[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7058064B2 - Welding method - Google Patents

Welding method Download PDF

Info

Publication number
JP7058064B2
JP7058064B2 JP2017254209A JP2017254209A JP7058064B2 JP 7058064 B2 JP7058064 B2 JP 7058064B2 JP 2017254209 A JP2017254209 A JP 2017254209A JP 2017254209 A JP2017254209 A JP 2017254209A JP 7058064 B2 JP7058064 B2 JP 7058064B2
Authority
JP
Japan
Prior art keywords
welding
welded
electrode
gap
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017254209A
Other languages
Japanese (ja)
Other versions
JP2019118922A (en
Inventor
智也 森田
圭一郎 木許
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2017254209A priority Critical patent/JP7058064B2/en
Publication of JP2019118922A publication Critical patent/JP2019118922A/en
Application granted granted Critical
Publication of JP7058064B2 publication Critical patent/JP7058064B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Resistance Welding (AREA)
  • Laser Beam Processing (AREA)

Description

本発明は、被溶接材を溶接する溶接方法等に関する。 The present invention relates to a welding method for welding a material to be welded and the like.

2枚の板材等の被溶接材を重ねた溶接対象を接合する場合、スポット溶接により接合される場合がある。スポット溶接は、抵抗発熱を利用して金属の接合を行う抵抗溶接法の一種である。スポット溶接では、被溶接材を重ね合わせた状態で、電極により溶接対象を加圧し、さらに電極から溶接対象に電流を流し、溶接部を抵抗発熱によって加熱して局部的に溶接対象を溶融させて、溶接対象を冶金的に接合する。スポット溶接において、溶融凝固した部分は、「ナゲット」と称され、ナゲットにおいて溶接対象が接合される。 When joining a welded object in which two plates or other materials to be welded are overlapped, they may be joined by spot welding. Spot welding is a type of resistance welding method that uses resistance heat generation to join metals. In spot welding, the welded object is pressurized by the electrodes in a state where the materials to be welded are overlapped, a current is passed from the electrodes to the welded object, and the welded portion is heated by resistance heat generation to locally melt the welded object. , Welding objects are joined by metallurgy. In spot welding, the melt-solidified portion is called a "nugget", and the welded object is joined in the nugget.

ここで、被溶接材は表面がめっき処理される場合がある。重ねられた被溶接材の接触部分にめっき層がある場合、溶接の際の発熱により、めっき材である亜鉛等が気化してガスが発生する場合がある。ガスが爆発的に膨張すると、ガスの圧力により、被溶接材が変形したり、破損したりし、ブローホールが形成される等の溶接不良となる場合がある。 Here, the surface of the material to be welded may be plated. When there is a plating layer at the contact portion of the stacked materials to be welded, the heat generated during welding may vaporize zinc or the like as the plating material to generate gas. When the gas expands explosively, the pressure of the gas may deform or damage the material to be welded, resulting in welding defects such as the formation of blow holes.

そのため、従来の溶接においては、あらかじめプレス機等で被溶接材の接合面を加圧し、溶接面の溶接箇所の近傍にエンボスを形成していた。このように、溶接箇所の近傍にエンボス等の隙間を設けることにより、発生したが隙間に待避され、ガスが被溶接材に及ぼす影響を軽減していた(例えば、特許文献1参照)。 Therefore, in the conventional welding, the joint surface of the material to be welded is pressed in advance with a press machine or the like to form embossing in the vicinity of the welded portion of the welded surface. In this way, by providing a gap such as embossing in the vicinity of the welded portion, although it is generated, it is saved in the gap and the influence of the gas on the material to be welded is reduced (see, for example, Patent Document 1).

特開2014-223634号公報Japanese Unexamined Patent Publication No. 2014-223634

しかしながら、従来の溶接方法では、適切な隙間の形成が困難であるという問題点があった。 However, the conventional welding method has a problem that it is difficult to form an appropriate gap.

例えば、形成された隙間が小さすぎるとガスが十分に待避できず、ブローホール等の溶接不良を抑制できない場合があった。逆に形成された隙間が大きすぎると、溶接対象の溶接面に十分な溶接面積が確保できない等により、溶接強度が不足する等の溶接不良が発生する場合がある。そのため、溶接面に形成されるエンボスは、0.01mm~0.03mm程度の精度で形成されることが要求される。これに対して、一般的なプレス機では、0.5mm程度の精度でしかエンボスが形成されない。その結果、従来の溶接方法では、十分な精度で適切な隙間が形成されない場合があり、溶接不良が発生する場合があった。 For example, if the formed gap is too small, the gas cannot be sufficiently evacuated, and welding defects such as blow holes may not be suppressed. On the contrary, if the formed gap is too large, a sufficient welding area cannot be secured on the welded surface to be welded, and welding defects such as insufficient welding strength may occur. Therefore, the embossing formed on the welded surface is required to be formed with an accuracy of about 0.01 mm to 0.03 mm. On the other hand, in a general press machine, embossing is formed only with an accuracy of about 0.5 mm. As a result, in the conventional welding method, an appropriate gap may not be formed with sufficient accuracy, and welding defects may occur.

本発明の溶接装置は、上記問題点を解決するために、溶接の際に適切な隙間を形成し、溶接不良を抑制することを目的とする。 In order to solve the above problems, the welding apparatus of the present invention aims to form an appropriate gap during welding and suppress welding defects.

上記目的を達成するために、本発明の溶接方法は、溶接用の電極を備えた抵抗溶接機を少なくとも含む複数の溶接機を用いて複数の被溶接材を所定の溶接箇所で溶接する際に、前記被溶接材間に隙間が形成されるように、前記抵抗溶接機の前記電極で前記溶接箇所を加圧しながら前記電極から前記溶接箇所に電流を流す工程と、前記隙間が形成された状態で、いずれかの前記溶接機を用いて前記溶接箇所の溶接を行う工程とを有することを特徴とする。 In order to achieve the above object, the welding method of the present invention is used when welding a plurality of materials to be welded at a predetermined welding point by using a plurality of welding machines including at least a resistance welding machine equipped with an electrode for welding. A step of passing a current from the electrode to the welded portion while pressurizing the welded portion with the electrode of the resistance welder so that a gap is formed between the materials to be welded, and a state in which the gap is formed. It is characterized by having a step of welding the welded portion by using any of the welding machines.

このように、被溶接材間に隙間を形成してから溶接を行うことにより、溶接の際に生じたガスを隙間に待避させることができる。そのため、ガスが爆発的に膨張することにより被溶接材を損なうことを抑制することができ、溶接不良が生じることを抑制することができる。 In this way, by forming a gap between the materials to be welded and then performing welding, the gas generated during welding can be evacuated to the gap. Therefore, it is possible to suppress damage to the material to be welded due to the explosive expansion of the gas, and it is possible to suppress the occurrence of welding defects.

また、前記隙間を形成する工程をシリーズ溶接機で行っても良い。 Further, the step of forming the gap may be performed by a series welding machine.

このように、シリーズ溶接機により隙間を形成することで、複数箇所に同時に隙間を形成することができ、効率的に隙間を形成することができる。その結果、ガスが爆発的に膨張することにより被溶接材を損なうことを効率的に抑制することができ、溶接不良が生じることを効率的に抑制することができる。 In this way, by forming the gap with the series welding machine, it is possible to form the gap at a plurality of places at the same time, and it is possible to efficiently form the gap. As a result, it is possible to efficiently suppress the damage to the material to be welded due to the explosive expansion of the gas, and it is possible to efficiently suppress the occurrence of welding defects.

また、前記溶接箇所を溶接する工程をインダイレクト溶接機で行っても良い。 Further, the step of welding the welded portion may be performed by an indirect welder.

このように、シリーズ溶接機により隙間を形成した後、インダイレクト溶接を行うことにより、溶接対象の両面に電極を設けることができない状態であっても、隙間を形成してから溶接を行うことができる。そのため、溶接対象の両面に電極を設けることができない状態であっても、ガスが爆発的に膨張することにより被溶接材を損なうことを抑制することができ、溶接不良が生じることを抑制することができる。 In this way, by performing indirect welding after forming a gap with a series welding machine, it is possible to perform welding after forming a gap even if electrodes cannot be provided on both sides of the object to be welded. can. Therefore, even in a state where electrodes cannot be provided on both sides of the welding target, it is possible to suppress the damage to the material to be welded due to the explosive expansion of the gas, and it is possible to suppress the occurrence of welding defects. Can be done.

さらに、本発明の溶接装置は、複数の被溶接材を複数の溶接箇所で連続的に溶接する溶接装置であって、複数の前記被溶接材からなる溶接対象を加圧すると共に前記溶接対象に電流を印加する第1の電極と、前記溶接対象を加圧すると共に前記溶接対象に電流を印加する第2の電極と、前記第1の電極および前記第2の電極と前記溶接対象とを相対的に移動させる駆動装置と、前記第1の電極および前記第2の電極それぞれに個別に電流を印加する電源供給装置と、前記駆動装置および前記電源供給装置の動作を制御する制御装置とを有し、前記第1の電極では前記被溶接材間に隙間を形成することのみが行われ、前記第2の電極では溶接のみが行われ、前記第1の電極および前記第2の電極への電流の印加は同時に行われ、前記第1の電極および前記第2の電極へ電流を印加した後、前記第1の電極および前記第2の電極が前記溶接対象に対して前記第2の電極から前記第1の電極に向かう方向に相対的に移動されることを繰り返して複数の前記溶接箇所を連続的に溶接することを特徴とする。 Further, the welding device of the present invention is a welding device that continuously welds a plurality of materials to be welded at a plurality of welding points, pressurizes a welding target composed of the plurality of the materials to be welded, and supplies a current to the welding target. The first electrode to which the It has a drive device to be moved, a power supply device for individually applying a current to each of the first electrode and the second electrode, and a control device for controlling the operation of the drive device and the power supply device. The first electrode only forms a gap between the materials to be welded, the second electrode only welds, and current is applied to the first electrode and the second electrode. Is performed at the same time, and after applying a current to the first electrode and the second electrode, the first electrode and the second electrode are subjected to the first from the second electrode to the welding target. It is characterized in that a plurality of the welded portions are continuously welded by repeating the relative movement toward the electrodes of the above.

このように、一対の電極により、隙間の形成と溶接とを同時に行うことができるため、先に隙間が形成された溶接箇所に溶接を行いながら、次の溶接箇所に隙間を形成することができる。そのため、複数の溶接箇所で連続的に溶接する場合、効率的に溶接を行いながら、ガスが爆発的に膨張することにより被溶接材を損なうことを抑制し、溶接不良が生じることを抑制することができる。 In this way, since the gap can be formed and welded at the same time by the pair of electrodes, it is possible to form a gap at the next welded portion while welding at the welded portion where the gap was formed earlier. .. Therefore, when welding continuously at a plurality of welding points, it is possible to suppress the damage to the material to be welded due to the explosive expansion of the gas while efficiently performing the welding, and to suppress the occurrence of welding defects. Can be done.

以上のように、本発明によると、適切な隙間を形成し、溶接不良を抑制することができる。 As described above, according to the present invention, an appropriate gap can be formed and welding defects can be suppressed.

実施の形態1における溶接装置の概略構成を例示する図The figure which illustrates the schematic structure of the welding apparatus in Embodiment 1. 本発明の溶接方法における隙間の形成と溶接の際の被溶接材の様子を例示する図The figure which illustrates the formation of the gap in the welding method of this invention, and the state of the material to be welded at the time of welding. 本発明の溶接方法を説明するフロー図A flow chart illustrating the welding method of the present invention. 本発明の溶接方法におけるガスの待避について説明する図The figure explaining the gas evasion in the welding method of this invention. 実施の形態2における溶接方法を説明する概略図The schematic diagram explaining the welding method in Embodiment 2. 実施の形態2における溶接方法を説明するフロー図The flow diagram explaining the welding method in Embodiment 2. 本発明の溶接対象を例示する図The figure which illustrates the welding object of this invention. 自動車の製造ラインを例示する図Diagram illustrating an automobile production line

(実施の形態1)
まず、図1を用いて本発明の溶接方法に用いる溶接装置の構成例について説明する。
(Embodiment 1)
First, a configuration example of a welding apparatus used in the welding method of the present invention will be described with reference to FIG.

図1は実施の形態1における溶接装置の概略構成を例示する図である。 FIG. 1 is a diagram illustrating a schematic configuration of a welding apparatus according to the first embodiment.

図1に例示するように、実施の形態1における溶接装置1は、シリーズ溶接機であり、一対の電極3と、電極3を保持して稼働自在なロボットアーム5を備えるロボット7と、一対の電極3間に電流を流すトランス9と、トランス9が電極3に流す電流を制御するタイマー11と、タイマー11およびロボット7の動作を制御する制御装置13とを備える。 As illustrated in FIG. 1, the welding device 1 in the first embodiment is a series welding machine, and is a pair of electrodes 3, a robot 7 having a robot arm 5 that holds the electrodes 3 and is movable, and a pair. It includes a transformer 9 for passing a current between the electrodes 3, a timer 11 for controlling the current flowing through the electrodes 3, and a control device 13 for controlling the operation of the timer 11 and the robot 7.

溶接装置1において、電極3は、溶接対象15を加圧すると共に溶接対象15に所定の電流を印加することで、溶接対象15を通って電極3間に電流を流すことが可能である。後段において図2を用いて詳細に説明するように、溶接対象15は、複数の被溶接材が重ねられたものである。溶接対象15において、厚み方向に隣り合う被溶接材間が溶接により接合される。 In the welding device 1, the electrode 3 can pass a current through the welding target 15 and pass a current between the electrodes 3 by pressurizing the welding target 15 and applying a predetermined current to the welding target 15. As will be described in detail with reference to FIG. 2 in the latter stage, the welding target 15 is a stack of a plurality of materials to be welded. In the welding target 15, adjacent materials to be welded in the thickness direction are joined by welding.

電極3は、溶接対象15を加圧すると共に、溶接対象15に所定の電流を流すことにより、被溶接材間に隙間を形成すること、および、被溶接材間を溶接することが可能である。被溶接材間を溶接する場合は、電極3により溶接対象15を加圧すると共に溶接対象15に電流を流し、溶接対象15を加熱・溶融させて溶接対象15を溶接する。被溶接材間に隙間を形成する場合は、電極3は溶接する場合より小さな加圧力で溶接対象15を加圧しながら、溶接する場合より低い電流値の電流を電極3から溶接対象15に印加する。電極3の印加圧は、ロボット7により調整される。電極3から印加される電流の電流値は、溶接対象15の厚さや、被溶接材それぞれの厚さ、必要な溶接強度等に応じて定めることができ、トランス9によって調整される。 The electrode 3 can form a gap between the materials to be welded and weld between the materials to be welded by pressurizing the object 15 to be welded and passing a predetermined current through the object 15 to be welded. When welding between the materials to be welded, the welding target 15 is pressurized by the electrode 3 and an electric current is passed through the welding target 15 to heat and melt the welding target 15 to weld the welding target 15. When forming a gap between the materials to be welded, the electrode 3 pressurizes the welding target 15 with a smaller pressing force than when welding, and applies a current with a lower current value from the electrode 3 to the welding target 15 than when welding. .. The applied pressure of the electrode 3 is adjusted by the robot 7. The current value of the current applied from the electrode 3 can be determined according to the thickness of the welding target 15, the thickness of each material to be welded, the required welding strength, and the like, and is adjusted by the transformer 9.

トランス9は、タイマー11を介して供給された電流を、所定の電流値に変換した上、変換された電流を電極3に印加する。例えば、タイマー12を介して供給された400Vで数Aの電流を、3~5Vで15000Aの電流に変換して電極3に印加する。タイマー11は、トランス9を介して電極3に電流を印加するタイミングを制御する。トランス9は、制御装置13により制御され、制御装置13はタイマー11を介してトランス9を制御することもできる。 The transformer 9 converts the current supplied via the timer 11 into a predetermined current value, and then applies the converted current to the electrode 3. For example, a current of several A at 400 V supplied via the timer 12 is converted into a current of 15000 A at 3 to 5 V and applied to the electrode 3. The timer 11 controls the timing of applying a current to the electrode 3 via the transformer 9. The transformer 9 is controlled by the control device 13, and the control device 13 can also control the transformer 9 via the timer 11.

ロボット7は、電極3およびロボットアーム5を含んで構成される。ロボット7はロボットアーム5により、電極3を所定の範囲内で任意の位置に移動させることが可能な構成であり、電極3を所定の溶接位置に移動させる。 The robot 7 includes an electrode 3 and a robot arm 5. The robot 7 has a configuration in which the electrode 3 can be moved to an arbitrary position within a predetermined range by the robot arm 5, and the electrode 3 is moved to a predetermined welding position.

制御装置13は、ロボット7の動作を制御すると同時に、タイマー11の動作を制御する。タイマー11は、制御装置13の指示により電極3から溶接対象15に印加する電流を制御するように、トランス9を制御する。 The control device 13 controls the operation of the robot 7 and at the same time controls the operation of the timer 11. The timer 11 controls the transformer 9 so as to control the current applied from the electrode 3 to the welding target 15 according to the instruction of the control device 13.

なお、溶接装置1は、さらに冷却装置を有することが好ましい。冷却装置は、電極3を冷却する装置であり、電極3から溶接対象15に電流を印加する際に電極3を冷却する。溶接の際には、電極3に電流が流れるので、電極3が加熱されて軟化する。この際、電極3は溶接対象15を加圧しているので、軟化された電極3は溶接対象15からの力を受ける。そのため、電極3の先端は、溶接を繰り返すことにより、変形したり破損したりする。電極3の先端形状は、溶接対象15と接する面積により、溶接対象15に供給される電流の電流密度や溶接対象15への加圧力に影響を及ぼす。電流密度や加圧力は溶接精度に影響を及ぼすため、溶接中に電極3を冷却している。冷却は、例えば、電極3中に冷却水を流通させることにより行うことができる。 It is preferable that the welding device 1 further has a cooling device. The cooling device is a device for cooling the electrode 3, and cools the electrode 3 when a current is applied from the electrode 3 to the welding target 15. During welding, an electric current flows through the electrode 3, so that the electrode 3 is heated and softened. At this time, since the electrode 3 pressurizes the welding target 15, the softened electrode 3 receives the force from the welding target 15. Therefore, the tip of the electrode 3 is deformed or damaged by repeated welding. The shape of the tip of the electrode 3 affects the current density of the current supplied to the welding target 15 and the pressing force on the welding target 15 depending on the area in contact with the welding target 15. Since the current density and the pressing force affect the welding accuracy, the electrode 3 is cooled during welding. Cooling can be performed, for example, by circulating cooling water through the electrode 3.

また、図1では、電極3への電流の供給に係るタイマー11と、制御装置13等とを、別の電源から電力を供給する構成として例示しているが、共通の電源から電力を供給しても良く、また、各機器それぞれが、必要に応じて別電源から電力の供給を受けても良い。 Further, in FIG. 1, the timer 11 related to the supply of the current to the electrode 3 and the control device 13 and the like are illustrated as a configuration in which the power is supplied from another power source, but the power is supplied from a common power source. Alternatively, each device may be supplied with electric power from another power source as needed.

また、電極3の駆動は、制御装置13の指示を受けてロボット7が駆動装置として機能して行われる。 Further, the electrode 3 is driven by the robot 7 functioning as a driving device in response to an instruction from the control device 13.

また、タイマー11およびトランス9は、電極3に電流を供給する電源供給装置として機能する。電源供給装置は、電極3に所定の印加条件の電流を供給できれば、これ以外の構成とすることもできる。 Further, the timer 11 and the transformer 9 function as a power supply device for supplying a current to the electrode 3. The power supply device may have other configurations as long as it can supply the current of the predetermined application conditions to the electrode 3.

なお、溶接ラインでは、溶接装置1のような抵抗溶接機やレーザー溶接機等の様々な溶接機がコンベアの周囲に複数配置され、コンベア上を流れる製造中の製品に対して、溶接箇所等に応じた溶接機を用いて複数の箇所に溶接が行われることが多い。 In the welding line, a plurality of various welding machines such as a resistance welding machine such as the welding device 1 and a laser welding machine are arranged around the conveyor, and the product being manufactured flowing on the conveyor is placed at a welding point or the like. Welding is often performed at multiple locations using a suitable welding machine.

具体的には、図8に示すように、自動車の製造ラインのうち溶接を施すラインにおいては、ホワイトボデー(塗装する前のボディシェル)が流れるコンベアの周囲に上述した溶接装置1に加え、他の溶接装置1’が複数配置される(図示例では1基の溶接装置1と、5基の他の溶接装置1’の合計6台)。このような溶接ラインにおいては、所定の箇所への溶接を溶接装置1のみで行い、他の箇所の溶接を他の溶接装置1’で行うようにするだけでなく、溶接工程の一部を溶接装置1で行い、残りを他の溶接装置1’で行うようにすることも可能である。このように、本発明の溶接方法は、溶接装置1が単独で行うものであっても、溶接装置1と他の溶接装置1’とが協働して行うものであっても良い。 Specifically, as shown in FIG. 8, in the welding line of the automobile production line, in addition to the above-mentioned welding device 1 around the conveyor through which the white body (body shell before painting) flows, other (A total of 6 welding devices 1'and 5 other welding devices 1'in the illustrated example) are arranged. In such a welding line, not only the welding to a predetermined place is performed only by the welding device 1 and the welding of other parts is performed by the other welding device 1', but also a part of the welding process is welded. It is also possible to do it with the device 1 and do the rest with another welding device 1'. As described above, the welding method of the present invention may be performed by the welding device 1 alone or in cooperation with the welding device 1 and another welding device 1'.

次に、図1~図3を用いて本発明の溶接方法について説明する。なお、以下の説明においては、特に断りのない限り、溶接装置1が単独で所定箇所の溶接を行う前提で説明する。 Next, the welding method of the present invention will be described with reference to FIGS. 1 to 3. In the following description, unless otherwise specified, the description will be made on the premise that the welding device 1 independently welds a predetermined position.

図2は本発明の溶接方法における隙間の形成と溶接の際の被溶接材の様子を例示する図、図3は本発明の溶接方法を説明するフロー図である。 FIG. 2 is a diagram illustrating the formation of a gap in the welding method of the present invention and the state of the material to be welded during welding, and FIG. 3 is a flow diagram illustrating the welding method of the present invention.

前述したように、溶接対象15は複数の被溶接材を重ね合わせたものである。図2で示した例では、溶接対象15は、被溶接材17と被溶接材19とから構成され、被溶接材17と被溶接材19とが、溶接箇所21にて溶接により接合される。被溶接材17の接合面にはめっき23が施されている。そして、本発明の溶接方法では、まず、溶接箇所21を位置合わせして、被溶接材17と被溶接材19とを重ね合わせる(図2(a)、図3のステップ1)。 As described above, the welding target 15 is a stack of a plurality of materials to be welded. In the example shown in FIG. 2, the object to be welded 15 is composed of the material to be welded 17 and the material to be welded 19, and the material to be welded 17 and the material to be welded 19 are joined by welding at a welded portion 21. Plating 23 is applied to the joint surface of the material 17 to be welded. Then, in the welding method of the present invention, first, the welded portion 21 is aligned and the material to be welded 17 and the material to be welded 19 are overlapped with each other (step 1 in FIG. 2A and FIG. 3).

このような被溶接材17と被溶接材19とを溶接箇所21で溶接する際には、次に、前述のシリーズ溶接機により、被溶接材17と被溶接材19との間の溶接箇所21の近傍に隙間tを設ける(図2(b)、図3のステップ2)。そのために、溶接箇所21の上部における被溶接材17を電極3により加圧すると共に、溶接箇所21に電極3から電流を印加する。このように、溶接箇所21に電極3から電流を印加することにより溶接箇所21が加熱されて軟化する。同時に、電極3を用いて被溶接材17を加圧することにより、被溶接材17がたわみ、溶接箇所21の近傍において、被溶接材17と被溶接材19との間に隙間tが生じる。 When such the material to be welded 17 and the material to be welded 19 are welded at the welded portion 21, then the welded portion 21 between the material to be welded 17 and the material to be welded 19 is used by the above-mentioned series welding machine. A gap t is provided in the vicinity of (FIG. 2B, step 2 in FIG. 3). Therefore, the material 17 to be welded at the upper part of the welded portion 21 is pressed by the electrode 3, and a current is applied to the welded portion 21 from the electrode 3. In this way, by applying an electric current from the electrode 3 to the welded portion 21, the welded portion 21 is heated and softened. At the same time, by pressurizing the material to be welded 17 using the electrode 3, the material to be welded 17 bends, and a gap t is generated between the material to be welded 17 and the material to be welded 19 in the vicinity of the welded portion 21.

なお、この際、被溶接材17を電極3により加圧する加圧力は、後述する溶接の際の加圧力より小さくする。また、電極3から被溶接材17に印加される電流の電流値は、後述する溶接の際の電流値より小さくする。そして、加圧力、電流値、電流を印加する時間等の少なくとも1つを調整することにより、溶接箇所21の溶接は行わずに、隙間tを形成する。また、加圧力、電流値、電流を印加する時間等で微妙な調整を行うことができるので、隙間tを容易に最適な間隔に調整することができる。 At this time, the pressing force applied to the material 17 to be welded by the electrode 3 is made smaller than the pressing force during welding described later. Further, the current value of the current applied from the electrode 3 to the material 17 to be welded is made smaller than the current value at the time of welding described later. Then, by adjusting at least one of the pressing force, the current value, the time for applying the current, and the like, the gap t is formed without welding the welded portion 21. Further, since delicate adjustment can be made by the pressing force, the current value, the time for applying the current, and the like, the gap t can be easily adjusted to the optimum interval.

次に、溶接箇所21で、被溶接材17と被溶接材19とを溶接する(図3のステップ3)。例えば、上述の隙間tを形成する工程に引き続き、電極3が被溶接材17を加圧する加圧力を高めると共に、電極3から被溶接材17に印加される電流の電流値を高める。このように、特に、電極3から被溶接材17に印加される電流の電流値を高めることにより、溶接箇所21において被溶接材17および被溶接材19の加熱が促進され、被溶接材17および被溶接材19が溶融して溶融結合される。なお、上述の隙間tを形成する工程と同様に、加圧力、電流値、電流を印加する時間等により、溶接強度や溶接範囲等の溶接状態を調整することができる。このように、隙間tの形成に引き続き、加圧力、電流値、電流を印加する時間等を調整して、溶接箇所21において被溶接材17および被溶接材19間を溶接することができる。 Next, the material to be welded 17 and the material to be welded 19 are welded at the welded portion 21 (step 3 in FIG. 3). For example, following the step of forming the gap t described above, the pressure applied by the electrode 3 to pressurize the material 17 to be welded is increased, and the current value of the current applied from the electrode 3 to the material 17 to be welded is increased. In this way, in particular, by increasing the current value of the current applied from the electrode 3 to the material to be welded 17, heating of the material to be welded 17 and the material to be welded 19 is promoted at the welded portion 21, and the material to be welded 17 and the material to be welded 19 and the welded material 19 are heated. The material 19 to be welded is melted and fused and bonded. Similar to the above-mentioned step of forming the gap t, the welding state such as the welding strength and the welding range can be adjusted by the pressing force, the current value, the time for applying the current, and the like. In this way, following the formation of the gap t, the pressing force, the current value, the time for applying the current, and the like can be adjusted to weld between the welded material 17 and the welded material 19 at the welded portion 21.

なお、溶接は、隙間tの形成に引き続きシリーズ溶接機を用いて行うことに限定されず、ダイレクト溶接機やインダイレクト溶接機を用いた溶接等のスポット溶接やレーザー溶接等、他のあらゆる方法で溶接することも可能である。 Welding is not limited to using a series welding machine following the formation of the gap t, and can be performed by any other method such as spot welding such as welding using a direct welding machine or an indirect welding machine, laser welding, or the like. It is also possible to weld.

例えば、図2(c)に示すように、隙間tの形成後、ダイレクト溶接機を用いて溶接することができる。この際、溶接箇所21を挟むように、被溶接材17と被溶接材19との表面それぞれに電極3を配置する。そして、2つの電極3で被溶接材17および被溶接材19を挟んで所定の圧力で加圧すると共に、2つの電極3間に所定の印加条件で電流を流して溶接箇所21に電流を流す。これにより、溶接箇所21において被溶接材17および被溶接材19間を溶接することができる。 For example, as shown in FIG. 2C, after the gap t is formed, welding can be performed using a direct welding machine. At this time, the electrodes 3 are arranged on the surfaces of the material to be welded 17 and the material to be welded 19 so as to sandwich the welded portion 21. Then, the material 17 to be welded and the material 19 to be welded are sandwiched between the two electrodes 3 and pressurized at a predetermined pressure, and a current is passed between the two electrodes 3 under predetermined application conditions to pass a current through the welded portion 21. As a result, the welded material 17 and the welded material 19 can be welded at the welded portion 21.

また、図2(d)に示すように、隙間tの形成後、インダイレクト溶接機を用いて溶接することができる。この際、被溶接材19にアース25を接続する。そして、電極3で被溶接材17を所定の圧力で加圧すると共に、電極3からアース25に所定の印加条件で電流を流して溶接箇所21に電流を流す。これにより、溶接箇所21において被溶接材17および被溶接材19間を溶接することができる。 Further, as shown in FIG. 2D, after the gap t is formed, welding can be performed using an indirect welding machine. At this time, the ground 25 is connected to the material 19 to be welded. Then, the electrode 3 pressurizes the material 17 to be welded with a predetermined pressure, and a current is passed from the electrode 3 to the ground 25 under predetermined application conditions to pass a current through the welded portion 21. As a result, the welded material 17 and the welded material 19 can be welded at the welded portion 21.

次に、図4を用いて本発明の溶接方法における効果について説明する。 Next, the effect of the welding method of the present invention will be described with reference to FIG.

図4は本発明の溶接方法におけるガスの待避について説明する図である。 FIG. 4 is a diagram illustrating gas retreat in the welding method of the present invention.

図4(a)に示すように、被溶接材17の接合面にめっき23が施されており、溶接対象15として被溶接材17と被溶接材19とを溶接するとする。 As shown in FIG. 4A, it is assumed that the joint surface of the material to be welded 17 is plated with plating 23, and the material to be welded 17 and the material to be welded 19 are welded as the welding target 15.

この際、被溶接材17と被溶接材19とが密着した状態で溶接を行うと、溶接の際の熱によりめっき23が気化してガスが発生する。被溶接材17と被溶接材19とが密着しているため、発生したガスの行き場がなくなり、ガスが被溶接材17および被溶接材19を圧迫する。そして、爆発的にガスが膨張した場合、ガスの影響で被溶接材17または被溶接材19が破損し、被溶接材17または被溶接材19の表面が破損することにより、溶接不良となる場合があった。また、溶接対象15内にガスが留まり、そのまま溶接が終了することにより、図4(b)に示すように、溶接対象15内にブローホール26が発生し、溶接強度が不足する等の溶接不良となる場合もあった。 At this time, if welding is performed in a state where the material 17 to be welded and the material 19 to be welded are in close contact with each other, the plating 23 is vaporized by the heat during welding and gas is generated. Since the material 17 to be welded and the material 19 to be welded are in close contact with each other, there is no place for the generated gas to go, and the gas presses the material 17 to be welded and the material 19 to be welded. When the gas expands explosively, the material to be welded 17 or the material to be welded 19 is damaged due to the influence of the gas, and the surface of the material to be welded 17 or the material to be welded 19 is damaged, resulting in welding failure. was there. Further, when the gas stays in the welding target 15 and the welding is completed as it is, as shown in FIG. 4B, a blow hole 26 is generated in the welding target 15, and the welding strength is insufficient. In some cases,

これに対して、本発明の溶接方法によると、溶接に先立ち、溶接箇所21上において被溶接材17を加熱および加圧することにより、溶接箇所21において被溶接材17と被溶接材19とを接触させながら、被溶接材17と被溶接材19との間の溶接箇所21の近傍に隙間tを設けることができる。この状態で溶接を行うことにより、溶接箇所21においては被溶接材17と被溶接材19とが密着しているために適切な溶接が可能となる。加えて、溶接箇所21の周辺に隙間tがあるため、発生したガスが隙間tに待避することができ、ガスが被溶接材17および被溶接材19におよび影響を抑制することができる。そのため、発生するガスの影響で溶接不良となることを抑制することができる。 On the other hand, according to the welding method of the present invention, the material to be welded 17 and the material to be welded 19 are brought into contact with each other at the welded portion 21 by heating and pressurizing the material to be welded 17 on the welded portion 21 prior to welding. While doing so, a gap t can be provided in the vicinity of the welded portion 21 between the material to be welded 17 and the material to be welded 19. By performing welding in this state, the material to be welded 17 and the material to be welded 19 are in close contact with each other at the welded portion 21, so that appropriate welding is possible. In addition, since there is a gap t around the welded portion 21, the generated gas can be evacuated to the gap t, and the influence of the gas on the material to be welded 17 and the material to be welded 19 can be suppressed. Therefore, it is possible to prevent welding failure due to the influence of the generated gas.

特に、電極3により被溶接材17を加圧しながら、電極3から電流を印加して溶接対象15に電流を流すことにより隙間tを形成する場合、プレス等によりエンボスを形成する場合に比べて精度良く隙間tを形成することができる。例えば、一般的なプレス加工の場合、0.5mm程度の精度でしかエンボスを形成できない。一方、電極3を用いて隙間tを形成する場合には、電極3の加圧力、印加する電流の印加条件等により隙間tの形成を制御できるため、0.01mm~0.03mm程度の精度で隙間tを形成することができる。そのため、より確実に溶接不良を抑制しながら、精度良く溶接を行うことができる。 In particular, when a gap t is formed by applying a current from the electrode 3 and passing a current through the welding target 15 while pressurizing the material 17 to be welded by the electrode 3, the accuracy is higher than when embossing is formed by a press or the like. The gap t can be formed well. For example, in the case of general press working, embossing can be formed only with an accuracy of about 0.5 mm. On the other hand, when the gap t is formed by using the electrode 3, the formation of the gap t can be controlled by the pressing force of the electrode 3, the application condition of the applied current, etc., so that the accuracy is about 0.01 mm to 0.03 mm. A gap t can be formed. Therefore, it is possible to perform welding with high accuracy while suppressing welding defects more reliably.

なお、上述したように、図8に示した溶接ラインのように溶接装置1だけでなく、他の溶接装置1’も協働して溶接が行えるようにした場合、コンベア上を流れてきた溶接対象15(図示例ではホワイトボデー)に対し、溶接装置1のような抵抗溶接機を用いて隙間tを形成した後、その溶接箇所の溶接に最適な別の溶接装置1’を用いて溶接を行うことができる。これにより、効率的に隙間tの形成と溶接を行うことができ、発生するガスの影響で溶接不良となることを抑制しながら、効率的に溶接を行うことができる。
(実施の形態2)
As described above, when not only the welding device 1 but also other welding devices 1'can cooperate with each other to perform welding as in the welding line shown in FIG. 8, the welding flowing on the conveyor is performed. After forming a gap t with respect to the target 15 (white body in the illustrated example) using a resistance welding machine such as the welding device 1, welding is performed using another welding device 1'optimal for welding the welded portion. It can be carried out. As a result, the gap t can be efficiently formed and welded, and welding can be efficiently performed while suppressing welding defects due to the influence of the generated gas.
(Embodiment 2)

次に、図1を参照しながら、図5~図7を用いて実施の形態2における溶接方法について説明する。 Next, the welding method according to the second embodiment will be described with reference to FIGS. 1 and 7 with reference to FIGS. 5 to 7.

図5は実施の形態2における溶接方法を説明する概略図であり、実施の形態2の溶接方法にて使用する溶接装置の概略構成と溶接の各工程について説明する図である。図6は実施の形態2における溶接方法を説明するフロー図、図7は本発明の溶接対象を例示する図である。 FIG. 5 is a schematic diagram illustrating a welding method according to the second embodiment, and is a diagram illustrating a schematic configuration of a welding apparatus used in the welding method according to the second embodiment and each welding process. FIG. 6 is a flow chart illustrating the welding method according to the second embodiment, and FIG. 7 is a diagram illustrating a welding target of the present invention.

実施の形態2の溶接方法にて使用する溶接装置27は、図5(a)に示すように、電極3aと電極3bとを備える。電極3aは、隙間tの形成に用いられる電極である。電極3bは、被溶接材17および被溶接材19の溶接に用いられる電極である。電極3aおよび電極3bは、それぞれ個別にトランス9に接続され、同時にまたは別々に、異なる印加条件により溶接対象15に電流を印加することが可能である。また、電極3aおよび電極3bは、それぞれ、同時にまたは別々に、異なる圧力で溶接対象15を加圧することが可能である。そのため、電極3aは、被溶接材17をたわめて被溶接材17と被溶接材19との間に隙間tを形成するのに、最適な加圧力で溶接対象15を加圧し、最適な印加条件で溶接対象15に電流を印加することができる。同時に、電極3bは、被溶接材17と被溶接材19とを溶接するのに、最適な加圧力で溶接対象15を加圧し、最適な印加条件で溶接対象15に電流を印加することができる。その結果、ある箇所で電極3aにより被溶接材17と被溶接材19との間に隙間tを形成すると同時に、別の箇所で電極3bにより被溶接材17と被溶接材19とを溶接することができる。 As shown in FIG. 5A, the welding apparatus 27 used in the welding method of the second embodiment includes an electrode 3a and an electrode 3b. The electrode 3a is an electrode used for forming the gap t. The electrode 3b is an electrode used for welding the material to be welded 17 and the material to be welded 19. The electrodes 3a and 3b are individually connected to the transformer 9, and it is possible to apply a current to the welding target 15 simultaneously or separately under different application conditions. Further, the electrodes 3a and 3b can pressurize the welding target 15 at different pressures at the same time or separately. Therefore, the electrode 3a pressurizes the welding target 15 with an optimum pressing force in order to bend the material 17 to be welded and form a gap t between the material 17 to be welded and the material 19 to be welded, which is optimal. A current can be applied to the welding target 15 under the application conditions. At the same time, the electrode 3b can pressurize the welding target 15 with an optimum pressure to weld the material 17 to be welded and the material 19 to be welded, and apply a current to the welding target 15 under the optimum application conditions. .. As a result, a gap t is formed between the material to be welded 17 and the material to be welded 19 by the electrode 3a at a certain place, and at the same time, the material to be welded 17 and the material to be welded 19 are welded by the electrode 3b at another place. Can be done.

ロボット7は、電極3aおよび電極3bと溶接対象15とを相対的に移動させることができる。これにより、電極3aおよび電極3bは、溶接対象15上を、電極3bから電極3aに向かう方向に移動することができる。以上の構成以外の構成は、実施の形態1で説明した溶接装置1と同様の構成であるので、説明を省略する。 The robot 7 can relatively move the electrodes 3a and 3b and the welding target 15. As a result, the electrodes 3a and 3b can move on the welding target 15 in the direction from the electrodes 3b to the electrodes 3a. Since the configurations other than the above configurations are the same as those of the welding apparatus 1 described in the first embodiment, the description thereof will be omitted.

以上のような構成の溶接装置27を用いて溶接を行う際には、まず、被溶接材17と被溶接材19とを、溶接箇所を位置合わせして重ね合わせる(図5(a)、図6のステップ1)。なお、溶接対象15は、溶接箇所21a,21b,21cが溶接されるとする。 When welding is performed using the welding device 27 having the above configuration, first, the welded material 17 and the welded material 19 are aligned and overlapped with each other (FIG. 5 (a), FIG. Step 1 of 6). It is assumed that the welded portions 21a, 21b, and 21c are welded to the welding target 15.

次に、電極3aにより溶接箇所21aの近傍の被溶接材17と被溶接材19との間に隙間tを形成する(図5(b)、図6のステップ2)。この際、電極3aが溶接箇所21aの上部に配置されるように、電極3aおよび電極3bを溶接対象15に対して相対的に移動させる。そして、電極3aは、溶接箇所21aの上部において、被溶接材17をたわめて被溶接材17と被溶接材19との間に隙間tを形成するのに、最適な加圧力で溶接対象15を加圧し、最適な印加条件で溶接対象15に電流を印加する。これにより、溶接箇所21aの近傍に、被溶接材17と被溶接材19との間の隙間tを形成することができる。この際、電極3aと電極3bとは独立しているため、電極3bは、加圧も電流の印加も行わないようにすることができる。 Next, a gap t is formed between the material to be welded 17 and the material to be welded 19 in the vicinity of the welded portion 21a by the electrode 3a (step 2 in FIG. 5B, FIG. 6). At this time, the electrodes 3a and 3b are moved relative to the welding target 15 so that the electrodes 3a are arranged above the welded portion 21a. Then, the electrode 3a is a welding target with an optimum pressing force for bending the material 17 to be welded to form a gap t between the material 17 to be welded and the material 19 to be welded at the upper portion of the welded portion 21a. 15 is pressurized, and a current is applied to the welding target 15 under the optimum application conditions. As a result, a gap t between the material to be welded 17 and the material to be welded 19 can be formed in the vicinity of the welded portion 21a. At this time, since the electrodes 3a and 3b are independent of each other, the electrodes 3b can be prevented from being pressurized or applied with a current.

次に、電極3aおよび電極3bを図の矢印の方向に溶接対象15に対して相対的に移動させて、電極3aが溶接箇所21bの上部に配置され、電極3bが溶接箇所21aの上部に配置される(図5(c)、図6のステップ3)。 Next, the electrode 3a and the electrode 3b are moved relative to the welding target 15 in the direction of the arrow in the figure, the electrode 3a is arranged on the upper portion of the welded portion 21b, and the electrode 3b is arranged on the upper portion of the welded portion 21a. (FIG. 5 (c), step 3 of FIG. 6).

次に、電極3aにより溶接箇所21bの近傍に隙間tを形成すると共に、電極3bにより溶接箇所21aにおいて被溶接材17と被溶接材19との溶接を行う(図5(c)、図6のステップ4)。この際、電極3bは、電極3aと異なる加圧力で溶接対象15を加圧し、電極3aと異なる印加条件により電流を印加することができる。電極3aは、ステップ2と同様に、被溶接材17をたわめて被溶接材17と被溶接材19との間に隙間tを形成するのに、最適な加圧力で溶接対象15を加圧し、最適な印加条件で溶接対象15に電流を印加する。電極3bは、被溶接材17と被溶接材19とを溶接するのに、最適な加圧力で溶接対象15を加圧し、最適な印加条件で溶接対象15に電流を印加する。これにより、溶接箇所21bの近傍に隙間tを形成しながら、同時に、溶接箇所21aにおいて被溶接材17と被溶接材19との溶接を行うことができる。 Next, the electrode 3a forms a gap t in the vicinity of the welded portion 21b, and the electrode 3b welds the material to be welded 17 and the material to be welded 19 at the welded portion 21a (FIGS. 5C and 6). Step 4). At this time, the electrode 3b can pressurize the welding target 15 with a pressure different from that of the electrode 3a, and can apply a current under application conditions different from that of the electrode 3a. Similar to step 2, the electrode 3a bends the material to be welded 17 to form a gap t between the material to be welded 17 and the material to be welded 19, and applies the welding target 15 with an optimum pressing force. Pressure is applied and a current is applied to the welding target 15 under the optimum application conditions. The electrode 3b pressurizes the welding target 15 with an optimum pressure to weld the material 17 to be welded and the material 19 to be welded, and applies a current to the welding target 15 under the optimum application conditions. As a result, the welded material 17 and the welded material 19 can be welded at the welded portion 21a at the same time while forming the gap t in the vicinity of the welded portion 21b.

次に、ステップ4により形成した隙間tが溶接を予定する溶接箇所の最後の溶接箇所の近傍に形成されたか否かを判定する(図6のステップ5)。最後の溶接箇所の周辺に隙間tが形成された場合にはステップ6に処理を移行し、隙間tが形成された箇所が最終の溶接箇所の近傍ではない場合はステップ3~ステップ5の処理を繰り返す。ここでは、溶接箇所21bは最終の溶接箇所ではないので、電極3aおよび電極3bを溶接対象15に対して相対的に移動させて、電極3aにより溶接箇所21cの近傍に隙間tを形成すると共に、電極3bにより溶接箇所21bにおいて被溶接材17と被溶接材19との溶接を行う。そして、溶接箇所21cは、溶接を予定する溶接箇所の最後の溶接箇所であるので、その後、ステップ6に処理を移行する。 Next, it is determined whether or not the gap t formed in step 4 is formed in the vicinity of the last welded portion of the welded portion scheduled to be welded (step 5 in FIG. 6). If a gap t is formed around the last welded portion, the process is shifted to step 6, and if the portion where the gap t is formed is not near the final welded portion, the processes of steps 3 to 5 are performed. repeat. Here, since the welded portion 21b is not the final welded portion, the electrode 3a and the electrode 3b are moved relative to the welding target 15, and the electrode 3a forms a gap t in the vicinity of the welded portion 21c. The welded material 17 and the welded material 19 are welded at the welded portion 21b by the electrode 3b. Since the welded portion 21c is the last welded portion of the welded portion scheduled to be welded, the process is then shifted to step 6.

次に、電極3aおよび電極3bを図の矢印の方向に溶接対象15に対して相対的に移動させて、電極3bが溶接箇所21cの上部に配置されるように、電極3aおよび電極3bを溶接対象15に対して相対的に移動させる(図6のステップ6)。 Next, the electrodes 3a and 3b are moved relative to the welding target 15 in the direction of the arrow in the figure, and the electrodes 3a and 3b are welded so that the electrodes 3b are arranged above the welded portion 21c. It is moved relative to the target 15 (step 6 in FIG. 6).

最後に、電極3bにより溶接箇所21cにおいて被溶接材17と被溶接材19との溶接を行う(図6のステップ7)。これにより、全ての溶接箇所21a,21b,21cの溶接が終了する。この際、電極3aと電極3bとは独立しているため、電極3aは、加圧も電流の印加も行わないようにすることができる。 Finally, the electrode 3b is used to weld the material 17 to be welded and the material 19 to be welded at the welded portion 21c (step 7 in FIG. 6). As a result, the welding of all the welding points 21a, 21b, 21c is completed. At this time, since the electrodes 3a and 3b are independent of each other, the electrodes 3a can be prevented from being pressurized or applied with a current.

このように、溶接に先立ち、溶接箇所21上において被溶接材17を加熱および加圧することにより、溶接箇所21において被溶接材17と被溶接材19とを接触させながら、被溶接材17と被溶接材19との間の溶接箇所21の近傍に隙間tを設けることができる。この状態で溶接を行うことにより、溶接箇所21においては被溶接材17と被溶接材19とが密着しているために適切な溶接が可能としながら、溶接箇所21の近傍に隙間tがあるため、発生したガスを隙間tに待避させることができ、ガスが被溶接材17および被溶接材19におよびす影響を抑制することができる。そのため、発生するガスの影響で溶接不良となることを抑制することができる。さらに、電極3aおよび電極3bが溶接対象15に対して相対的に移動可能であると共に、電極3aおよび電極3bがそれぞれ個別の加圧力で溶接対象15を加圧し、個別の印加条件で溶接対象15に電流を印加することができる構成とされる。そのため、電極3aにて隙間tを形成すると同時に、電極3bにて被溶接材17と被溶接材19との間の溶接を行うことができる。その結果、溶接を行いながら次の溶接箇所の近傍に隙間tを形成することができ、効率的に、精度良く溶接を行うことができる。 In this way, by heating and pressurizing the material to be welded 17 on the welded portion 21 prior to welding, the material to be welded 17 and the material to be welded 19 are brought into contact with each other at the welded portion 21. A gap t can be provided in the vicinity of the welded portion 21 between the welded material 19 and the welded material 19. By performing welding in this state, since the material to be welded 17 and the material to be welded 19 are in close contact with each other at the welded portion 21, proper welding is possible, but there is a gap t in the vicinity of the welded portion 21. The generated gas can be evacuated to the gap t, and the influence of the gas on the welded material 17 and the welded material 19 can be suppressed. Therefore, it is possible to prevent welding failure due to the influence of the generated gas. Further, the electrodes 3a and 3b are movable relative to the welding target 15, and the electrodes 3a and 3b pressurize the welding target 15 with individual pressures, and the welding target 15 is subjected to individual application conditions. It is configured so that a current can be applied to the. Therefore, at the same time as forming the gap t at the electrode 3a, welding between the material to be welded 17 and the material to be welded 19 can be performed at the electrode 3b. As a result, a gap t can be formed in the vicinity of the next welded portion while welding, and welding can be performed efficiently and accurately.

なお、電極3aおよび電極3bの間隔は、溶接箇所21a,21b,21cの間隔に応じて可変とすることができる。電極3aおよび電極3bの間隔が可変であることにより、溶接箇所21a,21b,21cの間隔が一定でない場合であっても、電極3aおよび電極3bの間隔を調整しながら、連続的に隙間tの形成と溶接を効率的に行うことが可能となる。 The distance between the electrodes 3a and 3b can be made variable according to the distance between the welded portions 21a, 21b, and 21c. Since the distance between the electrodes 3a and 3b is variable, even if the distance between the welded portions 21a, 21b, and 21c is not constant, the gap t is continuously adjusted while adjusting the distance between the electrodes 3a and 3b. It is possible to efficiently perform forming and welding.

次に、図5,図7を用いて、溶接対象の構成例について説明する。 Next, a configuration example of the welding target will be described with reference to FIGS. 5 and 7.

図7に示す例では、自動車の車体29に天井31を溶接により取り付ける。そして、車体29の骨組みに沿って、車体29と天井31とを複数の溶接箇所21で溶接する。この際、端から順に溶接箇所21の溶接を行う。溶接に際しては、それぞれの溶接箇所21において、その近傍の車体29と天井31と間に隙間tを設けてから溶接を行う。実施の形態2の溶接方法においては、電極3aにより溶接箇所21aの近傍に隙間tを形成する。その後、電極3bにより溶接箇所21aを溶接しながら、電極3aにより溶接箇所21bの近傍に隙間tを形成する。以降、この動作を全ての溶接箇所21の溶接が終了するまで繰り返す。このように、電極3aおよび電極3bにより、次の溶接箇所21の近傍における隙間tの形成と溶接とを同時に行うことができ、効率的に溶接を行うことができる。 In the example shown in FIG. 7, the ceiling 31 is attached to the vehicle body 29 of the automobile by welding. Then, the vehicle body 29 and the ceiling 31 are welded at a plurality of welding points 21 along the framework of the vehicle body 29. At this time, the welded portion 21 is welded in order from the end. At the time of welding, at each welding point 21, a gap t is provided between the vehicle body 29 and the ceiling 31 in the vicinity thereof, and then welding is performed. In the welding method of the second embodiment, a gap t is formed in the vicinity of the welded portion 21a by the electrode 3a. After that, while welding the welded portion 21a with the electrode 3b, a gap t is formed in the vicinity of the welded portion 21b with the electrode 3a. After that, this operation is repeated until the welding of all the welding points 21 is completed. In this way, the electrodes 3a and 3b allow the formation of the gap t in the vicinity of the next welding portion 21 and the welding to be performed at the same time, so that welding can be performed efficiently.

なお、以上の各実施の形態において、本発明における溶接は、車体29に天井31を取り付けることの他、例えば、ロアバックやアンダーフロント、センターフロント、キックリンフォース等の溶接に用いることができる。 In each of the above embodiments, the welding in the present invention can be used for welding the lower back, the under front, the center front, the kick reinforcement, etc., in addition to attaching the ceiling 31 to the vehicle body 29.

また、図2(b)では、2つの電極3により被溶接材17を加圧し、溶接箇所21に電流を流すシリーズ溶接機によって隙間tを形成する例を示したが、隙間tは、ダイレクト溶接機やインダイレクト溶接機等の他の溶接機を用いて行うことも可能である。さらに、被溶接材17を加熱しながら加圧することができれば、他の方法により隙間tを形成することもできる。 Further, FIG. 2B shows an example in which a gap t is formed by a series welding machine in which the material 17 to be welded is pressed by two electrodes 3 and a current is passed through the welded portion 21, but the gap t is directly welded. It is also possible to use another welding machine such as a machine or an indirect welding machine. Further, if the material 17 to be welded can be pressurized while being heated, the gap t can be formed by another method.

1 溶接装置
3 電極
13 制御装置
15 溶接対象
17 被溶接材
19 被溶接材
21 溶接箇所
23 めっき
25 アース
26 ブローホール
27 溶接装置
1 Welding device 3 Electrode 13 Control device 15 Welding target 17 Welding material 19 Welding material 21 Welding point 23 Plating 25 Earth 26 Blow hole 27 Welding device

Claims (1)

溶接用の電極を備えた抵抗溶接機を少なくとも含む複数の溶接機を用いて複数の被溶接材を所定の溶接箇所で溶接する際に、
記抵抗溶接機の前記電極で前記溶接箇所を加圧しながら前記電極から前記溶接箇所に電流を流すことにより、前記溶接箇所の溶接を行わずに前記溶接箇所の周辺において前記被溶接材間に隙間を形成する第1の工程と、
第1の工程により周辺に前記隙間が形成された前記溶接箇所と同一の箇所において、いずれかの前記溶接機を用いて溶接を行う第2の工程と
を有することを特徴とする溶接方法。
When welding multiple materials to be welded at a predetermined weld using multiple welders, including at least a resistance welder with electrodes for welding.
By applying a current from the electrode to the welded portion while pressurizing the welded portion with the electrode of the resistance welder, the welded portion is not welded and the space between the welded materials is around the welded portion. The first step of forming a gap and
A welding method comprising a second step of performing welding using any of the welding machines at the same place as the welding place where the gap is formed in the periphery by the first step .
JP2017254209A 2017-12-28 2017-12-28 Welding method Active JP7058064B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017254209A JP7058064B2 (en) 2017-12-28 2017-12-28 Welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017254209A JP7058064B2 (en) 2017-12-28 2017-12-28 Welding method

Publications (2)

Publication Number Publication Date
JP2019118922A JP2019118922A (en) 2019-07-22
JP7058064B2 true JP7058064B2 (en) 2022-04-21

Family

ID=67306765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017254209A Active JP7058064B2 (en) 2017-12-28 2017-12-28 Welding method

Country Status (1)

Country Link
JP (1) JP7058064B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004337942A (en) 2003-05-16 2004-12-02 Daisho Kogyo Kk Robot for holding object to be welded and welding system using welding robot
JP2005088029A (en) 2003-09-16 2005-04-07 Nissan Motor Co Ltd Spot welding method and device for galvanized steel sheet
JP2007050450A (en) 2005-08-19 2007-03-01 Daihatsu Motor Co Ltd Resistance welding equipment
JP2009241136A (en) 2008-03-31 2009-10-22 Jfe Steel Corp Series spot or indirect spot welding method for high tensile strength steel sheet
JP2010264503A (en) 2009-05-18 2010-11-25 Nippon Steel Corp Lap welding method for steel sheet, and lap-welded joint of steel sheet
JP2012000652A (en) 2010-06-18 2012-01-05 Mazda Motor Corp Joined structure of dissimilar metallic materials, and manufacturing method of joined structure of dissimilar metallic materials
JP2013066932A (en) 2011-09-05 2013-04-18 Honda Motor Co Ltd One-side spot welding method and one-side spot welding apparatus
JP2014140890A (en) 2012-12-27 2014-08-07 Amada Miyachi Co Ltd Lap joint method for metal foil, and joint structure
WO2017047752A1 (en) 2015-09-16 2017-03-23 新日鐵住金株式会社 Steel sheet lap welding method and lap welded joint

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160080671A (en) * 2014-12-30 2016-07-08 주식회사 성우하이텍 Welding method for galvanized steel sheets

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004337942A (en) 2003-05-16 2004-12-02 Daisho Kogyo Kk Robot for holding object to be welded and welding system using welding robot
JP2005088029A (en) 2003-09-16 2005-04-07 Nissan Motor Co Ltd Spot welding method and device for galvanized steel sheet
JP2007050450A (en) 2005-08-19 2007-03-01 Daihatsu Motor Co Ltd Resistance welding equipment
JP2009241136A (en) 2008-03-31 2009-10-22 Jfe Steel Corp Series spot or indirect spot welding method for high tensile strength steel sheet
JP2010264503A (en) 2009-05-18 2010-11-25 Nippon Steel Corp Lap welding method for steel sheet, and lap-welded joint of steel sheet
JP2012000652A (en) 2010-06-18 2012-01-05 Mazda Motor Corp Joined structure of dissimilar metallic materials, and manufacturing method of joined structure of dissimilar metallic materials
JP2013066932A (en) 2011-09-05 2013-04-18 Honda Motor Co Ltd One-side spot welding method and one-side spot welding apparatus
JP2014140890A (en) 2012-12-27 2014-08-07 Amada Miyachi Co Ltd Lap joint method for metal foil, and joint structure
WO2017047752A1 (en) 2015-09-16 2017-03-23 新日鐵住金株式会社 Steel sheet lap welding method and lap welded joint

Also Published As

Publication number Publication date
JP2019118922A (en) 2019-07-22

Similar Documents

Publication Publication Date Title
WO2010140605A1 (en) Resistance welding method and device therefore
CN107848062A (en) Resistance spot welding method
KR102265224B1 (en) Resistance spot welding method and weld member production method
KR20190014073A (en) Resistance spot welding method
WO2015033460A1 (en) Seam welding method and seam welding device
JP6900692B2 (en) Joining method using rivets and equipment used for its implementation
JP7058064B2 (en) Welding method
JP7026532B2 (en) Spot welding method
JP5292921B2 (en) Laser welding method and laser welding apparatus
JP6969649B2 (en) Resistance spot welding method and welding member manufacturing method
JP6090910B2 (en) Spot welding method
JP5836248B2 (en) Spot welding method
JP7158144B2 (en) welding equipment
JP7255119B2 (en) Indirect spot welding device and welding method
JP7187993B2 (en) Resistance welding method using resistance welding equipment
JP2022143960A (en) Spot welding quality determination method
JP2022029726A (en) Spot welding method
KR20170102114A (en) Laser welding device for connecting of heterogeneous material
JP7158145B2 (en) welding equipment
JP3747896B2 (en) Bonding structure for vehicle skin panels
JP7240135B2 (en) Indirect spot welding method
JP2001321953A (en) Spot welding method and spot welding equipment
WO2022176962A1 (en) Method for spot welding aluminum members and method for bonding aluminum members
JP2019150833A (en) Resistance-welding method
JP2000301346A (en) Mush-seam welding method and apparatus thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220409

R150 Certificate of patent or registration of utility model

Ref document number: 7058064

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150