[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7055059B2 - A method for manufacturing a resin collector, a method for manufacturing an electrode for a lithium ion battery, and a method for manufacturing a lithium ion battery. - Google Patents

A method for manufacturing a resin collector, a method for manufacturing an electrode for a lithium ion battery, and a method for manufacturing a lithium ion battery. Download PDF

Info

Publication number
JP7055059B2
JP7055059B2 JP2018085350A JP2018085350A JP7055059B2 JP 7055059 B2 JP7055059 B2 JP 7055059B2 JP 2018085350 A JP2018085350 A JP 2018085350A JP 2018085350 A JP2018085350 A JP 2018085350A JP 7055059 B2 JP7055059 B2 JP 7055059B2
Authority
JP
Japan
Prior art keywords
current collector
manufacturing
resin
resin current
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018085350A
Other languages
Japanese (ja)
Other versions
JP2018198197A (en
Inventor
仁寿 大倉
亮介 草野
康彦 大澤
雄樹 草地
一 佐藤
弘 赤間
英明 堀江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Sanyo Chemical Industries Ltd
Original Assignee
Nissan Motor Co Ltd
Sanyo Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd, Sanyo Chemical Industries Ltd filed Critical Nissan Motor Co Ltd
Publication of JP2018198197A publication Critical patent/JP2018198197A/en
Application granted granted Critical
Publication of JP7055059B2 publication Critical patent/JP7055059B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)

Description

本発明は、樹脂集電体の製造方法、リチウムイオン電池用電極の製造方法、及び、リチウムイオン電池の製造方法に関する。 The present invention relates to a method for manufacturing a resin current collector, a method for manufacturing an electrode for a lithium ion battery, and a method for manufacturing a lithium ion battery.

近年、環境保護のため、二酸化炭素排出量の低減が切に望まれている。自動車業界では、電気自動車(EV)やハイブリッド電気自動車(HEV)の導入による二酸化炭素排出量の低減に期待が集まっており、これらの実用化の鍵を握るモータ駆動用二次電池の開発が鋭意行われている。二次電池としては、高エネルギー密度、高出力密度が達成できるリチウムイオン電池に注目が集まっている。 In recent years, there has been an urgent need to reduce carbon dioxide emissions in order to protect the environment. In the automobile industry, expectations are high for the reduction of carbon dioxide emissions through the introduction of electric vehicles (EVs) and hybrid electric vehicles (HEVs), and the development of secondary batteries for driving motors, which hold the key to their practical application, is earnest. It is done. As a secondary battery, a lithium ion battery that can achieve high energy density and high output density is attracting attention.

リチウムイオン電池は、一般に、バインダを用いて正極または負極活物質等を正極用または負極用集電体にそれぞれ塗布して電極を構成している。また、双極型の電池の場合には、集電体の一方の面にバインダを用いて正極活物質等を塗布して正極層を、反対側の面にバインダを用いて負極活物質等を塗布して負極層を有する双極型電極を構成している。 In a lithium ion battery, an electrode is generally formed by applying a positive electrode or a negative electrode active material or the like to a positive electrode or negative electrode current collector using a binder. In the case of a bipolar battery, a positive electrode active material or the like is applied to one surface of the current collector using a binder to apply a positive electrode layer, and a negative electrode active material or the like is applied to the opposite surface using a binder. A bipolar electrode having a negative electrode layer is formed.

このようなリチウムイオン電池においては、従来、集電体として金属箔(金属集電箔)が用いられてきた。近年、金属箔に代わって導電性材料が添加された樹脂から構成される、いわゆる樹脂集電体が提案されている。このような樹脂集電体は、金属集電箔と比較して軽量であり、電池の単位重量あたりの出力向上が期待される。 In such a lithium ion battery, a metal foil (metal collector foil) has been conventionally used as a current collector. In recent years, a so-called resin current collector has been proposed, which is composed of a resin to which a conductive material is added instead of a metal foil. Such a resin current collector is lighter than a metal current collector foil, and is expected to improve the output per unit weight of the battery.

例えば、特許文献1には、簡易な工程で作成することが可能で、充放電特性および面内抵抗値を高く維持した双極型リチウム二次電池用樹脂集電体として、特定の粒子径を有する導電性粒子を含む導電剤と樹脂バインダとを含有し、特定の厚さを有する樹脂集電体が開示されている。 For example, in Patent Document 1, a resin collector for a bipolar lithium secondary battery, which can be produced by a simple process and maintains high charge / discharge characteristics and in-plane resistance value, has a specific particle size. A resin current collector containing a conductive agent containing conductive particles and a resin binder and having a specific thickness is disclosed.

特開2012-150896号公報Japanese Unexamined Patent Publication No. 2012-150896

しかし、抵抗値、特に貫通抵抗値(厚さ方向の抵抗値)の低い樹脂集電体を得るためには、未だ改善の余地があると言える。 However, it can be said that there is still room for improvement in order to obtain a resin current collector having a low resistance value, particularly a penetration resistance value (resistance value in the thickness direction).

本発明は、貫通抵抗値の低い樹脂集電体を製造する方法を提供することを目的とする。本発明はまた、上記樹脂集電体を用いたリチウムイオン電池用電極の製造方法、及び、リチウムイオン電池の製造方法を提供することを目的とする。 An object of the present invention is to provide a method for manufacturing a resin current collector having a low penetration resistance value. Another object of the present invention is to provide a method for manufacturing an electrode for a lithium ion battery using the resin current collector, and a method for manufacturing a lithium ion battery.

本発明者らは、上記課題を解決するために鋭意検討した結果、本発明に到達した。
すなわち、本発明は、ポリオレフィンとニッケル粒子とを溶融混練することにより導電性樹脂組成物を得る工程を有する樹脂集電体の製造方法であって、上記溶融混練時の温度が、JIS K7210-1:2014に記載の方法を用いて荷重5kgの条件下で測定される上記導電性樹脂組成物のメルトマスフローレートが100~500g/10minとなる温度であることを特徴とする樹脂集電体の製造方法;上記の方法により樹脂集電体を作製する工程と、上記樹脂集電体の表面に活物質層を形成する工程とを備えることを特徴とするリチウムイオン電池用電極の製造方法;上記の方法によりリチウムイオン電池用電極を作製する工程を備えることを特徴とするリチウムイオン電池の製造方法である。
The present inventors have arrived at the present invention as a result of diligent studies to solve the above problems.
That is, the present invention is a method for producing a resin current collector having a step of obtaining a conductive resin composition by melt-kneading a polyolefin and nickel particles, and the temperature at the time of the melt-kneading is JIS K7210-1. : Production of a resin current collector characterized in that the melt mass flow rate of the conductive resin composition measured under the condition of a load of 5 kg using the method described in 2014 is 100 to 500 g / 10 min. Method; A method for manufacturing an electrode for a lithium ion battery, which comprises a step of producing a resin collector by the above method and a step of forming an active material layer on the surface of the resin collector; the above. It is a method for manufacturing a lithium ion battery, which comprises a step of manufacturing an electrode for a lithium ion battery by a method.

本発明によれば、導電性樹脂組成物のメルトマスフローレートが特定の値となる温度で溶融混練を行うことにより、貫通抵抗値の低い樹脂集電体を得ることができる。 According to the present invention, a resin current collector having a low penetration resistance value can be obtained by performing melt-kneading at a temperature at which the melt mass flow rate of the conductive resin composition becomes a specific value.

[樹脂集電体の製造方法]
本発明の樹脂集電体の製造方法では、まず、ポリオレフィンとニッケル粒子、及び、必要に応じてその他の成分を溶融混練することにより、導電性樹脂組成物を得る。
[Manufacturing method of resin current collector]
In the method for producing a resin current collector of the present invention, first, a polyolefin, nickel particles, and other components, if necessary, are melt-kneaded to obtain a conductive resin composition.

本発明の樹脂集電体の製造方法においては、溶融混練時の温度が、JIS K7210-1:2014に記載の方法を用いて荷重5kgの条件下で測定される上記導電性樹脂組成物のメルトマスフローレートが100~500g/10minとなる温度であることを特徴としている。換言すると、JIS K7210-1:2014に記載の方法を用いて荷重5kgの条件下で測定される上記導電性樹脂組成物のメルトマスフローレートが100~500g/10minとなる温度で溶融混練を行うことを特徴としている。集電体の貫通抵抗値及び成形性の観点から、上記導電性樹脂組成物のメルトマスフローレートが200~500g/10minとなる温度で溶融混練を行うことが好ましい。 In the method for producing a resin current collector of the present invention, the temperature at the time of melt-kneading is measured by the method described in JIS K7210-1: 2014 under the condition of a load of 5 kg. It is characterized in that the mass flow rate is a temperature of 100 to 500 g / 10 min. In other words, melt-kneading is performed at a temperature at which the melt mass flow rate of the conductive resin composition measured under the condition of a load of 5 kg is 100 to 500 g / 10 min using the method described in JIS K7210-1: 2014. It is characterized by. From the viewpoint of the penetration resistance value of the current collector and the moldability, it is preferable to perform melt-kneading at a temperature at which the melt mass flow rate of the conductive resin composition is 200 to 500 g / 10 min.

メルトマスフローレート(MFRとも記載する)は、溶融状態にある樹脂の流動性を示す指標であり、MFRの値が大きいほど流動性が高い。本発明の樹脂集電体の製造方法においては、導電性樹脂組成物のMFRが100~500g/10minとなる温度で溶融混練を行うことにより、貫通抵抗値の低い樹脂集電体を得ることができる。MFRが100g/10minよりも小さいと、フィルム成形時に樹脂が展開せず、薄膜フィルムの作製ができない。一方、MFRが500g/10minを超えると、薄膜フィルムの強度等の機械物性が維持できない。なお、MFRが上記の範囲であると貫通抵抗値の低い樹脂集電体となる理由は明らかではないが、溶融混練時のシアレートが低下して導電性フィラーであるニッケル粒子の分散度が低くなり、その結果、導電性フィラーによる導電経路が適度に維持されるためと推定される。 The melt mass flow rate (also referred to as MFR) is an index showing the fluidity of the resin in a molten state, and the larger the value of MFR, the higher the fluidity. In the method for producing a resin current collector of the present invention, a resin current collector having a low penetration resistance value can be obtained by melt-kneading at a temperature at which the MFR of the conductive resin composition is 100 to 500 g / 10 min. can. If the MFR is smaller than 100 g / 10 min, the resin does not develop during film molding, and a thin film cannot be produced. On the other hand, if the MFR exceeds 500 g / 10 min, the mechanical properties such as the strength of the thin film cannot be maintained. If the MFR is in the above range, the reason why the resin current collector has a low penetration resistance value is not clear, but the shear rate during melt kneading is lowered and the dispersity of nickel particles as a conductive filler is lowered. As a result, it is presumed that the conductive path by the conductive filler is appropriately maintained.

なお、以下の特徴を有する樹脂集電体の製造方法もまた、本発明の1つである。
ポリオレフィンとニッケル粒子とを溶融混練することにより導電性樹脂組成物を得る工程を有する樹脂集電体の製造方法であって、上記溶融混練時の温度が240~280℃であることを特徴とする樹脂集電体の製造方法。
A method for manufacturing a resin current collector having the following characteristics is also one of the present inventions.
A method for producing a resin current collector, which comprises a step of melt-kneading polyolefin and nickel particles to obtain a conductive resin composition, wherein the temperature at the time of melt-kneading is 240 to 280 ° C. A method for manufacturing a resin current collector.

溶融混練の方法としては、導電性フィラーのマスターバッチを得てからさらにポリオレフィンと混合して溶融混練する方法、ポリオレフィン、導電性フィラー、及び、必要に応じてその他の成分のマスターバッチを用いる方法、及び、全ての原料を一括して混合後溶融混練する方法等があり、その混合にはペレット状又は粉体状の成分を適切な公知の混合機、例えばニーダー、インターナルミキサー、バンバリーミキサー及びロール等を用いることができる。 As a method of melt-kneading, a method of obtaining a masterbatch of a conductive filler and then further mixing with a polyolefin and melt-kneading, a method of using a masterbatch of a polyolefin, a conductive filler, and other components as necessary, In addition, there is a method of mixing all the raw materials at once and then melting and kneading them, and for the mixing, pellet-like or powder-like components are appropriately mixed with known mixers such as kneaders, internal mixers, Banbury mixers and rolls. Etc. can be used.

導電性樹脂組成物を得るために用いられるポリオレフィンとしては、例えば、ポリエチレン(PE)、ポリプロピレン(PP)等が挙げられる。その他、炭素数4~30のα-オレフィン(1-ブテン、イソブテン、1-ヘキセン、1-デセン及び1-ドデセン等)を必須構成単量体とする重合体等でもよい。これらのポリオレフィンは、1種単独でもよいし、2種以上の混合物であってもよい。 Examples of the polyolefin used to obtain the conductive resin composition include polyethylene (PE) and polypropylene (PP). In addition, a polymer or the like containing an α-olefin having 4 to 30 carbon atoms (1-butene, isobutene, 1-hexene, 1-decene, 1-dodecene, etc.) as an essential constituent monomer may be used. These polyolefins may be one kind alone or a mixture of two or more kinds.

ポリオレフィンの中でも、防湿特性や機械的強度の点で、ポリプロピレンが好ましい。ポリプロピレンとしては、例えば、ホモポリプロピレン、ランダムポリプロピレン、ブロックポリプロピレン、長鎖分岐構造を有するポリプロピレン及び酸変性ポリプロピレン等が挙げられる。中でも、ポリプロピレンは、ブロックポリプロピレンを含むことが好ましい。ホモポリプロピレンは、プロピレンの単独重合体である。ランダムポリプロピレンは、不規則に導入された少量(好ましくは4.5重量%以下)のエチレン単位を含有する共重合体である。ブロックポリプロピレンは、ホモポリプロピレンの中にエチレンプロピレンゴム(EPR)が分散している組成物であり、ホモポリプロピレンの「海」の中にEPRを含む「島」が浮かぶ「海島構造」を有している。長鎖分岐構造を有するポリプロピレンとしては、特開2001-253910号公報等に記載されたポリプロピレン等が挙げられる。酸変性ポリプロピレンは、カルボキシル基を導入したポリプロピレンであり、無水マレイン酸等の不飽和カルボン酸とポリプロピレンとを有機過酸化物の存在下で反応する等の公知の方法で反応して得ることができる。 Among the polyolefins, polypropylene is preferable in terms of moisture-proof properties and mechanical strength. Examples of polypropylene include homopolypropylene, random polypropylene, block polypropylene, polypropylene having a long-chain branched structure, acid-modified polypropylene and the like. Above all, polypropylene preferably contains block polypropylene. Homopolypropylene is a homopolymer of propylene. Random polypropylene is a copolymer containing a small amount (preferably 4.5% by weight or less) of ethylene units introduced irregularly. Block polypropylene is a composition in which ethylene propylene rubber (EPR) is dispersed in homopolypropylene, and has a "sea island structure" in which "islands" containing EPR float in the "sea" of homopolypropylene. There is. Examples of polypropylene having a long-chain branched structure include polypropylene described in JP-A-2001-253910. The acid-modified polypropylene is polypropylene having a carboxyl group introduced therein, and can be obtained by reacting an unsaturated carboxylic acid such as maleic anhydride with polypropylene by a known method such as reacting in the presence of an organic peroxide. ..

ポリプロピレンとして市場から入手できるものとしては、以下のものが挙げられる。
ホモポリプロピレンとしては、商品名「サンアロマーPL500A」(3g/10min)、「サンアロマーPM600A」(7g/10min)、「サンアロマーPM900A」(30g/10min)、「サンアロマーPHA03A」(42g/10min)[サンアロマー(株)製]等が挙げられる。
ランダムポリプロピレンとしては、商品名「サンアロマーPC630S」(7.5g/10min)、「サンアロマーPC630A」(7.5g/10min)[サンアロマー(株)製]、商品名「ウィンテックWFX4T」(7.0g/10min)[日本ポリプロ(株)製]、商品名「プライムポリマーF-744NP」(7.0g/10min)[(株)プライムポリマー製]等が挙げられる。
ブロックポリプロピレンとしては、商品名「サンアロマーPM854X」(20g/10min)、「サンアロマーPC684S」(7.5g/10min)、「クオリアCM688A」(8g/10min)[サンアロマー(株)製]等が挙げられる。
なお、商品名の後の括弧内に記載した値は、そのポリプロピレンのメルトマスフローレート(MFR)である。
Examples of polypropylene available on the market include:
Examples of homopolypropylene include the trade names "SunAllomer PL500A" (3g / 10min), "SunAllomer PM600A" (7g / 10min), "SunAllomer PM900A" (30g / 10min), "SunAllomer PHA03A" (42g / 10min) [SunAllomer Ltd. ) Made] and the like.
As random polypropylene, the product name "SunAllomer PC630S" (7.5 g / 10 min), "SunAllomer PC630A" (7.5 g / 10 min) [manufactured by SunAllomer Ltd.], and the product name "Wintech WFX4T" (7.0 g / 10 min) [manufactured by Japan Polypropylene Corporation], trade name "Prime Polymer F-744NP" (7.0 g / 10 min) [manufactured by Prime Polymer Co., Ltd.] and the like.
Examples of the block polypropylene include trade names "SunAllomer PM854X" (20 g / 10 min), "SunAllomer PC684S" (7.5 g / 10 min), "Qualia CM688A" (8 g / 10 min) [manufactured by SunAllomer Ltd.] and the like.
The value described in parentheses after the trade name is the melt mass flow rate (MFR) of the polypropylene.

本発明の樹脂集電体の製造方法においては、温度230℃、荷重2.16kgの条件下でJIS K7210-1:2014に記載の方法で測定されるメルトマスフローレートが7.5~40g/10minであるポリオレフィンを用いることが好ましく、7.5~30g/10minであるポリオレフィンを用いることがより好ましい。 In the method for producing a resin current collector of the present invention, the melt mass flow rate measured by the method described in JIS K7210-1: 2014 under the conditions of a temperature of 230 ° C. and a load of 2.16 kg is 7.5 to 40 g / 10 min. It is preferable to use the polyolefin of 7.5 to 30 g / 10 min, and it is more preferable to use the polyolefin of 7.5 to 30 g / 10 min.

導電性樹脂組成物を得るために用いられるニッケル粒子は、導電性フィラーとして機能する。ニッケル粒子は導電性を有している一方で、電荷移動媒体として用いられるイオンに関しては伝導性を有していないため、集電体内のイオン透過を抑制することができる。ここで、電荷移動媒体として用いられるイオンとは、例えばリチウムイオン電池であればリチウムイオンである。 The nickel particles used to obtain the conductive resin composition function as a conductive filler. While nickel particles have conductivity, they do not have conductivity for ions used as a charge transfer medium, so that ion permeation in the current collector can be suppressed. Here, the ion used as the charge transfer medium is, for example, lithium ion in the case of a lithium ion battery.

導電性樹脂組成物を得るために用いられるニッケル粒子のメジアン径は特に限定されるものではないが、電池の電気特性の観点から、1~20μmであることが好ましく、また、メジアン径の異なる2種以上のニッケル粒子からなることが好ましい。
なお、メジアン径とは、体積分布に基づくメジアン径であり、レーザー式粒度分布測定装置(LA-920:堀場製作所製)によって測定される。
The median diameter of the nickel particles used to obtain the conductive resin composition is not particularly limited, but is preferably 1 to 20 μm from the viewpoint of the electrical characteristics of the battery, and 2 with different median diameters. It is preferably composed of nickel particles of more than one species.
The median diameter is a median diameter based on the volume distribution, and is measured by a laser particle size distribution measuring device (LA-920: manufactured by HORIBA, Ltd.).

ニッケル粒子として、市場から入手できるものとしては、商品名「Type123」、「Type255」、「4SP-10」、「HCA-1」[いずれもVale社製]等が挙げられる。 Examples of nickel particles available on the market include trade names "Type123", "Type255", "4SP-10", "HCA-1" [all manufactured by Vale] and the like.

集電体の強度と導電性とのバランスの観点から、導電性樹脂組成物を得るために用いられるポリオレフィンとニッケル粒子との重量比は、ポリオレフィン:ニッケル粒子=25:75~35:65であることが好ましく、30:70~35:65であることがより好ましい。 From the viewpoint of the balance between the strength and the conductivity of the current collector, the weight ratio of the polyolefin and the nickel particles used to obtain the conductive resin composition is polyolefin: nickel particles = 25:75 to 35:65. It is preferably 30:70 to 35:65, and more preferably 30:70 to 35:65.

導電性樹脂組成物を得るために、本発明の効果を損なわない範囲において、ニッケル粒子の他に、ニッケル粒子以外の導電性フィラーを添加してもよい。ニッケル粒子以外の導電性フィラーとしては、例えば、銅、鉄、クロム及びこれらの合金(ニッケルとの合金も含む)からなる群より選ばれる少なくとも1種の金属粒子、並びに、アセチレンブラック等の炭素系導電性フィラー等が挙げられる。 In order to obtain a conductive resin composition, a conductive filler other than nickel particles may be added in addition to the nickel particles as long as the effects of the present invention are not impaired. Examples of the conductive filler other than nickel particles include at least one metal particle selected from the group consisting of copper, iron, chromium and alloys thereof (including alloys with nickel), and carbon-based materials such as acetylene black. Examples include conductive fillers.

導電性樹脂組成物を得るために、本発明の効果を損なわない範囲において、ニッケル粒子等の導電性フィラー及びポリオレフィンの他に、その他の成分(分散剤、架橋促進剤、架橋剤、着色剤、紫外線吸収剤、可塑剤)等を適宜添加してもよい。 In order to obtain a conductive resin composition, other components (dispersant, cross-linking accelerator, cross-linking agent, colorant, etc., in addition to the conductive filler such as nickel particles and polyolefin, as long as the effect of the present invention is not impaired. UV absorbers, plasticizers) and the like may be added as appropriate.

溶融混練時の温度は導電性樹脂組成物のMFRが100~500g/10minとなる温度であれば特に限定されないが、前記で好ましい範囲として挙げた温度230℃、荷重2.16kgの条件下でJIS K7210-1:2014に記載の方法で測定されるメルトマスフローレートが7.5~40g/10minであるポリオレフィンを用いて、ポリオレフィンとニッケル粒子との重量比が25:75~35:65である場合は240~280℃であることが好ましい。また、前記でより好ましい範囲として挙げた温度230℃、荷重2.16kgの条件下でJIS K7210-1:2014に記載の方法で測定されるメルトマスフローレートが7.5~30g/10minであるポリオレフィンを用いて、ポリオレフィンとニッケル粒子との重量比が30:70~35:65である場合は250~270℃であることがより好ましい。 The temperature at the time of melt-kneading is not particularly limited as long as the MFR of the conductive resin composition is 100 to 500 g / 10 min, but JIS is under the conditions of the temperature of 230 ° C. and the load of 2.16 kg, which are mentioned above as the preferable ranges. When the weight ratio of the polyolefin to the nickel particles is 25:75 to 35:65 using the polyolefin having a melt mass flow rate of 7.5 to 40 g / 10 min measured by the method described in K7210-1: 2014. Is preferably 240 to 280 ° C. Further, a polyolefin having a melt mass flow rate of 7.5 to 30 g / 10 min measured by the method described in JIS K7210-1: 2014 under the conditions of a temperature of 230 ° C. and a load of 2.16 kg, which are mentioned above as a more preferable range. When the weight ratio of the polyolefin and the nickel particles is 30:70 to 35:65, it is more preferably 250 to 270 ° C.

溶融混練時の各成分の添加順序には特に限定はない。得られた混合物は、さらにペレタイザーなどを用いてペレット化又は粉末化してもよい。 The order of adding each component during melt-kneading is not particularly limited. The obtained mixture may be further pelletized or powdered using a pelletizer or the like.

得られた導電性樹脂組成物をフィルム状等に成形することにより、樹脂集電体が得られる。フィルム状に成形する方法としては、Tダイ法、インフレーション法及びカレンダー法等の公知のフィルム成形法が挙げられる。なお、樹脂集電体は、フィルム成形以外の成形方法によっても得ることができる。 A resin current collector can be obtained by molding the obtained conductive resin composition into a film or the like. Examples of the method for forming into a film include known film forming methods such as a T-die method, an inflation method, and a calendar method. The resin current collector can also be obtained by a molding method other than film molding.

本発明の製造方法により得られる樹脂集電体は、2層以上の導電性樹脂層からなる樹脂集電体であることが好ましい。前記の導電性樹脂組成物を成形して樹脂集電体が得られるが、成形時にピンホールが生じた場合にそのままリチウムイオン電池に用いると不具合の原因となる。2層以上の導電性樹脂層からなる樹脂集電体であると、1層の成形時にピンホールが生じた場合でも、他の層でピンホールを塞ぐことができるため好ましい。より薄膜化してもピンホールが生じ難くなるため、3層以上の導電性樹脂層からなる樹脂集電体であることが更に好ましい。 The resin current collector obtained by the production method of the present invention is preferably a resin current collector composed of two or more conductive resin layers. A resin current collector can be obtained by molding the above-mentioned conductive resin composition, but if a pinhole is generated during molding, if it is used as it is in a lithium ion battery, it causes a problem. A resin current collector composed of two or more conductive resin layers is preferable because even if pinholes occur during molding of one layer, the pinholes can be closed by another layer. A resin current collector composed of three or more conductive resin layers is more preferable because pinholes are less likely to occur even if the film is made thinner.

樹脂集電体の厚さは特に限定されないが、5~400μmであることが好ましい。樹脂集電体が2層以上の導電性樹脂層からなる場合は、各々の導電性樹脂層の厚さが90μm以下であることが好ましい。 The thickness of the resin current collector is not particularly limited, but is preferably 5 to 400 μm. When the resin current collector is composed of two or more conductive resin layers, the thickness of each conductive resin layer is preferably 90 μm or less.

本発明の製造方法により得られる樹脂集電体は、好ましくはリチウムイオン電池用電極の樹脂集電体として用いられる。なお、本発明の製造方法により得られる樹脂集電体は、負極用樹脂集電体として用いられることが好ましい。 The resin current collector obtained by the production method of the present invention is preferably used as a resin current collector for an electrode for a lithium ion battery. The resin current collector obtained by the production method of the present invention is preferably used as a resin current collector for a negative electrode.

[リチウムイオン電池用電極の製造方法]
本発明のリチウムイオン電池用電極の製造方法は、上述した方法により樹脂集電体を作製する工程と、上記樹脂集電体の表面に活物質層を形成する工程とを備えることを特徴とする。
[Manufacturing method of electrodes for lithium-ion batteries]
The method for manufacturing an electrode for a lithium ion battery of the present invention is characterized by comprising a step of manufacturing a resin current collector by the above-mentioned method and a step of forming an active material layer on the surface of the resin collector. ..

上述した方法により作製される樹脂集電体は、負極用樹脂集電体として用いられることが好ましい。この場合、本発明のリチウムイオン電池用電極の製造方法は、上述した方法により樹脂集電体を作製する工程と、樹脂集電体の表面に負極活物質層を形成する工程とを備える。負極活物質層は、負極活物質とともに、必要に応じてバインダ、導電助剤等の添加剤を用いて形成することができる。 The resin current collector produced by the above method is preferably used as a resin current collector for the negative electrode. In this case, the method for manufacturing an electrode for a lithium ion battery of the present invention includes a step of manufacturing a resin collector by the above-mentioned method and a step of forming a negative electrode active material layer on the surface of the resin collector. The negative electrode active material layer can be formed by using an additive such as a binder and a conductive auxiliary agent, if necessary, together with the negative electrode active material.

[リチウムイオン電池の製造方法]
本発明のリチウムイオン電池の製造方法は、上述した方法によりリチウムイオン電池用電極を作製する工程を備えることを特徴とする。
[Manufacturing method of lithium-ion battery]
The method for manufacturing a lithium ion battery of the present invention is characterized by comprising a step of manufacturing an electrode for a lithium ion battery by the method described above.

例えば、本発明の製造方法により得られる樹脂集電体が負極用樹脂集電体として用いられる場合、すなわち、本発明のリチウムイオン電池用電極の製造方法が上述した方法により樹脂集電体を作製する工程と、樹脂集電体の表面に負極活物質層を形成する工程とを備える場合、本発明のリチウムイオン電池の製造方法は、さらに、正極用集電体の表面に正極活物質層を形成する工程を備える。正極活物質層は、正極活物質とともに、必要に応じてバインダ、導電助剤等の添加剤を用いて形成することができる。そして、セパレータを配置し、電解液を加えることによって、リチウムイオン電池が得られる。本発明のリチウムイオン電池の製造方法において、負極活物質、正極活物質、電解液、セパレータ等の材料としては、公知の材料を使用することができる。正極活物質及び負極活物質は、アクリル系樹脂等の樹脂で被覆された被覆活物質であってもよい。正極用集電体は、金属集電箔であってもよいし、樹脂集電体であってもよい。 For example, when the resin collector obtained by the manufacturing method of the present invention is used as the resin collector for the negative electrode, that is, the resin current collector is manufactured by the method described above in the method for manufacturing the electrode for a lithium ion battery of the present invention. When the step of forming the negative electrode active material layer on the surface of the resin current collector is provided, the method for manufacturing a lithium ion battery of the present invention further comprises forming a positive electrode active material layer on the surface of the positive electrode current collector. A step of forming is provided. The positive electrode active material layer can be formed by using an additive such as a binder and a conductive auxiliary agent, if necessary, together with the positive electrode active material. Then, by arranging the separator and adding the electrolytic solution, a lithium ion battery can be obtained. In the method for manufacturing a lithium ion battery of the present invention, known materials can be used as materials for the negative electrode active material, the positive electrode active material, the electrolytic solution, the separator and the like. The positive electrode active material and the negative electrode active material may be a coated active material coated with a resin such as an acrylic resin. The current collector for the positive electrode may be a metal current collector foil or a resin current collector.

以下、本発明を実施例によって具体的に説明するが、本発明の主旨を逸脱しない限り本発明は実施例に限定されるものではない。なお、特記しない限り、部は重量部、%は重量%を意味する。 Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to the Examples as long as it does not deviate from the gist of the present invention. Unless otherwise specified, parts mean parts by weight and% means parts by weight.

<実施例1>
2軸押出機にて、ポリプロピレン[商品名「サンアロマーPC684S」、サンアロマー(株)製]、ニッケル粒子[商品名「Type255」、Vale社製、メジアン径:20μm]を260℃、100rpm、滞留時間5分の条件で溶融混練して導電性樹脂組成物(Z-1)を得た。表1に示すように、ポリプロピレンとニッケル粒子との重量比は、ポリプロピレン:ニッケル粒子=30:70である。
得られた導電性樹脂組成物(Z-1)をTダイから押し出し、熱プレス機により圧延することで、膜厚200μmの樹脂集電体(X-1)を得た。
<Example 1>
In a twin-screw extruder, polypropylene [trade name "SunAllomer PC684S", manufactured by SunAllomer Ltd.], nickel particles [trade name "Type255", manufactured by Vale, median diameter: 20 μm] are mixed at 260 ° C., 100 rpm, residence time 5 The conductive resin composition (Z-1) was obtained by melt-kneading under the conditions of minutes. As shown in Table 1, the weight ratio of polypropylene to nickel particles is polypropylene: nickel particles = 30:70.
The obtained conductive resin composition (Z-1) was extruded from a T-die and rolled by a hot press to obtain a resin current collector (X-1) having a film thickness of 200 μm.

<実施例2~7>
表1に示すように、ポリプロピレンの種類、ニッケル粒子の種類、ポリプロピレンとニッケル粒子との重量比、及び、溶融混練時の温度を変更したことを除いて、実施例1と同様の方法により導電性樹脂組成物(Z-2)~(Z-7)を得た後、樹脂集電体(X-2)~(X-7)を得た。
<Examples 2 to 7>
As shown in Table 1, conductivity is obtained by the same method as in Example 1 except that the type of polypropylene, the type of nickel particles, the weight ratio of polypropylene to nickel particles, and the temperature at the time of melt-kneading are changed. After obtaining the resin compositions (Z-2) to (Z-7), resin collectors (X-2) to (X-7) were obtained.

<比較例1~4>
表1に示すように、ポリプロピレンの種類、ポリプロピレンとニッケル粒子との重量比、及び、溶融混練時の温度を変更したことを除いて、実施例1と同様の方法により導電性樹脂組成物(Z´-1)~(Z´-4)を得た後、樹脂集電体(X´-1)~(X´-4)を得た。
<Comparative Examples 1 to 4>
As shown in Table 1, the conductive resin composition (Z) was prepared by the same method as in Example 1 except that the type of polypropylene, the weight ratio of polypropylene to nickel particles, and the temperature at the time of melt-kneading were changed. After obtaining ′ -1) to (Z ′ -4), resin current collectors (X ′ -1) to (X ′ -4) were obtained.

表1中、ポリプロピレンとして下記を用いた。表1には、温度230℃、荷重2.16kgの条件下でJIS K7210-1:2014に記載の方法で測定されるポリプロピレンのメルトマスフローレート(MFR)を示している。
実施例1及び実施例5:ブロックポリプロピレン[商品名「サンアロマーPC684S」、サンアロマー(株)製]
実施例2~4、実施例7、比較例1及び比較例4:ブロックポリプロピレン[商品名「サンアロマーPM854X」、サンアロマー(株)製]
実施例6:ブロックポリプロピレン[商品名「サンアロマーPC684S」]とホモポリプロピレン[商品名「サンアロマーPHA03A」]とを重量比20/80で混合したもの[いずれもサンアロマー(株)製]
比較例2:ホモポリプロピレン[商品名「サンアロマーPL500A」、サンアロマー(株)製]
比較例3:ホモポリプロピレン[商品名「サンアロマーPHA03A」、サンアロマー(株)製]
In Table 1, the following was used as polypropylene. Table 1 shows the melt mass flow rate (MFR) of polypropylene measured by the method described in JIS K7210-1: 2014 under the conditions of a temperature of 230 ° C. and a load of 2.16 kg.
Example 1 and Example 5: Block polypropylene [trade name "SunAllomer PC684S", manufactured by SunAllomer Ltd.]
Examples 2-4, Example 7, Comparative Example 1 and Comparative Example 4: Block polypropylene [trade name "SunAllomer PM854X", manufactured by SunAllomer Ltd.]
Example 6: Block polypropylene [trade name "SunAllomer PC684S"] and homopolypropylene [trade name "SunAllomer PHA03A"] mixed at a weight ratio of 20/80 [both manufactured by SunAllomer Ltd.]
Comparative Example 2: Homopolypropylene [Product name "SunAllomer PL500A", manufactured by SunAllomer Ltd.]
Comparative Example 3: Homopolypropylene [Product name "SunAllomer PHA03A", manufactured by SunAllomer Ltd.]

表1中、ニッケル粒子として下記を用いた。
Ni-1:ニッケル粒子[商品名「Type255」、Vale社製]
Ni-2:ニッケル粒子[商品名「4SP-10」:商品名「HCA-1」=29:71(重量比)、いずれもVale社製]
In Table 1, the following were used as nickel particles.
Ni-1: Nickel particles [trade name "Type 255", manufactured by Vale]
Ni-2: Nickel particles [Product name "4SP-10": Product name "HCA-1" = 29:71 (weight ratio), both manufactured by Vale]

[評価方法]
<導電性樹脂組成物のMFRの測定>
導電性樹脂組成物(Z-1)~(Z-7)及び(Z´-1)~(Z´-4)について、溶融混練時の温度、荷重5kgの条件下でJIS K7210-1:2014に記載の方法によりメルトマスフローレート(MFR)を測定した。
[Evaluation methods]
<Measurement of MFR of conductive resin composition>
JIS K7210-1: 2014 for the conductive resin compositions (Z-1) to (Z-7) and (Z'-1) to (Z'-4) under the conditions of the temperature at the time of melt-kneading and a load of 5 kg. The melt mass flow rate (MFR) was measured by the method described in 1.

<貫通抵抗値の測定>
樹脂集電体(X-1)~(X-7)及び(X´-1)~(X´-4)を3cm×10cm程度の短冊に裁断し、電気抵抗測定器[IMC-0240型、井元製作所(株)製]及び抵抗計[RM3548、HIOKI製]を用いて各樹脂集電体の貫通抵抗値を測定した。
電気抵抗測定器に2.16kgの荷重をかけた状態での樹脂集電体の抵抗値を測定し、2.16kgの荷重をかけてから60秒後の値をその樹脂集電体の抵抗値とした。下記の式に示すように、抵抗測定時の冶具の接触表面の面積(3.14cm)をかけた値を貫通抵抗値とした。
貫通抵抗値(Ω・cm)=抵抗値(Ω)×3.14(cm
貫通抵抗値が5Ω・cm未満である場合を○(良)、5Ω・cm以上である場合を×(不可)と判定した。
<Measurement of penetration resistance value>
The resin collectors (X-1) to (X-7) and (X'-1) to (X'-4) are cut into strips of about 3 cm x 10 cm, and an electric resistance measuring instrument [IMC-0240 type, The penetration resistance value of each resin collector was measured using a resistance meter [RM3548, manufactured by HIOKI] and a resistance meter [manufactured by Imoto Seisakusho Co., Ltd.].
The resistance value of the resin collector with a load of 2.16 kg applied to the electric resistance measuring instrument is measured, and the value 60 seconds after the load of 2.16 kg is applied is the resistance value of the resin collector. And said. As shown in the following formula, the value obtained by multiplying the area of the contact surface of the jig at the time of resistance measurement (3.14 cm 2 ) was taken as the penetration resistance value.
Penetration resistance value (Ω ・ cm 2 ) = resistance value (Ω) × 3.14 (cm 2 )
When the penetration resistance value was less than 5 Ω · cm 2 , it was judged as ◯ (good), and when it was 5 Ω · cm 2 or more, it was judged as × (impossible).

各評価結果を表1に示す。なお、比較例4の樹脂集電体(X´-4)においては、成形不良で貫通抵抗値を測定できなかったため、×(不可)と判定した。 The results of each evaluation are shown in Table 1. In the resin current collector (X'-4) of Comparative Example 4, the penetration resistance value could not be measured due to a molding defect, so it was determined to be × (impossible).

Figure 0007055059000001
Figure 0007055059000001

表1より、導電性樹脂組成物のMFRが100~500g/10minとなる温度で溶融混練を行った実施例1~7では、導電性樹脂組成物のMFRが100g/10min未満となる温度で溶融混練を行った比較例1及び2、並びに、導電性樹脂組成物のMFRが500g/10minを超える温度で溶融混練を行った比較例3及び4と比べて、樹脂集電体の貫通抵抗値が低いことが確認された。 From Table 1, in Examples 1 to 7 in which the MFR of the conductive resin composition was melt-kneaded at a temperature of 100 to 500 g / 10 min, the conductive resin composition was melted at a temperature of less than 100 g / 10 min. Compared with Comparative Examples 1 and 2 in which kneading was performed and Comparative Examples 3 and 4 in which the MFR of the conductive resin composition was melt-kneaded at a temperature exceeding 500 g / 10 min, the penetration resistance value of the resin collector was higher. It was confirmed to be low.

本発明の樹脂集電体の製造方法は、特に、携帯電話、パーソナルコンピューター及びハイブリッド自動車、電気自動車用に用いられるリチウムイオン電池用の集電体を製造する方法として有用である。 The method for manufacturing a resin current collector of the present invention is particularly useful as a method for manufacturing a current collector for a lithium ion battery used for a mobile phone, a personal computer, a hybrid vehicle, and an electric vehicle.

Claims (10)

ポリオレフィンとニッケル粒子とを溶融混練することにより導電性樹脂組成物を得る工程を有する樹脂集電体の製造方法であって、
前記溶融混練時の温度が、JIS K7210-1:2014に記載の方法を用いて荷重5kgの条件下で測定される前記導電性樹脂組成物のメルトマスフローレートが100~500g/10minとなる温度であることを特徴とする樹脂集電体の製造方法。
A method for producing a resin current collector, which comprises a step of obtaining a conductive resin composition by melt-kneading polyolefin and nickel particles.
The temperature at the time of melt-kneading is measured by the method described in JIS K7210-1: 2014 under the condition of a load of 5 kg, at a temperature at which the melt mass flow rate of the conductive resin composition is 100 to 500 g / 10 min. A method for manufacturing a resin current collector, which is characterized by being present.
前記ポリオレフィンが、ポリプロピレンである請求項1に記載の樹脂集電体の製造方法。 The method for producing a resin current collector according to claim 1, wherein the polyolefin is polypropylene. 前記ポリプロピレンが、ブロックポリプロピレンを含む請求項2に記載の樹脂集電体の製造方法。 The method for producing a resin current collector according to claim 2, wherein the polypropylene contains block polypropylene. 温度230℃、荷重2.16kgの条件下でJIS K7210-1:2014に記載の方法で測定される前記ポリオレフィンのメルトマスフローレートが7.5~40g/10minである請求項1~3のいずれか1項に記載の樹脂集電体の製造方法。 Any of claims 1 to 3, wherein the melt mass flow rate of the polyolefin measured by the method described in JIS K7210-1: 2014 under the conditions of a temperature of 230 ° C. and a load of 2.16 kg is 7.5 to 40 g / 10 min. The method for manufacturing a resin current collector according to item 1. 前記ニッケル粒子の体積分布に基づくメジアン径が1~20μmである請求項1~4のいずれか1項に記載の樹脂集電体の製造方法。 The method for producing a resin current collector according to any one of claims 1 to 4, wherein the median diameter based on the volume distribution of the nickel particles is 1 to 20 μm. 前記ポリオレフィンと前記ニッケル粒子との重量比が、ポリオレフィン:ニッケル粒子=25:75~35:65である請求項1~5のいずれか1項に記載の樹脂集電体の製造方法。 The method for producing a resin current collector according to any one of claims 1 to 5, wherein the weight ratio of the polyolefin to the nickel particles is polyolefin: nickel particles = 25:75 to 35:65. 前記樹脂集電体が負極用樹脂集電体である請求項1~6のいずれか1項に記載の樹脂集電体の製造方法。 The method for manufacturing a resin current collector according to any one of claims 1 to 6, wherein the resin current collector is a resin current collector for a negative electrode. 前記溶融混練時の温度が240~280℃である請求項1~7のいずれか1項に記載の樹脂集電体の製造方法。 The method for producing a resin current collector according to any one of claims 1 to 7, wherein the temperature at the time of melt-kneading is 240 to 280 ° C. 請求項1~8のいずれか1項に記載の方法により樹脂集電体を作製する工程と、
前記樹脂集電体の表面に活物質層を形成する工程とを備えることを特徴とするリチウムイオン電池用電極の製造方法。
A step of producing a resin current collector by the method according to any one of claims 1 to 8.
A method for manufacturing an electrode for a lithium ion battery, which comprises a step of forming an active material layer on the surface of the resin current collector.
請求項9に記載の方法によりリチウムイオン電池用電極を作製する工程を備えることを特徴とするリチウムイオン電池の製造方法。 A method for manufacturing a lithium ion battery, which comprises a step of manufacturing an electrode for a lithium ion battery by the method according to claim 9.
JP2018085350A 2017-05-23 2018-04-26 A method for manufacturing a resin collector, a method for manufacturing an electrode for a lithium ion battery, and a method for manufacturing a lithium ion battery. Active JP7055059B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017101789 2017-05-23
JP2017101789 2017-05-23

Publications (2)

Publication Number Publication Date
JP2018198197A JP2018198197A (en) 2018-12-13
JP7055059B2 true JP7055059B2 (en) 2022-04-15

Family

ID=64662601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018085350A Active JP7055059B2 (en) 2017-05-23 2018-04-26 A method for manufacturing a resin collector, a method for manufacturing an electrode for a lithium ion battery, and a method for manufacturing a lithium ion battery.

Country Status (1)

Country Link
JP (1) JP7055059B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7145727B2 (en) * 2018-10-22 2022-10-03 三洋化成工業株式会社 Method for manufacturing negative electrode resin current collector, method for manufacturing negative electrode for lithium ion battery, and method for manufacturing lithium ion battery
WO2021108946A1 (en) * 2019-12-02 2021-06-10 合肥国轩高科动力能源有限公司 High-orientation collector for lithium ion battery, fabrication method therefor and application thereof
WO2021108944A1 (en) * 2019-12-02 2021-06-10 合肥国轩高科动力能源有限公司 Anisotropic collector for lithium-ion battery, and manufacturing method therefor and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015005116A1 (en) 2013-07-08 2015-01-15 三洋化成工業株式会社 Dispersant for resin collectors, material for resin collectors, and resin collector
WO2016031690A1 (en) 2014-08-25 2016-03-03 日産自動車株式会社 Electrode
WO2016031689A1 (en) 2014-08-25 2016-03-03 日産自動車株式会社 Electrical connection structure
WO2016093095A1 (en) 2014-12-08 2016-06-16 日立化成株式会社 Positive electrode for lithium ion secondary batteries, and lithium ion secondary battery using same
WO2017014245A1 (en) 2015-07-23 2017-01-26 日立化成株式会社 Lithium ion secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015005116A1 (en) 2013-07-08 2015-01-15 三洋化成工業株式会社 Dispersant for resin collectors, material for resin collectors, and resin collector
WO2016031690A1 (en) 2014-08-25 2016-03-03 日産自動車株式会社 Electrode
WO2016031689A1 (en) 2014-08-25 2016-03-03 日産自動車株式会社 Electrical connection structure
WO2016093095A1 (en) 2014-12-08 2016-06-16 日立化成株式会社 Positive electrode for lithium ion secondary batteries, and lithium ion secondary battery using same
WO2017014245A1 (en) 2015-07-23 2017-01-26 日立化成株式会社 Lithium ion secondary battery

Also Published As

Publication number Publication date
JP2018198197A (en) 2018-12-13

Similar Documents

Publication Publication Date Title
JP6998278B2 (en) Resin current collectors, laminated resin current collectors, and lithium-ion batteries
WO2011062232A1 (en) Aqueous paste for electrochemical cell, electrode plate for electrochemical cell obtained by application of the aqueous paste, and battery comprising the electrode plate
JP7055059B2 (en) A method for manufacturing a resin collector, a method for manufacturing an electrode for a lithium ion battery, and a method for manufacturing a lithium ion battery.
CN112913054B (en) Method for producing resin current collector for negative electrode, method for producing negative electrode for lithium ion battery, and method for producing lithium ion battery
JP2010189632A (en) Aqueous dispersion of acid-modified polyolefin resin, binder for secondary battery electrode, electrode and secondary battery
CN103140544A (en) Porous polyolefin resin film
JP2016041806A (en) Resin composition, method for producing resin composition, powdery mixture, bipolar plate for redox flow cell, and separator for fuel cell
JP7089374B2 (en) Resin current collectors and lithium-ion batteries
JP7055694B2 (en) Resin collectors, electrodes for lithium-ion batteries, and lithium-ion batteries
JP2012204292A (en) Conductive film and manufacturing method thereof
JP7194048B2 (en) Resin current collector and lithium ion battery
JP7394580B2 (en) All-solid-state lithium-ion secondary battery
JP7007944B2 (en) Positive electrode for lithium-ion batteries and lithium-ion batteries
WO2021084900A1 (en) Collector for lithium ion batteries and method for producing said collector
WO2022107605A1 (en) Current collector
KR20130079573A (en) Conductive cross-linked film, method for manufacturing said film, and application for said film
JP2019169272A (en) Resin current collector and lithium ion battery
WO2022107603A1 (en) Current collector
WO2023022167A1 (en) Adhesive resin composition and film
JP7074469B2 (en) Resin current collectors and lithium-ion batteries
JP2022085826A (en) Resin current collector for lithium ion battery, and method for manufacturing the same
JP7148275B2 (en) Method for manufacturing resin current collector
JP7148277B2 (en) Resin current collector and lithium ion battery
JPH11181167A (en) High-frequency-weldable resin composition
JP7224194B2 (en) Microporous film manufacturing method and microporous film

Legal Events

Date Code Title Description
AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20180522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180613

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220405

R150 Certificate of patent or registration of utility model

Ref document number: 7055059

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150