[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7063970B2 - refrigerator - Google Patents

refrigerator Download PDF

Info

Publication number
JP7063970B2
JP7063970B2 JP2020184076A JP2020184076A JP7063970B2 JP 7063970 B2 JP7063970 B2 JP 7063970B2 JP 2020184076 A JP2020184076 A JP 2020184076A JP 2020184076 A JP2020184076 A JP 2020184076A JP 7063970 B2 JP7063970 B2 JP 7063970B2
Authority
JP
Japan
Prior art keywords
chamber
evaporator
storage chamber
refrigerating
partition member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020184076A
Other languages
Japanese (ja)
Other versions
JP2021012019A (en
Inventor
慎一郎 岡留
昭義 大平
良二 河井
敏彦 永盛
真也 岩渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Global Life Solutions Inc
Original Assignee
Hitachi Global Life Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Global Life Solutions Inc filed Critical Hitachi Global Life Solutions Inc
Priority to JP2020184076A priority Critical patent/JP7063970B2/en
Publication of JP2021012019A publication Critical patent/JP2021012019A/en
Application granted granted Critical
Publication of JP7063970B2 publication Critical patent/JP7063970B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Refrigerator Housings (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Description

本発明は、冷蔵庫に関する。 The present invention relates to a refrigerator.

本技術分野の背景技術として、特開2014-134332(特許文献1)がある。この公報には、「冷蔵室と冷凍室の個別冷却を行うことができる冷蔵庫」、「冷蔵庫は、1台のエバポレータに冷却された冷気を用いて行う1エバポレータタイプの冷蔵庫」が記載されている。また、「断熱部材は、Z方向(上下方向)に沿って、冷却器の前方に配置され」、「断熱部材の前側部材と後側部材は、好ましくは形状を維持するためのプラスチック製のケース体」であると記載されている。 Japanese Patent Application Laid-Open No. 2014-134332 (Patent Document 1) is available as a background technique in this technical field. This publication describes "a refrigerator capable of individually cooling a refrigerating room and a freezing room" and "a refrigerator is a 1-evaporator type refrigerator using cold air cooled by one evaporator". .. Further, "the heat insulating member is arranged in front of the cooler along the Z direction (vertical direction)", and "the front member and the rear member of the heat insulating member are preferably plastic cases for maintaining the shape." It is described as "body".

特開2014-134332号公報Japanese Unexamined Patent Publication No. 2014-134332

特許文献1の冷蔵庫では、1つの蒸発器を用いて冷蔵室と冷凍室を個別に冷却している。蒸発器を収納する蒸発器室には、冷凍運転と冷蔵運転とで異なる温度帯の空気が流れるので、運転の切り換えに応じて蒸発器室内の空気温度は大きく変動する。 In the refrigerator of Patent Document 1, one evaporator is used to separately cool the refrigerating chamber and the freezing chamber. Since air in different temperature zones flows in the evaporator chamber in which the evaporator is housed in the freezing operation and the refrigerating operation, the air temperature in the evaporator chamber fluctuates greatly according to the switching of the operation.

従って、冷凍室と蒸発器室の間に設けた仕切り部材(特許文献1の断熱部材)は、冷蔵運転中の蒸発器室から、より温度の低い冷凍室への熱移動を抑える断熱壁としての役割が求められる。冷蔵運転では蒸発器室に冷凍室よりも高温の冷蔵室の空気が流れるので、仕切り部材の断熱が不十分であると、冷凍室の温度が上昇し、例えば冷凍食品が解けるといった不具合を引き起こす可能性がある。 Therefore, the partition member (insulation member of Patent Document 1) provided between the freezer chamber and the evaporator chamber serves as a heat insulating wall that suppresses heat transfer from the evaporator chamber during the refrigerating operation to the freezer chamber having a lower temperature. A role is required. In the refrigerating operation, the air in the refrigerating room, which is hotter than the freezing room, flows in the evaporator room. There is sex.

また、冷凍運転から冷蔵運転に切り換えると、冷凍運転中に低温になった仕切り部材は、蒸発器室を流れる冷凍室に比べ温度の高い冷蔵室の空気により加熱される。冷蔵運転中に仕切り部材に移動して蓄えられた熱は、その後の冷凍運転において熱負荷となるので、その分だけ冷却する熱量が増えることになる。 Further, when the freezing operation is switched to the refrigerating operation, the partition member having a low temperature during the freezing operation is heated by the air in the refrigerating room having a higher temperature than the freezing room flowing through the evaporator room. The heat transferred to and stored in the partition member during the refrigerating operation becomes a heat load in the subsequent freezing operation, so that the amount of heat to be cooled increases by that amount.

冷凍運転は蒸発温度を高くした冷蔵運転に比べて冷却効率が低いので、冷凍運転で冷却する熱量を抑えることにより省エネルギー性能を向上させることができる。しかしながら、特許文献1の冷蔵庫では、冷凍室と蒸発器室の間に設けた仕切り部材への熱移動に関する配慮が十分でなく、冷蔵運転中に、多くの熱量が仕切り部材に移動することになっていた。仕切り部材へ移動する熱量が多くなると、冷凍運転時に冷却する熱量が多くなるので、特許文献1の冷蔵庫は十分に省エネルギー性能が得られていなかった。 Since the refrigerating operation has a lower cooling efficiency than the refrigerating operation in which the evaporation temperature is high, the energy saving performance can be improved by suppressing the amount of heat to be cooled in the refrigerating operation. However, in the refrigerator of Patent Document 1, consideration for heat transfer to the partition member provided between the freezing chamber and the evaporator chamber is not sufficient, and a large amount of heat is transferred to the partition member during the refrigerating operation. Was there. When the amount of heat transferred to the partition member increases, the amount of heat cooled during the freezing operation also increases, so that the refrigerator of Patent Document 1 has not sufficiently obtained energy saving performance.

そこで本発明は、1つの蒸発器で冷蔵室と冷凍室とを個別に冷却する冷蔵庫において、仕切り部材への熱の移動を抑え、冷凍運転で冷却する熱量を抑えることで省エネルギー性能を向上させた冷蔵庫を提供することを目的とする。 Therefore, the present invention has improved energy saving performance by suppressing the transfer of heat to the partition member and suppressing the amount of heat cooled by the refrigerating operation in the refrigerator in which the refrigerating chamber and the freezing chamber are individually cooled by one evaporator. The purpose is to provide a refrigerator.

このような課題を解決するために、第1の本発明は、
冷蔵温度帯の第一の貯蔵室と、冷凍温度帯の第二の貯蔵室と、前記第一の貯蔵室と前記第二の貯蔵室とを冷却する蒸発器と、該蒸発器を収納する蒸発器室と、該蒸発器室と前記第二の貯蔵室とを仕切る仕切り部材を備え、前記第一の貯蔵室と前記第二の貯蔵室とを個別に冷却する制御が可能な冷蔵庫において、
前記個別に冷却する制御は、前記蒸発器室に前記第一の貯蔵室の空気を循環させながら該第一の貯蔵室を冷却する冷蔵運転又は送風運転と、前記蒸発器室に前記第二の貯蔵室の空気を循環させながら該第二の貯蔵室を冷却する冷凍運転と、を区別して実行することで行われるものであり、
前記仕切り部材は複数の部材で構成され、前記仕切り部材のうち前記蒸発器室側の壁面を構成する第一の部材は、前記仕切り部材のうち前記第二の貯蔵室側の壁面を構成する第二の部材よりも、単位体積あたりの熱容量が小さいことを特徴とする冷蔵庫。
また、第2の本発明は、
冷蔵温度帯の第一の貯蔵室と、冷凍温度帯の第二の貯蔵室と、前記第一の貯蔵室と前記第二の貯蔵室とを冷却する蒸発器と、該蒸発器を収納する蒸発器室と、該蒸発器室と前記第二の貯蔵室とを仕切る仕切り部材を備え、前記第一の貯蔵室と前記第二の貯蔵室とを個別に冷却する制御が可能な冷蔵庫において、
前記個別に冷却する制御は、前記蒸発器室に前記第一の貯蔵室の空気を循環させながら該第一の貯蔵室を冷却する冷蔵運転又は送風運転と、前記蒸発器室に前記第二の貯蔵室の空気を循環させながら該第二の貯蔵室を冷却する冷凍運転と、を区別して実行することで行われるものであり、
前記仕切り部材のうち前記蒸発器室側の壁面を構成する第一の部材は、単位体積あたりの熱容量が300kJ/(m・K)未満で厚さ10mm以下であることを特徴とする冷蔵庫。
また、上記第1及び第2の本発明それぞれについて、仕切り部材は、蒸発器室と第一の貯蔵室とを区切るものであってもよい。
In order to solve such a problem, the first invention of the present invention
An evaporator that cools the first storage chamber in the refrigerating temperature zone, the second storage chamber in the freezing temperature zone, the first storage chamber and the second storage chamber, and the evaporation that houses the evaporator. In a refrigerator provided with a container chamber and a partition member for partitioning the evaporator chamber and the second storage chamber, and capable of controlling to cool the first storage chamber and the second storage chamber individually.
The individual cooling controls include a refrigerating operation or a blowing operation for cooling the first storage chamber while circulating air in the first storage chamber in the evaporator chamber, and the second in the evaporator chamber. It is performed by distinguishing between the refrigerating operation of cooling the second storage chamber while circulating the air in the storage chamber.
The partition member is composed of a plurality of members, and the first member of the partition member constituting the wall surface on the evaporator chamber side constitutes the wall surface of the partition member on the second storage chamber side. A refrigerator characterized by having a smaller heat capacity per unit volume than the second member.
Further, the second invention of the present invention
An evaporator that cools the first storage chamber in the refrigerating temperature zone, the second storage chamber in the freezing temperature zone, the first storage chamber and the second storage chamber, and the evaporation that houses the evaporator. In a refrigerator provided with a container chamber and a partition member for partitioning the evaporator chamber and the second storage chamber, and capable of controlling to cool the first storage chamber and the second storage chamber individually.
The individual cooling controls include a refrigerating operation or a blowing operation for cooling the first storage chamber while circulating air in the first storage chamber in the evaporator chamber, and the second in the evaporator chamber. It is performed by distinguishing between the refrigerating operation of cooling the second storage chamber while circulating the air in the storage chamber.
Among the partition members, the first member constituting the wall surface on the evaporator chamber side is a refrigerator having a heat capacity of less than 300 kJ / (m3 · K) and a thickness of 10 mm or less per unit volume.
Further, in each of the first and second inventions, the partition member may separate the evaporator chamber and the first storage chamber.

本発明によれば、1つの蒸発器で冷蔵室と冷凍室とを個別に冷却する冷蔵庫において、仕切り部材への熱の移動を抑え、冷凍運転で冷却する熱量の割合を抑えることで省エネルギー性能を向上させた冷蔵庫を提供することができる。 According to the present invention, in a refrigerator in which a refrigerator compartment and a freezer compartment are individually cooled by one evaporator, energy saving performance is achieved by suppressing heat transfer to a partition member and suppressing the ratio of the amount of heat cooled by the refrigerating operation. An improved refrigerator can be provided.

実施例1に関する冷蔵庫の正面図。Front view of the refrigerator according to the first embodiment. 図1に示すA-A断面図。FIG. 1A is a cross-sectional view taken along the line AA shown in FIG. 冷蔵庫の冷却運転の一実施形態例におけるタイムチャート。A time chart in an example of a cooling operation of a refrigerator. 図2に示す蒸発器室8周辺の拡大図。An enlarged view of the periphery of the evaporator chamber 8 shown in FIG. 周囲温度の変化に対する壁面の温度勾配の変化を示す図(単位体積当たりの熱容量が小さい場合)。The figure which shows the change of the temperature gradient of the wall surface with respect to the change of the ambient temperature (when the heat capacity per unit volume is small). 周囲温度の変化に対する壁面の温度勾配の変化を示す図(単位体積当たりの熱容量が大きい場合)。The figure which shows the change of the temperature gradient of the wall surface with respect to the change of the ambient temperature (when the heat capacity per unit volume is large). 図4に示す温度測定点X及びYの温度変化を示すタイムチャート。A time chart showing temperature changes at temperature measurement points X and Y shown in FIG. 単位体積当たりの熱容量と冷蔵運転中に部材に流入する熱移動量の関係を示す解析結果。Analysis results showing the relationship between the heat capacity per unit volume and the amount of heat transfer that flows into the member during refrigeration operation. 実施例2に関する冷蔵庫の正面図。Front view of the refrigerator according to the second embodiment. 図9に示すB-B断面図。BB sectional view shown in FIG.

≪実施例1≫
本発明に関する冷蔵庫の実施例1を、図1から図7を参照して説明する。
図1は実施例1に関する冷蔵庫の正面図、図2は図1に示すA-A断面図である。冷蔵庫1は、貯蔵室として上方から順に、冷蔵室2、製氷室3と上段冷凍室4、下段冷凍室5、野菜室6を備えている。冷蔵室2及び野菜室6は冷蔵温度帯(0℃以上)の第一の貯蔵室である。冷凍室60は、製氷室3、上段冷凍室4、下段冷凍室5の総称で、冷凍温度帯(0℃以下)の第二の貯蔵室である。本実施の形態例では、冷蔵室2は約4℃、野菜室6は約7℃、冷凍室60は約-20℃になるように制御している。
<< Example 1 >>
Example 1 of the refrigerator according to the present invention will be described with reference to FIGS. 1 to 7.
FIG. 1 is a front view of the refrigerator according to the first embodiment, and FIG. 2 is a sectional view taken along the line AA shown in FIG. The refrigerator 1 includes a refrigerating room 2, an ice making room 3, an upper freezing room 4, a lower freezing room 5, and a vegetable room 6 in order from the top as storage rooms. The refrigerating room 2 and the vegetable room 6 are the first storage rooms in the refrigerating temperature zone (0 ° C. or higher). The freezing chamber 60 is a general term for the ice making chamber 3, the upper freezing chamber 4, and the lower freezing chamber 5, and is a second storage chamber in the freezing temperature zone (0 ° C. or lower). In this embodiment, the refrigerating room 2 is controlled to have a temperature of about 4 ° C., the vegetable room 6 is controlled to have a temperature of about 7 ° C., and the freezing room 60 is controlled to have a temperature of about −20 ° C.

冷蔵室2は前面側に左右に分割された観音開きの冷蔵室扉2a、2bを備えており、製氷室3と、上段冷凍室4と、下段冷凍室5と、野菜室6は、それぞれ引き出し式の製氷室扉3a、上段冷凍室扉4a、下段冷凍室扉5a、野菜室扉6aを備えている。以下では、冷蔵室扉2a、2b、製氷室扉3a、上段冷凍室扉4a、下段冷凍室扉5a、野菜室扉6aを、単に扉2a、2b、3a、4a、5a、6aと呼ぶ。 The refrigerating room 2 is provided with double doors 2a and 2b having double doors on the front side, and the ice making room 3, the upper freezing room 4, the lower freezing room 5, and the vegetable room 6 are each pull-out type. The ice making room door 3a, the upper freezing room door 4a, the lower freezing room door 5a, and the vegetable room door 6a are provided. In the following, the refrigerating room doors 2a and 2b, the ice making room door 3a, the upper freezing room door 4a, the lower freezing room door 5a, and the vegetable room door 6a are simply referred to as doors 2a, 2b, 3a, 4a, 5a, and 6a.

冷蔵庫1の庫内と庫外は、内箱1aと外箱1bの間に、例えば発泡ウレタンである発泡断熱材10aを充填することにより形成された断熱箱体10と、前述の扉2a、2b、3a、4a、5a、6aによって隔てられている。冷蔵庫1の断熱箱体10の内部には複数の真空断熱材26を実装している。 The inside and outside of the refrigerator 1 are a heat insulating box body 10 formed by filling, for example, a foamed heat insulating material 10a which is urethane foam between the inner box 1a and the outer box 1b, and the doors 2a and 2b described above. It is separated by 3a, 4a, 5a, 6a. A plurality of vacuum heat insulating materials 26 are mounted inside the heat insulating box 10 of the refrigerator 1.

冷凍室60及び野菜室6には、それぞれ扉3a、4a、5a、6aと一体に引き出される製氷室容器(図示せず)、上段冷凍室容器4b、下段冷凍室容器5b、野菜室容器6bを備えている。また、冷蔵室2には、冷蔵室2内を複数に区画する棚39を設け、また扉2a、2bに複数のポケット32を設けている。
冷蔵庫1の上部には、扉2a、2bを回動可能にするために、冷蔵庫1に固定する扉ヒンジ(図示せず)が設けられており、扉ヒンジは扉ヒンジカバー38で覆われている。
冷蔵室2と冷凍室60の間には仕切り壁28を設け、冷凍室60と野菜室6の間には仕切り壁29を設けている。また、製氷室3、上段冷凍室4、及び下段冷凍室5の各貯蔵室の前面側には、扉3a、4a、5aの隙間から冷凍室60内の空気が庫外へ漏れないように、仕切り壁30を設けている。
In the freezing room 60 and the vegetable room 6, an ice making room container (not shown), an upper freezing room container 4b, a lower freezing room container 5b, and a vegetable room container 6b, which are drawn out integrally with the doors 3a, 4a, 5a, and 6a, respectively, are provided. I have. Further, the refrigerating room 2 is provided with shelves 39 for partitioning the inside of the refrigerating room 2 into a plurality of shelves, and the doors 2a and 2b are provided with a plurality of pockets 32.
A door hinge (not shown) fixed to the refrigerator 1 is provided on the upper part of the refrigerator 1 in order to make the doors 2a and 2b rotatable, and the door hinge is covered with the door hinge cover 38. ..
A partition wall 28 is provided between the refrigerating room 2 and the freezing room 60, and a partition wall 29 is provided between the freezing room 60 and the vegetable room 6. Further, on the front side of each storage chamber of the ice making chamber 3, the upper freezing chamber 4, and the lower freezing chamber 5, the air in the freezing chamber 60 does not leak to the outside through the gaps of the doors 3a, 4a, and 5a. A partition wall 30 is provided.

野菜室6の背面側には、圧縮機24を備える機械室20を設けている。また、冷凍室60の背面側には蒸発器室8を設けている。蒸発器室8は、内箱1aと、後述する樋21、仕切り部材103、冷蔵室ダンパ50、冷凍室ダンパ51により形成されている。蒸発器室8には、冷媒と庫内の空気を熱交換させる蒸発器7と、蒸発器7により冷却された空気を、冷蔵室2、野菜室6、及び冷凍室60の各貯蔵室に送風する庫内ファン9を備えている。また、蒸発器7の下部に、除霜運転時に蒸発器7に付着した霜を加熱する除霜ヒータ27と、除霜ヒータ27の加熱により解けて生じた除霜水を受ける樋21を備えている。なお、樋21に流入した除霜水は、排水管22を介して機械室19に配された蒸発皿23に排出される。 A machine room 20 equipped with a compressor 24 is provided on the back side of the vegetable room 6. Further, an evaporator chamber 8 is provided on the back side of the freezing chamber 60. The evaporator chamber 8 is formed by an inner box 1a, a gutter 21, a partition member 103, a refrigerating chamber damper 50, and a freezing chamber damper 51, which will be described later. In the evaporator chamber 8, the evaporator 7 for heat exchange between the refrigerant and the air in the refrigerator, and the air cooled by the evaporator 7 are blown to each of the storage chambers of the refrigerating chamber 2, the vegetable compartment 6, and the freezing chamber 60. It is equipped with a refrigerator fan 9. Further, the lower part of the evaporator 7 is provided with a defrost heater 27 that heats the frost adhering to the evaporator 7 during the defrosting operation, and a gutter 21 that receives the defrosted water generated by the heating of the defrost heater 27. There is. The defrosted water that has flowed into the gutter 21 is discharged to the evaporating dish 23 arranged in the machine room 19 via the drain pipe 22.

冷蔵室2、冷凍室60、冷凍室6の庫内背面側には、それぞれ冷蔵室温度センサ33、冷凍室温度センサ34、野菜室温度センサ35を設け、蒸発器7の上部には蒸発器温度センサ36を設け、これらのセンサにより、冷蔵室2、野菜室6、及び冷凍室60及び蒸発器7の温度を検知している。また、冷蔵庫1には、扉ヒンジカバー38の内部に設けた庫外の温度を検知する外気温度センサ37や、扉2a、2b、3a、4aの開閉状態をそれぞれ検知する扉センサ(図示せず)も設けている。 A refrigerating room temperature sensor 33, a freezing room temperature sensor 34, and a vegetable room temperature sensor 35 are provided on the back side of the refrigerator chamber 2, the freezing chamber 60, and the freezing chamber 6, respectively, and the evaporator temperature is above the evaporator 7. Sensors 36 are provided, and the temperatures of the refrigerating room 2, the vegetable room 6, the freezing room 60, and the evaporator 7 are detected by these sensors. Further, the refrigerator 1 includes an outside air temperature sensor 37 provided inside the door hinge cover 38 for detecting the temperature outside the refrigerator, and a door sensor (not shown) for detecting the open / closed state of the doors 2a, 2b, 3a and 4a. ) Is also provided.

冷蔵庫1の上部には、制御装置の一部であるCPU、ROMやRAM等のメモリ、インターフェース回路等を搭載した制御基板31を配置している。制御基板31は、冷蔵室温度センサ33、冷凍室温度センサ34、野菜室温度センサ35、蒸発器温度センサ36等と接続され、前述のCPUは、これらの出力値、及び温度設定器(図示せず)の設定と、前述のROMに予め記録されたプログラムを基に、圧縮機24や庫内ファン9、各ダンパ50、51の制御等を行っている。 A control board 31 on which a CPU, a memory such as a ROM or RAM, an interface circuit, or the like, which is a part of the control device, is mounted is arranged on the upper part of the refrigerator 1. The control board 31 is connected to a refrigerating room temperature sensor 33, a freezing room temperature sensor 34, a vegetable room temperature sensor 35, an evaporator temperature sensor 36, etc., and the above-mentioned CPU has these output values and a temperature setting device (shown in the figure). The compressor 24, the internal fan 9, and the dampers 50 and 51 are controlled based on the setting of (1) and the program recorded in advance in the ROM described above.

次に、風路構造を説明する。実施例1の冷蔵庫は、蒸発器7により冷却された空気を送風することで、冷蔵庫内の各貯蔵室である冷蔵室2、野菜室6、及び冷凍室60を冷却する。冷蔵室2、野菜室6への送風は冷蔵室ダンパ50によって制御され、冷凍室60への送風は冷凍室ダンパ51によって制御される。 Next, the air passage structure will be described. The refrigerator of Example 1 cools the refrigerating room 2, the vegetable room 6, and the freezing room 60, which are storage rooms in the refrigerator, by blowing air cooled by the evaporator 7. The air blown to the refrigerating room 2 and the vegetable room 6 is controlled by the refrigerating room damper 50, and the air blown to the freezing room 60 is controlled by the freezing room damper 51.

冷蔵室2及び野菜室6を冷却する場合、冷蔵室ダンパ50を開ける。蒸発器7により冷却された蒸発器室8の空気は、庫内ファン9により昇圧され、冷蔵室ダンパ50から冷蔵室送風風路11へと流れる。冷蔵室送風風路11は、内箱1aと冷蔵室風路構成部材80により形成されている。冷蔵室送風風路11に至った空気は、吐出口61から冷蔵室2に吐出し、冷蔵室2を冷却する。冷蔵室2を冷却した空気は、冷蔵室-野菜室風路(図示せず)から野菜室6へと流れ、野菜室6を冷却する。野菜室6を冷却した空気は、野菜室戻り口64から野菜室戻り風路14を介して蒸発器室8に戻り、再び蒸発器7に冷却される。 When cooling the refrigerator compartment 2 and the vegetable compartment 6, the refrigerator compartment damper 50 is opened. The air in the evaporator chamber 8 cooled by the evaporator 7 is boosted by the fan 9 in the refrigerator and flows from the damper 50 in the refrigerator compartment to the air passage 11 in the refrigerator compartment. The refrigerating chamber air passage 11 is formed by an inner box 1a and a refrigerating chamber air passage component 80. The air that has reached the air passage 11 of the refrigerating chamber is discharged from the discharge port 61 to the refrigerating chamber 2 to cool the refrigerating chamber 2. The air that has cooled the refrigerator compartment 2 flows from the refrigerator compartment-vegetable chamber air passage (not shown) to the vegetable compartment 6, and cools the vegetable compartment 6. The air that has cooled the vegetable compartment 6 returns to the evaporator chamber 8 from the vegetable compartment return port 64 via the vegetable compartment return air passage 14, and is cooled again by the evaporator 7.

冷凍室60を冷却する場合、冷凍室ダンパ51を開ける。蒸発器7により冷却された蒸発器室8の空気は、庫内ファン9により昇圧され、冷凍室ダンパ51から冷凍室送風風路12へと流れる。冷凍室送風風路12は、後述する仕切り部材102と仕切り部材103により形成されている。冷凍室送風風路12に至った空気は、仕切り部材102に形成された吐出口62から冷凍室60に吐出し、冷凍室60を冷却する。冷凍室60を冷却した空気は冷凍室戻り風路17から蒸発器室8に戻り、再び蒸発器7に冷却される。 When cooling the freezing chamber 60, the freezing chamber damper 51 is opened. The air in the evaporator chamber 8 cooled by the evaporator 7 is boosted by the internal fan 9, and flows from the freezing chamber damper 51 to the freezing chamber air passage 12. The freezing chamber air passage 12 is formed by a partition member 102 and a partition member 103, which will be described later. The air that has reached the air passage 12 of the freezing chamber is discharged to the freezing chamber 60 from the discharge port 62 formed in the partition member 102 to cool the freezing chamber 60. The air that has cooled the freezing chamber 60 returns to the evaporator chamber 8 from the freezing chamber return air passage 17, and is cooled again by the evaporator 7.

以上のように、実施例1の冷蔵庫は、冷蔵温度帯の貯蔵室である冷蔵室2及び野菜室6と、冷凍温度帯の貯蔵室である冷凍室60の何れの温度帯の貯蔵室も、蒸発器7で冷却された空気により冷却する。よって、蒸発器7を備える蒸発器室8は、冷蔵温度帯の空気と、冷凍温度帯の空気の何れも循環する。 As described above, the refrigerator of the first embodiment includes both the refrigerating room 2 and the vegetable room 6 which are the storage rooms in the refrigerating temperature zone and the storage room in any of the temperature zones of the freezing room 60 which is the storage room in the freezing temperature zone. It is cooled by the air cooled by the evaporator 7. Therefore, the evaporator chamber 8 provided with the evaporator 7 circulates both the air in the refrigerating temperature zone and the air in the refrigerating temperature zone.

図3は、冷蔵庫の冷却運転の一実施形態例におけるタイムチャートである。冷蔵室2と野菜室6は風路が直列に配置されて連動して冷却されるため、野菜室6の制御は省略する。本冷蔵庫の冷却運転は、圧縮機24が駆動状態で冷蔵室2を冷却する冷蔵運転、冷凍室60を冷却する冷凍運転と、圧縮機24が停止状態で冷蔵室2を冷却する送風運転からなる運転パターンを基本とする。 FIG. 3 is a time chart in an example of the cooling operation of the refrigerator. Since the air passages are arranged in series in the refrigerating chamber 2 and the vegetable compartment 6 and cooled in conjunction with each other, the control of the vegetable compartment 6 is omitted. The cooling operation of the refrigerator includes a refrigerating operation for cooling the refrigerating chamber 2 while the compressor 24 is driven, a refrigerating operation for cooling the refrigerating chamber 60, and a blowing operation for cooling the refrigerating chamber 2 when the compressor 24 is stopped. Based on the driving pattern.

圧縮機24が送風運転中に冷凍室温度TF1まで上昇すると、圧縮機24がONになり、冷蔵運転を実施する。冷蔵運転では、冷蔵室ダンパ50を開け、庫内ファン9を運転することで、低温の蒸発器7を通過した空気により冷蔵室2を冷却し、冷蔵室温度を温度TRまで低下させる。冷蔵室温度が温度TRに到達すると、次に冷蔵室ダンパ50を閉じて冷凍室ダンパ51を開ける冷凍運転を実施する。冷凍室温度がTF2に到達すると冷凍運転は終了し、圧縮機24を停止させる。送風運転中は、冷蔵運転と同様、冷蔵室ダンパ50を開け、庫内ファン9を運転することで、蒸発器7に成長した霜で冷却された空気を用いて冷蔵室2を冷却する。これらの運転により、冷蔵室2、冷凍室6を冷却して所定の温度に維持している。なお、本実施の形態例では送風運転と冷蔵運転を合せて冷蔵冷却運転と呼ぶ。 When the compressor 24 rises to the freezing chamber temperature TF1 during the ventilation operation, the compressor 24 is turned on and the refrigerating operation is performed. In the refrigerating operation, the refrigerating chamber damper 50 is opened and the internal fan 9 is operated to cool the refrigerating chamber 2 with the air passing through the low-temperature evaporator 7 and lower the refrigerating chamber temperature to the temperature TR. When the refrigerating chamber temperature reaches the temperature TR, a freezing operation is performed in which the refrigerating chamber damper 50 is closed and the freezing chamber damper 51 is opened. When the freezing chamber temperature reaches TF2, the freezing operation ends and the compressor 24 is stopped. During the air blowing operation, as in the refrigerating operation, the refrigerating chamber damper 50 is opened and the internal fan 9 is operated to cool the refrigerating chamber 2 using the air cooled by the frost grown in the evaporator 7. By these operations, the refrigerating chamber 2 and the freezing chamber 6 are cooled and maintained at a predetermined temperature. In the example of the present embodiment, the ventilation operation and the refrigeration operation are collectively referred to as a refrigeration cooling operation.

図4は、図2に示す蒸発器室8周辺の拡大図である。 FIG. 4 is an enlarged view of the periphery of the evaporator chamber 8 shown in FIG.

冷凍室60と蒸発器室8は、仕切り部材102及び仕切り部材103によって仕切られている。冷凍室60側の壁面を構成する第二の部材である仕切り部材102は、例えば樹脂部材の一種であるポリプロピレン製で、厚さが1.5mmである。蒸発器室8の壁面を構成する第一の部材である仕切り部材103は、例えば発泡成形したポリスチレンフォーム(発泡スチロール)製である。仕切り部材103の厚さは、発泡時の成形性や冷蔵庫組込時の組立性、耐衝撃性、また後述する冷凍室60の温度変動抑制を考慮して10mmとしている。ポリプロピレンは密度が約910kg/m、比熱が約1.7kJ/(kg・K)で、単位体積当たりの熱容量(比熱と密度の積)は約1500kJ/(m・K)であり、ポリスチレンフォームは密度が約40kg/m、比熱が約1.8kJ/(kg・K)で、単位体積当たりの熱容量は約70kJ/(m・K)である。
このように、発泡成形したポリスチレンフォーム(仕切り部材103)は、ポリプロピレン(仕切り部材102)に比べて密度が低く、単位体積当たりの熱容量が小さい。単位体積当たりの熱容量が小さいと、少ない熱量で温度が変化する。
The freezing chamber 60 and the evaporator chamber 8 are partitioned by a partition member 102 and a partition member 103. The partition member 102, which is the second member constituting the wall surface on the freezing chamber 60 side, is made of polypropylene, for example, which is a kind of resin member, and has a thickness of 1.5 mm. The partition member 103, which is the first member constituting the wall surface of the evaporator chamber 8, is made of, for example, foam-molded polystyrene foam (styrofoam). The thickness of the partition member 103 is set to 10 mm in consideration of moldability at the time of foaming, assembling property at the time of incorporating in a refrigerator, impact resistance, and suppression of temperature fluctuation of the freezing chamber 60 described later. Polypropylene has a density of about 910 kg / m 3 and a specific heat of about 1.7 kJ / (kg · K), and a heat capacity per unit volume (product of specific heat and density) of about 1500 kJ / (m 3 · K). The foam has a density of about 40 kg / m 3 and a specific heat of about 1.8 kJ / (kg · K), and a heat capacity per unit volume of about 70 kJ / (m 3 · K).
As described above, the foam-molded polystyrene foam (partition member 103) has a lower density than polypropylene (partition member 102) and has a smaller heat capacity per unit volume. When the heat capacity per unit volume is small, the temperature changes with a small amount of heat.

図5と図6は、周囲温度の変化に対する壁面の温度勾配の変化を示す図である。図5は壁面を構成する断熱部材の単位体積当たりの熱容量が小さい場合、図6は単位体積当たりの熱容量が大きい場合である。断熱部材の厚さ、熱伝導率、壁面表面の熱伝達率は図5、図6ともに同じとする。 5 and 6 are diagrams showing changes in the temperature gradient of the wall surface with respect to changes in ambient temperature. FIG. 5 shows a case where the heat capacity per unit volume of the heat insulating member constituting the wall surface is small, and FIG. 6 shows a case where the heat capacity per unit volume is large. The thickness of the heat insulating member, the thermal conductivity, and the heat transfer coefficient of the wall surface surface are the same in FIGS. 5 and 6.

ここで、壁面近傍の空気温度Tが、低温から高温に急激に変わった場合を考える。図5(a1)、図6(a2)に示す温度勾配は、壁面近傍の空気を長時間低温にし、壁面も十分に冷えた状態である。この空気温度Ta(a1)、Ta(a2)及び壁面温度Tw(a1)、w(a2)が、何れも低温の状態を初期条件とする。 Here, consider a case where the air temperature Ta near the wall surface suddenly changes from a low temperature to a high temperature. The temperature gradient shown in FIGS. 5 (a1) and 6 (a2) is a state in which the air in the vicinity of the wall surface is kept at a low temperature for a long time and the wall surface is sufficiently cooled. The initial conditions are that the air temperatures Ta (a1) and Ta (a2) and the wall surface temperatures T w (a1) and T w (a2) are all low temperatures.

図5(b1)、図6(b2)は、初期条件に対し、空気の温度を急激に高くした状態である。壁面温度Tw(b1)、Tw(b2)を低温のTw(a1)、w(b1)のまま、空気温度Ta(b1)、Ta(b2)を高くするため、空気と壁面間に温度差ΔT(b1)、ΔT(b2)が生じる。この温度差により壁面は加熱されるので、Δt分後(例えば10分後)における図5(c1)、図6(c2)の壁面温度Tw(c1)、w(c2)は、図5(b1)、図6(b2)のTw(b1)、w(b2)よりも高くなる。 5 (b1) and 6 (b2) show a state in which the temperature of the air is sharply increased with respect to the initial conditions. To raise the air temperature Ta (b1) and Ta (b2) while keeping the wall temperature T w (b1) and T w (b2) at low temperatures T w (a1) and T w (b1) , the air temperature is increased. Temperature differences ΔT (b1) and ΔT (b2) occur between the walls. Since the wall surface is heated by this temperature difference, the wall surface temperatures T w (c1) and T w (c2) in FIGS. 5 (c1) and 6 (c2) after Δt minutes (for example, 10 minutes later) are shown in FIG. (B1), higher than T w (b1) and T w (b2 ) in FIG. 6 (b2).

ここで、図5では、断熱部材の単位体積当たりの熱容量が小さく、少ない熱量で温度が変化するので、Δt分間での温度上昇(Tw(c1)-Tw(b1))が大きい。従って、図5(c1)における空気と壁面との温度差ΔT(c1)は小さくなる。一方、図6の断熱部材は、単位体積当たりの熱容量が大きく、温度が変化し難いので、Δt分後の図6(c2)においても、壁面と空気との温度差ΔT(c2)はΔT(c1)よりも大きい。 Here, in FIG. 5, since the heat capacity per unit volume of the heat insulating member is small and the temperature changes with a small amount of heat, the temperature rise (T w (c1) −T w (b1) ) in Δt minutes is large. Therefore, the temperature difference ΔT (c1) between the air and the wall surface in FIG. 5 (c1) becomes small. On the other hand, since the heat insulating member of FIG. 6 has a large heat capacity per unit volume and the temperature does not easily change, the temperature difference ΔT (c2) between the wall surface and air is ΔT ( even in FIG. 6 (c2) after Δt minutes. Greater than c1) .

なお、空気が高温の状態で長時間維持(例えば数時間)した場合である、図5(d1)、図6(d2)では、定常の温度勾配になり、壁面と空気との温度差ΔT(d1)、ΔT(d2)は何れも小さく、また熱容量によらず同じ(ΔT(d1)=ΔT(d2))になる。 In FIGS. 5 (d1) and 6 (d2), which are cases where the air is maintained at a high temperature for a long time (for example, several hours), a steady temperature gradient is obtained, and the temperature difference between the wall surface and the air ΔT ( Both d1) and ΔT (d2) are small, and are the same (ΔT (d1) = ΔT (d2) ) regardless of the heat capacity.

以上から、単位体積当たりの熱容量が小さい部材を用いると、壁面温度が上昇しやすいので、短い時間で定常に近い温度勾配になり、すなわち壁面と空気との温度差が小さい状態になる。従って、仕切り部材103に単位体積当たりの熱容量が小さい部材を用いた本実施の形態例では、蒸発器室8内の空気温度が変化しても、仕切り部材103の蒸発器室8側の壁面と空気との温度差を小さくすることができる。これにより得られる効果を以下で説明する。 From the above, if a member having a small heat capacity per unit volume is used, the wall surface temperature tends to rise, so that the temperature gradient becomes close to steady in a short time, that is, the temperature difference between the wall surface and air becomes small. Therefore, in the embodiment of the present embodiment in which the partition member 103 uses a member having a small heat capacity per unit volume, even if the air temperature in the evaporator chamber 8 changes, the wall surface of the partition member 103 on the evaporator chamber 8 side is used. The temperature difference with air can be reduced. The effect obtained by this will be described below.

図7は、図4に示す温度測定点X及びYの温度変化を示すタイムチャートである。図4に示すように、温度測定点Xは仕切り部材103の蒸発器室8側の壁面、温度測定点Yは蒸発器室8内の蒸発器7付近の空気中に設けている。図7は、実線で温度測定点Y、破線で温度測定点Xの温度を示しており、また、点線で仕切り部材103の単位体積当たりの熱容量が大きい場合、例えば仕切り部材103に仕切り部材102と同じくポリプロピレンを用いた場合の温度測定点Xの温度を示している。 FIG. 7 is a time chart showing temperature changes at the temperature measurement points X and Y shown in FIG. As shown in FIG. 4, the temperature measurement point X is provided on the wall surface of the partition member 103 on the evaporator chamber 8 side, and the temperature measurement point Y is provided in the air near the evaporator 7 in the evaporator chamber 8. FIG. 7 shows the temperature of the temperature measurement point Y by the solid line and the temperature of the temperature measurement point X by the broken line, and when the heat capacity per unit volume of the partition member 103 is large by the dotted line, for example, the partition member 103 and the partition member 102 Similarly, the temperature at the temperature measurement point X when polypropylene is used is shown.

図3で示したように、本実施の形態例の冷蔵庫1は、冷蔵室ダンパ50と冷凍室ダンパ51を設けることで、冷凍室60の空気が循環する冷凍運転と、冷蔵室2の空気が循環する冷蔵送風運転を備え、この2つの運転を適宜切り換えて冷蔵室2と冷凍室60とを個別に冷却する。それぞれの運転で異なる温度帯の空気が流れるので、蒸発器室8内の空気温度は大きく変化する。例えば、蒸発器室8の温度測定点Yの温度は、冷凍運転中に冷却され、冷凍運転終了時にTY1(例えば約-25℃)となる。一方、冷蔵冷却運転中は冷蔵温度帯の冷蔵室2の空気が流入するので、温度測定点Yの温度は上昇し、例えば送風運転にして5分後に、TY1より高温のTY2(例えば約-10℃)になる。この温度変動により、温度測定点Yに隣接する温度測定点Xは、冷凍運転中には温度測定点Y周辺の低温の空気により冷却され、次の冷蔵冷却運転では温度測定点Y周辺の比較的高温の空気により加熱される。すなわち、冷蔵冷却運転中に、蒸発器室8の空気から仕切り部材103へ熱が移動する。 As shown in FIG. 3, the refrigerator 1 of the present embodiment is provided with the refrigerating chamber damper 50 and the freezing chamber damper 51, so that the freezing operation in which the air in the freezing chamber 60 circulates and the air in the refrigerating chamber 2 are separated. A circulating refrigerating air blowing operation is provided, and the two operations are appropriately switched to cool the refrigerating chamber 2 and the freezing chamber 60 individually. Since air in a different temperature range flows in each operation, the air temperature in the evaporator chamber 8 changes significantly. For example, the temperature of the temperature measuring point Y in the evaporator chamber 8 is cooled during the freezing operation and becomes TY1 (for example, about −25 ° C.) at the end of the freezing operation. On the other hand, during the refrigerating cooling operation, the air in the refrigerating chamber 2 in the refrigerating temperature zone flows in, so that the temperature at the temperature measuring point Y rises. ℃). Due to this temperature fluctuation, the temperature measurement point X adjacent to the temperature measurement point Y is cooled by the low temperature air around the temperature measurement point Y during the refrigerating operation, and is relatively relatively around the temperature measurement point Y in the next refrigerating cooling operation. It is heated by hot air. That is, during the refrigerating and cooling operation, heat is transferred from the air in the evaporator chamber 8 to the partition member 103.

この仕切り部材103への熱移動により空気が冷却されるので、その移動した熱量分、冷蔵冷却運転中に蒸発器7で冷却される熱量は減る。一方、仕切り部材103に移動した熱量は次の冷凍運転で冷却される。従って、蒸発器7において冷凍運転と冷蔵冷却運転で冷却される熱量の合計は一定であるが、冷凍運転で冷却する熱量の割合は大きくなる。 Since the air is cooled by the heat transfer to the partition member 103, the amount of heat cooled by the evaporator 7 during the refrigerating cooling operation is reduced by the amount of the transferred heat. On the other hand, the amount of heat transferred to the partition member 103 is cooled in the next freezing operation. Therefore, the total amount of heat cooled in the freezing operation and the refrigerating cooling operation in the evaporator 7 is constant, but the ratio of the amount of heat cooled in the refrigerating operation is large.

一方、蒸発器7で冷却する熱量が同じであっても、冷凍運転で冷却する熱量の割合を小さくすることで高い省エネルギー性能が得られる。これは、図3に示すように、冷蔵運転の方が冷凍運転に比べ蒸発器7の温度が高く、冷却効率(消費電力量に対する冷却する熱量の割合)が高いためである。すなわち、効率の高い冷蔵運転で冷却する熱量の割合を大きくすることで、運転全体における平均的な冷却効率を高めることができる。以上から、仕切り部材103への熱移動を抑制し、冷凍運転で冷却する熱量の割合を小さく、冷蔵運転で冷却する熱量の割合を大きくすることで、省エネルギー性能が向上することが分かる。 On the other hand, even if the amount of heat cooled by the evaporator 7 is the same, high energy saving performance can be obtained by reducing the ratio of the amount of heat cooled by the freezing operation. This is because, as shown in FIG. 3, the temperature of the evaporator 7 is higher in the refrigerating operation than in the refrigerating operation, and the cooling efficiency (ratio of the amount of heat to be cooled to the amount of power consumption) is higher. That is, by increasing the ratio of the amount of heat to be cooled in the highly efficient refrigeration operation, the average cooling efficiency in the entire operation can be increased. From the above, it can be seen that the energy saving performance is improved by suppressing the heat transfer to the partition member 103, reducing the ratio of the amount of heat cooled in the refrigerating operation, and increasing the ratio of the amount of heat cooling in the refrigerating operation.

これに対し、本実施の形態例の仕切り部材103は、ポリスチレンフォームを用い、少ない熱量で温度が変化するよう、単位体積当たりの熱容量を小さくしている。温度変化しやすいので、仕切り部材103の温度測定点Xは、温度測定点Y(蒸発器室8の空気)の温度が大きく変化しても、常に温度測定点Yに近い温度を維持する。よって、冷蔵冷却運転中の温度測定点Xと温度測定点Yの温度差は、仕切り部材103の単位体積当たりの熱容量が大きい場合(点線)に比べて小さくなる。蒸発器室8の空気と仕切り部材103間の熱移動は、蒸発器室8の空気と、仕切り部材103の蒸発器室8側壁面の温度差により生じることから、空気と壁面との温度差が小さい本実施の形態例では、蒸発器室8から仕切り部材103への熱移動も小さくなる。 On the other hand, the partition member 103 of the embodiment of the present embodiment uses polystyrene foam and has a small heat capacity per unit volume so that the temperature changes with a small amount of heat. Since the temperature is liable to change, the temperature measurement point X of the partition member 103 always maintains a temperature close to the temperature measurement point Y even if the temperature of the temperature measurement point Y (air in the evaporator chamber 8) changes significantly. Therefore, the temperature difference between the temperature measurement point X and the temperature measurement point Y during the refrigerating / cooling operation is smaller than when the heat capacity per unit volume of the partition member 103 is large (dotted line). Since the heat transfer between the air in the evaporator chamber 8 and the partition member 103 is caused by the temperature difference between the air in the evaporator chamber 8 and the side wall surface of the evaporator chamber 8 of the partition member 103, the temperature difference between the air and the wall surface is large. In the small example of the present embodiment, the heat transfer from the evaporator chamber 8 to the partition member 103 is also small.

従って、蒸発器室8側の壁面を構成する仕切り部材103に、密度が低く、単位体積当たりの熱容量の小さいポリスチレンフォームを用いることで、蒸発器室8から仕切り部材103への熱移動を抑え、冷凍運転で冷却する熱量を抑えることができる。これにより、冷凍運転に比べて効率の高い冷蔵運転で冷却する熱量の割合が大きくなり、高い省エネルギー性能を得ることができる。 Therefore, by using polystyrene foam having a low density and a small heat capacity per unit volume for the partition member 103 constituting the wall surface on the evaporator chamber 8 side, heat transfer from the evaporator chamber 8 to the partition member 103 can be suppressed. The amount of heat cooled by the freezing operation can be suppressed. As a result, the ratio of the amount of heat to be cooled in the highly efficient refrigeration operation is larger than that in the refrigeration operation, and high energy saving performance can be obtained.

また、本構成により、冷凍室60の温度変動を小さく抑える効果も得られる。 Further, with this configuration, the effect of suppressing the temperature fluctuation of the freezing chamber 60 to be small can be obtained.

前述したように、冷蔵冷却運転中における、仕切り部材103への熱移動を少なく抑えていることから、仕切り部材103を介した蒸発器室8から仕切り部材102への熱移動も小さく抑えやすい。 As described above, since the heat transfer to the partition member 103 during the refrigerating and cooling operation is suppressed to a small extent, the heat transfer from the evaporator chamber 8 to the partition member 102 via the partition member 103 is also small and easy to suppress.

加えて、冷凍室60側の壁面を構成する仕切り部材102は、仕切り部材103に比べ、密度が高く、単位体積当たりの熱容量の大きいポリプロピレンを用いている。単位体積当たりの熱容量が大きいと、移動する熱量が同じであっても温度変化を小さく抑えることができる。従って、蒸発器室8から仕切り部材103を介した仕切り部材102への熱移動が生じても、仕切り部材102は温度変化し難く低温を維持することができる。これにより、仕切り部材102から冷凍室60への熱移動を抑えることができ、冷凍室60の温度変動をさらに小さく抑えることができる。 In addition, the partition member 102 constituting the wall surface on the freezing chamber 60 side uses polypropylene having a higher density and a larger heat capacity per unit volume than the partition member 103. When the heat capacity per unit volume is large, the temperature change can be suppressed to be small even if the amount of heat transferred is the same. Therefore, even if heat is transferred from the evaporator chamber 8 to the partition member 102 via the partition member 103, the temperature of the partition member 102 does not easily change and the low temperature can be maintained. As a result, heat transfer from the partition member 102 to the freezing chamber 60 can be suppressed, and temperature fluctuations in the freezing chamber 60 can be further suppressed.

また、例えば冷凍室扉5aの開閉などで冷凍室60内の空気温度が急に上昇した場合、熱容量の大きい仕切り部材102は蓄冷材として働き、低温の仕切り部材102により冷凍室60の空気を冷却することができる。よって、冷凍室60をより短い時間で低温にすることができるので、その点でも冷凍室60の温度変動を抑える効果が得られる。 Further, when the air temperature in the freezing chamber 60 suddenly rises due to opening and closing of the freezing chamber door 5a, for example, the partition member 102 having a large heat capacity acts as a cold storage material, and the air in the freezing chamber 60 is cooled by the low temperature partition member 102. can do. Therefore, the temperature of the freezing chamber 60 can be lowered in a shorter time, and in that respect as well, the effect of suppressing the temperature fluctuation of the freezing chamber 60 can be obtained.

以上から、仕切り部材102に単位体積当たりの熱容量が大きい部材を用い、仕切り部材103に単位体積当たりの熱容量が小さい部材を用いることで、冷凍室60の温度変動を抑えながら、冷蔵運転中の蒸発器室8から仕切り部材103への熱移動を抑え、高い省エネルギー性能を得ることができる。 From the above, by using a member having a large heat capacity per unit volume for the partition member 102 and a member having a small heat capacity per unit volume for the partition member 103, evaporation during the refrigerating operation while suppressing the temperature fluctuation of the freezing chamber 60. It is possible to suppress heat transfer from the vessel chamber 8 to the partition member 103 and obtain high energy saving performance.

なお、上記の効果はそれぞれ仕切り部材102がポリプロピレン、仕切り部材103がポリスチレンフォームの場合に限られるものではなく、仕切り部材102に熱容量の大きい材料を用い、仕切り部材103に単位体積当たりの熱容量の小さい材料を用いればよい。例えば、仕切り部材102には、ABS(アクリロニトリル‐ブタジエン‐スチレンプラスチック)やポリスチレンなどの樹脂素材や、金属素材を用いてもよい。これらは密度が一般的に800kg/m以上と高く、そのため単位体積当たりの熱容量も一般的に1000kJ/(m・K)以上と大きい。なお、仕切り部材102は例えば下段冷凍室扉5を開けて下段冷凍室容器5bを引き出した際、使用者が直接触れることができる部材であることから、触れた際の壊れ難さからも樹脂部材や金属部材を用いることが有効である。 The above effects are not limited to the case where the partition member 102 is polypropylene and the partition member 103 is polystyrene foam, respectively. A material having a large heat capacity is used for the partition member 102, and the partition member 103 has a small heat capacity per unit volume. The material may be used. For example, a resin material such as ABS (acrylonitrile-butadiene-styrene plastic) or polystyrene, or a metal material may be used for the partition member 102. These have a high density of 800 kg / m 3 or more, and therefore a large heat capacity per unit volume of 1000 kJ / (m 3 · K) or more. Since the partition member 102 is a member that the user can directly touch when, for example, the lower freezing chamber door 5 is opened and the lower freezing chamber container 5b is pulled out, the resin member is difficult to break when touched. It is effective to use a metal member or a metal member.

また、例えば、仕切り部材103には、ポリスチレンフォームと同様、発泡により成形した発泡ポリエチレンや発泡ウレタン、あるいは綿状の素材であるグラスウールなどを用いてもよい。これらは、内部に隙間(ガス空間等)が設けられているため、密度は一般的に100kg/m以下と低く、そのため単位体積当たりの熱容量も一般的に100kJ/(m・K)以下と小さい。 Further, for example, as in the case of polystyrene foam, foamed polyethylene or urethane foam molded by foaming, or glass wool, which is a cotton-like material, may be used for the partition member 103. Since these have gaps (gas space, etc.) inside, the density is generally as low as 100 kg / m 3 or less, and therefore the heat capacity per unit volume is also generally 100 kJ / (m 3 · K) or less. And small.

図8は単位体積当たりの熱容量と冷蔵運転中に部材に流入する熱移動量の関係を示す解析結果の一例である。実線は仕切り部材103相当の厚さ10mmの場合、破線は仕切り部材102相当の厚さ1.5mmの場合である。縦軸は熱移動量を無次元化した値で、厚さ1.5mm、単位体積あたりの熱容量が1000kJ/(m・K)の時に生じる熱移動量を1としている。なお、熱伝導率は一定としている。 FIG. 8 is an example of analysis results showing the relationship between the heat capacity per unit volume and the amount of heat transfer flowing into the member during the refrigerating operation. The solid line is the case where the thickness corresponding to the partition member 103 is 10 mm, and the broken line is the case where the thickness corresponding to the partition member 102 is 1.5 mm. The vertical axis is a dimensionless value of the heat transfer amount, and the heat transfer amount generated when the thickness is 1.5 mm and the heat capacity per unit volume is 1000 kJ / (m3 · K) is 1 . The thermal conductivity is constant.

ここで、厚さ10mmの場合、単位体積あたりの熱容量300kJ/(m・K)の時に熱移動量が1となる。よって、単位体積あたりの熱容量300kJ/(m・K)以下とすれば、厚さ10mmにおいても、厚さ1.5mm、単位体積あたりの熱容量が1000kJ/(m・K)の時と同等以下の熱移動量になる。すなわち、単位体積あたりの熱容量が1000kJ/(m・K)以上である樹脂部材を用いる場合よりも熱移動量を抑えることができる。 Here, in the case of a thickness of 10 mm, the heat transfer amount becomes 1 when the heat capacity per unit volume is 300 kJ / (m 3 · K). Therefore, if the heat capacity per unit volume is 300 kJ / (m 3 · K) or less, even if the thickness is 10 mm, it is equivalent to the case where the thickness is 1.5 mm and the heat capacity per unit volume is 1000 kJ / (m 3 · K). The heat transfer amount is as follows. That is, the amount of heat transfer can be suppressed as compared with the case of using a resin member having a heat capacity of 1000 kJ / ( m3 · K) or more per unit volume.

さらに、仕切り部材103に用いる発泡ポリエチレン、発泡ウレタン、グラスウールように、単位体積あたりの熱容量が100kJ/(m・K)以下であれば、図8に示すように、厚さ1.5mmと10mmとで熱移動量の違いは5%(=(0.68/0.65)-1)以下になる。すなわち、厚みによらず熱移動量を小さく抑えることができることから、熱移動の抑制に、単位体積あたりの熱容量が100kJ/(m・K)以下の部材が特に有効である。本実施の形態例では、仕切り部材103に、単位体積あたりの熱容量が70kJ/(m・K)、すなわち100kJ/(m・K)以下のポリスチレンフォームを用いているので、より省エネルギー性能を向上することができる。加えて、これら、ポリスチレンフォーム、発泡ポリエチレン、発泡ウレタン、グラスウールは、一般的に熱伝導率が樹脂素材や金属素材に比べて低い。例えばポリプロピレンでは熱伝導率が約0.2W/(m・K)であるのに対し、ポリスチレンフォームは約0.03W/(m・K)である。よって、単位体積当たりの熱容量によって温度差を小さくした効果に加え、熱伝導率を抑えた効果による熱移動抑制効果も得られるので、さらに高い省エネルギー性能が得られる。 Further, as in the case of foamed polyethylene, urethane foam, and glass wool used for the partition member 103, if the heat capacity per unit volume is 100 kJ / (m 3 · K) or less, the thicknesses are 1.5 mm and 10 mm as shown in FIG. The difference in heat transfer amount is 5% (= (0.68 / 0.65) -1) or less. That is, since the amount of heat transfer can be kept small regardless of the thickness, a member having a heat capacity of 100 kJ / ( m3 · K) or less per unit volume is particularly effective for suppressing heat transfer. In the embodiment of the present embodiment, the partition member 103 uses polystyrene foam having a heat capacity of 70 kJ / (m 3 · K) or less, that is, 100 kJ / (m 3 · K) or less per unit volume, so that energy saving performance can be further improved. Can be improved. In addition, these, polystyrene foam, expanded polyethylene, urethane foam, and glass wool generally have lower thermal conductivity than resin materials and metal materials. For example, polypropylene has a thermal conductivity of about 0.2 W / (m · K), whereas polystyrene foam has a thermal conductivity of about 0.03 W / (m · K). Therefore, in addition to the effect of reducing the temperature difference by the heat capacity per unit volume, the effect of suppressing the heat transfer by the effect of suppressing the thermal conductivity can be obtained, so that even higher energy saving performance can be obtained.

なお、仕切り部材103の壁面のうち、蒸発器7の略前面に位置する箇所(例えば温度測定点X)は、蒸発器7により直接冷却されるので、冷凍運転中に特に低温になりやすい。よって、仕切り部材103の蒸発器7略前面の壁面は、冷蔵冷却運転における蒸発器室8の空気との温度差が特に大きくなりやすい。従って、温度差に起因する熱移動を抑えるため、仕切り部材103のうち、特に蒸発器7の略前面に、単位体積当たりの熱容量の小さい部材を設けることが効果的である。 Since the portion of the wall surface of the partition member 103 located substantially in front of the evaporator 7 (for example, the temperature measurement point X) is directly cooled by the evaporator 7, the temperature tends to be particularly low during the freezing operation. Therefore, the temperature difference between the wall surface of the partition member 103 substantially in front of the evaporator 7 and the air in the evaporator chamber 8 in the refrigerating / cooling operation tends to be particularly large. Therefore, in order to suppress heat transfer due to the temperature difference, it is effective to provide a member having a small heat capacity per unit volume, particularly on the substantially front surface of the evaporator 7, among the partition members 103.

また、前述したように仕切り部材102に比べ仕切り部材103を厚くすることで、仕切り部材103全体の熱容量(kJ/K)を大きくする効果も得られる。全体の熱容量が大きくなることで仕切り部材103全体の平均温度は上昇し難くなるので、冷蔵冷却運転中に仕切り部材103の蒸発器室8側の壁面温度が高くなっても、仕切り部材103の冷凍室側(仕切り部材102側)の温度は上がり難くなる。すなわち、仕切り部材103を厚くすることで、仕切り部材102を介した冷凍室60の温度変動をさらに抑制することができる。 Further, as described above, by making the partition member 103 thicker than the partition member 102, the effect of increasing the heat capacity (kJ / K) of the entire partition member 103 can be obtained. Since the average temperature of the entire partition member 103 becomes difficult to rise due to the increase in the overall heat capacity, even if the wall surface temperature of the partition member 103 on the evaporator chamber 8 side rises during the refrigerating / cooling operation, the partition member 103 is frozen. The temperature on the room side (partition member 102 side) is difficult to rise. That is, by making the partition member 103 thicker, it is possible to further suppress the temperature fluctuation of the freezing chamber 60 via the partition member 102.

また、この仕切り部材103の蒸発器室8側の表面には、厚さ0.1mmのアルミ製の防水シート104を貼付している。例えば蒸発器の除霜時に除霜水が生じるが、仕切り部材103内部に水が浸入すると単位体積当たりの熱容量が増加してしまうので、防水シート104を設けることで仕切り部材103内部への水の浸入を抑えている。なお、厚さを0.5mm以下、本実施の形態例では0.1mmと薄いシートを用いることで、仕切り部材103と蒸発器室8間での熱移動に対する防水シート104の影響を抑えている。 Further, a waterproof sheet 104 made of aluminum having a thickness of 0.1 mm is attached to the surface of the partition member 103 on the evaporator chamber 8 side. For example, defrost water is generated when the evaporator is defrosted, but if water infiltrates into the partition member 103, the heat capacity per unit volume increases. Therefore, by providing the waterproof sheet 104, water inside the partition member 103 is provided. Intrusion is suppressed. By using a thin sheet having a thickness of 0.5 mm or less and 0.1 mm in the present embodiment, the influence of the waterproof sheet 104 on the heat transfer between the partition member 103 and the evaporator chamber 8 is suppressed. ..

≪実施例2≫
以下、本発明の実施例2を説明する。本実施例の構成は、以下の点を除いて実施例1と同様にできる。実施例2は、野菜室6を中段に、冷凍室60を下段に配した冷蔵庫の例である。
<< Example 2 >>
Hereinafter, Example 2 of the present invention will be described. The configuration of this embodiment can be the same as that of the first embodiment except for the following points. Example 2 is an example of a refrigerator in which the vegetable compartment 6 is arranged in the middle stage and the freezing chamber 60 is arranged in the lower stage.

図9は実施例2に関する冷蔵庫の正面図、図10は図9に示すB-B断面図である。実施例2の冷蔵庫1は、貯蔵室として上方から順に、冷蔵室2、野菜室6、冷凍室60(製氷室3と上段冷凍室4、下段冷凍室5)を備えている。冷蔵室2と野菜室6の間には仕切り壁28aを設け、野菜室6と冷凍室60の間には仕切り壁29aを設けている。なお、野菜室6が冷え過ぎた場合には、仕切り壁29aの上部に設けた野菜室ヒータ204によって野菜室6を加熱し、所定の温度に保持する。 9 is a front view of the refrigerator according to the second embodiment, and FIG. 10 is a sectional view taken along the line BB shown in FIG. The refrigerator 1 of the second embodiment includes a refrigerating room 2, a vegetable room 6, and a freezing room 60 (ice making room 3, upper freezing room 4, and lower freezing room 5) in order from the top as storage rooms. A partition wall 28a is provided between the refrigerating room 2 and the vegetable room 6, and a partition wall 29a is provided between the vegetable room 6 and the freezing room 60. When the vegetable chamber 6 is too cold, the vegetable chamber 6 is heated by the vegetable chamber heater 204 provided on the upper part of the partition wall 29a and kept at a predetermined temperature.

貯蔵室及び風路の配置は異なるが、基本的な空気の流れは実施例1と同様である。冷蔵室2及び野菜室6を冷却する場合は、冷蔵室ダンパ50を開けて庫内ファン9を駆動させる。蒸発器7により冷却された蒸発器室8の空気は、庫内ファン9、冷蔵室ダンパ50、冷蔵室送風風路11、吐出口61、冷蔵室2、冷蔵室-野菜室風路13、野菜室6、野菜室戻り口(図示せず)、野菜室戻り風路(図示せず)、蒸発器室8の順に流れ、再び蒸発器7で冷却される。冷凍室60を冷却する場合、冷凍室ダンパ51を開けて庫内ファン9を駆動させる。蒸発器7により冷却された蒸発器室8の空気は、庫内ファン9、冷凍室ダンパ51、冷凍室送風風路12、吐出口62、冷凍室60、冷凍室戻り風路17、蒸発器室8の順に流れ、再び蒸発器7で冷却される。 Although the arrangement of the storage chamber and the air passage is different, the basic air flow is the same as that of the first embodiment. When cooling the refrigerator compartment 2 and the vegetable compartment 6, the refrigerator compartment damper 50 is opened to drive the refrigerator fan 9. The air in the evaporator chamber 8 cooled by the evaporator 7 is the refrigerator fan 9, the refrigerator chamber damper 50, the refrigerator chamber air passage 11, the discharge port 61, the refrigerator chamber 2, the refrigerator chamber-vegetable chamber air passage 13, and vegetables. It flows in the order of the chamber 6, the vegetable compartment return port (not shown), the vegetable compartment return air passage (not shown), and the evaporator chamber 8, and is cooled again by the evaporator 7. When cooling the freezing chamber 60, the freezing chamber damper 51 is opened to drive the internal fan 9. The air in the evaporator room 8 cooled by the evaporator 7 is the internal fan 9, the freezer room damper 51, the freezer room blower air passage 12, the discharge port 62, the freezer room 60, the freezer room return air passage 17, and the evaporator room. It flows in the order of 8, and is cooled again by the evaporator 7.

実施例2の冷蔵庫では、蒸発器室8は、野菜室6及び冷凍室60の背面側に設けられ、内箱1aと、樋21、仕切り部材203a、203b、冷蔵室ダンパ50、冷凍室ダンパ51により形成されている。発器室8と冷凍室60は、冷凍室側の仕切り部材202aと蒸発器室8側の仕切り部材203aにより仕切られ、蒸発器室8と野菜室6は、野菜室6側の仕切り部材202bと蒸発器室8側の仕切り部材203bにより仕切られている。野菜室6の壁面を構成する第三の部材である仕切り部材202a、及び冷凍室60側の壁面を構成する第二の部材である202bはポリプロピレン製であり、蒸発器室8側の壁面を構成する第一の部材である仕切り部材203a、203bはポリスチレンフォーム製である。また仕切り部材202a、202bは厚さが1.5mmであり、仕切り部材203a、203bは10mmである。 In the refrigerator of the second embodiment, the evaporator room 8 is provided on the back side of the vegetable room 6 and the freezing room 60, and has an inner box 1a, a gutter 21, partition members 203a and 203b, a refrigerating room damper 50, and a freezing room damper 51. Is formed by. The generator room 8 and the freezing room 60 are partitioned by a partition member 202a on the freezing room side and a partition member 203a on the evaporator room 8 side, and the evaporator room 8 and the vegetable room 6 are partitioned from the partition member 202b on the vegetable room 6 side. It is partitioned by the partition member 203b on the evaporator chamber 8 side. The partition member 202a, which is the third member constituting the wall surface of the vegetable compartment 6, and 202b, which is the second member constituting the wall surface on the freezing chamber 60 side, are made of polypropylene and constitute the wall surface on the evaporator chamber 8 side. The partition members 203a and 203b, which are the first members, are made of polystyrene foam. The partition members 202a and 202b have a thickness of 1.5 mm, and the partition members 203a and 203b have a thickness of 10 mm.

実施例1と同様、蒸発器室8側の壁面を構成する仕切り部材203a及び203bを、仕切り部材202a及び202bに比べ、密度が低く、単位体積当たりの熱容量の小さい部材にしている。これにより、実施例1の仕切り部材103同様、仕切り部材203a、203bの蒸発器室8側壁面と蒸発器室8の空気との温度差を小さく抑えることができる。すなわち、冷蔵冷却運転中の仕切り部材203a、203bへの熱移動が抑えられ、冷凍運転に比べて効率の高い冷蔵運転で冷却する熱量の割合が大きくなり、高い省エネルギー性能を得ることができる。 Similar to the first embodiment, the partition members 203a and 203b constituting the wall surface on the evaporator chamber 8 side are made into members having a lower density and a smaller heat capacity per unit volume than the partition members 202a and 202b. As a result, similarly to the partition member 103 of the first embodiment, the temperature difference between the side wall surface of the evaporator chamber 8 of the partition members 203a and 203b and the air in the evaporator chamber 8 can be suppressed to a small size. That is, heat transfer to the partition members 203a and 203b during the refrigerating and cooling operation is suppressed, the ratio of the amount of heat to be cooled in the refrigerating operation with higher efficiency is larger than that in the refrigerating operation, and high energy saving performance can be obtained.

また、冷凍室60側の壁面を構成する仕切り部材202aを、単位体積当たりの熱容量の大きい部材にすることで、実施例1の仕切り部材102と同様、仕切り部材202aの温度変動が抑えられ、仕切り部材202aが面する冷凍室60の温度変動を抑えることができる。 Further, by making the partition member 202a constituting the wall surface on the freezing chamber 60 side a member having a large heat capacity per unit volume, the temperature fluctuation of the partition member 202a can be suppressed and the partition can be partitioned as in the partition member 102 of the first embodiment. The temperature fluctuation of the freezing chamber 60 facing the member 202a can be suppressed.

加えて、実施例2の構成では、仕切り部材202bに単位体積当たりの熱容量の大きい部材を用いることで、野菜室6の温度変動も抑制している。野菜室6は基本的に野菜から蒸発する水分などにより高湿であるが、温度変動が生じると空気中の水分が凝縮(結露)して、低湿になりやすい。野菜室6が低湿であると、野菜からより多くの水分が蒸発して、乾燥しやすいので、本構成で野菜室6の温度変動を抑制することで、食品の保存性を向上させることができる。 In addition, in the configuration of the second embodiment, the temperature fluctuation of the vegetable compartment 6 is also suppressed by using a member having a large heat capacity per unit volume for the partition member 202b. The vegetable compartment 6 is basically highly humid due to the moisture evaporating from the vegetables, but when the temperature fluctuates, the moisture in the air condenses (condenses) and tends to become low humidity. When the vegetable chamber 6 has a low humidity, more water evaporates from the vegetables and it is easy to dry. Therefore, by suppressing the temperature fluctuation of the vegetable chamber 6 in this configuration, the preservability of food can be improved. ..

また、仕切り部材203bは、仕切り部材202bのポリプロピレンに比べ熱伝導率が低いポリスチレンフォームを用い、仕切り部材202bよりも厚い10mmとしている。野菜室6は冷蔵温度帯であるのに対し、蒸発器室8は基本的に冷凍温度帯であるので、仕切り部材202b、203bを介した、野菜室6から蒸発器室8への熱移動が生じる。これに対し、仕切り部材203bに、熱伝導率が低く、かつ厚みのある部材を用いることで、この熱移動も抑えている。 Further, the partition member 203b uses polystyrene foam having a lower thermal conductivity than the polypropylene of the partition member 202b, and has a thickness of 10 mm, which is thicker than the partition member 202b. Since the vegetable chamber 6 is in the refrigerating temperature zone, while the evaporator chamber 8 is basically in the freezing temperature zone, heat transfer from the vegetable chamber 6 to the evaporator chamber 8 via the partition members 202b and 203b is performed. Occurs. On the other hand, by using a member having a low thermal conductivity and a thickness for the partition member 203b, this heat transfer is also suppressed.

野菜室6の熱は基本的に冷蔵冷却運転により冷却されるが、冷凍運転中に野菜室6から蒸発器室8に熱が移動すると、冷凍運転で低温になっている蒸発器7によりその熱は冷却される。よって、野菜室6から蒸発器室8への熱移動を抑えることで、冷凍運転で冷却する熱量の割合を小さく抑えることができる。すなわち、効率の高い冷蔵運転で冷却する熱量の割合が大きくなり、高い省エネルギー性能が得られる。 The heat of the vegetable compartment 6 is basically cooled by the refrigerating and cooling operation, but when the heat is transferred from the vegetable chamber 6 to the evaporator chamber 8 during the refrigerating operation, the heat is generated by the evaporator 7 which has become low temperature in the refrigerating operation. Is cooled. Therefore, by suppressing the heat transfer from the vegetable chamber 6 to the evaporator chamber 8, the ratio of the amount of heat cooled in the freezing operation can be suppressed to a small value. That is, the ratio of the amount of heat to be cooled by the highly efficient refrigerating operation becomes large, and high energy saving performance can be obtained.

また、野菜室6から蒸発器室8への熱移動が生じると、野菜室6は冷却されて低温になるが、この熱移動を抑えたことで、野菜室6の冷え過ぎを抑制することができる。野菜室6が冷え過ぎると、野菜室6を所定の温度に保持するために野菜室ヒータ204により加熱するが、野菜室ヒータ204による加熱を行うと消費電力量が増加する。従って、野菜室6から蒸発器室8への熱移動を抑え、野菜室6の冷え過ぎを抑えたことで、野菜室ヒータ204の消費電力量の抑制による省エネルギー性能向上効果も得られる。 Further, when heat transfer from the vegetable chamber 6 to the evaporator chamber 8 occurs, the vegetable chamber 6 is cooled to a low temperature, but by suppressing this heat transfer, it is possible to suppress the overcooling of the vegetable chamber 6. can. When the vegetable chamber 6 is too cold, the vegetable chamber 6 is heated by the vegetable chamber heater 204 in order to keep the vegetable chamber 6 at a predetermined temperature, but when the vegetable chamber 6 is heated by the vegetable chamber heater 204, the power consumption increases. Therefore, by suppressing the heat transfer from the vegetable chamber 6 to the evaporator chamber 8 and suppressing the overcooling of the vegetable chamber 6, the effect of improving the energy saving performance by suppressing the power consumption of the vegetable chamber heater 204 can be obtained.

なお、本発明は前述した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、前述した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 The present invention is not limited to the above-mentioned examples, and includes various modifications. For example, the above-mentioned examples have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the described configurations. Further, it is possible to add / delete / replace a part of the configuration of the embodiment with another configuration.

例えば、冷蔵温度帯の貯蔵室として、本実施の形態例では冷蔵室2と野菜室6を備えているが、冷蔵温度帯の貯蔵室は何れか1つでも構わない。また、冷蔵室2と野菜室6の風路を並列にして、何れか一方のみに送風できるように構成しても構わない。また、仕切り部材202aと202b、及び仕切り部材203a、203bはそれぞれ一体成形品でもよい。また、同様の特性の部材であれば、仕切り部材202aと202b、及び仕切り部材203a、203bを、それぞれ別の材料で構成してもよい。 For example, as the storage chamber in the refrigerating temperature zone, the refrigerating chamber 2 and the vegetable compartment 6 are provided in the present embodiment, but any one of the storage chambers in the refrigerating temperature zone may be used. Further, the air passages of the refrigerating room 2 and the vegetable room 6 may be arranged in parallel so that air can be blown to only one of them. Further, the partition members 202a and 202b, and the partition members 203a and 203b may be integrally molded products, respectively. Further, the partition members 202a and 202b and the partition members 203a and 203b may be made of different materials as long as they have the same characteristics.

1 冷蔵庫
1a 内箱
1b 外箱
2 冷蔵室(第一の貯蔵室)
3 製氷室(第二の貯蔵室)
4 上段冷凍室(第二の貯蔵室)
5 下段冷凍室(第二の貯蔵室)
6 野菜室(第一の貯蔵室)
7 蒸発器
8 蒸発器室
9 冷蔵室側ファン
10 断熱箱体
10a 発泡断熱材
11 冷蔵室送風風路
12 冷凍室送風風路
13 冷蔵室-野菜室風路
14 野菜室戻り風路
17 冷凍室戻り風路
20 機械室
21 樋
22 排水管
23 蒸発皿
24 圧縮機
26 真空断熱材
27 除霜ヒータ
28、28a、29、29a、30 仕切り壁
31 制御基板
32 ポケット
33 冷蔵室温度センサ
34 冷凍室温度センサ
35 野菜室温度センサ
36 蒸発器温度センサ
37 外気温度センサ
38 扉ヒンジカバー
39 棚
50 冷蔵室ダンパ
51 冷凍室ダンパ
60 冷凍室(第二の貯蔵室)
61 冷蔵室吐出口
64 野菜室戻り口
65 冷凍室吐出口
80 冷蔵室風路構成部材
102、202a 仕切り部材(第二の貯蔵室側の壁面を構成する第二の部材)
202b 仕切り部材(第一の貯蔵室側の壁面を構成する第三の部材)
103、203a、203b 仕切り部材(蒸発器室側の壁面を構成する第一の部材)
104 防水シート
204 野菜室ヒータ
1 Refrigerator 1a Inner box 1b Outer box 2 Refrigerator room (first storage room)
3 Ice making room (second storage room)
4 Upper freezing room (second storage room)
5 Lower freezing room (second storage room)
6 Vegetable room (first storage room)
7 Evaporator 8 Evaporator room 9 Refrigerator room side fan 10 Insulation box body 10a Foam insulation 11 Refrigerator room air passage 12 Freezer room air passage 13 Refrigerator room-Vegetable room air passage 14 Vegetable room return air passage 17 Freezer room return Air passage 20 Machine room 21 Damper 22 Drain pipe 23 Evaporator 24 Compressor 26 Vacuum insulation 27 Defrost heater 28, 28a, 29, 29a, 30 Partition wall 31 Control board 32 Pocket 33 Refrigerator room temperature sensor 34 Refrigerator room temperature sensor 35 Vegetable room temperature sensor 36 Evaporator temperature sensor 37 Outside air temperature sensor 38 Door hinge cover 39 Shelf 50 Refrigerator room damper 51 Freezer room damper 60 Freezer room (second storage room)
61 Refrigerator room discharge port 64 Vegetable room return port 65 Freezing room discharge port 80 Refrigerator room air passage component 102, 202a Partition member (second member that constitutes the wall surface on the second storage room side)
202b Partition member (third member constituting the wall surface on the first storage chamber side)
103, 203a, 203b Partition member (first member constituting the wall surface on the evaporator chamber side)
104 Tarpaulin 204 Vegetable room heater

Claims (6)

冷蔵温度帯の第一の貯蔵室と、冷凍温度帯の第二の貯蔵室と、前記第一の貯蔵室と前記第二の貯蔵室とを冷却する蒸発器と、該蒸発器を収納する蒸発器室と、該蒸発器室と前記第二の貯蔵室とを仕切る仕切り部材と、を備える冷蔵庫において、
前記蒸発器室に前記第一の貯蔵室の空気を循環させながら該第一の貯蔵室を冷却する冷蔵運転又は送風運転と、前記蒸発器室に前記第二の貯蔵室の空気を循環させながら該第二の貯蔵室を冷却する冷凍運転と、を区別して別々のタイミングで実行可能であり、
前記仕切り部材は複数の部材で構成され、前記仕切り部材のうち前記蒸発器室側の壁面を構成する第一の部材は、前記仕切り部材のうち前記第二の貯蔵室側の壁面を構成する第二の部材よりも、単位体積あたりの熱容量が小さい冷蔵庫。
An evaporator that cools the first storage chamber in the refrigerating temperature zone, the second storage chamber in the freezing temperature zone, the first storage chamber and the second storage chamber, and the evaporation that houses the evaporator. In a refrigerator provided with a vessel chamber and a partition member for partitioning the evaporator chamber and the second storage chamber.
A refrigerating operation or a ventilation operation for cooling the first storage chamber while circulating the air in the first storage chamber in the evaporator chamber, and circulating the air in the second storage chamber in the evaporator chamber. It is possible to distinguish between the refrigeration operation of cooling the second storage chamber and the operation at different timings .
The partition member is composed of a plurality of members, and the first member of the partition member constituting the wall surface on the evaporator chamber side constitutes the wall surface of the partition member on the second storage chamber side. A refrigerator with a smaller heat capacity per unit volume than the second member.
冷蔵温度帯の第一の貯蔵室と、冷凍温度帯の第二の貯蔵室と、前記第一の貯蔵室と前記第二の貯蔵室とを冷却する蒸発器と、該蒸発器を収納する蒸発器室と、該蒸発器室と前記第二の貯蔵室とを仕切る仕切り部材と、を備える冷蔵庫において、
前記蒸発器室に前記第一の貯蔵室の空気を循環させながら該第一の貯蔵室を冷却する冷蔵運転又は送風運転と、前記蒸発器室に前記第二の貯蔵室の空気を循環させながら該第二の貯蔵室を冷却する冷凍運転と、を区別して別々のタイミングで実行可能であり、
前記仕切り部材のうち前記蒸発器室側の壁面を構成する第一の部材は、単位体積あたりの熱容量が300kJ/(m・K)未満で厚さ10mm以下である冷蔵庫。
An evaporator that cools the first storage chamber in the refrigerating temperature zone, the second storage chamber in the freezing temperature zone, the first storage chamber and the second storage chamber, and the evaporation that houses the evaporator. In a refrigerator provided with a vessel chamber and a partition member for partitioning the evaporator chamber and the second storage chamber.
A refrigerating operation or a ventilation operation for cooling the first storage chamber while circulating the air in the first storage chamber in the evaporator chamber, and circulating the air in the second storage chamber in the evaporator chamber. It is possible to distinguish between the refrigeration operation of cooling the second storage chamber and the operation at different timings .
Among the partition members, the first member constituting the wall surface on the evaporator chamber side is a refrigerator having a heat capacity of less than 300 kJ / (m3 · K) and a thickness of 10 mm or less per unit volume.
冷蔵温度帯の第一の貯蔵室と、冷凍温度帯の第二の貯蔵室と、前記第一の貯蔵室と前記第二の貯蔵室とを冷却する蒸発器と、該蒸発器を収納する蒸発器室と、該蒸発器室と前記第一の貯蔵室とを仕切る仕切り部材と、を備える冷蔵庫において、
前記蒸発器室に前記第一の貯蔵室の空気を循環させながら該第一の貯蔵室を冷却する冷蔵運転又は送風運転と、前記蒸発器室に前記第二の貯蔵室の空気を循環させながら該第二の貯蔵室を冷却する冷凍運転と、を区別して別々のタイミングで実行可能であり、
前記仕切り部材は複数の部材で構成され、前記仕切り部材のうち前記蒸発器室側の壁面を構成する第一の部材は、前記仕切り部材のうち前記第二の貯蔵室側の壁面を構成する第二の部材よりも、単位体積あたりの熱容量が小さい冷蔵庫。
An evaporator that cools the first storage chamber in the refrigerating temperature zone, the second storage chamber in the freezing temperature zone, the first storage chamber and the second storage chamber, and the evaporation that houses the evaporator. In a refrigerator provided with a vessel chamber and a partition member for partitioning the evaporator chamber and the first storage chamber.
A refrigerating operation or a ventilation operation for cooling the first storage chamber while circulating the air in the first storage chamber in the evaporator chamber, and circulating the air in the second storage chamber in the evaporator chamber. It is possible to distinguish between the refrigeration operation of cooling the second storage chamber and the operation at different timings .
The partition member is composed of a plurality of members, and the first member of the partition member constituting the wall surface on the evaporator chamber side constitutes the wall surface of the partition member on the second storage chamber side. A refrigerator with a smaller heat capacity per unit volume than the second member.
前記第一の部材は、前記第二の部材よりも厚い請求項1又は3に記載の冷蔵庫。 The refrigerator according to claim 1 or 3, wherein the first member is thicker than the second member. 冷蔵温度帯の第一の貯蔵室と、冷凍温度帯の第二の貯蔵室と、前記第一の貯蔵室と前記第二の貯蔵室とを冷却する蒸発器と、該蒸発器を収納する蒸発器室と、該蒸発器室と前記第一の貯蔵室とを仕切る仕切り部材と、を備える冷蔵庫において、
前記蒸発器室に前記第一の貯蔵室の空気を循環させながら該第一の貯蔵室を冷却する冷蔵運転又は送風運転と、前記蒸発器室に前記第二の貯蔵室の空気を循環させながら該第二の貯蔵室を冷却する冷凍運転と、を区別して別々のタイミングで実行可能であり、
前記仕切り部材のうち前記蒸発器室側の壁面を構成する第一の部材は、単位体積あたりの熱容量が300kJ/(m・K)未満で厚さ10mm以下である冷蔵庫。
An evaporator that cools the first storage chamber in the refrigerating temperature zone, the second storage chamber in the freezing temperature zone, the first storage chamber and the second storage chamber, and the evaporation that houses the evaporator. In a refrigerator provided with a vessel chamber and a partition member for partitioning the evaporator chamber and the first storage chamber.
A refrigerating operation or a ventilation operation for cooling the first storage chamber while circulating the air in the first storage chamber in the evaporator chamber, and circulating the air in the second storage chamber in the evaporator chamber. It is possible to distinguish between the refrigeration operation of cooling the second storage chamber and the operation at different timings .
Among the partition members, the first member constituting the wall surface on the evaporator chamber side is a refrigerator having a heat capacity of less than 300 kJ / (m3 · K) and a thickness of 10 mm or less per unit volume.
前記蒸発器室は、冷蔵用ダンパと、冷凍用ダンパと、を有し、The evaporator chamber has a refrigerating damper and a freezing damper.
前記冷蔵運転又は前記送風運転では、前記冷蔵用ダンパを開けて前記冷凍用ダンパを閉じることで、前記第一の貯蔵室内の空気が前記蒸発器室内に流入し、In the refrigerating operation or the blowing operation, by opening the refrigerating damper and closing the freezing damper, the air in the first storage chamber flows into the evaporator chamber.
前記冷凍運転では、前記冷蔵用ダンパを閉じて前記冷凍用ダンパを開けることで、前記第二の貯蔵室内の空気が前記蒸発器室内に流入する請求項1乃至5のいずれかに記載の冷蔵庫。The refrigerator according to any one of claims 1 to 5, wherein in the freezing operation, the air in the second storage chamber flows into the evaporator chamber by closing the refrigerating damper and opening the freezing damper.
JP2020184076A 2020-11-04 2020-11-04 refrigerator Active JP7063970B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020184076A JP7063970B2 (en) 2020-11-04 2020-11-04 refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020184076A JP7063970B2 (en) 2020-11-04 2020-11-04 refrigerator

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015231216A Division JP6830315B2 (en) 2015-11-27 2015-11-27 refrigerator

Publications (2)

Publication Number Publication Date
JP2021012019A JP2021012019A (en) 2021-02-04
JP7063970B2 true JP7063970B2 (en) 2022-05-09

Family

ID=74227983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020184076A Active JP7063970B2 (en) 2020-11-04 2020-11-04 refrigerator

Country Status (1)

Country Link
JP (1) JP7063970B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008075937A (en) 2006-09-20 2008-04-03 Matsushita Electric Ind Co Ltd Refrigerator
JP2008308962A (en) 2007-06-18 2008-12-25 Oriental Shiraishi Corp Post-curing method for concrete block in overhang construction
JP2010060188A (en) 2008-09-03 2010-03-18 Hitachi Appliances Inc Refrigerator
WO2013046580A1 (en) 2011-09-29 2013-04-04 パナソニック株式会社 Refrigerator
JP2014014939A (en) 2012-07-06 2014-01-30 Seiko Epson Corp Inkjet recording medium and inkjet recording method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04174272A (en) * 1990-11-05 1992-06-22 Hitachi Ltd Duct device for refrigerator and the like
JPH1047830A (en) * 1996-07-30 1998-02-20 Shizuoka Seiki Co Ltd Low temperature storage shed
JP3212954B2 (en) * 1997-11-07 2001-09-25 三菱電機株式会社 refrigerator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008075937A (en) 2006-09-20 2008-04-03 Matsushita Electric Ind Co Ltd Refrigerator
JP2008308962A (en) 2007-06-18 2008-12-25 Oriental Shiraishi Corp Post-curing method for concrete block in overhang construction
JP2010060188A (en) 2008-09-03 2010-03-18 Hitachi Appliances Inc Refrigerator
WO2013046580A1 (en) 2011-09-29 2013-04-04 パナソニック株式会社 Refrigerator
JP2014014939A (en) 2012-07-06 2014-01-30 Seiko Epson Corp Inkjet recording medium and inkjet recording method

Also Published As

Publication number Publication date
JP2021012019A (en) 2021-02-04

Similar Documents

Publication Publication Date Title
TWI639803B (en) Cold storage
JP5017340B2 (en) refrigerator
JP6138708B2 (en) refrigerator
KR20120022600A (en) Refrigerator
JP5417382B2 (en) refrigerator
US20100139307A1 (en) Refrigerator with an improved air handler for quickly chilling a bin
JP2018025323A (en) refrigerator
JP5966145B2 (en) refrigerator
CN111076477A (en) Refrigerator with a door
JP7063970B2 (en) refrigerator
JP6830315B2 (en) refrigerator
JP7388987B2 (en) refrigerator
JP2020034207A (en) refrigerator
CN111076478B (en) Refrigerator with a door
JP2008111640A (en) Refrigerator
US11105549B2 (en) Refrigerator appliance with a convertible compartment
JP6862094B2 (en) refrigerator
JP7312148B2 (en) refrigerator
JP2007163066A (en) Refrigerator
JP6762149B2 (en) refrigerator
KR100678777B1 (en) Refrigerator
JP7391059B2 (en) refrigerator
JP7454458B2 (en) refrigerator
JP2023007618A (en) refrigerator
JP2007064553A (en) Refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211019

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20211109

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20211116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220421

R150 Certificate of patent or registration of utility model

Ref document number: 7063970

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150