[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7064205B2 - Lead-free ferroelectric thin film - Google Patents

Lead-free ferroelectric thin film Download PDF

Info

Publication number
JP7064205B2
JP7064205B2 JP2018085998A JP2018085998A JP7064205B2 JP 7064205 B2 JP7064205 B2 JP 7064205B2 JP 2018085998 A JP2018085998 A JP 2018085998A JP 2018085998 A JP2018085998 A JP 2018085998A JP 7064205 B2 JP7064205 B2 JP 7064205B2
Authority
JP
Japan
Prior art keywords
thin film
lead
oxide thin
free ferroelectric
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018085998A
Other languages
Japanese (ja)
Other versions
JP2019189919A (en
Inventor
正文 小舟
翼 右田
忠輔 亀井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tateho Kagakukogyo KK
University of Hyogo
Original Assignee
Tateho Kagakukogyo KK
University of Hyogo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tateho Kagakukogyo KK, University of Hyogo filed Critical Tateho Kagakukogyo KK
Priority to JP2018085998A priority Critical patent/JP7064205B2/en
Publication of JP2019189919A publication Critical patent/JP2019189919A/en
Application granted granted Critical
Publication of JP7064205B2 publication Critical patent/JP7064205B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Physical Vapour Deposition (AREA)
  • Inorganic Insulating Materials (AREA)

Description

本発明は、非鉛強誘電体薄膜に関する。 The present invention relates to a lead-free ferroelectric thin film.

従来、強誘電性を示す組成物(強誘電体セラミックス)として、チタン酸ジルコン酸鉛(PZT)等の鉛を含む強誘電体組成物が広く知られている。このような強誘電体組成物は、誘電率や圧電性といった強誘電体としての性質(強誘電性)に優れ、様々な工業的分野において広く用いられている。 Conventionally, as a composition exhibiting ferroelectricity (ferroelectric ceramics), a ferroelectric composition containing lead such as lead zirconate titanate (PZT) is widely known. Such a ferroelectric composition is excellent in properties as a ferroelectric substance (ferroelectricity) such as dielectric constant and piezoelectricity, and is widely used in various industrial fields.

しかしながら、近年、環境保護の観点から、鉛を含まない物質や製品を使用する動きが広まっており、これは強誘電体組成物の分野においても同様である。よって、鉛を含まない強誘電体組成物、すなわち非鉛強誘電体組成物が求められている。 However, in recent years, from the viewpoint of environmental protection, the movement to use lead-free substances and products has become widespread, and this is also the case in the field of ferroelectric compositions. Therefore, a lead-free ferroelectric composition, that is, a lead-free ferroelectric composition is required.

非鉛強誘電体組成物としては、例えば、チタン酸ビスマス(BT)やチタン酸ビスマスランタン(BLT)等を含む組成物について研究が進んでいる(例えば特許文献1を参照)。しかし、これら非鉛強誘電体組成物でも、分極特性が十分ではなく、チタン酸ジルコン酸鉛等の鉛を含む強誘電体組成物を完全に代替するには至っていない。 As the lead-free ferroelectric composition, for example, a composition containing bismuth titanate (BT), bismuth bismuth titanate (BLT) and the like is being studied (see, for example, Patent Document 1). However, even these lead-free ferroelectric compositions do not have sufficient polarization characteristics and have not completely replaced lead-containing ferroelectric compositions such as lead zirconate titanate.

また、近年ナノピラー型マルチフェロイックを構成する磁性体薄膜の下地材として、c軸方向に結晶配向性を有し、a軸方向に沿う大きな自発分極をもつ非鉛強誘電体薄膜、中でもビスマス層状構造強誘電体(BLSFs)薄膜の開発が求められている。 In recent years, as a base material for a magnetic thin film constituting a nanopillar type multiferroic, a lead-free ferroelectric thin film having crystal orientation in the c-axis direction and large spontaneous polarization along the a-axis direction, especially a bismuth layer. Development of structural ferroelectrics (BLSFs) thin films is required.

特開2003-82470号公報Japanese Patent Application Laid-Open No. 2003-82470

本発明は、上記現状に鑑み、鉛を含まず、かつc軸方向に優れた結晶配向性を有する新規の非鉛強誘電体薄膜を提供することを目的とする。 In view of the above situation, it is an object of the present invention to provide a novel lead-free ferroelectric thin film which does not contain lead and has excellent crystal orientation in the c-axis direction.

上記の課題を解決するために、本発明者らが種々検討を重ねたところ、Bi、Ti及びランタノイドを含有する酸化物からなる非鉛強誘電体薄膜が、c軸方向に優れた配向性を示すことを見出し、本発明に至った。 As a result of various studies by the present inventors in order to solve the above problems, a lead-free ferroelectric thin film composed of an oxide containing Bi, Ti and a lanthanoid has excellent orientation in the c-axis direction. We found that it shows, and came to the present invention.

すなわち本発明は、Bi、Ti、及びランタノイドを含有する酸化物からなり、c軸方向に結晶配向性を有する非鉛強誘電体酸化物薄膜に関する。好ましくは、前記ランタノイドが、Sm、Eu、Gd、Tb、La、及びNdからなる群より選択される少なくとも1種以上である。好ましくは、前記ランタノイドの含有量が2~30at%である。好ましくは、前記ランタノイドがNd及びEuである。好ましくは、前記酸化物において、Bi、Ti、Nd及びEuの合計量に対するBi、Ti、Nd及びEuそれぞれの元素比率が、40~65at%、35~55at%、1~15at%、及び、1~15at%である。好ましくは、前記酸化物薄膜のc軸方向への配向率が97.0%以上である。また、本発明は、前記非鉛強誘電体酸化物薄膜と、基板を含む、積層体に関するものであってよい。本発明は、前記非鉛強誘電体酸化物薄膜又は前記積層体を含むマルチフェロイック素子、圧電素子、強誘電体メモリ、又は、センサー若しくはアクチュエーターであってもよい。 That is, the present invention relates to a lead-free ferroelectric oxide thin film composed of an oxide containing Bi, Ti, and a lanthanide and having crystal orientation in the c-axis direction. Preferably, the lanthanoid is at least one selected from the group consisting of Sm, Eu, Gd, Tb, La, and Nd. Preferably, the content of the lanthanoid is 2 to 30 at%. Preferably, the lanthanoids are Nd and Eu. Preferably, in the oxide, the element ratios of Bi, Ti, Nd and Eu to the total amount of Bi, Ti, Nd and Eu are 40 to 65 at%, 35 to 55 at%, 1 to 15 at%, and 1 It is ~ 15 at%. Preferably, the orientation ratio of the oxide thin film in the c-axis direction is 97.0% or more. Further, the present invention may relate to a laminate including the lead-free ferroelectric oxide thin film and a substrate. The present invention may be a multiferroic element, a piezoelectric element, a ferroelectric memory, or a sensor or an actuator including the lead-free ferroelectric oxide thin film or the laminate.

本発明によると、鉛を含まず、かつc軸方向に優れた結晶配向性を有する新規の非鉛強誘電体薄膜を提供することができる。 According to the present invention, it is possible to provide a novel lead-free ferroelectric thin film that does not contain lead and has excellent crystal orientation in the c-axis direction.

実施例1の酸化物薄膜の表面を電界放射型走査電子顕微鏡により撮影した写真A photograph of the surface of the oxide thin film of Example 1 taken with a field emission scanning electron microscope.

以下、本発明の実施形態を詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.

本発明に係る非鉛強誘電体薄膜は、鉛を含まず、ビスマス(Bi)、チタン(Ti)及びランタノイドを含有する酸化物からなるものである。前記ランタノイドとしては、サマリウム(Sm)、ユーロピウム(Eu)、ガドリニウム(Gd)、テルビウム(Tb)、ランタン(La)、及びネオジム(Nd)からなる群より選択される少なくとも1種であることが好ましく、ネオジム(Nd)及びユーロピウム(Eu)の双方を含有することがより好ましい。前記酸化物薄膜は、複合酸化物であっても良いし、単純酸化物及び/又は複合酸化物の混合物であってもよい。 The lead-free ferroelectric thin film according to the present invention is made of an oxide containing bismuth (Bi), titanium (Ti) and a lanthanide without containing lead. The lanthanoid is preferably at least one selected from the group consisting of samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), lanthanum (La), and neodym (Nd). , Neodim (Nd) and Europium (Eu) are both more preferred. The oxide thin film may be a composite oxide, or may be a mixture of a simple oxide and / or a composite oxide.

前記酸化物薄膜がビスマス(Bi)、チタン(Ti)、ネオジム(Nd)及びユーロピウム(Eu)を含有する場合、Bi、Ti、Nd及びEuの合計量に対するBi、Ti、Nd及びEuそれぞれの元素比率が、40~65at%、35~55at%、1~15at%、及び、1~15at%であることが好ましい。各元素のモル数の割合が上記範囲内であると、非鉛強誘電体薄膜が示す分極性能をより良好なものとすることができる。Bi、Ti、Nd及びEuそれぞれの元素比率は、より好ましくは、45~60at%、37~54at%、1~10at%、及び、1.1~10at%であり、さらに好ましくは、48~55at%、37~52at%、1.1~9at%、及び、1.2~9at%である。 When the oxide thin film contains bismuth (Bi), titanium (Ti), neodymium (Nd) and europium (Eu), each element of Bi, Ti, Nd and Eu with respect to the total amount of Bi, Ti, Nd and Eu. The ratio is preferably 40 to 65 at%, 35 to 55 at%, 1 to 15 at%, and 1 to 15 at%. When the ratio of the number of moles of each element is within the above range, the polarization performance exhibited by the lead-free ferroelectric thin film can be improved. The element ratios of Bi, Ti, Nd and Eu are more preferably 45 to 60 at%, 37 to 54 at%, 1 to 10 at%, and 1.1 to 10 at%, still more preferably 48 to 55 at. %, 37 to 52 at%, 1.1 to 9 at%, and 1.2 to 9 at%.

さらに、前記酸化物薄膜はc軸方向に優れた結晶配向性を有している。c軸方向の配向率としては97.0%以上が好ましく、98.0%以上がより好ましい、99.0%以上がさらに好ましい。該配向率が97.0%以上であると、反応性イオンエッチング等によって酸化物薄膜にナノ加工を施し、ナノピラー型マルチフェロイックデバイスを構成する磁性体薄膜の下地材として使用することができ、このような用途に使用した場合、a/b軸方向がピラーの側面に位置するため、効率よく分極軸を刺激することができ、高い電気磁気効果の発現が期待できる。なお、a軸方向とは、結晶の面成長方位を[hkl]と表したとき[h00]方向であることを意味し、c軸方向とは[00l]方向であることを意味する。 Further, the oxide thin film has excellent crystal orientation in the c-axis direction. The orientation ratio in the c-axis direction is preferably 97.0% or more, more preferably 98.0% or more, still more preferably 99.0% or more. When the orientation ratio is 97.0% or more, the oxide thin film can be nanoprocessed by reactive ion etching or the like and used as a base material for the magnetic thin film constituting the nanopillar type multiferroic device. When used for such applications, the a / b axis direction is located on the side surface of the pillar, so that the polarization axis can be stimulated efficiently, and a high electromagnetic effect can be expected to be exhibited. The a-axis direction means the [h00] direction when the plane growth direction of the crystal is expressed as [hkl], and the c-axis direction means the [00l] direction.

次に、本発明に係る薄膜を製造する方法を具体的に説明するが、本発明は以下の製造方法に限定されるものではない。 Next, the method for producing the thin film according to the present invention will be specifically described, but the present invention is not limited to the following production method.

(原料準備工程)
まず、原料として酸化ビスマス又はその前駆体、酸化チタニウム又はその前駆体、及びランタノイドの酸化物又は前駆体を準備する。前記前駆体としては、後述する焼成工程等によって酸化物に変換し得る物質を使用することができ、具体的には、各元素の水酸化物、炭酸塩、硝酸塩等を使用することができる。
(Raw material preparation process)
First, bismuth oxide or its precursor, titanium oxide or its precursor, and an oxide or precursor of lanthanoid are prepared as raw materials. As the precursor, a substance that can be converted into an oxide by a firing step or the like described later can be used, and specifically, a hydroxide, a carbonate, a nitrate or the like of each element can be used.

(粉砕及び混合工程)
次に、準備した各原料を粉砕及び混合する。粉砕及び混合は公知の方法を用いて行うことができる。混合方法は乾式混合であっても良いし、湿式混合であっても良いが、湿式混合の場合、メタノール又はエタノール等のアルコール溶媒中で湿式混合を行うことが好ましい。粉砕及び混合に使用する装置としては、例えば、ボールミル、乳鉢、及びスターラー等の各種混合装置を用いることができる。湿式混合を実施した後は、適宜乾燥させればよい。
(Grinding and mixing process)
Next, each prepared raw material is crushed and mixed. Grinding and mixing can be performed using known methods. The mixing method may be dry mixing or wet mixing, but in the case of wet mixing, it is preferable to perform wet mixing in an alcohol solvent such as methanol or ethanol. As the device used for crushing and mixing, for example, various mixing devices such as a ball mill, a mortar, and a stirrer can be used. After performing the wet mixing, it may be appropriately dried.

(焼成工程)
次に、混合後の原料を焼成して非鉛強誘電体薄膜を構成する非鉛強誘電体組成物を製造する。焼成温度は、500℃~1000℃の範囲内であることが好ましいが、原料の組成によって最適な温度を選択することができる。
(Baking process)
Next, the mixed raw material is fired to produce a lead-free ferroelectric composition constituting a lead-free ferroelectric thin film. The firing temperature is preferably in the range of 500 ° C. to 1000 ° C., but the optimum temperature can be selected depending on the composition of the raw material.

また、焼成時間は、1時間~10時間の範囲内であることが好ましいが、原料の組成や原料の大きさによって最適な時間を選択することができる。焼成は、通常の大気雰囲気下、不活性ガスと酸素を混合した雰囲気下、又は酸素雰囲気下等、各種の条件で行うことができる。 The firing time is preferably in the range of 1 hour to 10 hours, but the optimum time can be selected depending on the composition of the raw material and the size of the raw material. The calcination can be performed under various conditions such as a normal atmosphere atmosphere, an atmosphere in which an inert gas and oxygen are mixed, or an oxygen atmosphere.

(成形工程)
次に、焼成工程により得た非鉛強誘電体組成物の粉末を成形する。成形は、例えば、ダイスやプレス機等、各種公知の成形機器を用いて行うことができる。成形時にかける圧力は、例えば、10MPa~400MPaの範囲内とすることが好ましいが、組成物の組成や前記粉末の大きさによって最適な圧力を選択することができる。
(Molding process)
Next, the powder of the lead-free ferroelectric composition obtained by the firing step is molded. Molding can be performed using various known molding equipment such as a die and a press machine. The pressure applied during molding is preferably in the range of, for example, 10 MPa to 400 MPa, but the optimum pressure can be selected depending on the composition of the composition and the size of the powder.

この成形工程の圧力や時間を選択することによって、得られる成形体の相対密度を40~60%とすることが好ましい。成形体の相対密度は、より好ましくは42~55%、さらに好ましくは44~50%である。 By selecting the pressure and time of this molding step, it is preferable that the relative density of the obtained molded product is 40 to 60%. The relative density of the molded product is more preferably 42 to 55%, still more preferably 44 to 50%.

(焼結工程)
焼結体を製造する場合には、上述した各原料を混合してホットプレスによって焼結体を製造することができる。その場合、粉末状の各原料をカーボン製ダイスに充填し、温度500~1000℃、圧力10~200MPaの条件でホットプレスを実施することができる。また、焼結体は、上述のように前記成形体を作製した後、該成形体を大気雰囲気中で焼成することでも製造することができる。焼結体を製造するにあたっては、成形補助材として水および/またはバインダー(例えば、ポリビニルアルコール等)を原料に加えてもよい。
(Sintering process)
When producing a sintered body, the above-mentioned raw materials can be mixed and the sintered body can be produced by hot pressing. In that case, each powdered raw material can be filled in a carbon die, and hot pressing can be performed under the conditions of a temperature of 500 to 1000 ° C. and a pressure of 10 to 200 MPa. Further, the sintered body can also be produced by producing the molded body as described above and then firing the molded body in an air atmosphere. In producing the sintered body, water and / or a binder (for example, polyvinyl alcohol, etc.) may be added to the raw material as a molding auxiliary material.

焼結工程の温度や圧力、時間を選択することによって、得られる焼結体の相対密度を80%以上100%以下とすることが好ましい。焼結体の相対密度は、より好ましくは85%以上、さらに好ましくは90%以上、特に好ましくは95%以上である。 By selecting the temperature, pressure, and time of the sintering step, it is preferable that the relative density of the obtained sintered body is 80% or more and 100% or less. The relative density of the sintered body is more preferably 85% or more, further preferably 90% or more, and particularly preferably 95% or more.

(酸化物薄膜の製造工程)
本発明の非鉛強誘電体薄膜は、例えば、スパッタリング法によって製造することができる。具体的には、非鉛強誘電体組成物の成形体又は焼結体からなるターゲットを用意し、高周波マグネトロンスパッタ装置等を利用することによって、基板上に当該酸化物薄膜を形成することができる。
(Manufacturing process of oxide thin film)
The lead-free ferroelectric thin film of the present invention can be produced, for example, by a sputtering method. Specifically, the oxide thin film can be formed on a substrate by preparing a target made of a molded body or a sintered body of a lead-free ferroelectric composition and using a high-frequency magnetron sputtering device or the like. ..

基板を構成する材料としては、本発明の非鉛強誘電体酸化物薄膜がc軸方向にエピタキシャル成長し、優れた結晶配向性を示すものであればよく、例えば、酸化マグネシウム単結晶、チタン酸ストロンチウム単結晶、酸化コバルト単結晶、酸化銅単結晶を使用することができる。また、基板上に白金膜を形成し、その上に本発明の非鉛強誘電体酸化物薄膜を形成してもよい。 The material constituting the substrate may be any material as long as the lead-free strong dielectric oxide thin film of the present invention grows epitaxially in the c-axis direction and exhibits excellent crystal orientation. For example, magnesium oxide single crystal and strontium titanate. A single crystal, a cobalt oxide single crystal, and a copper oxide single crystal can be used. Further, a platinum film may be formed on the substrate, and the lead-free ferroelectric oxide thin film of the present invention may be formed on the platinum film.

本発明の非鉛強誘電体酸化物薄膜の厚さは、特に限定されないが、500nm~5000nmの範囲内にあることが好ましい。 The thickness of the lead-free ferroelectric oxide thin film of the present invention is not particularly limited, but is preferably in the range of 500 nm to 5000 nm.

なお、スパッタリングの条件や焼結体の製造条件によってビスマスが試料表面から再蒸発する可能性がある場合は、再蒸発するビスマスを補償することで所期に設計した化学組成を維持することを目的として、成形体または焼結体に対して、薄膜における所望量よりも過剰に酸化ビスマス又はその前駆体を添加しておくことができる。 If there is a possibility that bismuth may re-evaporate from the sample surface due to sputtering conditions or sintered body manufacturing conditions, the purpose is to maintain the originally designed chemical composition by compensating for the re-evaporated bismuth. As a result, bismuth oxide or a precursor thereof can be added in excess of the desired amount in the thin film to the molded body or sintered body.

非鉛強誘電体酸化物薄膜のc軸方向の結晶配向率は、スパッタリング時の基板の温度によってコントロールすることができる。スパッタリング装置や酸化物薄膜の組成により最適な温度範囲が異なる場合があるが、例えばBi、Ti、Nd及びEuそれぞれの元素比率が、54at%、36at%、8at%、及び、2at%の場合は、基板温度を600~700℃にすると、c軸方向の配向率が98.0%を超える酸化物薄膜を製造することができる。 The crystal orientation ratio in the c-axis direction of the lead-free ferroelectric oxide thin film can be controlled by the temperature of the substrate during sputtering. The optimum temperature range may differ depending on the sputtering device and the composition of the oxide thin film. For example, when the element ratios of Bi, Ti, Nd and Eu are 54 at%, 36 at%, 8 at% and 2 at%, respectively. When the substrate temperature is set to 600 to 700 ° C., an oxide thin film having an orientation ratio in the c-axis direction exceeding 98.0% can be produced.

その他のスパッタリング条件としては、例えば、雰囲気ガスとしてアルゴンと酸素の任意の混合割合の混合ガスを用い、流量を10~100sccm、真空度を1.0×10-3Pa以下、成膜時間を30~300min、有効電力を100~200Wに設定することができる。 As other sputtering conditions, for example, a mixed gas having an arbitrary mixing ratio of argon and oxygen is used as the atmosphere gas, the flow rate is 10 to 100 sccm, the degree of vacuum is 1.0 × 10 -3 Pa or less, and the film forming time is 30. The active power can be set to 100 to 200 W for about 300 min.

本発明の非鉛強誘電体酸化物薄膜は、上記の方法によって製造されたものに限定されない。最終的に得られる酸化物薄膜が所定の組成を有し、c軸方向の配向率が所定の範囲であれば良い。上述した方法以外の、非鉛強誘電体酸化物薄膜を製造する方法としては、例えば、成形体又は焼結体の非鉛強誘電体組成物を介さずに、ゾル-ゲル法、塗布法、有機金属化学気相成長法(MOCVD)、物理的気相成長法(PVD)、又は、化学気相成長法(CVD)により薄膜を形成する方法や、成形体を焼成した後、高周波マグネトロンスパッタリング装置を用いて薄膜を形成する方法が挙げられる。 The lead-free ferroelectric oxide thin film of the present invention is not limited to that produced by the above method. It suffices as long as the finally obtained oxide thin film has a predetermined composition and the orientation ratio in the c-axis direction is within a predetermined range. As a method for producing a lead-free strong dielectric oxide thin film other than the above-mentioned method, for example, a sol-gel method, a coating method, etc. Organic Metal Chemical Vapor Deposition (MOCVD), Physical Vapor Deposition (PVD), or Chemical Vapor Deposition (CVD) to form a thin film, or after firing a molded body, a high frequency magnetron sputtering device. A method of forming a thin film using the above can be mentioned.

本発明の非鉛強誘電体酸化物薄膜を適用する具体的な用途としては、特に限定されず、例えば、マルチフェロイック素子、圧電素子、強誘電体メモリ、センサー又はアクチュエーター等を挙げることができる。 Specific applications to which the lead-free ferroelectric oxide thin film of the present invention is applied are not particularly limited, and examples thereof include multiferroic elements, piezoelectric elements, ferroelectric memories, sensors, actuators, and the like. ..

以下に実施例を掲げて本発明をさらに詳細に説明するが、本発明はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

(実施例1~4及び比較例1)
原料準備工程
原料として粉末状の酸化ビスマス(純度99.9%以上、粒子径2.6μm)、粉末状の酸化チタン(純度99.9%以上、粒子径3.1μm)、粉末状の酸化ネオジム(純度99.9%以上、粒子径1.6μm)、及び、粉末状の酸化ユーロピウム(純度99.9%以上、粒子径1.8μm)を準備した。各原料を最終的に得られる元素比率が表1記載の元素比率になるように調整して秤量した。
(Examples 1 to 4 and Comparative Example 1)
Raw material preparation process As raw materials, powdered bismuth oxide (purity 99.9% or more, particle size 2.6 μm), powdered titanium oxide (purity 99.9% or more, particle size 3.1 μm), powdered neodymium oxide (Purity 99.9% or more, particle size 1.6 μm) and powdered europium oxide (purity 99.9% or more, particle size 1.8 μm) were prepared. Each raw material was adjusted and weighed so that the element ratio finally obtained was the element ratio shown in Table 1.

粉砕及び混合工程
次に、用意した各原料の粉末を粉砕及び混合した。当該粉砕及び混合は乳鉢を用いて、エタノール湿式混合により行った。その後、乾燥機(タバイ製 Labostar GRAVITY OVEN LG-122型)を使用して90℃で2時間乾燥させた。
Grinding and mixing steps Next, the prepared powders of each raw material were crushed and mixed. The pulverization and mixing were carried out by wet mixing with ethanol using a mortar. Then, it was dried at 90 ° C. for 2 hours using a dryer (Labostar GRAVITY OVEN LG-122 type).

焼成工程
次に、混合した原料を焼成して非鉛強誘電体組成物を製造した。焼成は、大気雰囲気中で電気炉(アズワン製 MPH-1N型)を用いて750℃、3時間の条件で行った。なお、昇温速度は5℃/分とし、冷却速度は4℃/分とした。焼成後、常温まで冷却して粉末状の非鉛強誘電体組成物を得た。
Firing Step Next, the mixed raw materials were calcined to produce a lead-free ferroelectric composition. The firing was carried out in an air atmosphere using an electric furnace (MPH-1N type manufactured by AS ONE) at 750 ° C. for 3 hours. The temperature rising rate was 5 ° C./min and the cooling rate was 4 ° C./min. After firing, it was cooled to room temperature to obtain a powdery lead-free ferroelectric composition.

成形工程
次に、非鉛強誘電体組成物を成形した。成形は、直径100mmの金型を用い、40MPaの圧力を2分間維持することにより行った。これにより直径100mm、厚さ約5mmの円柱状の、非鉛強誘電体組成物で構成された相対密度48%の成形体を得た。
Molding Step Next, a lead-free ferroelectric composition was molded. Molding was carried out by using a mold having a diameter of 100 mm and maintaining a pressure of 40 MPa for 2 minutes. As a result, a cylindrical molded body having a diameter of 100 mm and a thickness of about 5 mm and having a relative density of 48% composed of a lead-free ferroelectric composition was obtained.

成膜工程
成膜用の基板として、MgO単結晶基板を用いた。基板の大きさは7.0×7.0mm、厚さ0.4mmである。
Film formation process An MgO single crystal substrate was used as the substrate for film formation. The size of the substrate is 7.0 × 7.0 mm and the thickness is 0.4 mm.

成形工程で得られた非鉛強誘電体組成物で構成された成形体をターゲットとして、高周波マグネトロンスパッタリング装置(アネルバ株式会社製 SPF-210B)を用いて、前記MgO単結晶基板上に、膜厚1.8μmの非鉛強誘電体組成物から構成されるc軸方向に優れた結晶配向性を有する酸化物薄膜を成膜した。なお、スパッタリングは以下の条件で行った。
・雰囲気:Ar/O=9:1 (50sccm)
・基板温度:580~650℃(表1に表示)
・真空度:5.0×10-4Pa
・成膜時間:200min
・有効電力:120W
Using a high-frequency magnetron sputtering device (SPF-210B manufactured by Anerva Co., Ltd.) as a target for a molded body composed of the lead-free ferroelectric composition obtained in the molding step, a film thickness is applied on the MgO single crystal substrate. An oxide thin film composed of a 1.8 μm lead-free ferroelectric composition and having excellent crystal orientation in the c-axis direction was formed. Sputtering was performed under the following conditions.
・ Atmosphere: Ar / O 2 = 9: 1 (50sccm)
-Substrate temperature: 580 to 650 ° C (shown in Table 1)
・ Vacuum degree: 5.0 × 10 -4 Pa
・ Film formation time: 200 min
・ Active power: 120W

高周波多層スパッタリング装置(アネルバ株式会社製)を用いて、前記MgO単結晶基板の裏面にTi電極を作製し、さらに、前記非鉛強誘電体組成物から構成される酸化物薄膜の上面にPt電極を作製した後、前記非鉛強誘電体組成物から構成される酸化物薄膜の特性を評価した。 A Ti electrode is formed on the back surface of the MgO single crystal substrate using a high-frequency multilayer sputtering device (manufactured by Anerva Co., Ltd.), and a Pt electrode is further formed on the upper surface of an oxide thin film composed of the lead-free ferroelectric composition. Was prepared, and then the characteristics of the oxide thin film composed of the lead-free ferroelectric composition were evaluated.

(評価方法)
(FE-SEM観察)
電界放射型走査電子顕微鏡(JEOL製 JSM-7001F)を用いて、加速電圧5kV、及び、WD10mmの条件で、酸化物薄膜の表面を観察した。実施例1の酸化物薄膜の表面を撮影した顕微鏡写真を図1に示す。
(Evaluation methods)
(FE-SEM observation)
The surface of the oxide thin film was observed using a field emission scanning electron microscope (JSM-7001F manufactured by JEOL) under the conditions of an acceleration voltage of 5 kV and a WD of 10 mm. FIG. 1 shows a micrograph of the surface of the oxide thin film of Example 1.

(酸化物薄膜の元素比率の測定方法)
電界放射型走査電子顕微鏡(JEOL製 JSM-7001F)に付属のエネルギー分散型X線分光器を用いて、加速電圧15kV、倍率500倍の条件で、計数カウントが8000cps以上になるよう照射電流を調整して測定を行なった。5視野撮影して得た5つの値の平均値を表1に示した。
(Measuring method of element ratio of oxide thin film)
Using the energy dispersive X-ray spectroscope attached to the electric field radiation scanning electron microscope (JEOL JSM-7001F), adjust the irradiation current so that the count count is 8000 cps or more under the conditions of acceleration voltage of 15 kV and magnification of 500 times. And the measurement was performed. Table 1 shows the average value of the five values obtained by five-field photography.

(膜厚の測定方法)
触針式表面形状測定器(Bruker社製 Dektak-3030)により白金下部電極から当該酸化物薄膜まで走査し、計測した段差を膜厚とした。
(Measurement method of film thickness)
A stylus type surface shape measuring instrument (Dektak-3030 manufactured by Bruker) was used to scan from the platinum lower electrode to the oxide thin film, and the measured step was taken as the film thickness.

(結晶方位の測定方法)
2次元検出器を搭載したX線回折(Bruker社製 D8μ-HR)を用いて結晶方位を測定した。測定条件は、管電圧40kV、管電流40mV、ステップ時間200s/ステップ、2θ:10-55°とした。得られたX線回折ピークから次式によりc軸方向の配向率を算出した。
配向率=([00l]のX線回折ピークの積分強度の総和÷全X線回折ピークの積分強度の総和)×100)
ただし、基板及び電極由来のX線回折ピークは除く。
(Measuring method of crystal orientation)
The crystal orientation was measured using X-ray diffraction (D8μ-HR manufactured by Bruker) equipped with a two-dimensional detector. The measurement conditions were a tube voltage of 40 kV, a tube current of 40 mV, a step time of 200 s / step, and 2θ: 10-55 °. From the obtained X-ray diffraction peak, the orientation rate in the c-axis direction was calculated by the following equation.
Orientation rate = (total of integrated intensities of X-ray diffraction peaks of [00l] ÷ total of integrated intensities of all X-ray diffraction peaks) × 100)
However, X-ray diffraction peaks derived from the substrate and electrodes are excluded.

Figure 0007064205000001
表1より、実施例1~4は、c軸方向に結晶配向性が優れていることが分かる。一方、比較例1は、実施例1~4と比較して低いc軸方向の配向率を示した。
Figure 0007064205000001
From Table 1, it can be seen that Examples 1 to 4 have excellent crystal orientation in the c-axis direction. On the other hand, Comparative Example 1 showed a lower orientation rate in the c-axis direction as compared with Examples 1 to 4.

Claims (6)

Bi、Ti、及びランタノイドを含有する酸化物からなり、c軸方向に結晶配向性を有する非鉛強誘電体酸化物薄膜であって、
前記ランタノイドがNd及びEuであり、
前記酸化物において、Bi、Ti、Nd及びEuの合計量に対するBi、Ti、Nd及びEuそれぞれの元素比率が、40~65at%、35~55at%、1~15at%、及び、1~15at%であり、
前記酸化物薄膜のc軸方向への配向率が97.0%以上である、非鉛強誘電体酸化物薄膜
A lead-free ferroelectric oxide thin film composed of an oxide containing Bi, Ti, and a lanthanide and having crystal orientation in the c-axis direction .
The lanthanoids are Nd and Eu,
In the oxide, the element ratios of Bi, Ti, Nd and Eu to the total amount of Bi, Ti, Nd and Eu are 40 to 65 at%, 35 to 55 at%, 1 to 15 at% and 1 to 15 at%. And
A lead-free ferroelectric oxide thin film having an orientation ratio of the oxide thin film in the c-axis direction of 97.0% or more .
請求項に記載の非鉛強誘電体酸化物薄膜と、基板を含む、積層体。 A laminate including the lead-free ferroelectric oxide thin film according to claim 1 and a substrate. 請求項に記載の非鉛強誘電体酸化物薄膜又は請求項に記載の積層体を含むマルチフェロイック素子。 A multiferroic device comprising the lead-free ferroelectric oxide thin film according to claim 1 or the laminate according to claim 2 . 請求項に記載の非鉛強誘電体酸化物薄膜又は請求項に記載の積層体を含む圧電素子。 A piezoelectric element including the lead-free ferroelectric oxide thin film according to claim 1 or the laminate according to claim 2 . 請求項に記載の非鉛強誘電体酸化物薄膜又は請求項に記載の積層体を含む強誘電体メモリ。 A ferroelectric memory comprising the lead-free ferroelectric oxide thin film according to claim 1 or the laminate according to claim 2 . 請求項に記載の非鉛強誘電体酸化物薄膜又は請求項に記載の積層体を含むセンサー又はアクチュエーター。 A sensor or actuator comprising the lead-free ferroelectric oxide thin film according to claim 1 or the laminate according to claim 2 .
JP2018085998A 2018-04-27 2018-04-27 Lead-free ferroelectric thin film Active JP7064205B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018085998A JP7064205B2 (en) 2018-04-27 2018-04-27 Lead-free ferroelectric thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018085998A JP7064205B2 (en) 2018-04-27 2018-04-27 Lead-free ferroelectric thin film

Publications (2)

Publication Number Publication Date
JP2019189919A JP2019189919A (en) 2019-10-31
JP7064205B2 true JP7064205B2 (en) 2022-05-10

Family

ID=68387624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018085998A Active JP7064205B2 (en) 2018-04-27 2018-04-27 Lead-free ferroelectric thin film

Country Status (1)

Country Link
JP (1) JP7064205B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005102985A1 (en) 2004-04-09 2005-11-03 Cambrex Charles City, Inc. Process for preparation of probucol derivatives

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005102985A1 (en) 2004-04-09 2005-11-03 Cambrex Charles City, Inc. Process for preparation of probucol derivatives

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Fenfzhen Huang et al.,Multiferroic properties and dielectric relaxation of BiFeO3/Bi3.25La0.75Ti3O12 double layered thin films,Journal of Applied Physics,2007年12月31日,90,p.252903
Kaibin Ruan et al.,Improved photoluminescence and electrical properties of Eu- and Gd-codoped bismuth titanate ferroelectric thin films,Journal of Applied Physics,米国,2008年12月31日,103,p.086104

Also Published As

Publication number Publication date
JP2019189919A (en) 2019-10-31

Similar Documents

Publication Publication Date Title
Wang et al. Synthesizing nanocrystalline Pb (Zn1/3Nb2/3) O3 powders from mixed oxides
WO2020018209A2 (en) Ceramic oxide composites reinforced with 2d mx-enes
CN110511018B (en) High-energy-storage-density ceramic capacitor dielectric and preparation method thereof
US20120270720A1 (en) Dielectric ceramic-forming composition and dielectric ceramic material
EP2729970A1 (en) Piezoelectric material
JP2010143788A (en) Oxynitride piezoelectric material and method for producing the same
US20080152530A1 (en) Method of preparing ferroelectric powders and ceramics
Gu et al. Single‐Calcination Synthesis of Pyrochlore‐Free 0.9 Pb (Mg1/3Nb2/3) O3–0.1 PbTiO3 and Pb (Mg1/3Nb2/3) O3 Ceramics Using a Coating Method
Kong et al. Preparation of PMN–PT ceramics via a high-energy ball milling process
Truong-Tho et al. Effect of sintering temperature on the dielectric, ferroelectric and energy storage properties of SnO2-doped Bi 0. 5 (Na 0. 8 K 0. 2) 0. 5 TiO3 lead-free ceramics
CN109912304B (en) Bismuth ferrite based ternary solid solution dielectric thin film material and preparation method thereof
Ichikawa et al. Fabrication and characterization of (100),(001)-oriented reduction-resistant lead-free piezoelectric (Ba, Ca) TiO3 ceramics using platelike seed crystals
Thongtha et al. Fabrication of (Ba1− xSrx)(ZrxTi1− x) O3 ceramics prepared using the combustion technique
Wang et al. Properties of spark plasma sintered pseudocubic BiFeO3–BaTiO3 ceramics
Chae et al. Preparation of Pb (Mg1/3Nb2/3) O3–Pb (Zn1/3Nb2/3) O3 ceramics by the B-site precursor method and dielectric characteristics
JP7064205B2 (en) Lead-free ferroelectric thin film
JP7064204B2 (en) Lead-free ferroelectric composition and thin film
Akishige et al. Synthesis and dielectric properties of Mn-doped BaTi2O5 ceramics
Chaudhari et al. Structural and impedance spectroscopic studies on PbZrxTi1− xO3 ceramics
Liu et al. Substitution of Pb with (Li1/2Bi1/2) in PbZrO3-based antiferroelectric ceramics
Takeuchi et al. Rapid preparation of lead titanate sputtering target using spark‐plasma sintering
Kong et al. Preparation of antiferroelectric lead zirconate titanate stannate ceramics by high-energy ball milling process
CN116789450B (en) Non-full tungsten bronze structure high-entropy ferroelectric ceramic material and preparation method and application thereof
Wang Preparation of Barium Titanate-Based Ferroelectric Ceramics by Solid-Phase Sintering and Its Energy Storage Performance
EP4397641A1 (en) Perovskite-type ceramic compact and method for manufacturing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220411

R150 Certificate of patent or registration of utility model

Ref document number: 7064205

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150