintained at 140 ° C. for 10 minutes using an electronic moisture meter (“MOC63u” manufactured by Shimadzu Corporation). It was obtained by measuring the weight change at the time of.

また、近赤外線吸収ポリエステル樹脂成形体の可視光透過率と日射透過率は、日立製作所(株)社製の「分光光度計U-4100」を用い、JIS R 3106:1988に基づいて測定した。この日射透過率は近赤外線吸収(遮蔽)性能を示す指標である。 The visible light transmittance and the solar radiation transmittance of the near-infrared absorbing polyester resin molded body were measured based on JIS R 3106: 1988 using a "spectrophotometer U-4100" manufactured by Hitachi, Ltd. This solar transmittance is an index showing the near-infrared absorption (shielding) performance.

また、近赤外線吸収ポリエステル樹脂成形体のヘイズ値は、村上色彩技術研究所(株)社製「HR-150W」を用い、JIS K 7136:2000に基づいて測定した。 The haze value of the near-infrared absorbing polyester resin molded product was measured based on JIS K 7136: 2000 using "HR-150W" manufactured by Murakami Color Technology Research Institute Co., Ltd.

また、近赤外線吸収ポリエステル樹脂成形体中に存在する近赤外線吸収微粒子の平均粒子径は、近赤外線吸収ポリエステル樹脂成形体を樹脂包埋した後、薄片化を行い、得られた薄片サンプルをTEM観察に供して解析した。装置はJEOL社製「JEM-1400Plus」を用い、倍率10万倍~15万倍での観察において、100個の微粒子について粒子径を測定して平均粒子径を算出した。 Further, the average particle size of the near-infrared absorbing fine particles present in the near-infrared absorbing polyester resin molded body is determined by embedding the near-infrared absorbing polyester resin molded body in a resin and then slicing, and TEM observation of the obtained shard sample. Was analyzed. As an apparatus, "JEM-1400Plus" manufactured by JEOL Ltd. was used, and the average particle size was calculated by measuring the particle size of 100 fine particles in the observation at a magnification of 100,000 to 150,000 times.

[実施例1]
(1)複合タングステン酸化物微粒子分散液(高沸点溶媒の微粒子分散液)の調製
複合タングステン酸化物微粒子(Cs0.33WO3:以下、CWOと略称する)20質量%、アクリル系高分子分散剤[アクリル主鎖と官能基としてアミノ基を有し、アミン価29mgKOH/g、熱分解温度280℃の分散剤(以下、分散剤aと略称する)]20質量%、低沸点溶媒としてメチルイソブチルケトン(MIBK)60質量%を秤量した。これ等を、0.3mmφZrO2ビーズを入れたペイントシェーカーに装填し、20時間粉砕・分散処理することにより複合タングステン酸化物微粒子分散液(低沸点溶媒の微粒子分散液)を調製した。
[Example 1]
(1) Preparation of composite tungsten oxide fine particle dispersion (fine particle dispersion of high boiling solvent) 20% by mass of composite tungsten oxide fine particles (Cs 0.33 WO 3 : hereinafter abbreviated as CWO), acrylic polymer dispersant [ It has an acrylic main chain and an amino group as a functional group, an amine value of 29 mgKOH / g, a dispersant having a thermal decomposition temperature of 280 ° C. (hereinafter abbreviated as dispersant a)] 20% by mass, and a low boiling point solvent of methylisobutylketone (hereinafter abbreviated as dispersant a). MIBK) 60% by mass was weighed. These were loaded into a paint shaker containing 0.3 mmφZrO 2 beads, and pulverized and dispersed for 20 hours to prepare a composite tungsten oxide fine particle dispersion (fine particle dispersion of a low boiling point solvent).

得られた複合タングステン酸化物微粒子分散液(低沸点溶媒の微粒子分散液)に、該微粒子分散液と下記高沸点溶媒の比率が5:3となるように高沸点溶媒を加えた後、真空加熱混合機を用いて低沸点溶媒(MIBK)を除去し、複合タングステン酸化物微粒子分散液(高沸点溶媒の微粒子分散液)を得た。高沸点溶媒は、ポリエステルポリオール[エステル基を2個有し、分子量500の(株)クラレ社製 商品名「クラレポリオール」]を使用した。また、調製された複合タングステン酸化物微粒子分散液(高沸点溶媒の微粒子分散液)中における低沸点溶媒(MIBK)の残留量は2質量%であった。 A high boiling point solvent is added to the obtained composite tungsten oxide fine particle dispersion (fine particle dispersion of a low boiling point solvent) so that the ratio of the fine particle dispersion to the following high boiling point solvent is 5: 3, and then vacuum heating is performed. The low boiling point solvent (MIBK) was removed using a mixer to obtain a composite tungsten oxide fine particle dispersion (fine boiling point dispersion). As the high boiling point solvent, a polyester polyol [trade name "Kuraray polyol" manufactured by Kuraray Co., Ltd., which has two ester groups and has a molecular weight of 500] was used. The residual amount of the low boiling point solvent (MIBK) in the prepared composite tungsten oxide fine particle dispersion (fine particle dispersion of high boiling point solvent) was 2% by mass.

尚、分散剤の質量をD、複合タングステン酸化物微粒子の質量をA、高沸点溶媒の質量をCとした場合、D/A、および、(C+D)/Aを表1に示す。 When the mass of the dispersant is D, the mass of the composite tungsten oxide fine particles is A, and the mass of the high boiling point solvent is C, D / A and (C + D) / A are shown in Table 1.

(2)近赤外線吸収ポリエステル樹脂組成物の調製
調製された複合タングステン酸化物微粒子分散液(高沸点溶媒の微粒子分散液)とポリエステル樹脂であるポリエチレンテレフタレート樹脂ペレットを、近赤外線吸収ポリエステル樹脂組成物中のCWO濃度が3質量%(但し、表1等は質量比で表記、以下同様)となるように混合し、ブレンダーを用いて均一に混合した後、二軸押出機を用いて240℃で溶融混練し、かつ、押出されたストランドをペレット状にカットし、近赤外線吸収ポリエステル樹脂成形体用コンパウンド(近赤外線吸収ポリエステル樹脂組成物)を得た。
(2) Preparation of Near Infrared Absorbing Polyester Resin Composition The prepared composite tungsten oxide fine particle dispersion (fine particle dispersion of high boiling point solvent) and polyethylene terephthalate resin pellets which are polyester resins are mixed in the near infrared absorbing polyester resin composition. CWO concentration is 3% by mass (however, Table 1 etc. is expressed by mass ratio, the same applies hereinafter), mixed uniformly using a blender, and then melted at 240 ° C. using a twin-screw extruder. The kneaded and extruded strands were cut into pellets to obtain a compound for a near-infrared absorbing polyester resin molded body (near-infrared absorbing polyester resin composition).

尚、分散剤の質量をD、複合タングステン酸化物微粒子の質量をA、高沸点溶媒の質量をC、ポリエステル樹脂の質量をBとした場合、(B+C+D)/Aを表1に示す。 When the mass of the dispersant is D, the mass of the composite tungsten oxide fine particles is A, the mass of the high boiling point solvent is C, and the mass of the polyester resin is B, (B + C + D) / A is shown in Table 1.

(3)近赤外線吸収ポリエステル樹脂成形体の製造
得られた近赤外線吸収ポリエステル樹脂成形体用コンパウンドを、一軸押出機を用いて240℃で溶融混練した後、Tダイより押し出し、二軸延伸加工し、厚さ0.05mmに成形することで、複合タングステン酸化物(CWO)微粒子がポリエステル樹脂全体に均一に分散した実施例1に係る近赤外線吸収ポリエステル樹脂成形体を得た。
(3) Manufacture of Near Infrared Absorbing Polyester Resin Mold The obtained compound for near infrared absorbing polyester resin molded is melt-kneaded at 240 ° C. using a uniaxial extruder, then extruded from a T-die and biaxially stretched. By molding to a thickness of 0.05 mm, a near-infrared absorbing polyester resin molded product according to Example 1 in which composite tungsten oxide (CWO) fine particles were uniformly dispersed throughout the polyester resin was obtained.

実施例1に係る近赤外線吸収ポリエステル樹脂成形体の光学特性を測定したところ、表3に示すように、可視光透過率74.6%のときの日射透過率は35.3%で、ヘイズ値は1.0%であった。 When the optical characteristics of the near-infrared absorbing polyester resin molded body according to Example 1 were measured, as shown in Table 3, the solar transmittance was 35.3% when the visible light transmittance was 74.6%, and the haze value was high. Was 1.0%.

また、表3に示すように、近赤外線吸収ポリエステル樹脂成形体中に存在する近赤外線吸収微粒子の平均粒子径は45nmであった。 Further, as shown in Table 3, the average particle size of the near-infrared absorbing fine particles present in the near-infrared absorbing polyester resin molded body was 45 nm.

[実施例2]
低沸点溶媒(MIBK)を除去した後の複合タングステン酸化物微粒子分散液(高沸点溶媒の微粒子分散液)に係る組成を、複合タングステン酸化物(CWO)微粒子:20質量%、上記分散剤a:10質量%、ポリエステルポリオール(エステル基を2個有し、分子量500):70質量%とした以外は、実施例1と同様にして実施例2に係る近赤外線吸収ポリエステル樹脂成形体を作製した。
[Example 2]
The composition of the composite tungsten oxide fine particle dispersion liquid (fine particle dispersion liquid of the high boiling point solvent) after removing the low boiling point solvent (MIBK) is based on the composition of the composite tungsten oxide (CWO) fine particles: 20% by mass, the above-mentioned dispersant a :. A near-infrared absorbing polyester resin molded body according to Example 2 was produced in the same manner as in Example 1 except that the content was 10% by mass and the polyester polyol (having two ester groups and having a molecular weight of 500): 70% by mass.

実施例2に係る近赤外線吸収ポリエステル樹脂成形体の光学特性を測定したところ、表3に示すように、可視光透過率73.1%のときの日射透過率は34.9%で、ヘイズ値は1.2%であった。 When the optical characteristics of the near-infrared absorbing polyester resin molded body according to Example 2 were measured, as shown in Table 3, the solar transmittance was 34.9% when the visible light transmittance was 73.1%, and the haze value was high. Was 1.2%.

また、表3に示すように、近赤外線吸収ポリエステル樹脂成形体中に存在する近赤外線吸収微粒子の平均粒子径は52nmであった。 Further, as shown in Table 3, the average particle size of the near-infrared absorbing fine particles present in the near-infrared absorbing polyester resin molded body was 52 nm.

実施例1と同様、表1に、D/A、(C+D)/A、(B+C+D)/Aを示す。 Similar to Example 1, Table 1 shows D / A, (C + D) / A, and (B + C + D) / A.

[実施例3]
低沸点溶媒(MIBK)を除去した後の複合タングステン酸化物微粒子分散液(高沸点溶媒の微粒子分散液)に係る組成を、複合タングステン酸化物(CWO)微粒子:20質量%、上記分散剤a:60質量%、ポリエステルポリオール(エステル基を2個有し、分子量500):20質量%とした以外は、実施例1と同様にして実施例3に係る近赤外線吸収ポリエステル樹脂成形体を作製した。
[Example 3]
The composition of the composite tungsten oxide fine particle dispersion liquid (fine particle dispersion liquid of the high boiling point solvent) after removing the low boiling point solvent (MIBK) is based on the composition of the composite tungsten oxide (CWO) fine particles: 20% by mass, the above-mentioned dispersant a :. A near-infrared absorbing polyester resin molded body according to Example 3 was produced in the same manner as in Example 1 except that the content was 60% by mass and the polyester polyol (having two ester groups and having a molecular weight of 500): 20% by mass.

実施例3に係る近赤外線吸収ポリエステル樹脂成形体の光学特性を測定したところ、表3に示すように、可視光透過率74.0%のときの日射透過率は35.8%で、ヘイズ値は1.0%であった。 When the optical characteristics of the near-infrared absorbing polyester resin molded body according to Example 3 were measured, as shown in Table 3, the solar transmittance was 35.8% when the visible light transmittance was 74.0%, and the haze value was high. Was 1.0%.

また、表3に示すように、近赤外線吸収ポリエステル樹脂成形体中に存在する近赤外線吸収微粒子の平均粒子径は44nmであった。 Further, as shown in Table 3, the average particle size of the near-infrared absorbing fine particles present in the near-infrared absorbing polyester resin molded body was 44 nm.

実施例1と同様、表1に、D/A、(C+D)/A、(B+C+D)/Aを示す。 Similar to Example 1, Table 1 shows D / A, (C + D) / A, and (B + C + D) / A.

[実施例4]
分散剤をアクリル系高分子分散剤[アクリル主鎖と官能基としてアミノ基を有し、アミン価10mgKOH/g、熱分解温度300℃の分散剤(以下、分散剤bと略称する)]に変更し、低沸点溶媒(MIBK)を除去した後の複合タングステン酸化物微粒子分散液(高沸点溶媒の微粒子分散液)に係る組成を、複合タングステン酸化物(CWO)微粒子:20質量%、上記分散剤b:20質量%、ポリエステルポリオール(エステル基を2個有し、分子量500):60質量%とした以外は、実施例1と同様にして実施例4に係る近赤外線吸収ポリエステル樹脂成形体を作製した。
[Example 4]
Changed the dispersant to an acrylic polymer dispersant [a dispersant having an acrylic main chain and an amino group as a functional group, an amine value of 10 mgKOH / g, and a thermal decomposition temperature of 300 ° C. (hereinafter abbreviated as dispersant b)]. The composition of the composite tungsten oxide fine particle dispersion (fine particle dispersion of high boiling solvent) after the low boiling solvent (MIBK) was removed was determined by the composition of the composite tungsten oxide (CWO) fine particles: 20% by mass, the above-mentioned dispersant. A near-infrared absorbing polyester resin molded body according to Example 4 was produced in the same manner as in Example 1 except that b: 20% by mass and polyester polyol (having two ester groups and a molecular weight of 500): 60% by mass. bottom.

実施例4に係る近赤外線吸収ポリエステル樹脂成形体の光学特性を測定したところ、表3に示すように、可視光透過率72.6%のときの日射透過率は34.2%で、ヘイズ値は0.9%であった。 When the optical characteristics of the near-infrared absorbing polyester resin molded body according to Example 4 were measured, as shown in Table 3, the solar transmittance was 34.2% when the visible light transmittance was 72.6%, and the haze value was high. Was 0.9%.

また、表3に示すように、近赤外線吸収ポリエステル樹脂成形体中に存在する近赤外線吸収微粒子の平均粒子径は42nmであった。 Further, as shown in Table 3, the average particle size of the near-infrared absorbing fine particles present in the near-infrared absorbing polyester resin molded body was 42 nm.

実施例1と同様、表1に、D/A、(C+D)/A、(B+C+D)/Aを示す。 Similar to Example 1, Table 1 shows D / A, (C + D) / A, and (B + C + D) / A.

[実施例5]
分散剤をアクリル系高分子分散剤[アクリル主鎖と官能基としてアミノ基を有し、アミン価40mgKOH/g、熱分解温度230℃の分散剤(以下、分散剤cと略称する)]に変更し、低沸点溶媒(MIBK)を除去した後の複合タングステン酸化物微粒子分散液(高沸点溶媒の微粒子分散液)に係る組成を、複合タングステン酸化物(CWO)微粒子:20質量%、上記分散剤c:20質量%、ポリエステルポリオール(エステル基を2個有し、分子量500):60質量%とした以外は、実施例1と同様にして実施例5に係る近赤外線吸収ポリエステル樹脂成形体を作製した。
[Example 5]
Changed the dispersant to an acrylic polymer dispersant [a dispersant having an acrylic main chain and an amino group as a functional group, an amine value of 40 mgKOH / g, and a thermal decomposition temperature of 230 ° C. (hereinafter abbreviated as dispersant c)]. The composition of the composite tungsten oxide fine particle dispersion (fine particle dispersion of high boiling solvent) after the low boiling solvent (MIBK) was removed was determined by the composition of the composite tungsten oxide (CWO) fine particles: 20% by mass, the above-mentioned dispersant. A near-infrared absorbing polyester resin molded body according to Example 5 was produced in the same manner as in Example 1 except that c: 20% by mass and polyester polyol (having two ester groups and a molecular weight of 500): 60% by mass. bottom.

実施例5に係る近赤外線吸収ポリエステル樹脂成形体の光学特性を測定したところ、表3に示すように、可視光透過率73.5%のときの日射透過率は35.6%で、ヘイズ値は1.2%であった。 When the optical characteristics of the near-infrared absorbing polyester resin molded body according to Example 5 were measured, as shown in Table 3, the solar transmittance was 35.6% when the visible light transmittance was 73.5%, and the haze value was high. Was 1.2%.

また、表3に示すように、近赤外線吸収ポリエステル樹脂成形体中に存在する近赤外線吸収微粒子の平均粒子径は55nmであった。 Further, as shown in Table 3, the average particle size of the near-infrared absorbing fine particles present in the near-infrared absorbing polyester resin molded body was 55 nm.

実施例1と同様、表1に、D/A、(C+D)/A、(B+C+D)/Aを示す。 Similar to Example 1, Table 1 shows D / A, (C + D) / A, and (B + C + D) / A.

[実施例6]
上記高沸点溶媒をポリエステルポリオール[エステル基を2個有し、分子量2000の(株)クラレ社製 商品名「クラレポリオール」]に変更し、低沸点溶媒(MIBK)を除去した後の複合タングステン酸化物微粒子分散液(高沸点溶媒の微粒子分散液)に係る組成を、複合タングステン酸化物(CWO)微粒子:20質量%、上記分散剤a:20質量%、ポリエステルポリオール:60質量%とした以外は、実施例1と同様にして実施例6に係る近赤外線吸収ポリエステル樹脂成形体を作製した。
[Example 6]
The above high boiling point solvent was changed to a polyester polyol [trade name "Kurare polyol" manufactured by Kuraray Co., Ltd. having two ester groups and a molecular weight of 2000], and the composite tungsten oxidation after removing the low boiling point solvent (MIBK). Except for the composition of the fine particle dispersion (fine particle dispersion of high boiling solvent), the composite tungsten oxide (CWO) fine particles: 20% by mass, the dispersant a: 20% by mass, and the polyester polyol: 60% by mass. , A near-infrared absorbing polyester resin molded body according to Example 6 was produced in the same manner as in Example 1.

実施例6に係る近赤外線吸収ポリエステル樹脂成形体の光学特性を測定したところ、表3に示すように、可視光透過率74.6%のときの日射透過率は36.5%で、ヘイズ値は1.1%であった。 When the optical characteristics of the near-infrared absorbing polyester resin molded body according to Example 6 were measured, as shown in Table 3, the solar transmittance was 36.5% when the visible light transmittance was 74.6%, and the haze value was high. Was 1.1%.

また、表3に示すように、近赤外線吸収ポリエステル樹脂成形体中に存在する近赤外線吸収微粒子の平均粒子径は48nmであった。 Further, as shown in Table 3, the average particle size of the near-infrared absorbing fine particles present in the near-infrared absorbing polyester resin molded body was 48 nm.

実施例1と同様、表1に、D/A、(C+D)/A、(B+C+D)/Aを示す。 Similar to Example 1, Table 1 shows D / A, (C + D) / A, and (B + C + D) / A.

参考例7
(1)複合タングステン酸化物微粒子分散液(高沸点溶媒の微粒子分散液)の調製
複合タングステン酸化物微粒子(CWO)20質量%、低沸点溶媒としてエタノール80質量%を秤量した。上記微粒子とエタノールを、0.3mmφZrO2ビーズを入れたペイントシェーカーに装填し、23時間粉砕・分散処理することにより複合タングステン酸化物微粒子分散液(低沸点溶媒の微粒子分散液)を調製した。
[ Reference example 7 ]
(1) Preparation of composite tungsten oxide fine particle dispersion (fine particle dispersion of high boiling point solvent) 20% by mass of composite tungsten oxide fine particles (CWO) and 80% by mass of ethanol as a low boiling point solvent were weighed. The fine particles and ethanol were loaded into a paint shaker containing 0.3 mmφZrO2 beads, and pulverized and dispersed for 23 hours to prepare a composite tungsten oxide fine particle dispersion (fine particle dispersion of a low boiling point solvent).

得られた複合タングステン酸化物微粒子分散液(低沸点溶媒の微粒子分散液)に、該微粒子分散液と高沸点溶媒であるエチレングリコールの比率が5:4となるように高沸点溶媒を加えた後、真空加熱混合機を用いて低沸点溶媒(エタノール)を除去し、複合タングステン酸化物微粒子分散液(高沸点溶媒の微粒子分散液)を得た。また、調製された複合タングステン酸化物微粒子分散液(高沸点溶媒の微粒子分散液)中におけるエタノールの残留量は2質量%であった。 After adding a high boiling point solvent to the obtained composite tungsten oxide fine particle dispersion (fine particle dispersion of low boiling point solvent) so that the ratio of the fine particle dispersion to ethylene glycol which is a high boiling point solvent is 5: 4. , The low boiling point solvent (ethanol) was removed using a vacuum heating mixer to obtain a composite tungsten oxide fine particle dispersion (a high boiling point solvent fine particle dispersion). The residual amount of ethanol in the prepared composite tungsten oxide fine particle dispersion (fine particle dispersion of high boiling point solvent) was 2% by mass.

(2)近赤外線吸収ポリエステル樹脂組成物の調製
調製された複合タングステン酸化物微粒子分散液(高沸点溶媒の微粒子分散液)とポリエチレンテレフタレート樹脂ペレットを、CWO濃度が3質量%となるように混合し、ブレンダーを用いて均一に混合した後、二軸押出機を用いて240℃で溶融混練し、かつ、押出されたストランドをペレット状にカットし、近赤外線吸収ポリエステル樹脂成形体用コンパウンド(近赤外線吸収ポリエステル樹脂組成物)を得た。
(2) Preparation of Near Infrared Absorbing Polyester Resin Composition The prepared composite tungsten oxide fine particle dispersion (fine particle dispersion of high boiling point solvent) and polyethylene terephthalate resin pellets are mixed so that the CWO concentration is 3% by mass. , Uniformly mixed using a blender, melt-kneaded at 240 ° C. using a twin-screw extruder, and the extruded strands are cut into pellets to make a compound for a near-infrared absorbing polyester resin molded body (near-infrared). Absorbent polyester resin composition) was obtained.

(3)近赤外線吸収ポリエステル樹脂成形体の製造
得られた近赤外線吸収ポリエステル樹脂成形体用コンパウンドを、一軸押出機を用いて240℃で溶融混練した後、Tダイより押し出し、二軸延伸加工し、厚さ0.05mmに成形することで、複合タングステン酸化物(CWO)微粒子がポリエステル樹脂全体に均一に分散した参考例7に係る近赤外線吸収ポリエステル樹脂成形体を得た。
(3) Manufacture of Near Infrared Absorbing Polyester Resin Mold The obtained compound for near infrared absorbing polyester resin molded is melt-kneaded at 240 ° C. using a uniaxial extruder, then extruded from a T-die and biaxially stretched. By molding to a thickness of 0.05 mm, a near-infrared absorbing polyester resin molded product according to Reference Example 7 in which composite tungsten oxide (CWO) fine particles were uniformly dispersed throughout the polyester resin was obtained.

参考例7に係る近赤外線吸収ポリエステル樹脂成形体の光学特性を測定したところ、表3に示すように、可視光透過率73.0%のときの日射透過率は36.3%で、ヘイズ値は1.3%であった。 When the optical characteristics of the near-infrared absorbing polyester resin molded body according to Reference Example 7 were measured, as shown in Table 3, the solar transmittance was 36.3% when the visible light transmittance was 73.0%, and the haze value was high. Was 1.3%.

また、表3に示すように、近赤外線吸収ポリエステル樹脂成形体中に存在する近赤外線吸収微粒子の平均粒子径は64nmであった。 Further, as shown in Table 3, the average particle size of the near-infrared absorbing fine particles present in the near-infrared absorbing polyester resin molded body was 64 nm.

実施例1と同様、表1に、D/A、(C+D)/A、(B+C+D)/Aを示す。 Similar to Example 1, Table 1 shows D / A, (C + D) / A, and (B + C + D) / A.

[実施例
低沸点溶媒(MIBK)を除去した後の複合タングステン酸化物微粒子分散液(高沸点溶媒の微粒子分散液)に係る組成を、複合タングステン酸化物(CWO)微粒子:33.3質量%、上記分散剤a:16.7質量%、ポリエステルポリオール(エステル基を2個有し、分子量500):50質量%とし、近赤外線吸収ポリエステル樹脂成形体の厚さを0.01mmとした以外は、実施例1と同様にして実施例に係る近赤外線吸収ポリエステル樹脂成形体を作製した。
[Example 8 ]
The composition of the composite tungsten oxide fine particle dispersion (fine particle dispersion of high boiling solvent) after removing the low boiling point solvent (MIBK) is based on the composition of the composite tungsten oxide (CWO) fine particles: 33.3% by mass, the above-mentioned dispersant. Example 1 except that a: 16.7% by mass, polyester polyol (having two ester groups, molecular weight 500): 50% by mass, and the thickness of the near-infrared absorbing polyester resin molded body was 0.01 mm. In the same manner as in the above, the near-infrared absorbing polyester resin molded body according to Example 8 was produced.

実施例に係る近赤外線吸収ポリエステル樹脂成形体の光学特性を測定したところ、表3に示すように、可視光透過率73.2%のときの日射透過率は36.9%で、ヘイズ値は1.3%であった。 When the optical characteristics of the near-infrared absorbing polyester resin molded body according to Example 8 were measured, as shown in Table 3, the solar transmittance was 36.9% when the visible light transmittance was 73.2%, and the haze value was high. Was 1.3%.

また、表3に示すように、近赤外線吸収ポリエステル樹脂成形体中に存在する近赤外線吸収微粒子の平均粒子径は66nmであった。 Further, as shown in Table 3, the average particle size of the near-infrared absorbing fine particles present in the near-infrared absorbing polyester resin molded body was 66 nm.

実施例1と同様、表1に、D/A、(C+D)/A、(B+C+D)/Aを示す。 Similar to Example 1, Table 1 shows D / A, (C + D) / A, and (B + C + D) / A.

[実施例
上記高沸点溶媒を、ポリエステルポリオール[エステル基を2個有し、分子量3000の(株)クラレ社製 商品名「クラレポリオール」]に変更し、低沸点溶媒(MIBK)を除去した後の複合タングステン酸化物微粒子分散液(高沸点溶媒の微粒子分散液)に係る組成を、複合タングステン酸化物(CWO)微粒子:20質量%、上記分散剤a:20質量%、ポリエステルポリオール:60質量%とした以外は、実施例1と同様にして実施例に係る近赤外線吸収ポリエステル樹脂成形体を作製した。
[Example 9 ]
The above high boiling point solvent was changed to a polyester polyol [trade name "Kurare polyol" manufactured by Kuraray Co., Ltd. having two ester groups and a molecular weight of 3000], and the composite tungsten after removing the low boiling point solvent (MIBK). Other than the composition of the oxide fine particle dispersion (fine particle dispersion of high boiling solvent), the composite tungsten oxide (CWO) fine particles: 20% by mass, the dispersant a: 20% by mass, and the polyester polyol: 60% by mass. Made a near-infrared absorbing polyester resin molded body according to Example 9 in the same manner as in Example 1.

実施例に係る近赤外線吸収ポリエステル樹脂成形体の光学特性を測定したところ、表3に示すように、可視光透過率73.3%のときの日射透過率は36.7%で、ヘイズ値は1.3%であった。 When the optical characteristics of the near-infrared absorbing polyester resin molded body according to Example 9 were measured, as shown in Table 3, the solar transmittance was 36.7% when the visible light transmittance was 73.3%, and the haze value was high. Was 1.3%.

また、表3に示すように、近赤外線吸収ポリエステル樹脂成形体中に存在する近赤外線吸収微粒子の平均粒子径は65nmであった。 Further, as shown in Table 3, the average particle size of the near-infrared absorbing fine particles present in the near-infrared absorbing polyester resin molded body was 65 nm.

実施例1と同様、表1に、D/A、(C+D)/A、(B+C+D)/Aを示す。 Similar to Example 1, Table 1 shows D / A, (C + D) / A, and (B + C + D) / A.

[比較例1]
複合タングステン酸化物(CWO)微粒子20質量%、分散剤a:20質量%、低沸点溶媒としてメチルイソブチルケトン(MIBK)60質量%を秤量した。上記微粒子と分散剤とMIBKを、0.3mmφZrO2ビーズを入れたペイントシェーカーに装填し、20時間粉砕・分散処理することにより複合タングステン酸化物微粒子分散液(低沸点溶媒の微粒子分散液)を調製した。
[Comparative Example 1]
20% by mass of the composite tungsten oxide (CWO) fine particles, 20% by mass of the dispersant a, and 60% by mass of methyl isobutyl ketone (MIBK) as a low boiling point solvent were weighed. The above fine particles, dispersant, and MIBK were loaded into a paint shaker containing 0.3 mmφZrO 2 beads, and pulverized and dispersed for 20 hours to prepare a composite tungsten oxide fine particle dispersion (fine particle dispersion with a low boiling point solvent). bottom.

次いで、得られた複合タングステン酸化物微粒子分散液(低沸点溶媒の微粒子分散液)から真空加熱混合機を用いてMIBKを除去し、複合タングステン酸化物微粒子分散粉を得た。 Next, MIBK was removed from the obtained composite tungsten oxide fine particle dispersion (fine particle dispersion of a low boiling point solvent) using a vacuum heating mixer to obtain a composite tungsten oxide fine particle dispersion.

得られた複合タングステン酸化物微粒子分散粉とポリエステル樹脂であるポリエチレンテレフタレート樹脂ペレットを、上記CWO濃度が3質量%となるように混合し、ブレンダーを用いて均一に混合した後、実施例1と同様、二軸押出機を用いて240℃で溶融混練し、かつ、押出されたストランドをペレット状にカットし、近赤外線吸収ポリエステル樹脂成形体用コンパウンド(近赤外線吸収ポリエステル樹脂組成物)を得た。 The obtained composite tungsten oxide fine particle dispersion powder and polyethylene terephthalate resin pellets which are polyester resins are mixed so that the CWO concentration is 3% by mass, and uniformly mixed using a blender, and then the same as in Example 1. , Melt-kneaded at 240 ° C. using a twin-screw extruder, and the extruded strands were cut into pellets to obtain a compound for a near-infrared absorbing polyester resin molded body (near-infrared absorbing polyester resin composition).

次いで、得られた近赤外線吸収ポリエステル樹脂成形体用コンパウンドを、実施例1と同様、一軸押出機を用いて240℃で溶融混練した後、Tダイより押し出し、二軸延伸加工し、厚さ0.05mmに成形することで、比較例1に係る近赤外線吸収ポリエステル樹脂成形体を作製した。 Next, the obtained compound for a near-infrared absorbing polyester resin molded body was melt-kneaded at 240 ° C. using a uniaxial extruder as in Example 1, then extruded from a T-die and subjected to biaxial stretching to a thickness of 0. By molding to 0.05 mm, a near-infrared absorbing polyester resin molded product according to Comparative Example 1 was produced.

比較例1に係る近赤外線吸収ポリエステル樹脂成形体の光学特性を測定したところ、表4に示すように、可視光透過率72.1%のときの日射透過率は35.7%で、ヘイズ値は3.3%であった。 When the optical characteristics of the near-infrared absorbing polyester resin molded body according to Comparative Example 1 were measured, as shown in Table 4, the solar transmittance was 35.7% when the visible light transmittance was 72.1%, and the haze value was high. Was 3.3%.

また、表4に示すように、近赤外線吸収ポリエステル樹脂成形体中に存在する近赤外線吸収微粒子の平均粒子径は87nmであった。 Further, as shown in Table 4, the average particle size of the near-infrared absorbing fine particles present in the near-infrared absorbing polyester resin molded body was 87 nm.

実施例1と同様、表2に、D/A、(C+D)/A、(B+C+D)/Aを示す。 Similar to Example 1, Table 2 shows D / A, (C + D) / A, and (B + C + D) / A.

[比較例2]
分散剤aに代えて分散剤bを用いた以外は、比較例1と同様にして比較例2に係る近赤外線吸収ポリエステル樹脂成形体を得た。
[Comparative Example 2]
A near-infrared absorbing polyester resin molded product according to Comparative Example 2 was obtained in the same manner as in Comparative Example 1 except that the dispersant b was used instead of the dispersant a.

比較例2に係る近赤外線吸収ポリエステル樹脂成形体の光学特性を測定したところ、表4に示すように、可視光透過率71.5%のときの日射透過率は35.2%で、ヘイズ値は3.6%であった。 When the optical characteristics of the near-infrared absorbing polyester resin molded body according to Comparative Example 2 were measured, as shown in Table 4, the solar transmittance was 35.2% when the visible light transmittance was 71.5%, and the haze value was high. Was 3.6%.

また、表4に示すように、近赤外線吸収ポリエステル樹脂成形体中に存在する近赤外線吸収微粒子の平均粒子径は97nmであった。 Further, as shown in Table 4, the average particle size of the near-infrared absorbing fine particles present in the near-infrared absorbing polyester resin molded body was 97 nm.

比較例1と同様、表2に、D/A、(C+D)/A、(B+C+D)/Aを示す。 Similar to Comparative Example 1, Table 2 shows D / A, (C + D) / A, and (B + C + D) / A.

[比較例3]
分散剤aに代えて分散剤cを用いた以外は、比較例1と同様にして比較例3に係る近赤外線吸収ポリエステル樹脂成形体を得た。
[Comparative Example 3]
A near-infrared absorbing polyester resin molded product according to Comparative Example 3 was obtained in the same manner as in Comparative Example 1 except that the dispersant c was used instead of the dispersant a.

比較例3に係る近赤外線吸収ポリエステル樹脂成形体の光学特性を測定したところ、表4に示すように、可視光透過率72.1%のときの日射透過率は35.5%で、ヘイズ値は3.4%であった。 When the optical characteristics of the near-infrared absorbing polyester resin molded body according to Comparative Example 3 were measured, as shown in Table 4, the solar transmittance was 35.5% when the visible light transmittance was 72.1%, and the haze value was high. Was 3.4%.

また、表4に示すように、近赤外線吸収ポリエステル樹脂成形体中に存在する近赤外線吸収微粒子の平均粒子径は92nmであった。 Further, as shown in Table 4, the average particle size of the near-infrared absorbing fine particles present in the near-infrared absorbing polyester resin molded body was 92 nm.

[比較例4]
複合タングステン酸化物(CWO)微粒子を20質量%、分散剤cを20質量%、低沸点溶媒であるメチルイソブチルケトン(MIBK)60質量%を秤量した。これ等を、0.3mmφZrO2ビーズを入れたペイントシェーカーに装填し、20時間粉砕・分散処理することにより複合タングステン酸化物微粒子分散液(低沸点溶媒の微粒子分散液)を調製した。
[Comparative Example 4]
20% by mass of the composite tungsten oxide (CWO) fine particles, 20% by mass of the dispersant c, and 60% by mass of methyl isobutyl ketone (MIBK) as a low boiling point solvent were weighed. These were loaded into a paint shaker containing 0.3 mmφZrO 2 beads, and pulverized and dispersed for 20 hours to prepare a composite tungsten oxide fine particle dispersion (fine particle dispersion of a low boiling point solvent).

得られた複合タングステン酸化物微粒子分散液(低沸点溶媒の微粒子分散液)に対し、分散剤cを更に添加し、分散剤cと複合タングステン酸化物(CWO)微粒子の質量比[分散剤/複合タングステン酸化物微粒子]が3となるように調整した後、真空加熱混合機を用いてMIBKを除去し、複合タングステン酸化物微粒子分散粉を得た。 The dispersant c was further added to the obtained composite tungsten oxide fine particle dispersion (fine particle dispersion of a low boiling point solvent), and the mass ratio of the dispersant c to the composite tungsten oxide (CWO) fine particles [dispersant / composite]. After adjusting the amount of the tungsten oxide fine particles to 3, MIBK was removed using a vacuum heating mixer to obtain a composite tungsten oxide fine particle dispersed powder.

得られた複合タングステン酸化物微粒子分散粉を用い、比較例1と同様にして比較例4に係る近赤外線吸収ポリエステル樹脂成形体を得た。 Using the obtained composite tungsten oxide fine particle dispersion powder, a near-infrared ray absorbing polyester resin molded product according to Comparative Example 4 was obtained in the same manner as in Comparative Example 1.

比較例4に係る近赤外線吸収ポリエステル樹脂成形体の光学特性を測定したところ、表4に示すように、可視光透過率71.9%のときの日射透過率は35.4%で、ヘイズ値は3.8%であった。 When the optical characteristics of the near-infrared absorbing polyester resin molded body according to Comparative Example 4 were measured, as shown in Table 4, the solar transmittance was 35.4% when the visible light transmittance was 71.9%, and the haze value was high. Was 3.8%.

また、表4に示すように、近赤外線吸収ポリエステル樹脂成形体中に存在する近赤外線吸収微粒子の平均粒子径は110nmであった。 Further, as shown in Table 4, the average particle size of the near-infrared absorbing fine particles present in the near-infrared absorbing polyester resin molded body was 110 nm.

比較例1と同様、表2に、D/A、(C+D)/A、(B+C+D)/Aを示す。 Similar to Comparative Example 1, Table 2 shows D / A, (C + D) / A, and (B + C + D) / A.

[比較例5]
分散剤を用いない参考例7と同様、複合タングステン酸化物(CWO)微粒子を20質量%、低沸点溶媒としてエタノール80質量%を秤量した。これ等を、0.3mmφZrO2ビーズを入れたペイントシェーカーに装填し、23時間粉砕・分散処理することにより複合タングステン酸化物微粒子分散液(低沸点溶媒の微粒子分散液)を調製した。
[Comparative Example 5]
Similar to Reference Example 7 in which no dispersant was used, 20% by mass of composite tungsten oxide (CWO) fine particles and 80% by mass of ethanol as a low boiling point solvent were weighed. These were loaded into a paint shaker containing 0.3 mmφZrO 2 beads, and pulverized and dispersed for 23 hours to prepare a composite tungsten oxide fine particle dispersion (fine particle dispersion of a low boiling point solvent).

次いで、得られた複合タングステン酸化物微粒子分散液(低沸点溶媒の微粒子分散液)から真空加熱混合機を用いてエタノールを除去し、複合タングステン酸化物微粒子粉を得た。 Then, ethanol was removed from the obtained composite tungsten oxide fine particle dispersion (fine particle dispersion of a low boiling point solvent) using a vacuum heating mixer to obtain a composite tungsten oxide fine particle powder.

得られた複合タングステン酸化物微粒子粉と、ポリエステル樹脂であるポリエチレンテレフタレート樹脂ペレットとをCWO濃度が3質量%となるように混合し、以下、実施例1と同様にして比較例5に係る近赤外線吸収ポリエステル樹脂成形体の作製を試みた。 The obtained composite tungsten oxide fine particle powder and polyethylene terephthalate resin pellets, which are polyester resins, were mixed so as to have a CWO concentration of 3% by mass. An attempt was made to produce an absorbent polyester resin molded product.

しかし、分散剤や高沸点溶媒が用いられていないことから、ポリエステル樹脂中に存在する複合タングステン酸化物微粒子の分散安定性に劣るため、複合タングステン酸化物微粒子の激しい凝集が起こり、外観で不均一になる程、複合タングステン酸化物微粒子をポリエステル樹脂中に均一に分散させることはできなかった。 However, since no dispersant or high boiling point solvent is used, the dispersion stability of the composite tungsten oxide fine particles present in the polyester resin is inferior, so that the composite tungsten oxide fine particles are violently aggregated and the appearance is non-uniform. As such, the composite tungsten oxide fine particles could not be uniformly dispersed in the polyester resin.

[比較例6]
分散剤をアクリル系高分子分散剤[アクリル主鎖と官能基としてアミノ基を有し、アミン価48mgKOH/g、熱分解温度250℃の分散剤(以下、分散剤dと略称する)]に変更し、かつ、ポリエステルポリオール(エステル基を2個有し、分子量500)に代えてトリエチレングリコール-ジ-2-エチルブチレートを適用した以外は、実施例2と同様にして比較例6に係る近赤外線吸収ポリエステル樹脂成形体を作製した。
[Comparative Example 6]
Changed the dispersant to an acrylic polymer dispersant [a dispersant having an acrylic main chain and an amino group as a functional group, an amine value of 48 mgKOH / g, and a thermal decomposition temperature of 250 ° C. (hereinafter abbreviated as dispersant d)]. Moreover, it relates to Comparative Example 6 in the same manner as in Example 2 except that triethylene glycol-di-2-ethylbutyrate was applied instead of the polyester polyol (having two ester groups and having a molecular weight of 500). A near-infrared absorbing polyester resin molded body was produced.

しかし、実施例2の高沸点溶媒(ポリエステルポリオール)とは異なるトリエチレングリコール-ジ-2-エチルブチレートが用いられているため、ポリエステル樹脂中に存在する複合タングステン酸化物(CWO)微粒子の分散安定性に劣り、複合タングステン酸化物微粒子の激しい凝集が起こり、外観で不均一になる程、複合タングステン酸化物微粒子をポリエステル樹脂中に均一に分散させることはできなかった。 However, since triethylene glycol-di-2-ethylbutyrate, which is different from the high boiling point solvent (polyester polyol) of Example 2, is used, the composite tungsten oxide (CWO) fine particles present in the polyester resin are dispersed. The composite tungsten oxide fine particles could not be uniformly dispersed in the polyester resin to the extent that the stability was inferior, the composite tungsten oxide fine particles were violently aggregated, and the appearance became non-uniform.

[比較例7]
分散剤を、アクリル系高分子分散剤[アクリル主鎖と官能基としてアミノ基を有し、アミン価29mgKOH/g、熱分解温度280℃の分散剤(分散剤a)]に変更し、かつ、ポリエステルポリオール(エステル基を2個有し、分子量500)に代えてエポキシ基含有アクリル系ポリマーを適用した以外は、実施例4と同様にして比較例7に係る近赤外線吸収ポリエステル樹脂成形体を作製した。
[Comparative Example 7]
The dispersant was changed to an acrylic polymer dispersant [a dispersant having an acrylic main chain and an amino group as a functional group, an amine value of 29 mgKOH / g, and a thermal decomposition temperature of 280 ° C. (dispersant a)]. A near-infrared absorbing polyester resin molded body according to Comparative Example 7 was produced in the same manner as in Example 4 except that an epoxy group-containing acrylic polymer was applied instead of the polyester polyol (having two ester groups and having a molecular weight of 500). bottom.

しかし、実施例4の高沸点溶媒(ポリエステルポリオール)とは異なるエポキシ基含有アクリル系ポリマーが用いられているため、ポリエステル樹脂中に存在する複合タングステン酸化物(CWO)微粒子の分散安定性に劣り、複合タングステン酸化物微粒子の激しい凝集が起こり、外観で不均一になる程、複合タングステン酸化物微粒子をポリエステル樹脂中に均一に分散させることはできなかった。 However, since an epoxy group-containing acrylic polymer different from the high boiling point solvent (polyester polyol) of Example 4 is used, the dispersion stability of the composite tungsten oxide (CWO) fine particles present in the polyester resin is inferior. The composite tungsten oxide fine particles could not be uniformly dispersed in the polyester resin to the extent that the composite tungsten oxide fine particles were agglomerated violently and became non-uniform in appearance.

[参考例]
特許文献2の実施例5に係る近赤外線吸収ポリエステル樹脂成形体の製造を試みた。
[Reference example]
An attempt was made to manufacture a near-infrared absorbing polyester resin molded product according to Example 5 of Patent Document 2.

まず、複合タングステン酸化物(CWO)微粒子を5質量%、高耐熱性分散剤[ポリエステル主鎖に塩基性官能基を持ち、熱分解温度250℃の分散剤(分散剤e)]を5質量%、トルエンを90質量%秤量した。これ等を、0.3mmφZrO2ビーズを入れたペイントシェーカーに装填し、3時間粉砕・分散処理することによって複合タングステン酸化物微粒子分散液(低沸点溶媒の微粒子分散液)を調製した。 First, 5% by mass of composite tungsten oxide (CWO) fine particles and 5% by mass of a highly heat-resistant dispersant [a dispersant having a basic functional group in the polyester main chain and having a thermal decomposition temperature of 250 ° C. (dispersant e)]. , Toluene was weighed in 90% by weight. These were loaded into a paint shaker containing 0.3 mmφZrO 2 beads, and pulverized and dispersed for 3 hours to prepare a composite tungsten oxide fine particle dispersion (fine particle dispersion of a low boiling point solvent).

上記複合タングステン酸化物微粒子分散液(低沸点溶媒の微粒子分散液)に、分散剤eを更に添加し、分散剤eと複合タングステン酸化物(CWO)微粒子の質量比[分散剤e/CWO微粒子]が3となるように調製した後、複合タングステン酸化物微粒子分散液からスプレードライヤーを用いてトルエンを除去し、タングステン酸化物微粒子分散粉を得た。 The dispersant e is further added to the composite tungsten oxide fine particle dispersion (fine particle dispersion of a low boiling solvent), and the mass ratio of the dispersant e to the composite tungsten oxide (CWO) fine particles [dispersant e / CWO fine particles]. After the preparation was made so as to have a value of 3, toluene was removed from the composite tungsten oxide fine particle dispersion liquid using a spray dryer to obtain a tungsten oxide fine particle dispersion powder.

得られたタングステン酸化物微粒子分散粉とポリエステル樹脂であるポリエチレンテレフタレート樹脂ペレットを、CWO濃度が9.09質量%となるように混合し、ブレンダーを用いて均一に混合した後、二軸押出機を用いて240℃で溶融混練し、押出されたストランドをペレット状にカットし、近赤外線吸収ポリエステル樹脂成形体用コンパウンドを得た。 The obtained tungsten oxide fine particle dispersion powder and polyethylene terephthalate resin pellets, which are polyester resins, are mixed so that the CWO concentration is 9.09% by mass, and the mixture is uniformly mixed using a blender, and then a twin-screw extruder is used. It was melt-kneaded at 240 ° C. and the extruded strands were cut into pellets to obtain a compound for a near-infrared absorbing polyester resin molded product.

得られた近赤外線吸収ポリエステル樹脂成形体用コンパウンドを、一軸押出機を用いて240℃で溶融混練した後、Tダイより押し出し、二軸延伸加工し、厚さ0.01mmに成形することで参考例に係る近赤外線吸収ポリエステル樹脂成形体を得た。 The obtained compound for near-infrared absorbing polyester resin molded body is melt-kneaded at 240 ° C. using a uniaxial extruder, extruded from a T-die, biaxially stretched, and molded to a thickness of 0.01 mm for reference. A near-infrared absorbing polyester resin molded product according to an example was obtained.

参考例に係る近赤外線吸収ポリエステル樹脂成形体の光学特性を測定したところ、樹脂成形体の測定部位により大きなばらつきが存在し、特性の極めてよい部位では可視光透過率70.8%のときの日射透過率は35.2%で、ヘイズ値は1.3%であったが、特性の悪い部位ではヘイズ値が3.0%を超えていた。 When the optical characteristics of the near-infrared absorbing polyester resin molded body according to the reference example were measured, there was a large variation depending on the measured part of the resin molded body, and in the part with extremely good characteristics, the solar radiation when the visible light transmittance was 70.8%. The transmittance was 35.2% and the haze value was 1.3%, but the haze value exceeded 3.0% at the site with poor characteristics.

そして、樹脂成形体の全体を測定した平均値は、可視光透過率73.1%のときの日射透過率は38.1%で、ヘイズ値は2.4%であった。 The average value of the entire resin molded body measured was 38.1% for the solar radiation transmittance and 2.4% for the haze value when the visible light transmittance was 73.1%.

また、近赤外線吸収ポリエステル樹脂成形体中に存在する近赤外線吸収微粒子の平均粒子径は75nmであった。 The average particle size of the near-infrared absorbing fine particles present in the near-infrared absorbing polyester resin molded body was 75 nm.

Figure 0007070099000002
Figure 0007070099000002

Figure 0007070099000003
Figure 0007070099000003

Figure 0007070099000004
Figure 0007070099000004

Figure 0007070099000005
Figure 0007070099000005

本発明に係る近赤外線吸収ポリエステル樹脂組成物成形体は、複合タングステン酸化物微粒子で構成される近赤外線吸収微粒子がポリエステル樹脂中に均一に分散されるため、ヘイズ値が低く、可視光透過率が高く、かつ、近赤外線領域に強い吸収を有する。このため、建造物、自動車、電車、航空機等の構造材に利用される産業上の利用可能性を有している。 In the near-infrared absorbing polyester resin composition molded body according to the present invention, the near-infrared absorbing fine particles composed of composite tungsten oxide fine particles are uniformly dispersed in the polyester resin, so that the haze value is low and the visible light transmittance is high. It is high and has strong absorption in the near infrared region. Therefore, it has industrial applicability used for structural materials such as buildings, automobiles, trains, and aircraft.

Claims (11)

近赤外線吸収ポリエステル樹脂成形体を製造するために用いられる近赤外線吸収ポリエステル樹脂組成物において、
ポリエステル樹脂と近赤外線吸収微粒子と高沸点溶媒を含有し、
上記近赤外線吸収微粒子が、一般式MyWOz(但し、Mは、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In,Tl、Si、Ge、Sn、Pb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Reの内から選択される1種類以上の元素、Wはタングステン、Oは酸素、0.1≦y≦0.5、2.2≦z≦3.0)で示されかつ六方晶の結晶構造を持つ複合タングステン酸化物微粒子で構成されると共に、
上記高沸点溶媒が、沸点が195℃以上でかつ分子両末端に水酸基を有する室温で液状のジオール化合物であるポリエステルポリオール類で構成されることを特徴とする近赤外線吸収ポリエステル樹脂組成物。
In a near-infrared absorbing polyester resin composition used for producing a near-infrared absorbing polyester resin molded product,
Contains polyester resin, near-infrared absorbing fine particles and high boiling point solvent,
The near-infrared absorbing fine particles are the general formula MyWOz (where M is H, He, alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni. , Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, B, F, P, S, Se, Br, Te, Ti, Nb, V , Mo, Ta, Re, one or more elements selected from, W is tungsten, O is oxygen, 0.1 ≦ y ≦ 0.5, 2.2 ≦ z ≦ 3.0) It is composed of composite tungsten oxide fine particles with a hexagonal crystal structure and
A near-infrared absorbing polyester resin composition, wherein the high boiling point solvent is composed of polyester polyols which are diol compounds having a boiling point of 195 ° C. or higher and liquid at room temperature having hydroxyl points at both ends of the molecule.
上記近赤外線吸収微粒子に含まれるM元素が、Cs、Rb、K、Tl、In、Ba、Li、Ca、Sr、Fe、Sn、Al、Cuから選択される少なくとも1種類以上であることを特徴とする請求項に記載の近赤外線吸収ポリエステル樹脂組成物。 The M element contained in the near-infrared absorbing fine particles is at least one selected from Cs, Rb, K, Tl, In, Ba, Li, Ca, Sr, Fe, Sn, Al, and Cu. The near-infrared absorbing polyester resin composition according to claim 1 . 上記ポリエステル樹脂中に存在する近赤外線吸収微粒子の平均粒子径が1nm以上800nm以下であることを特徴とする請求項1または2に記載の近赤外線吸収ポリエステル樹脂組成物。 The near-infrared absorbing polyester resin composition according to claim 1 or 2 , wherein the average particle size of the near-infrared absorbing fine particles present in the polyester resin is 1 nm or more and 800 nm or less. 上記ポリエステル樹脂が、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレートから選択される樹脂であることを特徴とする請求項1~のいずれかに記載の近赤外線吸収ポリエステル樹脂組成物。 The near-infrared absorbing polyester resin composition according to any one of claims 1 to 3 , wherein the polyester resin is a resin selected from polyethylene terephthalate, polyethylene naphthalate, and polybutylene terephthalate. 熱分解温度が200℃以上の分散剤を含むことを特徴とする請求項1~のいずれかに記載の近赤外線吸収ポリエステル樹脂組成物。 The near-infrared absorbing polyester resin composition according to any one of claims 1 to 4 , wherein the dispersant having a thermal decomposition temperature of 200 ° C. or higher is contained. 上記近赤外線吸収ポリエステル樹脂組成物中における近赤外線吸収微粒子の質量をA、ポリエステル樹脂の質量をB、高沸点溶媒の質量をC、および、分散剤の質量をDとした場合、
0.1≦[D/A]≦10、
0.5≦[(C+D)/A]≦50、
5≦[(B+C+D)/A]≦1000
を満たすことを特徴とする請求項に記載の近赤外線吸収ポリエステル樹脂組成物。
When the mass of the near-infrared absorbing fine particles in the near-infrared absorbing polyester resin composition is A, the mass of the polyester resin is B, the mass of the high boiling point solvent is C, and the mass of the dispersant is D.
0.1 ≤ [D / A] ≤ 10,
0.5 ≤ [(C + D) / A] ≤ 50,
5 ≦ [(B + C + D) / A] ≦ 1000
The near-infrared absorbing polyester resin composition according to claim 5 , wherein the condition is satisfied.
請求項1~のいずれかに記載の近赤外線吸収ポリエステル樹脂組成物を、成形して得られることを特徴とする近赤外線吸収ポリエステル樹脂成形体。 A near-infrared absorbing polyester resin molded body obtained by molding the near-infrared absorbing polyester resin composition according to any one of claims 1 to 6 . 上記ポリエステル樹脂成形体中に存在する近赤外線吸収微粒子の平均粒子径が1nm以上800nm以下であることを特徴とする請求項に記載の近赤外線吸収ポリエステル樹脂成形体。 The near-infrared absorbing polyester resin molded body according to claim 7 , wherein the average particle size of the near-infrared absorbing fine particles present in the polyester resin molded body is 1 nm or more and 800 nm or less. 厚さ50μm以下に成形された上記ポリエステル樹脂成形体のヘイズ値が2.0%以下であることを特徴とする請求項またはに記載の近赤外線吸収ポリエステル樹脂成形体。 The near-infrared absorbing polyester resin molded product according to claim 7 or 8 , wherein the polyester resin molded product molded to a thickness of 50 μm or less has a haze value of 2.0% or less. 請求項1~のいずれかに記載の近赤外線吸収ポリエステル樹脂組成物を製造する方法において、
近赤外線吸収微粒子と低沸点溶媒を混合し、湿式媒体ミルを用いて近赤外線吸収微粒子を粉砕かつ分散処理して低沸点溶媒の微粒子分散液を得る工程と、
得られた低沸点溶媒の微粒子分散液に高沸点溶媒を添加する工程と、
高沸点溶媒が添加された上記微粒子分散液から低沸点溶媒を除去して高沸点溶媒の微粒子分散液を得る工程と、
高沸点溶媒の微粒子分散液にポリエステル樹脂を配合し、溶融混練装置を用いて上記微粒子分散液とポリエステル樹脂を溶融混練する工程、
を具備することを特徴とする近赤外線吸収ポリエステル樹脂組成物の製造方法。
In the method for producing a near-infrared absorbing polyester resin composition according to any one of claims 1 to 4 .
A step of mixing near-infrared absorbing fine particles and a low boiling point solvent and crushing and dispersing the near infrared absorbing fine particles using a wet medium mill to obtain a fine particle dispersion of the low boiling point solvent.
The step of adding the high boiling point solvent to the obtained fine particle dispersion of the low boiling point solvent, and
A step of removing the low boiling point solvent from the above fine particle dispersion to which the high boiling point solvent is added to obtain a fine particle dispersion of the high boiling point solvent.
A step of blending a polyester resin with a fine particle dispersion of a high boiling point solvent and melt-kneading the fine particle dispersion and the polyester resin using a melt-kneading device.
A method for producing a near-infrared absorbing polyester resin composition.
請求項のいずれかに記載の近赤外線吸収ポリエステル樹脂組成物を製造する方法において、
近赤外線吸収微粒子と低沸点溶媒および分散剤を混合し、湿式媒体ミルを用いて近赤外線吸収微粒子を粉砕かつ分散処理して低沸点溶媒の微粒子分散液を得る工程と、
得られた低沸点溶媒の微粒子分散液に高沸点溶媒を添加する工程と、
高沸点溶媒が添加された上記微粒子分散液から低沸点溶媒を除去して高沸点溶媒の微粒子分散液を得る工程と、
高沸点溶媒の微粒子分散液にポリエステル樹脂を配合し、溶融混練装置を用いて上記微粒子分散液とポリエステル樹脂を溶融混練する工程、
を具備することを特徴とする近赤外線吸収ポリエステル樹脂組成物の製造方法。
In the method for producing a near-infrared absorbing polyester resin composition according to any one of claims 5 to 6 .
A step of mixing near-infrared absorbing fine particles with a low boiling point solvent and a dispersant, and crushing and dispersing the near infrared absorbing fine particles using a wet medium mill to obtain a fine particle dispersion of a low boiling point solvent.
The step of adding the high boiling point solvent to the obtained fine particle dispersion of the low boiling point solvent, and
A step of removing the low boiling point solvent from the above fine particle dispersion to which the high boiling point solvent is added to obtain a fine particle dispersion of the high boiling point solvent.
A step of blending a polyester resin with a fine particle dispersion of a high boiling point solvent and melt-kneading the fine particle dispersion and the polyester resin using a melt-kneading device.
A method for producing a near-infrared absorbing polyester resin composition.
JP2018103572A 2018-05-30 2018-05-30 Near-infrared absorbing polyester resin composition and its manufacturing method and near-infrared absorbing polyester resin molded product Active JP7070099B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018103572A JP7070099B2 (en) 2018-05-30 2018-05-30 Near-infrared absorbing polyester resin composition and its manufacturing method and near-infrared absorbing polyester resin molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018103572A JP7070099B2 (en) 2018-05-30 2018-05-30 Near-infrared absorbing polyester resin composition and its manufacturing method and near-infrared absorbing polyester resin molded product

Publications (3)

Publication Number Publication Date
JP2019206669A JP2019206669A (en) 2019-12-05
JP2019206669A5 JP2019206669A5 (en) 2021-05-13
JP7070099B2 true JP7070099B2 (en) 2022-05-18

Family

ID=68768325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018103572A Active JP7070099B2 (en) 2018-05-30 2018-05-30 Near-infrared absorbing polyester resin composition and its manufacturing method and near-infrared absorbing polyester resin molded product

Country Status (1)

Country Link
JP (1) JP7070099B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7024608B2 (en) * 2018-05-30 2022-02-24 住友金属鉱山株式会社 Near-infrared absorbing fine particle dispersion and its manufacturing method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006134838A1 (en) 2005-06-13 2006-12-21 Matsushita Electric Industrial Co., Ltd. Resin composition and process for producing the same
JP2011026440A (en) 2009-07-24 2011-02-10 Sumitomo Metal Mining Co Ltd Near-infrared shielding polyester resin composition, near-infrared shielding polyester resin laminate and molded article
JP2014224921A (en) 2013-05-16 2014-12-04 日本化薬株式会社 Infrared intercepting sheet, and manufacturing method for the same
JP2015086243A (en) 2013-10-28 2015-05-07 台虹科技股▲分▼有限公司 Light absorbing composition and light absorbing device made of the same
JP2016164123A (en) 2016-05-18 2016-09-08 住友金属鉱山株式会社 Heat-ray shielding membrane, heat-ray shielding sheet or film, heat-ray shielding particulate dispersion, and heat-ray shielding particulate dispersion powder
US20180002501A1 (en) 2016-07-04 2018-01-04 Nan Ya Plastics Corporation Transparent polyester film with low visible light transmittance and high infrared-blocking rate and method for making the same
JP2019206670A (en) 2018-05-30 2019-12-05 住友金属鉱山株式会社 Near-infrared absorptive fine particle dispersion liquid and production method of the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4520775B1 (en) * 1965-08-27 1970-07-15
JPS6429433A (en) * 1987-07-24 1989-01-31 Daicel Huels Ltd Addition of solid additive
JP2636436B2 (en) * 1989-09-27 1997-07-30 東レ株式会社 Method for producing polyester composition
JP2564957B2 (en) * 1990-02-27 1996-12-18 東レ株式会社 Method for producing polyester composition

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006134838A1 (en) 2005-06-13 2006-12-21 Matsushita Electric Industrial Co., Ltd. Resin composition and process for producing the same
JP2011026440A (en) 2009-07-24 2011-02-10 Sumitomo Metal Mining Co Ltd Near-infrared shielding polyester resin composition, near-infrared shielding polyester resin laminate and molded article
JP2014224921A (en) 2013-05-16 2014-12-04 日本化薬株式会社 Infrared intercepting sheet, and manufacturing method for the same
JP2015086243A (en) 2013-10-28 2015-05-07 台虹科技股▲分▼有限公司 Light absorbing composition and light absorbing device made of the same
JP2016164123A (en) 2016-05-18 2016-09-08 住友金属鉱山株式会社 Heat-ray shielding membrane, heat-ray shielding sheet or film, heat-ray shielding particulate dispersion, and heat-ray shielding particulate dispersion powder
US20180002501A1 (en) 2016-07-04 2018-01-04 Nan Ya Plastics Corporation Transparent polyester film with low visible light transmittance and high infrared-blocking rate and method for making the same
JP2019206670A (en) 2018-05-30 2019-12-05 住友金属鉱山株式会社 Near-infrared absorptive fine particle dispersion liquid and production method of the same

Also Published As

Publication number Publication date
JP2019206669A (en) 2019-12-05

Similar Documents

Publication Publication Date Title
KR101507186B1 (en) Composition for producing vinyl chloride film for shielding heat ray, method for production of the composition, and vinyl chloride film for shielding heat ray
EP2818519B1 (en) Polycarbonate resin composition containing dispersed composite-tungsten-oxide microparticles and radiated-heat-blocking molded body and radiated-heat-blocking laminate using said composition
JP4632094B2 (en) Manufacturing method of high heat-resistant masterbatch, heat ray shielding transparent resin molding, and heat ray shielding transparent laminate
EP3712223A1 (en) Surface-treated infrared-absorbing fine particles, surface-treated infrared-absorbing fine particle powder, infrared-absorbing fine particle dispersion in which said surface-treated infrared-absorbing fine particles are used, infrared-absorbing fine particle dispersoid, and methods for producing these
JP6299559B2 (en) Heat ray shielding particles, heat ray shielding particle dispersion, heat ray shielding particle dispersion, heat ray shielding particle dispersion combined transparent base material, infrared absorbing transparent base material, method for producing heat ray shielding particles
JPWO2018020819A1 (en) Near infrared absorbing fine particle dispersion, near infrared absorbing fine particle dispersion, near infrared absorbing transparent base, near infrared absorbing transparent base
JP5257626B2 (en) High heat resistant masterbatch, heat ray shielding transparent resin molding, and heat ray shielding transparent laminate
WO2016031969A1 (en) Aggregate of hexaboride microparticles, hexaboride microparticle dispersion, hexaboride microparticle-dispersed body, laminated transparent base material with hexaboride microparticle-dispersed body, infrared-absorptive film, and infrared-absorptive glass
WO2017094909A1 (en) Heat ray shielding microparticle, heat ray shielding microparticle dispersion solution, heat ray shielding film, heat ray shielding glass, heat ray shielding dispersion body, and heat ray shielding laminated transparent base material
WO2016010156A1 (en) Heat-ray-shielding microparticles, heat-ray-shielding microparticle liquid dispersion, heat-ray-shielding film, heat-ray-shielding glass, heat-ray-shielding dispersion, and heat-ray-shielding laminated transparent substrate
JP6879127B2 (en) Heat ray shielding particles, manufacturing method of heat ray shielding particles, heat ray shielding particle dispersion liquid, manufacturing method of heat ray shielding particle dispersion liquid, heat ray shielding particle dispersion, heat ray shielding laminated transparent base material, heat ray shielding transparent base material
CN105722914A (en) Heat ray-shielding microparticle-containing composition and method for producing same, heat ray-shielding film, and heat ray-shielding laminated transparent base material
JP5898397B2 (en) Near-infrared shielding polyester resin composition, near-infrared shielding polyester resin laminate, molded article and method for producing the same
JP2012082326A (en) Master batch containing high heat-resistant heat ray shielding component, production method of the master batch, high heat-resistant heat ray shielding transparent resin molded article, and high heat-resistant heat ray shielding transparent laminate
JP5257381B2 (en) Near-infrared shielding polyester resin composition, molded article thereof, and laminate thereof
JP7070099B2 (en) Near-infrared absorbing polyester resin composition and its manufacturing method and near-infrared absorbing polyester resin molded product
JP7276159B2 (en) Dispersion of near-infrared absorbing material fine particles, near-infrared absorbing material, near-infrared absorbing laminate, and laminated structure for near-infrared absorbing
JP7024608B2 (en) Near-infrared absorbing fine particle dispersion and its manufacturing method
JP5061665B2 (en) Masterbatch, method for producing the same, molded body using the masterbatch, and laminate using the molded body
JP6949304B2 (en) Masterbatch containing heat ray absorbing component and its manufacturing method, heat ray absorbing transparent resin molded body, and heat ray absorbing transparent laminate
JP2009144037A (en) Tungsten oxide microparticle dispersion for addition to resin, molded product of tungsten oxide microparticle-dispersed vinyl chloride resin, and method for producing molded product of tungsten oxide microparticle-dispersed vinyl chloride resin
WO2024106139A1 (en) Infrared-absorbing material fine particle dispersion liquid and infrared-absorbing material fine particle dispersion
JP2023162692A (en) Method for producing cesium tungsten oxide particle and method for evaluating cesium tungsten oxide particle
JP2024159408A (en) Dispersion powder and its manufacturing method, heat ray shielding resin molded body, and heat ray shielding laminate
JP2023020318A (en) Laminated structure

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210329

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220418

R150 Certificate of patent or registration of utility model

Ref document number: 7070099

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150