JP7064338B2 - Indirect heating type sludge drying device - Google Patents
Indirect heating type sludge drying device Download PDFInfo
- Publication number
- JP7064338B2 JP7064338B2 JP2018011000A JP2018011000A JP7064338B2 JP 7064338 B2 JP7064338 B2 JP 7064338B2 JP 2018011000 A JP2018011000 A JP 2018011000A JP 2018011000 A JP2018011000 A JP 2018011000A JP 7064338 B2 JP7064338 B2 JP 7064338B2
- Authority
- JP
- Japan
- Prior art keywords
- dryer
- sludge
- indirect heating
- heating type
- heat transfer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Drying Of Solid Materials (AREA)
- Treatment Of Sludge (AREA)
Description
本発明は、廃棄物である汚泥を搬送しつつ加熱し乾燥させる乾燥機を複数段備える間接加熱型汚泥乾燥装置に関する。 The present invention relates to an indirect heating type sludge drying device provided with a plurality of stages of dryers that heat and dry sludge as waste while transporting it.
この種の乾燥機は、原料中の水分、溶剤を乾燥させるための装置であり、食品製造、下水汚泥やごみ焼却プラント等の種々のプラントにおいて使用されている。乾燥方式には、熱風を材料に直接当てて乾燥する直接加熱方式と、蒸気等の熱媒体により金属を加熱し、その伝熱により材料を乾燥させる間接加熱方式とがある。なお、これらの乾燥機は、乾燥の他にも、加熱・冷却・焼成・焙煎、反応などの処理工程にも採用されている。 This type of dryer is a device for drying moisture and solvent in raw materials, and is used in various plants such as food production, sewage sludge and waste incineration plants. The drying method includes a direct heating method in which hot air is directly applied to the material to dry the material, and an indirect heating method in which the metal is heated by a heat medium such as steam and the material is dried by the heat transfer thereof. In addition to drying, these dryers are also used in processing processes such as heating, cooling, baking, roasting, and reaction.
直接乾燥方式としては、気流乾燥機、流動層乾燥機、ロータリードライヤ等が知られており、間接加熱方式としては、水蒸気管付回転乾燥機(例えば特許文献1の図5、特許文献2等)や溝型攪拌乾燥機(例えば特許文献1の図4等)等が知られている。間接加熱方式は、直接加熱方式に比較して、排ガスが少ないというメリットがある。
As a direct drying method, an air flow dryer, a fluidized layer dryer, a rotary dryer and the like are known, and as an indirect heating method, a rotary dryer with a steam pipe (for example, FIG. 5 of Patent Document 1,
水蒸気管付き回転乾燥機は、例えば特許文献1の図5に示されているように、回転円筒体の内部に全長にわたって延設された加熱管が同心円状に多数本配設されており、これらの加熱管の内部に通した熱媒の熱を、加熱管で形成された伝熱体を通じて被処理物である脱水汚泥に間接的に伝熱させて乾燥させる。 In the rotary dryer with a steam tube, for example, as shown in FIG. 5 of Patent Document 1, a large number of heating tubes extending over the entire length are concentrically arranged inside the rotary cylindrical body. The heat of the heat medium passed through the inside of the heating tube is indirectly transferred to the dehydrated sludge as the object to be treated through the heat transfer body formed by the heating tube to be dried.
図1に示すように、従来の溝型攪拌乾燥機100は、溝型(トラフ型)で低速攪拌型の伝導伝熱乾燥機であり、伝熱ジャケット2を有する溝型のトラフ3の内部に、単一または複数本の回転軸4に伝熱翼5(パドル翼とも言う。)が適宜間隔で配列された伝熱体が回転自在に支持されている。トラフ3は、一端側に被処理汚泥である脱水汚泥を受け入れるために受入口6を備え、他端側に乾燥汚泥を排出するための排出口7を備えている。また、伝熱ジャケット2には、熱媒を供給する熱媒供給口8と、熱媒を排出するための熱媒排出口9とが設けられている。回転軸4及び伝熱翼5は、内部を連通する中空とされており、熱媒供給口8から導入された熱媒が、前記中空を通ってドレンとなって熱媒排出口9から排出される。回転軸4は、トラフ3の外側で、伝動チェーン10等を介して電動機11と駆動連結されて回転駆動する。更に、トラフ3には、乾燥により発生した水蒸気を排出するため、排気ファン(図示せず。)が設けられており、トラフ3に設けられたキャリアガス入口12からキャリアガス(外部空気)をトラフ3内に吸い込み、キャリアガスとともに水蒸気をトラフ3に設けられた排気口13から排気する。伝熱ジャケット2にも、ジャケット用熱媒供給口14とジャケット用熱媒排出口15が設けられている。トラフ3は、排出口7の側が低くなる下り勾配の傾斜を持たせて設置することもできる。
As shown in FIG. 1, the conventional groove-type stirring /
間接加熱型汚泥乾燥機は、熱媒として蒸気、熱媒油、或いは高温水が用いられ、熱媒供給口8から供給された熱媒(図1の例では蒸気)が回転軸4及び伝熱翼5の内部空間を通って熱媒排出口9から排出される間に、受入口6から供給された汚泥との接触により汚泥を乾燥させながら排出口7へと搬送するとともに、乾燥により発生した水蒸気がキャリアガスとともに排気口13から排気されて、投入された原料(脱水汚泥)である被乾燥汚泥が排出口7において目標とする含水率まで乾燥させられる。
In the indirect heating type sludge dryer, steam, heat medium oil, or high-temperature water is used as the heat medium, and the heat medium (steam in the example of FIG. 1) supplied from the heat
上記従来の間接加熱型汚泥乾燥機は、流動層を形成し難い性状の湿潤原料や付着性の強い湿潤原料を高い熱効率で乾燥処理できることから、省エネルギー型乾燥機として広く採用されており、溝型攪拌乾燥機については、乾燥をはじめ加熱・冷却、焼成・焙煎、反応等の処理工程にも採用されている。 The above-mentioned conventional indirect heating type sludge dryer is widely used as an energy-saving type dryer because it can dry a wet raw material having a property that makes it difficult to form a fluidized bed or a wet raw material having a strong adhesiveness with high thermal efficiency, and is a groove type. The stirring dryer is also used in processing processes such as drying, heating / cooling, baking / roasting, and reaction.
伝熱翼を備える溝型攪拌乾燥機では、伝熱体を構成する伝熱翼の回転数が高いほど伝熱面積あたりの蒸発速度は大きくなり、装置としてコンパクト化し得ると考えられていたため、伝熱翼の回転数を出来るだけ上げてコンパクト化を図る試みがなされていたが、回転数が高いほど消費電力が大きくなるという問題があった。 In a groove-type agitator / dryer equipped with heat transfer blades, it was thought that the higher the rotation speed of the heat transfer blades constituting the heat transfer body, the higher the evaporation rate per heat transfer area, and the more compact the device could be. Attempts have been made to increase the number of rotations of the thermal blades as much as possible to make them compact, but there is a problem that the higher the number of rotations, the higher the power consumption.
そこで本発明は、蒸発速度を下げることなく、消費電力を抑え、コンパクト化も可能な間接加熱型汚泥乾燥装置を提供することを主たる目的とする。 Therefore, it is a main object of the present invention to provide an indirect heating type sludge drying apparatus capable of reducing power consumption and making it compact without lowering the evaporation rate.
上記目的を達成するため、本発明に係る間接加熱型乾汚泥燥装置は、第1の手段として、被乾燥汚泥を、受入口で受け入れ、回転軸の軸方向に間隔をおいて設けられた複数の伝熱翼により、攪拌、搬送しつつ加熱乾燥させ、排出口から排出する乾燥機を、複数台備え、上流の前記乾燥機が排出した被乾燥汚泥を順次下流の前記乾燥機で受け入れるように配設されるとともに、最上流の前記乾燥機の回転軸が直下流の前記乾燥機の回転軸より低速回転となるように構成されていることを特徴とする。 In order to achieve the above object, the indirect heating type dry sludge drying apparatus according to the present invention receives the sludge to be dried at the receiving port as the first means, and is provided at intervals in the axial direction of the rotating shaft. It is equipped with a plurality of dryers that are heated and dried while being stirred and conveyed by the heat transfer blades of the above, and are discharged from the discharge port so that the sludge to be dried discharged by the upstream dryer is sequentially received by the downstream dryer. It is characterized in that it is arranged so that the rotation axis of the most upstream dryer is rotated at a lower speed than the rotation axis of the dryer immediately downstream.
本発明に係る間接加熱型汚泥乾燥装置は、第2の手段として、上記第1の手段において、前記複数の乾燥機の各々の機内温度を検出するための温度検出器を更に備え、前記温度検出器の検出値に基づいて前記複数の乾燥機の各々の回転軸の回転速度が設定されている。 The indirect heating type sludge drying device according to the present invention further includes, as a second means, a temperature detector for detecting the in-machine temperature of each of the plurality of dryers in the first means, and the temperature detection. The rotation speed of each rotation axis of the plurality of dryers is set based on the detection value of the device.
本発明に係る間接加熱型汚泥乾燥装置は、第3の手段として、上記第1又は第2の手段において、最上流の前記乾燥機において被乾燥汚泥が60℃以上~100℃未満に予熱されて最上流の前記乾燥機の前記排出口から排出されるように最上流の前記乾燥機の回転軸の回転速度が制御される。 In the indirect heating type sludge drying apparatus according to the present invention, as a third means, in the first or second means, the sludge to be dried is preheated to 60 ° C. or higher and lower than 100 ° C. in the most upstream dryer. The rotation speed of the rotation shaft of the most upstream dryer is controlled so as to be discharged from the discharge port of the most upstream dryer.
本発明に係る間接加熱型汚泥乾燥装置は、第4の手段として、上記第1~第3の手段の何れかにおいて、上流の前記乾燥機の前記受入口と前記排出口の中間部から、次下流の前記乾燥機の前記受入口と前記排出口との中間部へ、被乾燥汚泥をバイパスするバイパスラインと、前記バイパスラインを開閉するための開閉手段と、を更に備える。 In the indirect heating type sludge drying apparatus according to the present invention, as a fourth means, in any of the first to third means, from the intermediate portion between the inlet and the outlet of the dryer upstream, the following A bypass line for bypassing sludge to be dried and an opening / closing means for opening / closing the bypass line are further provided in the intermediate portion between the inlet / outlet and the discharge port of the dryer downstream.
本発明に係る間接加熱型汚泥乾燥装置は、第5の手段として、上記第1~第4の手段の何れかにおいて、前記複数の乾燥機の各々が、前記排出口から排出する被乾燥汚泥の排出量を調整するための高さ調整可能な堰部を更に備える。 In the indirect heating type sludge drying apparatus according to the present invention, as a fifth means, in any of the first to fourth means, each of the plurality of dryers discharges sludge to be dried from the discharge port. It is further provided with a height-adjustable weir for adjusting the amount of discharge.
本発明によれば、最上流の乾燥機の回転軸が直下流の乾燥機の回転軸より低速で回転するように構成されているため、高粘度の予熱ゾーンの高負荷の影響を受けず、蒸発ゾーンや解砕ゾーンでの回転数を上げることができ、消費電力を抑えつつも、各機内の汚泥形状に応じて最大蒸発量を得ることが可能となる。 According to the present invention, since the rotation axis of the most upstream dryer is configured to rotate at a lower speed than the rotation axis of the dryer immediately downstream, it is not affected by the high load of the high viscosity preheating zone. The number of revolutions in the evaporation zone and the crushing zone can be increased, and the maximum amount of evaporation can be obtained according to the sludge shape in each machine while suppressing the power consumption.
本発明を理解するために、先ず、乾燥機が一台の従来の溝型攪拌乾燥機(以下、「従来機」と言う。)を用いた乾燥試験について説明する。 In order to understand the present invention, first, a drying test using a conventional groove-type stirring dryer (hereinafter referred to as "conventional machine") in which one dryer is used will be described.
図1に示した構造を有する従来機を用いて、回転軸を異なる所定の回転速度(低速、高速)で回転させ、機内各エリアの汚泥含水率と蒸発速度を計測した乾燥試験結果を示すグラフを図3に示す。 A graph showing the results of a drying test in which the sludge moisture content and evaporation rate of each area in the machine are measured by rotating the rotation axis at different predetermined rotation speeds (low speed and high speed) using the conventional machine having the structure shown in FIG. Is shown in FIG.
なお、試験に用いた従来機の仕様は、伝熱面積が約10m2、機長約4m、パドル径φ300mmであり、熱媒として0.5MPa程度の飽和蒸気を用いた。原料として、脱水処理により含水率80パーセント程度の下水汚泥を用いた。含水率は下水汚泥試験法に定める方法により測定した。蒸発速度は、乾燥機の受入口6及び排出口7の其々の汚泥含水率と汚泥供給量とから算出される時間当たりの蒸発水分量を、乾燥機の伝熱面積で除した数値とした。回転軸の回転速度(低速、高速)は、高速に対して低速の方が1割程度消費電力が低くなる設定とした。
The specifications of the conventional machine used in the test were that the heat transfer area was about 10 m 2 , the machine length was about 4 m, the paddle diameter was φ300 mm, and saturated steam of about 0.5 MPa was used as the heat medium. As a raw material, sewage sludge having a water content of about 80% was used by dehydration treatment. The water content was measured by the method specified in the sewage sludge test method. The evaporation rate is a value obtained by dividing the amount of evaporated water per hour calculated from the sludge water content and sludge supply amount of each of the
図3で示される蒸発速度は、乾燥機内の複数の採取ポイントで汚泥を採取し、各採取ポイント間での長さの比例にて算出した伝熱面積で除することにより算出した数値をグラフ上にプロットし(プロットした点は図示されていない。)、プロットされた各数値を直線で結んで示している。 The evaporation rate shown in FIG. 3 is a numerical value calculated by collecting sludge at a plurality of sampling points in the dryer and dividing by the heat transfer area calculated in proportion to the length between the sampling points on the graph. (Plotted points are not shown), and each plotted value is shown by connecting them with a straight line.
図3のグラフから分かるように、従来機では、乾燥機の受入口6側の高含水率ゾーン(伝熱翼枚数が10枚目迄の範囲)は伝熱翼5を低速で回転させた方が蒸発速度は速く、伝熱面積が有効に使われている。ただし、回転軸4が低速回転の方が消費電力は小さくなる。
As can be seen from the graph of FIG. 3, in the conventional machine, the high water content zone on the
一方、図3のグラフに示されているように、従来機では、伝熱翼枚数10枚目以降では伝熱翼を高速で回転させた方が蒸発速度は速くなる。しかし、高速回転では消費電力が大きくなる。 On the other hand, as shown in the graph of FIG. 3, in the conventional machine, the evaporation rate is faster when the heat transfer blades are rotated at high speed after the 10th heat transfer blade number. However, power consumption increases at high speed rotation.
これらの現象は、図3のグラフに示された脱水汚泥の含水率の推移からも分かるように、従来機では、伝熱翼枚数10枚目までは、脱水汚泥の予熱ゾーンであること、且つ、温度も低く粘度が高いことから、伝熱翼を低速で回転させた方が蒸発速度、低消費電力の観点から有利であると認められる。一方、図3のグラフで、伝熱翼枚数10枚目以降は、汚泥の温度が上がり、粘度が低くなることから、伝熱翼を高速で回転させた方が伝熱翼と汚泥との接触による伝熱効果が増すため、蒸発速度が速くなっているものと考えられる。 As can be seen from the transition of the water content of the dehydrated sludge shown in the graph of FIG. 3, in the conventional machine, up to the 10th heat transfer blade is a preheating zone of the dehydrated sludge, and these phenomena are present. Since the temperature is low and the viscosity is high, it is recognized that rotating the heat transfer blade at a low speed is advantageous from the viewpoint of evaporation rate and low power consumption. On the other hand, in the graph of FIG. 3, after the 10th number of heat transfer blades, the temperature of the sludge rises and the viscosity decreases. Therefore, it is better to rotate the heat transfer blades at high speed so that the heat transfer blades come into contact with the sludge. It is considered that the evaporation rate is faster because the heat transfer effect is increased.
また、従来機では、伝熱翼回転時にかかる負荷は、受入口側の予熱ゾーンでの高含水率で粘度の高い箇所での負荷に支配されるものと予想される。そのため、予熱ゾーン以外では、高速で回転させても実際には伝熱翼を回転駆動する電動機にかかる負荷が小さいと考えられる。 Further, in the conventional machine, the load applied at the time of rotation of the heat transfer blade is expected to be dominated by the load at the place where the water content is high and the viscosity is high in the preheating zone on the receiving port side. Therefore, in areas other than the preheating zone, it is considered that the load applied to the motor that actually rotationally drives the heat transfer blades is small even if the heat transfer blades are rotated at high speed.
図4に従来機の機内の汚泥の状態についての模式図を示す。従来機で、図1を参照して、トラフ3内に温度検出器(熱電対)を前段位置F(受入口直下)、中段位置M(機内長手方向の中央部)、後段位置R(排出口直前)に設け、汚泥を乾燥処理した際の温度測定した結果、前段位置Fでは60℃以上100℃未満、中段位置Mではほぼ100℃、後段位置Rでは乾燥汚泥含水率の違いにより90℃~120℃となっていた。
FIG. 4 shows a schematic diagram of the sludge state in the conventional machine. In the conventional machine, referring to FIG. 1, the temperature detector (thermocouple) is placed in the
従来機では、機内が概ね4つのゾーンに分けられ、受入口側から予熱ゾーン(100℃未満)、蒸発ゾーン(ほぼ100℃程度)、解砕ゾーン(粘土状から粒状に分解が行われるゾーンで、100℃を下回る。)、仕上ゾーン(粒状になった後に再度蒸発が行われるゾーンで、100℃未満)に分けられる。但し、仕上ゾーンでの滞留時間が長いと汚泥の乾燥が進み、汚泥含水率が20%を下回ると汚泥温度が100℃以上になる。 In the conventional machine, the inside of the machine is roughly divided into four zones, from the inlet side to the preheating zone (less than 100 ° C), the evaporation zone (about 100 ° C), and the crushing zone (the zone where clay-like to granular decomposition is performed. , Below 100 ° C.) and a finishing zone (a zone where evaporation is performed again after granulation, below 100 ° C.). However, if the residence time in the finishing zone is long, the sludge dries, and if the sludge water content is less than 20%, the sludge temperature becomes 100 ° C. or higher.
上記従来機による実験結果を踏まえ、本発明の実施形態について、以下に図5~図7を参照しつつ説明する。なお、従来技術を含めて全図を通じて同一又は類似の構成部分に同符号を付している。 An embodiment of the present invention will be described below with reference to FIGS. 5 to 7 based on the experimental results of the conventional machine. The same or similar components are designated by the same reference numerals throughout the drawings including the prior art.
図5は、本発明に係る間接加熱型汚泥乾燥装置の第1実施形態を示す概略構成図である。第1実施形態の間接加熱型汚泥乾燥機1Aは、2台の乾燥機100a、100bを備えている。其々の乾燥機100a、100bは、被乾燥汚泥を、受入口6a、6bで受け入れ、回転軸4a、4bの軸方向に間隔をおいて設けられた複数の伝熱翼5a、5bにより、攪拌、搬送しつつ加熱乾燥させ、排出口7、7から排出する。
FIG. 5 is a schematic configuration diagram showing a first embodiment of the indirect heating type sludge drying apparatus according to the present invention. The indirect heating
上流の乾燥機100aの排出口7aに下流の乾燥機100bの受入口6bが接続され、上流の乾燥機100aから排出された被乾燥汚泥は、下流の乾燥機100bで受け入れるように配設されている。図示例において、各乾燥機100a、100bに其々1本の回転軸4a、4bが図示されているが、各乾燥機100a、100bに複数本の回転軸を並列配置し、其々の回転軸に伝熱翼を設けることもできる。
The receiving
図5において詳細は図示省略するが、乾燥機100a、100bは、図1で示した従来例と同様に、回転軸4a、4b及び伝熱翼5a、5bの内部の中空を熱媒が流通されることによって、被乾燥汚泥を伝熱により間接加熱するとともに、回転軸を回転駆動する電動機、熱媒供給口、熱媒排出口、排気ファン、伝熱ジャケット等を備えることができる。
Although the details are not shown in FIG. 5, in the
本発明の第1実施形態において、上流の乾燥機100aは予熱ゾーンにあたる高粘度ゾーンに該当する。上流の乾燥機100aにおいて被乾燥汚泥が60℃以上~100℃未満に予熱されて排出口7aから排出されるように乾燥機100aの回転軸4aの回転速度が制御される。
In the first embodiment of the present invention, the
予熱ゾーンでは、従来機で既に説明したように、一般に、処理物である汚泥の充填率が高く、高粘度で温度が低いことから、伝熱翼の回転によりかかる負荷(トルク)が大きくなる。そのため、回転軸4aの回転数を低くして運転することで消費電力の最小化が可能となる。一方、伝熱翼から汚泥への伝熱による予熱を行うゾーンであることから、必要以上に回転数を上げて伝熱翼表面の汚泥を速やかに更新する必要がないことから、低い回転数の方が蒸発速度としては高くなることがある。
In the preheating zone, as already explained in the conventional machine, in general, the sludge filling rate as a processed product is high, the viscosity is high, and the temperature is low, so that the load (torque) applied by the rotation of the heat transfer blade is large. Therefore, it is possible to minimize the power consumption by operating the
本発明の第1実施形態において下流の乾燥機100bは、蒸発ゾーン、解砕ゾーン、及び仕上ゾーンに該当する。従来機では、図4からも分かるように、中段から後段にかけて、乾燥により汚泥の充満率は低下し、伝熱翼との接触回数を増やすためには回転数を増やすことが蒸発速度を上げるのに寄与するが、前段の予熱ゾーンでの回転数も同時に上がってしまうことから、前段の予熱ゾーンでの蒸発速度は低下し、消費電力としては増加してしまう。
In the first embodiment of the present invention, the
そこで、本発明の第1実施形態では、上流の乾燥機100aの回転軸4aが直下流の乾燥機100bの回転軸4bより低速で回転するように、言い換えると、下流の乾燥機100bの回転軸4bを上流の乾燥機100aの回転軸4aより速い速度で回転するように構成されている。
Therefore, in the first embodiment of the present invention, the
斯かる構成により、上流の乾燥機100aを予熱ゾーンに充て、下流の乾燥機100bは、高粘度の予熱ゾーンの高負荷の影響を受けず、蒸発ゾーンや解砕ゾーンでの回転数を上げることができ、消費電力を抑えつつも、各機内の汚泥形状に応じて最大蒸発量を得ることが可能となる。なお、回転軸4a、4bの回転速度は、回転軸4a、4bを回転駆動する図外の電動機(制御モータ)の回転数を制御する等により調節することができる。
With such a configuration, the
乾燥機100a、100bの各々は、機内温度を検出するための温度検出器Tを備えることができる。温度検出器Tは、例えば、受入口6a、6bの近傍、排出口7a、7bの近傍、及び、受入口と排出口との中間位置に配設することができるが、配設する個数及び位置は限定されない。温度検出器Tは、例えば熱電対とし、トラフ3の内面であって被乾燥汚泥が接触し得る位置に設置することができる。
Each of the
上記したように従来機では、被乾燥汚泥は、乾燥が進んでいる蒸発ゾーンではほぼ100℃に保たれることから、蒸発ゾーンより上流の予熱ゾーンは100℃未満で粘度が高い状態であり、予熱ゾーンから蒸発ゾーンに入って徐々に乾燥が進み、解砕により温度が再度変動する時点では乾燥がある程度進んで粘度が低くなっている。ただし、予熱ゾーンで含水率が20%を下回ると100℃以上となる。 As described above, in the conventional machine, the sludge to be dried is kept at about 100 ° C. in the evaporation zone where drying is progressing, so that the preheating zone upstream of the evaporation zone is in a high viscosity state at less than 100 ° C. Drying gradually progresses from the preheating zone to the evaporation zone, and when the temperature fluctuates again due to crushing, the drying progresses to some extent and the viscosity becomes low. However, if the water content is less than 20% in the preheating zone, the temperature becomes 100 ° C. or higher.
従って、本発明の第1実施形態においては、例えば排出口7b付近に設けられた温度検出器Tでの検出結果により、回転軸4a、4bの回転数の制御を行うことできる。この場合、20%を下回る含水率(絶対乾燥に近い状態)で被乾燥汚泥を排出口7bから排出させる目的であれば、100℃以上の設定温度とし、逆に、被乾燥汚泥を20%~40%程度でいくらかの水分を含んだ粒状で排出口7から排出させる目的であれば、100℃未満の設定温度とし、排出口7b付近に設けられた温度検出器Tが設定温度となるように回転軸4a、4bの回転数を制御する。
Therefore, in the first embodiment of the present invention, the rotation speed of the
次に、本発明に係る間接加熱型汚泥乾燥機の第2実施形態について図6を参照して説明する。 Next, a second embodiment of the indirect heating sludge dryer according to the present invention will be described with reference to FIG.
第2実施形態の間接加熱型汚泥乾燥機1Bは、3台の乾燥機100a、100b、100cが上下3段に配設され、最上流(最上段)の乾燥機100aの排出口7にその直下流(直下段)の2段目の乾燥機100bの受入口6bが接続され、2段目の乾燥機100bの排出口7bに最下流(最下段)の3段目の乾燥機100cの受入口6cが接続されている。
In the indirect heating
図示例の第2実施形態では、上下段で機内の搬送方向が逆となっているが、それに限らず、例えば搬送方向を同方向にして排出口7a(7b、7c)から受入口6a(6b、6c)の間に傾斜シュート(図示せず。)を設けることもできる。
In the second embodiment of the illustrated example, the transport directions in the machine are opposite in the upper and lower stages, but the transport direction is not limited to this, for example, from the
第2実施形態では、最上流(最上段)の乾燥機100aの回転軸4aが直下流(2段目)の乾燥機100bの回転軸4bより低速回転となるように構成されている。また、2段目の乾燥機100bの回転軸4aがその直下流(3段目)の乾燥機100cの回転軸4cより低速回転となるように構成されている。
In the second embodiment, the
乾燥機100a、100b、100cの各々は、排出口7a,7b,7cから排出する被乾燥汚泥の排出量を調整するための高さ調整可能な堰部20を備えている。
Each of the
第2実施形態のように乾燥機を多段とし、堰部20を備えることにより、2段目、最下段(3段目)の被乾燥汚泥充填率を調整することができることから、従来機と比較して伝熱翼5と汚泥との接触頻度がより多くなり、従来機に対して蒸発速度が高くなる。その結果、従来機と比較した際の乾燥機全体(複数段の乾燥機全体)での平均蒸発速度は、本発明の間接加熱型汚泥乾燥機の方が早くなることから、必要伝熱面積を従来機より小さくできるため、装置としてコンパクト化が可能であり、コスト縮減も可能となる。
As in the second embodiment, the dryer is multi-staged and the
次に本発明に係る間接加熱型汚泥乾燥機の第3実施形態について、図7を参照して説明する。 Next, a third embodiment of the indirect heating type sludge dryer according to the present invention will be described with reference to FIG. 7.
第3実施形態の間接加熱型汚泥乾燥機1Cは、第2実施形態の変形例であって、最上流(最上段)の乾燥機100aの受入口6aと排出口7aの中間部から、次下流(2段目)の乾燥機100bの受入口6bと排出口7bとの中間部へ、被乾燥汚泥をバイパスするバイパスライン21と、バイパスライン21を開閉するための開閉手段22と、を備え、更に、2段目の乾燥機100bの受入口6bと排出口7bとの中間部から、次下流(3段目)の乾燥機100cの受入口6cと排出口7cとの中間部へ、被乾燥汚泥をバイパスするバイパスライン23と、バイパスライン23を開閉するための開閉手段24と、を備えている。開閉手段22、24は、例えば、スライドゲート若しくはロータリーバルブを採用することができる。
The indirect heating
このようなバイパスライン21、23を設けることにより、乾燥機100a、100b、100c内の一部又はその多くを下流(後段)の乾燥機に排出することができる。それにより、投入汚泥量が少ない場合や、投入する脱水汚泥含水率が低い場合等、伝熱面積を調整可能とすることで、排出される乾燥汚泥の含水率を調整又は一定に保つことができる。
By providing
本発明は、上記の実施形態に限定解釈されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更が可能である。上記実施形態では、乾燥機が2台又は3台の実施形態を示したが、4台以上の乾燥機を備えてもよい。 The present invention is not limited to the above embodiment, and various modifications can be made without departing from the gist of the present invention. In the above embodiment, two or three dryers are shown, but four or more dryers may be provided.
1A 間接加熱型汚泥乾燥機
1B 間接加熱型汚泥乾燥機
1C 間接加熱型汚泥乾燥機
2 伝熱ジャケット
3 トラフ
4、4a、4b、4c 回転軸
5、5a、5b、5c 伝熱翼
6、6a、6b、6c 受入口
7、7a、7b、7c 排出口
8 熱媒供給口
9 熱媒排出口
10 伝動ベルト
11 電動機
12 キャリアガス入口
13 排気口
14 ジャケット用熱媒供給口
15 ジャケット用熱媒排出口
20 堰部
21 バイパスライン
22 開閉手段
23 バイパスライン
24 開閉手段
100 溝型攪拌乾燥機
100a 乾燥機
100b 乾燥機
100c 乾燥機
T 温度検出器
1A Indirect heating
Claims (4)
上流の前記乾燥機が排出した被乾燥汚泥を順次下流の前記乾燥機で受け入れるように配設されるとともに、最上流の前記乾燥機の回転軸が直下流の前記乾燥機の回転軸より低速で回転するように制御されており、
上流の前記乾燥機の前記受入口と前記排出口の中間部から、次下流の前記乾燥機の前記受入口と前記排出口との中間部へ、被乾燥汚泥をバイパスするバイパスラインと、
前記バイパスラインを開閉するための開閉手段と、を備える
ことを特徴とする、間接加熱型汚泥乾燥装置。 Multiple dryers that receive sludge to be dried at the receiving port, heat-dry it while stirring and transporting it with multiple heat transfer blades provided at intervals in the axial direction of the rotating shaft, and discharge it from the discharge port. Prepare,
The sludge to be dried discharged by the upstream dryer is arranged so as to be sequentially received by the downstream dryer, and the rotation axis of the upstream dryer is slower than the rotation axis of the dryer immediately downstream. It is controlled to rotate and
A bypass line that bypasses sludge to be dried from the intermediate portion between the inlet and the discharge port of the dryer upstream to the intermediate portion between the inlet and the discharge port of the dryer next downstream.
An opening / closing means for opening / closing the bypass line is provided.
An indirect heating type sludge drying device.
前記温度検出器の検出値に基づいて前記複数の乾燥機の各々の回転軸の回転速度が設定されていることを特徴とする請求項1に記載の間接加熱型汚泥乾燥装置。 Further equipped with a temperature detector for detecting the in-machine temperature of each of the plurality of dryers,
The indirect heating type sludge drying apparatus according to claim 1, wherein the rotation speed of each rotation axis of the plurality of dryers is set based on the detection value of the temperature detector.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018011000A JP7064338B2 (en) | 2018-01-25 | 2018-01-25 | Indirect heating type sludge drying device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018011000A JP7064338B2 (en) | 2018-01-25 | 2018-01-25 | Indirect heating type sludge drying device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019126788A JP2019126788A (en) | 2019-08-01 |
JP7064338B2 true JP7064338B2 (en) | 2022-05-10 |
Family
ID=67471653
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018011000A Active JP7064338B2 (en) | 2018-01-25 | 2018-01-25 | Indirect heating type sludge drying device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7064338B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113716835A (en) * | 2021-08-27 | 2021-11-30 | 无锡雪浪环境科技股份有限公司 | Modularization indirect heating formula sludge drying equipment |
US20230068159A1 (en) * | 2021-09-01 | 2023-03-02 | Komline-Sanderson Corporation | Indirect asphalt heating system |
CN118359361B (en) * | 2024-06-19 | 2024-09-06 | 安徽亿晶包装科技有限公司 | Energy-saving kiln head bin with function of preheating batch |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002081864A (en) | 2000-07-03 | 2002-03-22 | Mitsubishi Kakoki Kaisha Ltd | Water-containing solid matter drying device and drying method employing the same |
JP2006274201A (en) | 2005-03-30 | 2006-10-12 | Cpr Co Ltd | Continuous reduced-pressure drying/carbonizing apparatus |
JP2010236731A (en) | 2009-03-30 | 2010-10-21 | Miike Iron Works Co Ltd | Drying device |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58136973A (en) * | 1982-02-08 | 1983-08-15 | 荏原インフイルコ株式会社 | Method of treating substance containing moisture |
JPH03137998A (en) * | 1989-10-24 | 1991-06-12 | Tsukishima Kikai Co Ltd | Sludge dry controlling method |
US9327997B1 (en) * | 2012-04-12 | 2016-05-03 | Richard J. Kuper | Water treatment process and apparatus |
-
2018
- 2018-01-25 JP JP2018011000A patent/JP7064338B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002081864A (en) | 2000-07-03 | 2002-03-22 | Mitsubishi Kakoki Kaisha Ltd | Water-containing solid matter drying device and drying method employing the same |
JP2006274201A (en) | 2005-03-30 | 2006-10-12 | Cpr Co Ltd | Continuous reduced-pressure drying/carbonizing apparatus |
JP2010236731A (en) | 2009-03-30 | 2010-10-21 | Miike Iron Works Co Ltd | Drying device |
Also Published As
Publication number | Publication date |
---|---|
JP2019126788A (en) | 2019-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7064338B2 (en) | Indirect heating type sludge drying device | |
JP5599015B2 (en) | Rotary kiln type material heating and drying equipment | |
CN106440708B (en) | Sawdust dryer | |
US4656759A (en) | Aeration-type rotary dryer | |
KR101620833B1 (en) | Radial Multi-pass Counter-Flow Dryer | |
CN108571887A (en) | A kind of interior heat pipe rotary calciner | |
KR100395119B1 (en) | An apparatus for feeding and drying sewage sludge | |
JP6718400B2 (en) | Dewatering device, dewatering system, and dewatering method | |
CN106007338A (en) | Belt-type sludge drying device | |
JP4633216B2 (en) | Carbonization method with screw-type carbonization furnace | |
JP7503805B2 (en) | Hot air/conductive heat transfer dryer | |
KR20170134306A (en) | Drying method and drying system using horizontal rotary dryer | |
JPH10170151A (en) | Continuous dryer | |
CN105059845A (en) | Drying, screening and conveying device for solid waste treatment | |
KR100958724B1 (en) | Verticality Turning Dryer For Device | |
JP2007205652A (en) | Drying method and fluid drier for object to be dried | |
WO2017042619A1 (en) | High speed dryer for bricks and method for their production | |
RU2703182C1 (en) | Tier rotary drier | |
JP3867266B2 (en) | Operation control method of indirect heating type stirring dryer | |
KR20170090402A (en) | Indirect heat-drying device and method for drying low-grade coal | |
RU2350864C1 (en) | Disk-type device for thermal treatment of bulk materials | |
JPH0271900A (en) | Multistage drier | |
CN113551511B (en) | Material heating and dewatering method and device | |
JP5667811B2 (en) | Steam-heated rotary dryer | |
US900032A (en) | Drying and heating apparatus for stone. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210108 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20211008 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20211019 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20211201 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220412 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220422 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7064338 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |