JP7047593B2 - Wet non-woven fabric - Google Patents
Wet non-woven fabric Download PDFInfo
- Publication number
- JP7047593B2 JP7047593B2 JP2018098696A JP2018098696A JP7047593B2 JP 7047593 B2 JP7047593 B2 JP 7047593B2 JP 2018098696 A JP2018098696 A JP 2018098696A JP 2018098696 A JP2018098696 A JP 2018098696A JP 7047593 B2 JP7047593 B2 JP 7047593B2
- Authority
- JP
- Japan
- Prior art keywords
- fiber
- fibers
- collection efficiency
- pressure loss
- pore size
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004745 nonwoven fabric Substances 0.000 title claims description 158
- 239000000835 fiber Substances 0.000 claims description 330
- 239000002131 composite material Substances 0.000 claims description 52
- 229920001410 Microfiber Polymers 0.000 claims description 51
- 238000000034 method Methods 0.000 claims description 37
- 239000011230 binding agent Substances 0.000 claims description 21
- 229920000098 polyolefin Polymers 0.000 claims description 9
- 238000010438 heat treatment Methods 0.000 claims description 7
- 230000001788 irregular Effects 0.000 claims description 7
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 239000004753 textile Substances 0.000 claims description 2
- 239000011148 porous material Substances 0.000 description 120
- 238000009826 distribution Methods 0.000 description 51
- 230000003068 static effect Effects 0.000 description 43
- 239000000428 dust Substances 0.000 description 41
- 230000008030 elimination Effects 0.000 description 41
- 238000003379 elimination reaction Methods 0.000 description 41
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 26
- 239000002245 particle Substances 0.000 description 24
- 239000000470 constituent Substances 0.000 description 17
- -1 polypropylene Polymers 0.000 description 17
- 238000002156 mixing Methods 0.000 description 15
- 239000000306 component Substances 0.000 description 14
- 239000008358 core component Substances 0.000 description 11
- 230000001965 increasing effect Effects 0.000 description 11
- 238000012360 testing method Methods 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 10
- 230000000694 effects Effects 0.000 description 10
- 239000003658 microfiber Substances 0.000 description 9
- 238000012545 processing Methods 0.000 description 9
- 239000000654 additive Substances 0.000 description 8
- 238000005259 measurement Methods 0.000 description 8
- 229920000642 polymer Polymers 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 6
- 238000002844 melting Methods 0.000 description 6
- 230000008018 melting Effects 0.000 description 6
- 230000000996 additive effect Effects 0.000 description 5
- 238000001035 drying Methods 0.000 description 5
- 230000002829 reductive effect Effects 0.000 description 5
- 238000011144 upstream manufacturing Methods 0.000 description 5
- 238000009423 ventilation Methods 0.000 description 5
- 239000004743 Polypropylene Substances 0.000 description 4
- 239000000853 adhesive Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 229920001155 polypropylene Polymers 0.000 description 4
- 230000001737 promoting effect Effects 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- JYEUMXHLPRZUAT-UHFFFAOYSA-N 1,2,3-triazine Chemical compound C1=CN=NN=C1 JYEUMXHLPRZUAT-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 239000002585 base Substances 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 230000001747 exhibiting effect Effects 0.000 description 3
- 238000010030 laminating Methods 0.000 description 3
- 229920001707 polybutylene terephthalate Polymers 0.000 description 3
- 229920000728 polyester Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 229920002994 synthetic fiber Polymers 0.000 description 3
- 239000012209 synthetic fiber Substances 0.000 description 3
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- HQABUPZFAYXKJW-UHFFFAOYSA-N butan-1-amine Chemical compound CCCCN HQABUPZFAYXKJW-UHFFFAOYSA-N 0.000 description 2
- 230000003749 cleanliness Effects 0.000 description 2
- 230000008094 contradictory effect Effects 0.000 description 2
- 239000002781 deodorant agent Substances 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 125000004836 hexamethylene group Chemical group [H]C([H])([*:2])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[*:1] 0.000 description 2
- 125000001841 imino group Chemical group [H]N=* 0.000 description 2
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 238000012805 post-processing Methods 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 230000000087 stabilizing effect Effects 0.000 description 2
- LEVFXWNQQSSNAC-UHFFFAOYSA-N 2-(4,6-diphenyl-1,3,5-triazin-2-yl)-5-hexoxyphenol Chemical compound OC1=CC(OCCCCCC)=CC=C1C1=NC(C=2C=CC=CC=2)=NC(C=2C=CC=CC=2)=N1 LEVFXWNQQSSNAC-UHFFFAOYSA-N 0.000 description 1
- 125000000954 2-hydroxyethyl group Chemical group [H]C([*])([H])C([H])([H])O[H] 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 241000032211 Terebra Species 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000005273 aeration Methods 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 230000000840 anti-viral effect Effects 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 238000007380 fibre production Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 239000003205 fragrance Substances 0.000 description 1
- ZZUFCTLCJUWOSV-UHFFFAOYSA-N furosemide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC(C(O)=O)=C1NCC1=CC=CO1 ZZUFCTLCJUWOSV-UHFFFAOYSA-N 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000005802 health problem Effects 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000002074 melt spinning Methods 0.000 description 1
- 239000004750 melt-blown nonwoven Substances 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- HRYSOBDFNHXNTM-UHFFFAOYSA-N n-butylbutan-1-amine;1,3,5-triazine Chemical compound C1=NC=NC=N1.CCCCNCCCC HRYSOBDFNHXNTM-UHFFFAOYSA-N 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920001748 polybutylene Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920013716 polyethylene resin Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000005871 repellent Substances 0.000 description 1
- 230000002940 repellent Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 1
- 238000009210 therapy by ultrasound Methods 0.000 description 1
Images
Classifications
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H3/00—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
- D04H3/02—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments
- D04H3/04—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments in rectilinear paths, e.g. crossing at right angles
- D04H3/045—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments in rectilinear paths, e.g. crossing at right angles for net manufacturing
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Filtering Materials (AREA)
- Electrostatic Separation (AREA)
- Nonwoven Fabrics (AREA)
- Paper (AREA)
Description
本発明は、塵捕集性能が長時間維持されるフィルター用湿式不織布に関するものである。 The present invention relates to a wet non-woven fabric for a filter whose dust collecting performance is maintained for a long time.
近年、空間の清浄化に対する要求が高まっており、粒径2.5μm以下のダストによる健康問題への対策や半導体・医薬品製造における無塵化等、住環境から産業にいたる幅広い分野で、空気中の微細なダストを除去するエアフィルターが使用されている。 In recent years, the demand for cleanliness of space has been increasing, and in a wide range of fields from living environment to industry, such as measures against health problems caused by dust with a particle size of 2.5 μm or less and dust-free manufacturing of semiconductors and pharmaceuticals, in the air. An air filter that removes fine dust is used.
エアフィルターは、ダストを含んだ空気を取り込み、濾材部分において、ダストを捕捉することで、通過空気を清浄化する。このエアフィルターには、ダストを高効率で捕集する性能に加えて、気体が通過する際の圧力損失が低いほど、フィルターの長寿命化や処理風量の増加につながるため、低圧力損失であることもエアフィルターにおいて重要な性能の1つとなっている。 The air filter takes in air containing dust and captures the dust in the filter medium portion to purify the passing air. In addition to the ability to collect dust with high efficiency, this air filter has a low pressure loss because the lower the pressure loss when the gas passes through, the longer the life of the filter and the increase in the processing air volume. This is also one of the important performances of the air filter.
一般的にダストの捕集効率を高めるためには、フィルターに用いられる濾材シートのポアサイズを小さくすることで、機械的な捕集性能を向上させる。このポアサイズとは、濾材シートを構成する繊維によって形成される貫通孔の大きさのことである。しかし、濾材シートのポアサイズを小さくした場合、通気抵抗が高まることで、高圧力損失となることから、捕集効率と圧力損失は相反することとなる。 Generally, in order to improve the dust collection efficiency, the pore size of the filter medium sheet used for the filter is reduced to improve the mechanical collection performance. This pore size is the size of the through hole formed by the fibers constituting the filter medium sheet. However, when the pore size of the filter medium sheet is reduced, the ventilation resistance increases and a high pressure loss occurs, so that the collection efficiency and the pressure loss conflict with each other.
相反する性能である高捕集効率と低圧力損失を両立させるために、濾材シートを帯電させ、電荷の静電気力を利用してダストを捕捉するエレクトレットフィルターが、空気清浄機用のエアフィルターとして広く用いられている。 In order to achieve both high collection efficiency and low pressure loss, which are contradictory performances, electret filters that charge the filter media sheet and capture dust using the electrostatic force of the electric charge are widely used as air filters for air purifiers. It is used.
濾材シートを帯電させる方法としては、電極を利用したコロナ放電によるコロナチャージや水に浸漬・乾燥させることによるハイドロチャージ等によるエレクトレット加工を濾材シートにする前の繊維自体あるいは濾材シートに対して施すことで、構成繊維を帯電させる方法が一般的である。エレクトレットフィルターは、静電気により空気中のダストを引き寄せて捕捉するため、物理的な捕集とは異なり、濾材シートのポアサイズが捕集効率に大きく影響しない場合が多い。このため、ポアサイズを大きくしてもダストを高効率で捕捉することが可能であり、低圧力損失との両立を可能としている。しかし、エレクトレットフィルターは、捕捉したダストが濾材シートに堆積するにつれて、構成繊維に帯電した電荷が中和されていき、静電気力が低下する。このため、ダストの捕集効率が初期状態と比較して著しく低下するという問題があった。 As a method of charging the filter medium sheet, electret processing by corona charge by corona discharge using electrodes or hydro charge by immersion and drying in water is applied to the fiber itself or the filter medium sheet before making the filter medium sheet. Therefore, a method of charging the constituent fibers is common. Since the electret filter attracts and captures dust in the air by static electricity, unlike physical collection, the pore size of the filter media sheet often does not significantly affect the collection efficiency. Therefore, it is possible to capture dust with high efficiency even if the pore size is increased, and it is possible to achieve both low pressure loss and low pressure loss. However, in the electret filter, as the captured dust accumulates on the filter media sheet, the electric charge charged on the constituent fibers is neutralized, and the electrostatic force decreases. Therefore, there is a problem that the dust collection efficiency is significantly lowered as compared with the initial state.
こうしたエレクトレットフィルターの課題を解決するために様々な取り組みがなされている。例えば、特許文献1では、繊維径の異なる繊維を組み合わせた不織布シートを積層することにより、エレクレットフィルターに到達するまでに一定のダストを捕捉することで、ダスト堆積による電荷の中和を遅らせる方法が提案されている。
Various efforts have been made to solve the problems of these electret filters. For example, in
また、特許文献2では、繊維径の小さいエレクトレット化繊維を混繊することで、機械的捕集効率を高める方法が提案されている。使用している繊維径がミクロンオーダーであり、濾材シートのポアサイズを極端に小さくすることがないため、圧力損失の上昇幅が小さく、捕集効率をある程度高めることが可能である。
Further,
しかし、特許文献1においてはシートを積層する際に接着する必要があり、接着箇所で圧力損失が上昇するという課題がある。また、積層することにより、濾材が厚くなってしまい、エアフィルターのコンパクト化に適さないという課題もある。
However, in
また、特許文献2におけるミクロンオーダーの繊維径では、機械的捕集効率を高めることへの効果は大きくなく、静電気力が完全に失われた状態では十分な捕集性能を発揮するに至らない課題があり、エレクトレットフィルターの高捕集効率の維持には課題があった。
Further, the fiber diameter on the order of micron in
本発明の目的は、上記した従来技術の問題点を解決するものであり、本発明の湿式不織布では、エレクトレット化濾材として、静電気力を失った後も捕集効率の低下幅が小さく、高捕集効率と低圧力損失を両立する湿式不織布を提供することにある。 An object of the present invention is to solve the above-mentioned problems of the prior art, and in the wet nonwoven fabric of the present invention, as an electretized filter medium, the reduction in collection efficiency is small even after the electrostatic force is lost, and the collection efficiency is high. It is an object of the present invention to provide a wet non-woven fabric that achieves both collection efficiency and low pressure loss.
上記目的は以下の手段により達成される。すなわち、
(1)3種以上の短繊維から構成される湿式不織布であって、表面に8箇所以上のスリットを有し、繊維径が5.0~50.0μmの繊維(短繊維A)と、繊維径が3.0μm以下の極細繊維(短繊維B)および繊維径が短繊維Bの2倍以上で、異形度が1.2以上の異形断面繊維(短繊維C)を含む湿式不織布。
(2)極細繊維(短繊維B)の異形度が1.1以上である(1)に記載の湿式不織布。
(3)極細繊維(短繊維B)と異形断面繊維(短繊維C)がポリオレフィンからなる(1)または(2)に記載の湿式不織布。
(4)スリットを有する繊維(短繊維A)がポリオレフィンからなる(1)~(3)のいずれかに記載の湿式不織布。
(5)エレクトレット化されていることを特徴とする(1)~(4)のいずれかに記載の湿式不織布。
(6)(1)~(5)のいずれかに記載の湿式不織布が少なくとも一部を構成する繊維製品。
(7)スリットを有する繊維(短繊維A)、極細繊維(短繊維B)および異形断面繊維(短繊維C)の発生が可能な分割型複合繊維とバインダー繊維を湿式抄紙した後、熱処理および/または物理衝撃によって、不織布中の分割型複合繊維を分割する(1)~(5)に記載の湿式不織布の製造方法。
The above object is achieved by the following means. That is,
(1) A wet non-woven fiber composed of three or more types of short fibers, having eight or more slits on the surface and having a fiber diameter of 5.0 to 50.0 μm (short fibers A) and fibers. A wet non-woven fabric containing ultrafine fibers (short fibers B) having a diameter of 3.0 μm or less and irregular cross-sectional fibers (short fibers C) having a fiber diameter more than twice that of short fibers B and a degree of deformation of 1.2 or more.
(2) The wet nonwoven fabric according to (1), wherein the ultrafine fibers (staples B) have a degree of deformation of 1.1 or more.
(3) The wet non-woven fabric according to (1) or (2), wherein the ultrafine fibers (staples B) and the irregular cross-section fibers (staples C) are made of polyolefin.
(4) The wet non-woven fabric according to any one of (1) to (3), wherein the fiber having a slit (staple fiber A) is made of polyolefin.
(5) The wet non-woven fabric according to any one of (1) to (4), which is characterized by being electretized.
(6) A textile product in which at least a part of the wet nonwoven fabric according to any one of (1) to (5) constitutes.
(7) After wet-making a split-type composite fiber and a binder fiber capable of generating fibers having slits (short fibers A), ultrafine fibers (short fibers B) and irregularly shaped cross-sectional fibers (short fibers C), heat treatment and / The method for producing a wet nonwoven fabric according to (1) to (5), wherein the split-type composite fiber in the nonwoven fabric is divided by a physical impact.
本発明の湿式不織布においては、エレクトレット化濾材として、低圧力損失でありながら、静電気力による高い捕集効率を発揮するものであり、さらに静電気力を失った後も捕集効率の低下幅が小さく、高捕集効率と低圧力損失を両立することができる。 In the wet non-woven fabric of the present invention, as an electretized filter medium, it exhibits high collection efficiency due to electrostatic force while having a low pressure loss, and the decrease in collection efficiency is small even after the electrostatic force is lost. It is possible to achieve both high collection efficiency and low pressure loss.
以下、本発明を望ましい実施形態とともに詳述する。
本発明の湿式不織布は、3種以上の繊維から構成される必要がある。短繊維から構成される湿式不織布は、メルトブロー不織布等の長繊維からなるシートと比較して、シートの均一性に優れ、剛性が高い特徴がある。一般的にフィルター濾材として使用される繊維シート内に粗密差ができてしまうと、空気が密度の粗い部分を優先的に通過するため、捕集対象としているダストも通過してしまい、所望のフィルター機能を果たさないことがある。さらにエレクトレットフィルター濾材の場合には、繊維シート内で電荷分布に偏りができてしまうと、均一に電荷が分布しているものに比べて、シート全体としての静電気力によるダスト捕集力が低下してしまう。このため、フィルター濾材には、粗密差がなるべく小さく、均一性の高い繊維シートが要求される。また、フィルター濾材の剛性が高いほど、大きな通気抵抗に耐え、高風量の処理に対応できるため、高剛性の繊維シートが望まれる。
Hereinafter, the present invention will be described in detail together with desirable embodiments.
The wet non-woven fabric of the present invention needs to be composed of three or more kinds of fibers. Wet non-woven fabrics made of short fibers are characterized by excellent sheet uniformity and high rigidity as compared with sheets made of long fibers such as melt-blown non-woven fabrics. If there is a difference in density in the fiber sheet that is generally used as a filter filter medium, air will preferentially pass through the coarse-density portion, and dust that is the target of collection will also pass through, resulting in a desired filter. It may not function. Furthermore, in the case of an electret filter filter medium, if the charge distribution is biased in the fiber sheet, the dust collection force due to the electrostatic force of the entire sheet is lower than that of the one in which the charge is uniformly distributed. It ends up. Therefore, the filter filter medium is required to have a fiber sheet having as small a difference in coarseness and density as possible and having high uniformity. Further, the higher the rigidity of the filter filter medium, the larger the airflow resistance can be withstood and the higher the air volume can be processed. Therefore, a highly rigid fiber sheet is desired.
湿式不織布の構成繊維が単一の場合、シート目付を一定とすると、構成繊維の繊維径によって相反する捕集効率と圧力損失のバランスが一義的に決定してしまう。そこで、構成繊維を3種以上とすることで、捕集効率と圧力損失のバランスを制御することが可能となる。構成繊維のうち1種類を極細繊維とすることで、湿式不織布が高いレベルの機械的捕集効率を発揮することとなる。但し、構成繊維の繊維径が小さくなるにつれて、機械的捕集効率が高まるものであるが、それに伴い通気抵抗が増大し、高い圧力損失となる。 When the constituent fibers of the wet non-woven fabric are single, if the sheet weight is constant, the balance between the contradictory collection efficiency and the pressure loss is uniquely determined by the fiber diameter of the constituent fibers. Therefore, by using three or more types of constituent fibers, it is possible to control the balance between collection efficiency and pressure loss. By using ultrafine fibers as one of the constituent fibers, the wet non-woven fabric exhibits a high level of mechanical collection efficiency. However, as the fiber diameter of the constituent fibers becomes smaller, the mechanical collection efficiency increases, but the aeration resistance increases accordingly, resulting in a high pressure loss.
そこで、発明者らは、鋭意検討の結果、微細ダスト捕集を担う極細繊維を他の構成繊維で形成される貫通孔(ポア)内に橋掛した状態で混在させた湿式不織布とすることにより、高い機械的捕集効率を発揮するとともに、平均ポアサイズを極端に小さくすることなく、圧力損失が低いレベルとなることを見出した。特に、湿式不織布の配合繊維として、太繊度でありながら、微細なスリットを有することにより、フィルター濾材としての使用に耐えうるシート強度をもたせることに加えて、スリットが非常に微細であるため、混合される極細繊維と同様に、ダスト捕集に寄与し、性能を著しく向上させることを見出したのである。 Therefore, as a result of diligent studies, the inventors have made a wet non-woven fabric in which ultrafine fibers responsible for collecting fine dust are mixed in a state of being bridged in through holes (pores) formed of other constituent fibers. We have found that the pressure loss is at a low level without extremely reducing the average pore size while exhibiting high mechanical collection efficiency. In particular, as a blended fiber of a wet non-woven fabric, it has a high fineness but has fine slits, so that it has a sheet strength that can withstand use as a filter filter medium, and the slits are very fine, so that it is mixed. It has been found that it contributes to dust collection and significantly improves the performance as well as the ultrafine fibers produced.
本発明の湿式不織布は、表面に8箇所以上のスリットを有し、繊維径が5.0~50.0μmの繊維(短繊維A)を含む必要がある。表面に8箇所以上のスリットを有することで、繊維間の空隙を大きくすることができ、シートが嵩高い構造となるため、フィルター濾材として使用した際の通気抵抗の低減につながる。また、スリット凸部の先端が極細繊維と同等サイズであるために、微細なダストの捕集にも寄与する。スリット部は8箇所以上あれば、十分に繊維間の空隙を確保することが可能である。繊維間の空隙確保を推し進める観点から、スリットは16箇所以上であることが好ましい。さらに、捕集性能を向上させるために、微細なスリットの数を増やす観点から、24箇所以上であることがより好ましい。なお、スリット箇所の実質的な上限は、繊維製造用の紡糸口金の加工精度を考慮すると、100箇所程度である。 The wet non-woven fabric of the present invention needs to have eight or more slits on the surface and contain fibers (staple fibers A) having a fiber diameter of 5.0 to 50.0 μm. By having eight or more slits on the surface, the voids between the fibers can be increased, and the sheet has a bulky structure, which leads to a reduction in ventilation resistance when used as a filter filter medium. In addition, since the tip of the convex portion of the slit has the same size as the ultrafine fiber, it also contributes to the collection of fine dust. If there are eight or more slits, it is possible to sufficiently secure gaps between the fibers. From the viewpoint of promoting the securing of voids between fibers, it is preferable that the number of slits is 16 or more. Further, in order to improve the collection performance, it is more preferable to have 24 or more locations from the viewpoint of increasing the number of fine slits. The practical upper limit of the slit locations is about 100 locations in consideration of the processing accuracy of the spinneret for fiber production.
また、短繊維Aの繊維径が5.0~50.0μmであることにより、フィルター濾材として使用する際に十分な強度を付与することができる。合成繊維の湿式抄紙では、一般的に細い繊維であるほど、保水性が高まり、抄紙の均一性が高まる。このため、特に捕集効率を向上させることが可能である。一方、繊維径が小さくなると、シートの空隙率や強度が低下する傾向にある。このため、フィルター濾材としての強度を確保しつつ、フィルター性能の安定化を推し進める観点から、短繊維Aの繊維径は、7.0~40.0μmであることが好ましく、9.0~35.0μmであることがより好ましい。 Further, since the fiber diameter of the staple fiber A is 5.0 to 50.0 μm, sufficient strength can be imparted when used as a filter filter medium. In wet papermaking of synthetic fibers, generally, the finer the fiber, the higher the water retention and the higher the uniformity of the papermaking. Therefore, it is possible to improve the collection efficiency in particular. On the other hand, as the fiber diameter becomes smaller, the porosity and strength of the sheet tend to decrease. Therefore, from the viewpoint of promoting the stabilization of the filter performance while ensuring the strength as the filter filter medium, the fiber diameter of the staple fiber A is preferably 7.0 to 40.0 μm, preferably 9.0 to 35. It is more preferably 0 μm.
本発明の湿式不織布は、繊維径が3.0μm以下の極細繊維(短繊維B)を含むことが必要である。極細繊維の繊維径が3.0μm以下であれば、フィルター濾材として、微細ダストに対し、十分高い機械的捕集効率を発揮する。極細繊維の繊維径が小さいほど、機械的捕集効率が高くなるものの、繊維シート作製時に極細繊維同士が凝集する傾向があり、極細繊維が凝集して存在することで、期待される機械的捕集効率が十分に得られないことがある。このため、極細繊維の凝集を抑制する観点から、極細繊維の繊維径が0.1μm以上であることが好ましい。また、極細繊維の分散性をより向上させ、繊維シートの均一性を高めることで、フィルター濾材として安定した性能を発揮する観点から、0.2~2.0μmであることがより好ましい。さらに、低圧力損失と捕集効率を高度に両立する観点から0.3~1.5μmがさらに好ましい。極細繊維の繊維径が係る範囲であれば、エレクトレットフィルター濾材として使用する場合に高風量での処理に耐えうる低圧力損失性を維持しつつ、帯電時の高捕集効率および除電時にも実用的に優れた機械的捕集効率を発揮する。 The wet non-woven fabric of the present invention needs to contain ultrafine fibers (staples B) having a fiber diameter of 3.0 μm or less. When the fiber diameter of the ultrafine fiber is 3.0 μm or less, it exhibits a sufficiently high mechanical collection efficiency for fine dust as a filter filter medium. The smaller the fiber diameter of the ultrafine fibers, the higher the mechanical collection efficiency. Sufficient collection efficiency may not be obtained. Therefore, from the viewpoint of suppressing the aggregation of the ultrafine fibers, the fiber diameter of the ultrafine fibers is preferably 0.1 μm or more. Further, it is more preferably 0.2 to 2.0 μm from the viewpoint of exhibiting stable performance as a filter filter medium by further improving the dispersibility of the ultrafine fibers and increasing the uniformity of the fiber sheet. Further, 0.3 to 1.5 μm is more preferable from the viewpoint of achieving both low pressure loss and collection efficiency. As long as the fiber diameter of the ultrafine fibers is within the relevant range, it is practical for high collection efficiency during charging and static elimination while maintaining low pressure loss that can withstand high air volume processing when used as an electret filter filter medium. Demonstrates excellent mechanical collection efficiency.
本発明の湿式抄紙不織布を構成する極細繊維(短繊維B)は、異形度が1.1以上の異形断面繊維であることが好ましい。微細ダストの捕集を担う極細繊維はシート中での分散状態が捕集性能に大きく寄与するため、異形断面繊維であることにより、他の混抄繊維との密着を抑制することができ、好適である。湿式不織布の構成繊維同士の密着、凝集を防ぎ、ダスト捕集性能を向上させる観点から、異形度は1.5以上であることがより好ましい。なお、極細繊維の形成精度を考慮すると、短繊維Bの異形度の実質的な上限は5.0である。 The ultrafine fibers (staples B) constituting the wet papermaking nonwoven fabric of the present invention are preferably irregular cross-section fibers having a degree of deformation of 1.1 or more. Since the dispersed state of the ultrafine fibers, which are responsible for collecting fine dust, greatly contributes to the collection performance, the irregular cross-section fibers can suppress the adhesion with other mixed fiber, which is suitable. be. The degree of deformation is more preferably 1.5 or more from the viewpoint of preventing the constituent fibers of the wet non-woven fabric from adhering to each other and agglomerating with each other and improving the dust collecting performance. Considering the formation accuracy of the ultrafine fibers, the practical upper limit of the degree of deformation of the staple fibers B is 5.0.
本発明の湿式不織布は、繊維径が短繊維Bの2倍以上で、異形度が1.2以上の異形断面繊維(短繊維C)を含むことが必要である。極細繊維とそれよりも太い基材繊維を配合する際に、極細繊維同士の密着や凝集が起きたり、基材繊維に極細繊維が絡みつくことがあり、得られる湿式不織布が地合不良となることがある。短繊維Cは、湿式不織布を構成する短繊維Aと極細繊維である短繊維Bとの中間のサイズであるために、白水攪拌時に短繊維Aと短繊維Bの間に入り込んで空隙を確保し、極細繊維である短繊維B同士の密着や凝集を抑制する。このため、抄紙時の配合繊維が均一に分散し、地合良好な湿式不織布が得られ、フィルター性能の安定化につながる。湿式不織布中の配合繊維を良分散させ、高捕集性能を維持しつつ、低圧損化を推し進める観点から、異形度は1.5以上であることが好ましい。なお、実施可能な異形度の上限は10.0程度である。 The wet non-woven fabric of the present invention needs to contain deformed cross-sectional fibers (staples C) having a fiber diameter of 2 times or more that of the short fibers B and a degree of deformation of 1.2 or more. When the ultrafine fibers and the thicker base fibers are blended, the ultrafine fibers may adhere to each other or aggregate, or the ultrafine fibers may be entangled with the base fibers, resulting in poor formation of the obtained wet non-woven fabric. There is. Since the short fibers C have an intermediate size between the short fibers A constituting the wet nonwoven fabric and the short fibers B which are ultrafine fibers, they enter between the short fibers A and the short fibers B during stirring with white water to secure voids. , Suppresses adhesion and aggregation of short fibers B, which are ultrafine fibers. Therefore, the compounded fibers at the time of papermaking are uniformly dispersed, a wet non-woven fabric having a good texture can be obtained, and the filter performance is stabilized. From the viewpoint of promoting low-pressure loss while maintaining high collection performance by well dispersing the compounded fibers in the wet non-woven fabric, the degree of deformation is preferably 1.5 or more. The upper limit of the degree of deformation that can be implemented is about 10.0.
短繊維Cの繊維径は短繊維Bより大きいほど、短繊維Aと短繊維Bとの空間を広げる効果が高まって、配合繊維の分散状態を良化する傾向にあり、こうした観点から、短繊維Cの繊維径は、短繊維Bの3倍以上であることが好ましく、5倍以上であることがより好ましい。 As the fiber diameter of the short fiber C is larger than that of the short fiber B, the effect of widening the space between the short fiber A and the short fiber B is enhanced, and the dispersed state of the compounded fiber tends to be improved. The fiber diameter of C is preferably 3 times or more, more preferably 5 times or more that of the short fiber B.
しかし、短繊維Cは、短繊維Aの繊維径と同等あるいはそれ以上であると、基材繊維として振る舞うことになり、配合繊維の分散を良化する効果は得られなくなる。このため、短繊維Aと短繊維Bの中間的なサイズをとることが好ましく、配合繊維の良分散化効果を発揮させる観点から繊維径の実質的な上限は20.0μmである。 However, if the staple fiber C is equal to or larger than the fiber diameter of the staple fiber A, it behaves as a base fiber, and the effect of improving the dispersion of the compounded fiber cannot be obtained. Therefore, it is preferable to take an intermediate size between the short fibers A and the short fibers B, and the practical upper limit of the fiber diameter is 20.0 μm from the viewpoint of exerting a good dispersion effect of the compounded fibers.
また、異形度が2.0以上の異形断面繊維であることで、極細繊維との密着を抑制する効果もあり、配合繊維の分散性向上につながる。断面の異形度が係る範囲にあることで、丸断面繊維と混合した場合と極細繊維の分散状態が明確に異なることとなり、ポアサイズ分布に差異が生じ、粗大なポアと微細なポアの分散状態がより良好なものとなる。なお、本発明において達成可能な異形度の上限は10.0程度である。ここでいう異形度とは、次のように求めるものである。短繊維の断面を2次元的に撮影し、その画像から、短繊維断面に外接する真円の径を外接円径とし、さらに、内接する真円の径を内接円径として、異形度=外接円径÷内接円径から、小数点以下2桁目を四捨五入し、小数点以下1桁目まで求めたものを異形度とした。ここで言う外接円とは、図3の8の部分であり、内接円とは図3の10の部分を示している。この異形度を無作為に抽出した10本の繊維について測定し、それぞれの画像での測定値の単純な数平均値を求め、異形度とした。
Further, since the deformed cross-section fiber has a degree of deformation of 2.0 or more, it also has an effect of suppressing adhesion to the ultrafine fiber, which leads to improvement of the dispersibility of the compounded fiber. When the degree of deformation of the cross section is within the relevant range, the dispersed state of the ultrafine fibers is clearly different from that when mixed with the round cross-section fibers, and the pore size distribution is different. It will be better. The upper limit of the degree of deformation that can be achieved in the present invention is about 10.0. The degree of deformation referred to here is obtained as follows. The cross section of the short fiber is photographed two-dimensionally, and from the image, the diameter of the perfect circle circumscribing the short fiber cross section is defined as the circumscribed circle diameter, and the diameter of the inscribed perfect circle is defined as the inscribed circle diameter. From the circumscribed circle diameter ÷ inscribed circle diameter, the second digit after the decimal point was rounded off, and the one obtained up to the first digit after the decimal point was taken as the degree of irregularity. The circumscribed circle referred to here is the
本発明の湿式不織布は、後述するバインダー繊維、マイクロファイバーおよび太繊度繊維等も含めて、構成短繊維に用いられるポリマーとしては、一般的な合成繊維の製造に用いられるものであれば、特に限定されるものではないが、ポリエステル、ポリアミド、ポリオレフィン、アクリル等が挙げられる。 The wet non-woven fabric of the present invention is particularly limited as long as it is used for producing general synthetic fibers as a polymer used for constituent short fibers, including binder fibers, microfibers, high-fineness fibers and the like, which will be described later. Examples thereof include polyester, polyamide, polyolefin, acrylic and the like.
本発明の湿式不織布は、エレクトレットフィルター濾材として利用する観点から、シート中でダスト捕集を主に担う、極細繊維(短繊維B)と異形断面繊維(短繊維C)がポリプロピレン、ポリエチレン、ポリスチレン、ポリテトラフルオロエチレン等のポリオレフィンからなることが好ましい。これらの繊維を帯電効果の高い、ポリオレフィンとすることで、微細ダストに対する高い捕集効率を発揮することが可能となる。 From the viewpoint of using the wet non-woven fabric of the present invention as an electret filter filter medium, the ultrafine fibers (short fibers B) and the irregular cross-sectional fibers (short fibers C), which are mainly responsible for collecting dust in the sheet, are polypropylene, polyethylene, polystyrene, and the like. It is preferably made of a polyolefin such as polytetrafluoroethylene. By using these fibers as polyolefin, which has a high charging effect, it is possible to exhibit high collection efficiency for fine dust.
本発明の湿式不織布の構成繊維であるスリットを有する繊維(短繊維A)において、構成樹脂は特に限定されるものではないが、シートの帯電効果を高める観点から、ポリオレフィンで構成されることが好ましい。 The constituent resin of the fiber having slits (staple fiber A), which is the constituent fiber of the wet nonwoven fabric of the present invention, is not particularly limited, but is preferably composed of polyolefin from the viewpoint of enhancing the charging effect of the sheet. ..
本発明の湿式不織布の平均ポアサイズは、特に限定されるものではないが、5.0~40.0μmであれば、通常のエアフィルター濾材と同等程度となるため、圧力損失が実用的な範囲のものとなり、好ましい。平均ポアサイズが5.0μm以上であれば、捕集効率と通気抵抗が良好であり、かつエアフィルター濾材として圧力損失が高くなり過ぎず良好である。一方、平均ポアサイズが50.0μm以下であると、通気抵抗が良好で圧力損失も少なく、かつダストの目抜けが少なく、捕集効率が良好である。ダスト捕集効率を高いレベルで維持しつつ、高風量での処理に対応できるよう圧力損失を抑制する観点から該湿式不織布の平均ポアサイズは10.0~35.0μmがより好ましく、さらにエレクトレット化後の低圧力損失と高捕集効率を両立する観点から12.0~25.0μmがさらに好ましい。 The average pore size of the wet non-woven fabric of the present invention is not particularly limited, but if it is 5.0 to 40.0 μm, it is about the same as that of a normal air filter filter medium, so that the pressure loss is within a practical range. It becomes a thing and is preferable. When the average pore size is 5.0 μm or more, the collection efficiency and the ventilation resistance are good, and the pressure loss does not become too high as an air filter filter medium, which is good. On the other hand, when the average pore size is 50.0 μm or less, the ventilation resistance is good, the pressure loss is small, the dust is less likely to pass through, and the collection efficiency is good. The average pore size of the wet non-woven fabric is more preferably 10.0 to 35.0 μm from the viewpoint of suppressing pressure loss so that it can be treated at a high air volume while maintaining the dust collection efficiency at a high level, and further after electretization. From the viewpoint of achieving both low pressure loss and high collection efficiency, 12.0 to 25.0 μm is more preferable.
なお、本発明における平均ポアサイズとは、湿式不織布を構成する短繊維によって形成される貫通孔の平均サイズのことであり、バブルポイント法によって算出した値である。バブルポイント法としては、例えば、多孔質材料自動細孔測定システムPerm-Porometer(PMI社製)を用いることができる。このPerm-Porometerによる測定では、湿式不織布を表面張力値が既知の液体で浸漬させ、該シートの上側から気体の圧力を増加させながら供給し、この圧力と湿式不織布表面の液体表面張力の関係からポアサイズを測定する。 The average pore size in the present invention is the average size of the through holes formed by the short fibers constituting the wet nonwoven fabric, and is a value calculated by the bubble point method. As the bubble point method, for example, a porous material automatic pore measurement system Perm-Polymeter (manufactured by PMI) can be used. In the measurement by this Perm-Polymeter, the wet non-woven fabric is dipped in a liquid having a known surface tension value and supplied while increasing the gas pressure from the upper side of the sheet, and the relationship between this pressure and the liquid surface tension on the surface of the wet non-woven fabric Measure the pore size.
本発明の湿式不織布のポアサイズ分布は、特に限定されるものではないが、ポアサイズ15.0μm以上の分布頻度が10.0%以上であることが好ましい。 The pore size distribution of the wet nonwoven fabric of the present invention is not particularly limited, but it is preferable that the distribution frequency of the pore size of 15.0 μm or more is 10.0% or more.
本発明は、エアフィルター濾材の捕集性能の向上を目的としているが、ダストの物理的な捕集性能を高めるために、単に繊維シートのポアサイズを微細化するだけでは、圧損上昇を招き、フィルター寿命が短くなるといった問題や空気清浄機の消費電力の増大につながり、低圧損が要求されるエアフィルター濾材には適さないものとなる。発明者らは湿式不織布のポアサイズ分布に着目し、鋭意検討した結果、ポアサイズ15.0μm以上の分布頻度が係る範囲にあることで、湿式不織布が十分な通気性を有し、エアフィルター濾材として適用する際に、圧損を実用上十分に低いレベルまで抑えることが可能となることを見出した。 The present invention aims to improve the collection performance of the air filter filter medium, but in order to improve the physical collection performance of dust, simply reducing the pore size of the fiber sheet causes an increase in pressure loss and the filter. This leads to problems such as shortened life and increased power consumption of the air purifier, making it unsuitable for air filter filter media that require low pressure loss. The inventors focused on the pore size distribution of the wet non-woven fabric, and as a result of diligent studies, the wet non-woven fabric has sufficient air permeability and is applicable as an air filter filter medium because the distribution frequency is within the range of the pore size of 15.0 μm or more. At that time, it was found that the pressure loss can be suppressed to a level sufficiently low for practical use.
濾材として低圧損を推し進める観点から、湿式不織布中にサイズの大きいポアが多く存在することが好ましく、ポアサイズ15.0μm以上の分布頻度は15.0%以上であることがより好ましく、20.0%以上であることがさらに好ましい。ただし、粗大なポアだけでは、物理的なダスト捕集性能が低下するため、濾材としての圧力損失を低減しつつ、除電時のダスト捕集性能を実用上損なわない観点から、ポアサイズ15.0μm以上の分布頻度の実質的な上限は98.0%である。
なお、本発明の湿式不織布におけるポアサイズ頻度分布は、前述した平均ポアサイズと同様にバブルポイント法によりPerm-Porometerにて測定した値である。
From the viewpoint of promoting low pressure loss as a filter medium, it is preferable that many large pores are present in the wet nonwoven fabric, and the distribution frequency of pore size 15.0 μm or more is more preferably 15.0% or more, 20.0%. The above is more preferable. However, since the physical dust collection performance deteriorates only with a coarse pore, the pore size is 15.0 μm or more from the viewpoint of reducing the pressure loss as a filter medium and not practically impairing the dust collection performance during static elimination. The practical upper limit of the distribution frequency of is 98.0%.
The pore size frequency distribution in the wet nonwoven fabric of the present invention is a value measured by a Perm-Polymeter by the bubble point method in the same manner as the above-mentioned average pore size.
本発明の湿式不織布を構成する各短繊維の繊維重量における配合率は、特に限定されるものではないが、
スリットを有する短繊維Aは湿式不織布の強度および厚みに影響し、嵩高な構造を設計する観点からは、50重量%以上であることが好ましい。なお、微細ダストの捕集効率低下を防ぐ観点から、実質的な上限は85重量%である。また、極細繊維である短繊維Bは、ダスト捕集を主に担うため、フィルター濾材としての捕集性能を発揮させる観点から、短繊維Bの配合率は5重量%以上であることが好ましい。より多くの微細ダストを捕集する観点から10重量%以上であることがより好ましい。一方、極細繊維量の増加に伴う圧損上昇を防ぐ観点から、その配合率の実質的な上限は30重量%程度である。また、異形断面繊維である短繊維Cは、湿式不織布の均一性向上効果を有しており、フィルター濾材としての性能を安定化させる観点から、短繊維Cの配合率は5重量%以上であることが好ましい。よりシートの均一性を高め、捕集性能と圧損のバランスを良好に保つ観点から10重量%以上であることがより好ましい。一方、湿式不織布の高密度化による圧損上昇を防ぐ観点から、短繊維Cの配合率の実質的な上限は30重量%程度である。
The blending ratio of each staple fiber constituting the wet nonwoven fabric of the present invention in terms of fiber weight is not particularly limited, but is not limited.
The short fibers A having slits affect the strength and thickness of the wet nonwoven fabric, and are preferably 50% by weight or more from the viewpoint of designing a bulky structure. From the viewpoint of preventing a decrease in the collection efficiency of fine dust, the practical upper limit is 85% by weight. Further, since the short fibers B, which are ultrafine fibers, are mainly responsible for collecting dust, the blending ratio of the short fibers B is preferably 5% by weight or more from the viewpoint of exhibiting the collection performance as a filter filter medium. From the viewpoint of collecting more fine dust, it is more preferably 10% by weight or more. On the other hand, from the viewpoint of preventing an increase in pressure loss due to an increase in the amount of ultrafine fibers, the practical upper limit of the blending ratio is about 30% by weight. Further, the short fiber C, which is a modified cross-sectional fiber, has an effect of improving the uniformity of the wet nonwoven fabric, and the blending ratio of the short fiber C is 5% by weight or more from the viewpoint of stabilizing the performance as a filter filter medium. Is preferable. It is more preferably 10% by weight or more from the viewpoint of further improving the uniformity of the sheet and maintaining a good balance between collection performance and pressure loss. On the other hand, from the viewpoint of preventing an increase in pressure loss due to the high density of the wet nonwoven fabric, the practical upper limit of the blending ratio of the staple fibers C is about 30% by weight.
本発明の湿式不織布において、シート強度の向上や構成繊維の脱落抑制を目的として、必要に応じ、バインダー繊維を混合してもよい。上述した配合繊維のみでは、接着点が少なく、シート強度が不十分となる場合があるため、熱接着性のバインダー繊維を混合することにより、シート強度を向上させることが可能である。ただし、バインダー繊維の接着点が増大することで、融着後にシート密度が高まり、圧力損失が著しく高まる恐れがあるため、バインダー繊維の混合比率は、30重量%以下であることが好ましく、通気性を確保する観点から、20重量%以下がより好ましい。なお、シート中の配合繊維同士での接着性を確保する観点から、バインダー繊維の配合率の実質的な下限は、5重量%である。 In the wet non-woven fabric of the present invention, binder fibers may be mixed, if necessary, for the purpose of improving the sheet strength and suppressing the falling off of the constituent fibers. Since the above-mentioned compounded fibers alone have few adhesive points and the sheet strength may be insufficient, it is possible to improve the sheet strength by mixing the heat-adhesive binder fibers. However, since the number of adhesive points of the binder fibers increases, the sheet density may increase after fusion and the pressure loss may increase significantly. Therefore, the mixing ratio of the binder fibers is preferably 30% by weight or less, and the air permeability is preferable. 20% by weight or less is more preferable from the viewpoint of ensuring. From the viewpoint of ensuring the adhesiveness between the blended fibers in the sheet, the substantially lower limit of the blending ratio of the binder fibers is 5% by weight.
また、バインダー繊維の熱特性は特に限定されるものではないが、融点150℃以下のポリマーを鞘に配した芯鞘複合繊維であることが好ましい。湿式不織布を形成後、カレンダー等の熱処理を施すことで、バインダー繊維表面の鞘部分が溶融し、冷却後に熱接着することで、繊維シートの剛性を高めることができるため、フィルター濾材としての耐久性向上や高風量下でより多くの空気を清浄化することが可能となる。また、繊維シートの熱収縮を抑制するために、より低温の熱処理によって熱接着させる観点から、バインダー繊維の鞘成分に使用するポリマーの融点は130℃以下であることがより好ましい。熱処理時の湿式不織布の収縮を抑制することにより、湿式不織布の収縮に伴う平均ポアサイズの縮小幅を抑制することとなり、フィルター濾材として使用する際の低圧力損失化につながることとなる。なお、バインダー繊維の芯成分の融点が鞘成分の融点よりも高温であり、その融点差が20℃以上あることで、バインダー繊維表面の鞘成分が十分に溶融し、かつ芯成分の配向の低下幅が抑えられるため、十分な熱接着性と高い剛性を得ることも可能である。 The thermal properties of the binder fiber are not particularly limited, but a core-sheath composite fiber in which a polymer having a melting point of 150 ° C. or lower is arranged in a sheath is preferable. After forming the wet non-woven fabric, heat treatment such as a calendar melts the sheath part on the surface of the binder fiber, and after cooling, heat adhesion can increase the rigidity of the fiber sheet, so that it is durable as a filter filter medium. It is possible to purify more air under improved and high air volume. Further, from the viewpoint of heat-bonding by heat treatment at a lower temperature in order to suppress heat shrinkage of the fiber sheet, the melting point of the polymer used for the sheath component of the binder fiber is more preferably 130 ° C. or lower. By suppressing the shrinkage of the wet nonwoven fabric during the heat treatment, the reduction width of the average pore size due to the shrinkage of the wet nonwoven fabric is suppressed, which leads to a reduction in pressure loss when used as a filter filter medium. The melting point of the core component of the binder fiber is higher than the melting point of the sheath component, and the melting point difference is 20 ° C. or higher, so that the sheath component on the surface of the binder fiber is sufficiently melted and the orientation of the core component is lowered. Since the width is suppressed, it is possible to obtain sufficient thermal adhesion and high rigidity.
本発明の湿式不織布には、適宜マイクロファイバーが混抄されていてもよい。このマイクロファイバーとは、繊維径が1.0~5.0μmの範囲にある繊維を指す。マイクロファイバーを配合することで、抄紙工程においては、保水性が向上し、白水漉き上げ時の抄紙性が向上する。また、シートへの効果としては、ポアサイズが小径化し、良好に分散した極細繊維は、ポアが粗大な場合、シートから脱落する場合があるが、濾材として使用する際に、微細ダストの捕集を担う極細繊維の脱落を抑制し、ポア中に固定されることとなる。このため、繊維シート中での極細繊維によるダスト捕集能力が発揮され、フィルター濾材として高い捕集効率を発揮するものとなる。一方、マイクロファイバーの配合量を増加させると、湿式不織布の圧力損失が上昇する傾向にあるため、該湿式不織布の圧力損失上昇を抑制する観点から、マイクロファイバーの配合率は30重量%以下であることが好ましい。高風量での使用に耐えうるよう、より低圧力損失とする観点から20重量%以下がより好ましい。なお、抄紙性向上効果を得ようとする場合、マイクロファイバー配合率の下限は5重量%以下である。 Microfibers may be appropriately mixed in the wet non-woven fabric of the present invention. The microfiber refers to a fiber having a fiber diameter in the range of 1.0 to 5.0 μm. By blending the microfiber, the water retention is improved in the papermaking process, and the papermaking property at the time of making white water is improved. In addition, as an effect on the sheet, the pore size is reduced and the finely dispersed ultrafine fibers may fall off from the sheet when the pores are coarse, but when used as a filter medium, it collects fine dust. It suppresses the falling off of the ultrafine fibers that carry it, and is fixed in the pores. Therefore, the dust collecting ability by the ultrafine fibers in the fiber sheet is exhibited, and the high collecting efficiency as a filter filter medium is exhibited. On the other hand, when the blending amount of the microfiber is increased, the pressure loss of the wet nonwoven fabric tends to increase. Therefore, from the viewpoint of suppressing the increase in the pressure loss of the wet nonwoven fabric, the blending ratio of the microfiber is 30% by weight or less. Is preferable. 20% by weight or less is more preferable from the viewpoint of lower pressure loss so that it can withstand use at a high air volume. When trying to obtain the papermaking property improving effect, the lower limit of the microfiber blending ratio is 5% by weight or less.
本発明の湿式不織布には、適宜骨材として太繊度繊維を配合してもよい。特に、エアフィルター濾材として適用する場合に、シート強度を高めたり、湿式不織布を嵩高な構造として、低圧損化を図る観点から、太繊度繊維を配合することが好適である。特に嵩高さやクッション性を持たせる観点からは、クリンパー等で捲縮が付与された太繊度繊維を配合してもよい。ただし、あまりに太い繊維を配合すると、抄紙性が悪化するため、ポアサイズの極端な増大や地合不良を避け、フィルター性能を安定させつつ、シート強度の向上や低圧損化を図る観点から、太繊度繊維の繊維径は15.0~100.0μmであることが好ましい。
また、エレクトレット加工を施す場合、湿式不織布の構成繊維をより帯電させるという観点から、添加剤を加えてもよく、係る添加剤としては、ヒンダードアミン系添加剤またはトリアジン系添加物を少なくとも1種配合することが好ましい。
The wet non-woven fabric of the present invention may be appropriately blended with thick fiber as an aggregate. In particular, when applied as an air filter filter medium, it is preferable to blend thick fiber from the viewpoint of increasing the sheet strength or making the wet non-woven fabric a bulky structure to reduce low pressure loss. In particular, from the viewpoint of providing bulkiness and cushioning property, a thick fiber having crimped by a crimper or the like may be blended. However, if too thick fibers are blended, the papermaking property will deteriorate, so from the viewpoint of avoiding an extreme increase in pore size and poor formation, stabilizing the filter performance, improving the sheet strength and reducing the low pressure loss, the fineness The fiber diameter of the fiber is preferably 15.0 to 100.0 μm.
Further, in the case of performing electret processing, an additive may be added from the viewpoint of further charging the constituent fibers of the wet nonwoven fabric, and at least one hindered amine-based additive or triazine-based additive is blended as the additive. Is preferable.
ヒンダードアミン系化合物としては、ポリ[(6-(1,1,3,3-テトラメチルブチル)イミノ-1,3,5-トリアジン-2,4-ジイル)((2,2,6,6-テトラメチル-4-ピペリジル)イミノ)ヘキサメチレン((2,2,6,6-テトラメチル-4-ピペリジル)イミノ)](BASF製、キマソーブ(登録商標)944LD)、コハク酸ジメチル-1-(2-ヒドロキシエチル)-4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン重縮合物(BASF製、チヌビン(登録商標)622LD)、2-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-2-n-ブチルマロン酸ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)(BASF製、チヌビン(登録商標)144)、ジブチルアミン・1,3,5-トリアジン・N,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジル-1,6-ヘキサメチレンジアミン・N-(2,2,6,6-テトラメチル-4-ピペリジル)ブチルアミンの重縮合物(BASF製、キマソーブ(登録商標)2020 FDL)などが挙げられるが、これらに限定されない。
Examples of the hindered amine compound include poly [(6- (1,1,3,3-tetramethylbutyl) imino-1,3,5-triazine-2,4-diyl) ((2,2,6,6-). Tetramethyl-4-piperidyl) imino) Hexamethylene ((2,2,6,6-tetramethyl-4-piperidyl) imino)] (BASF, Kimasorb® 944LD), dimethyl-1- (succinate) 2-Hydroxyethyl) -4-hydroxy-2,2,6,6-tetramethylpiperidine polycondensate (BASF, tinubin® 622LD), 2- (3,5-di-t-butyl-4) -Hydroxybenzyl) -2-n-Butylmalonate bis (1,2,2,6,6-pentamethyl-4-piperidyl) (BASF, Tinubin® 144),
また、トリアジン系添加剤としては、前述のポリ[(6-(1,1,3,3-テトラメチルブチル)イミノ-1,3,5-トリアジン-2,4-ジイル)((2,2,6,6-テトラメチル-4-ピペリジル)イミノ)ヘキサメチレン((2,2,6,6-テトラメチル-4-ピペリジル)イミノ)](BASF製、キマソーブ(登録商標)944LD)、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-((ヘキシル)オキシ)-フェノール(BASF製、チヌビン(登録商標)1577FF)などが挙げられるが、これらに限定されない。これらのなかでも特にヒンダードアミン系化合物が好ましい。
ヒンダードアミン系化合物又はトリアジン系化合物の含有量は、特に限定されないが、
本発明の湿式不織布を構成する各短繊維の重量に対して0.5~5.0重量%の範囲にすることが好ましく、0.7~3.0重量%の範囲にすることがより好ましい。含有量が0.5重量%以上であれば、高レベルのエレクトレット性能が得られるため、好ましい。一方、含有量が5.0重量%以下であれば、製糸性の低下がなく、コストへの影響も小さいため好ましい。
Examples of the triazine-based additive include the above-mentioned poly [(6- (1,1,3,3-tetramethylbutyl) imino-1,3,5-triazine-2,4-diyl) ((2,2). , 6,6-Tetramethyl-4-piperidyl) imino) Hexamethylene ((2,2,6,6-tetramethyl-4-piperidyl) imino)] (BASF, Kimasorb® 944LD), 2- (4,6-diphenyl-1,3,5-triazine-2-yl) -5-((hexyl) oxy) -phenol (manufactured by BASF, tinubin (registered trademark) 1577FF) and the like can be mentioned, but are limited thereto. Not done. Among these, hindered amine compounds are particularly preferable.
The content of the hindered amine compound or the triazine compound is not particularly limited, but is not limited.
It is preferably in the range of 0.5 to 5.0% by weight, more preferably in the range of 0.7 to 3.0% by weight, based on the weight of each staple fiber constituting the wet nonwoven fabric of the present invention. .. When the content is 0.5% by weight or more, a high level of electret performance can be obtained, which is preferable. On the other hand, when the content is 5.0% by weight or less, there is no deterioration in the silk-reeling property and the influence on the cost is small, which is preferable.
本発明の湿式不織布は、エレクトレット化されていることが好ましい。エレクトレット加工することで繊維シートが帯電し、静電気力によるダスト捕集が可能となり、該シートの機械的捕集効率を上回る高捕集効率を発揮することとなる。該シートに対するエレクトレット加工の方法については、特に限定されないが、機械的な摩擦を利用した摩擦帯電法、電極を利用したコロナ放電によるコロナチャージ法、繊維シートを純水に浸漬した後、真空引きや超音波処理を施すことで帯電させるハイドロチャージ法などが好適に用いられる。 The wet non-woven fabric of the present invention is preferably electretized. By electret processing, the fiber sheet is charged, dust can be collected by electrostatic force, and high collection efficiency exceeding the mechanical collection efficiency of the sheet can be exhibited. The method of electret processing on the sheet is not particularly limited, but is limited to a triboelectric charging method using mechanical friction, a corona charging method using corona discharge using electrodes, and vacuuming after immersing the fiber sheet in pure water. A hydrocharging method or the like in which charging is performed by applying ultrasonic treatment is preferably used.
本発明の湿式不織布の作製において、繊維の配合方法は特に限定されないが、分割型複合繊維を湿式抄紙に用いることが好適である。分割型複合繊維は、その断面構成を例えば図3のように構成することで、本発明の不織布を構成する短繊維A、短繊維Bおよび短繊維Cを分割処理によって、発生させることが可能である。この分割型複合繊維の分割処理には、白水攪拌での物理衝撃や、シート乾燥時の熱処理およびウォータージェット等による物理衝撃を利用することが可能である。中でも湿式抄紙後に熱処理や物理衝撃を加えて分割型複合繊維を分割する手法が好ましい。湿式抄紙法において、繊維径がナノオーダーの極細繊維を使用する場合、保水性が高くなることから、シートを形成する際に水が抜けにくくなり、シート上に粗な部分が存在すると、この部分から集中して水が抜けることとなり、濾材として使用する際に欠点となる粗大な孔(ピンホール)が発生する問題がある。分割型複合繊維を湿式抄紙する場合には、汎用合成繊維と同様に抄紙性が良好であり、シート化後に該複合繊維に分割処理を施すことで、ナノメートルオーダーの極細繊維がシート内に発生し、目的とする湿式不織布を作製することが可能である。 In the production of the wet nonwoven fabric of the present invention, the method of blending the fibers is not particularly limited, but it is preferable to use the split type composite fiber for the wet papermaking. By configuring the cross-sectional structure of the split type composite fiber as shown in FIG. 3, for example, it is possible to generate the short fibers A, the short fibers B and the short fibers C constituting the nonwoven fabric of the present invention by the split treatment. be. For the division treatment of the split type composite fiber, it is possible to utilize a physical impact by stirring with white water, a heat treatment during sheet drying, and a physical impact by a water jet or the like. Of these, a method of splitting the split type composite fiber by applying heat treatment or physical impact after wet papermaking is preferable. In the wet papermaking method, when ultrafine fibers having a fiber diameter of nano-order are used, water retention is high, so that it is difficult for water to escape when forming the sheet, and if there is a rough portion on the sheet, this portion. There is a problem that coarse holes (pinholes), which are a drawback when used as a filter medium, are generated because water is concentrated and drained from the fiber. When the split type composite fiber is wet-made, the papermaking property is as good as that of the general-purpose synthetic fiber, and by subjecting the composite fiber to the split treatment after forming the sheet, nanometer-order ultrafine fibers are generated in the sheet. However, it is possible to produce the desired wet non-woven fabric.
さらに、この分割型複合繊維を使用すれば、海島型複合繊維を利用して極細繊維を発生させる場合に必要なアルカリによる脱海工程が不要であり、工程の簡略化が可能である。特に極細繊維を含有した湿式不織布をエレクトレット濾材として使用する場合には、帯電加工の際に表面の清浄性が重要となる。海島型複合繊維を利用した湿式抄紙では、脱海工程で分解したポリマーの残渣が十分にとりきれず、帯電加工に悪影響を及ぼす可能性もあり、脱海工程を省略できる分割型複合繊維の使用が望ましい。 Further, if this split type composite fiber is used, the sea removal step by alkali, which is necessary when the sea island type composite fiber is used to generate ultrafine fibers, is unnecessary, and the step can be simplified. In particular, when a wet non-woven fabric containing ultrafine fibers is used as an electret filter medium, surface cleanliness is important during the charging process. In wet papermaking using sea-island type composite fibers, the residue of the polymer decomposed in the sea-removing process cannot be sufficiently removed, which may adversely affect the charging process. desirable.
本発明の湿式不織布の製造方法は特に限定されるものではないが、以下に製造方法の一例を述べる。図2に示す断面において、スリットを有する領域A(5)にポリエステルを配し、後に剥離分割する部分である領域B(6)およびC(7)に、帯電を促進するヒンダードアミンまたはトリアジン系化合物を添加したポリオレフィンポリマーを配した分割型複合繊維および鞘成分が低融点ポリマーからなる熱融着性の芯鞘複合繊維(バインダー繊維)等の短繊維を水中に投入し、離解機で攪拌して均一になるように分散させて白水とする。この仕込み工程では、繊維仕込み量や白水量、攪拌時間等により分散性を調整することが可能であり、できるだけ短繊維が白水中で均一に分散している状態が好ましい。また、水への分散性を向上させるために分散剤を添加してもよいが、湿式不織布に後加工を施す場合に、その加工性に影響が出ないよう、その添加量は必要最小限にとどめることが好ましい。また、白水を構成する短繊維として、さらに繊維径1.0~5.0μmのマイクロファイバーを混合してもよい。後述する抄紙工程では一般的に、保水性が低い繊維で調製した白水は、シート化する際に水が早く抜けてしまい、繊維が凝集した部分ができ、ムラの多いシートとなる。マイクロファイバーを混合することで保水性が向上するため、シート化する際に白水中の繊維が良好に分散した状態を保つことができ、均一性の高い湿式不織布が得られる。 The method for producing the wet nonwoven fabric of the present invention is not particularly limited, but an example of the production method will be described below. In the cross section shown in FIG. 2, polyester is arranged in the region A (5) having a slit, and the hindered amine or triazine-based compound that promotes charging is placed in the regions B (6) and C (7), which are the portions to be separated and divided later. Short fibers such as split-type composite fibers with the added polyolefin polymer and heat-sealing core-sheath composite fibers (binder fibers) whose sheath component is a low-melting-off polymer are put into water and stirred uniformly with a disintegrator. Disperse to make white water. In this charging step, the dispersibility can be adjusted by adjusting the amount of fiber charged, the amount of white water, the stirring time, etc., and it is preferable that the short fibers are uniformly dispersed in white water as much as possible. Further, a dispersant may be added to improve the dispersibility in water, but the amount of the dispersant added should be minimized so as not to affect the processability when the wet non-woven fabric is post-processed. It is preferable to keep it. Further, as the short fibers constituting the white water, microfibers having a fiber diameter of 1.0 to 5.0 μm may be further mixed. In the papermaking process described later, in general, white water prepared with fibers having low water retention is quickly drained when it is formed into a sheet, and a portion where the fibers are aggregated is formed, resulting in a sheet with many unevenness. Since the water retention is improved by mixing the microfibers, the fibers in the white water can be kept in a well-dispersed state at the time of forming into a sheet, and a highly uniform wet non-woven fabric can be obtained.
上記で調製した白水を一定濃度に希釈して調整し、傾斜ワイヤー、円網上等で脱水して、シートを形成する。抄紙に使用する装置としては、円網抄紙機、長網抄紙機、傾斜短網抄紙機あるいはこれらを組み合わせた抄紙機等が挙げられる。抄紙工程では、抄紙速度や繊維量、白水量を調整することで均一なシートを作製することができる。また、シートの形成性の観点から、構成繊維の繊維長は30.0mm以下であることが好ましい。係る範囲であれば、フィルター濾材として実用的な均一性をもった湿式不織布が形成できる。繊維長が30.0mmを超えると、白水調製時に繊維同士が強固に絡み合い、繊維塊を形成してしまい、均一なシートにすることが困難となる傾向がある。 The white water prepared above is diluted to a certain concentration and adjusted, and dehydrated on an inclined wire, a circular net, or the like to form a sheet. Examples of the device used for paper making include a circular net paper machine, a long net paper machine, an inclined short net paper machine, and a paper machine combining these. In the papermaking process, a uniform sheet can be produced by adjusting the papermaking speed, the amount of fibers, and the amount of white water. Further, from the viewpoint of sheet formability, the fiber length of the constituent fibers is preferably 30.0 mm or less. Within this range, a wet non-woven fabric having practical uniformity as a filter filter medium can be formed. If the fiber length exceeds 30.0 mm, the fibers are strongly entangled with each other during the preparation of white water and form fiber lumps, which tends to make it difficult to obtain a uniform sheet.
次いで、湿式抄紙で形成したシートは、水分を除去するために乾燥工程に通す。乾燥方式としては、シートの乾燥とバインダー繊維の熱接着を同時に実施できる観点から、熱風通気(エアスルー)を利用する方法や熱カレンダーロールに接触させる方法が好ましい。
エレクトレットフィルター用濾材として使用する場合には、該湿式不織布を上記した方法でエレクトレット加工することが好ましい。繊維シート内に電荷を持つ物質が内在していると、エレクトレット加工による極細繊維の帯電が妨害され、ダスト捕集するのに十分な静電気力が得られないこととなる。
The sheet formed by wet papermaking is then passed through a drying step to remove moisture. As the drying method, a method using hot air ventilation (air through) or a method of contacting with a thermal calendar roll is preferable from the viewpoint that the sheet can be dried and the binder fibers can be thermally bonded at the same time.
When used as a filter medium for an electret filter, it is preferable to electret-process the wet non-woven fabric by the above-mentioned method. If a charged substance is present in the fiber sheet, the charging of the ultrafine fibers by the electret processing is hindered, and sufficient electrostatic force for collecting dust cannot be obtained.
湿式不織布の目付および厚みについては、湿式抄紙工程での白水の供給量および抄紙速度によって変更することが可能である。本発明の湿式不織布の目付は特に限定されるものではないが、10~150g/m2であることが好ましい。目付を10g/m2以上にすることで、粗密差の少ない均一な繊維シートとなる。一方、150g/m2以下とすることで、繊維シートの厚みを抑えることとなり、濾材として、プリーツ加工等の後加工が可能となる。また、フィルター濾材として十分な捕集効率と低圧力損失を両立する観点から、該シートの目付は15~100g/m2の範囲とすることがより好ましい。目付を15g/m2以上にすることで、フィルター濾材として十分なダスト捕集効率を確保できることとなり、一方100g/m2以下とすることにより、フィルター濾材として使用した場合の圧力損失を抑制することが可能である。 The basis weight and thickness of the wet nonwoven fabric can be changed depending on the amount of white water supplied in the wet papermaking process and the papermaking speed. The basis weight of the wet nonwoven fabric of the present invention is not particularly limited, but is preferably 10 to 150 g / m 2 . By setting the basis weight to 10 g / m 2 or more, a uniform fiber sheet with a small difference in roughness can be obtained. On the other hand, when the weight is 150 g / m 2 or less, the thickness of the fiber sheet can be suppressed, and post-processing such as pleating as a filter medium becomes possible. Further, from the viewpoint of achieving both sufficient collection efficiency and low pressure loss as a filter medium, the basis weight of the sheet is more preferably in the range of 15 to 100 g / m 2 . By setting the basis weight to 15 g / m 2 or more, sufficient dust collection efficiency can be ensured as a filter filter medium, while by setting the basis weight to 100 g / m 2 or less, pressure loss when used as a filter filter medium can be suppressed. Is possible.
また、本発明の湿式不織布の厚みは特に限定されるものではないが、0.10~2.50mmであることが好ましい。厚みを0.10mm以上とすることでプリーツ加工等の後加工や濾材に機能剤などをディップ加工させる際の強度を得ることができる。また、2.50mm以下とすることでプリーツ加工を実施し、フィルターとしたときに濾材厚みによって濾材同士が接触する部分を低減でき、濾過面積を確保できるため、圧力損失の上昇を抑制できる。なお、ダスト保持量を向上させる目的等のために上流側を粗に下流側を密になるように、本発明の濾材自体に厚み方向に密度勾配を有する構成を持たせてもよく、本発明の湿式不織布の上流側に粗の不織布を、下流側に密な不織布を積層することで粗密構造を形成してもよい。 The thickness of the wet nonwoven fabric of the present invention is not particularly limited, but is preferably 0.10 to 2.50 mm. By setting the thickness to 0.10 mm or more, it is possible to obtain the strength for post-processing such as pleating and dipping the filter medium with a functional agent or the like. Further, by setting the thickness to 2.50 mm or less, pleating can be performed, and the portion where the filter media come into contact with each other can be reduced depending on the thickness of the filter media when the filter is used, and the filtration area can be secured, so that an increase in pressure loss can be suppressed. For the purpose of improving the amount of dust retained, the filter medium of the present invention itself may have a structure having a density gradient in the thickness direction so that the upstream side is coarsely dense and the downstream side is dense. A coarse non-woven fabric may be formed by laminating a coarse non-woven fabric on the upstream side of the wet non-woven fabric and a dense non-woven fabric on the downstream side.
特にフィルター濾材には、ダスト捕集に加えて、付加的な機能を求められることが多く、撥水、撥油、抗菌、抗ウイルス、消臭などの機能への要求が強い。こうした観点から、本発明の湿式不織布に、機能付与するために各種機能剤を添加してもよい。添加する機能剤としては、例えば、顔料、撥水剤、吸水剤、難燃剤、安定剤、酸化防止剤、紫外線吸収剤、金属粒子、無機化合物粒子、香料、脱臭剤、抗菌剤、ガス吸着剤等が挙げられるが、これらに限定されない。また、各種添加剤の添加方法については、特に限定されず、各種添加剤が練り込まれた繊維を使用し、あるいは湿式不織布への吹き付けや機能剤の溶液を含浸して添加することも可能である。 In particular, filter media are often required to have additional functions in addition to dust collection, and there is a strong demand for functions such as water repellency, oil repellency, antibacterial, antiviral, and deodorant. From this point of view, various functional agents may be added to the wet nonwoven fabric of the present invention in order to impart functions. Examples of the functional agent to be added include pigments, water repellents, water absorbents, flame retardants, stabilizers, antioxidants, ultraviolet absorbers, metal particles, inorganic compound particles, fragrances, deodorants, antibacterial agents, and gas adsorbents. Etc., but are not limited to these. Further, the method of adding various additives is not particularly limited, and it is also possible to use fibers in which various additives are kneaded, or to spray a wet non-woven fabric or impregnate a solution of a functional agent to add the additives. be.
本発明の湿式不織布は、エレクトレット化濾材として使用した場合に高捕集効率と低圧力損失を両立し、空気清浄機用、エアコン用、ビル空調用、産業クリーンルーム用および自動車や列車等の車室用等のフィルター濾材、サージカルマスク、フェイスマスクおよび防塵マスクとして好適に用いることができるものである。 The wet non-woven fabric of the present invention achieves both high collection efficiency and low pressure loss when used as an electretized filter medium, and is used for air purifiers, air conditioners, building air conditioners, industrial clean rooms, and passenger compartments of automobiles and trains. It can be suitably used as a filter medium for use, a surgical mask, a face mask and a dustproof mask.
以下実施例を挙げて、本発明の湿式不織布について、具体的に説明する。
実施例および比較例については、下記の評価を行った。
Hereinafter, the wet nonwoven fabric of the present invention will be specifically described with reference to examples.
The following evaluations were made for Examples and Comparative Examples.
A.繊維径
繊維の断面を日立ハイテクノロジーズ社製電子顕微鏡SU-1510にて撮影した画像において、任意の100本について繊維断面の外接円径を測定し、その平均の小数点以下2桁目を四捨五入して小数点以下1桁目まで求めた値を繊維径とした。
A. Fiber diameter In an image of the cross section of a fiber taken with an electron microscope SU-1510 manufactured by Hitachi High-Technologies Corporation, the circumscribed circle diameter of the fiber cross section is measured for any 100 fibers, and the second digit after the decimal point of the average is rounded off. The value obtained up to the first digit after the decimal point was taken as the fiber diameter.
B.異形度
繊維の断面を日立ハイテクノロジーズ社製電子顕微鏡SU-1510にて撮影した画像において、任意の構成繊維20本について、繊維断面の外接円径と内接円径を測定して、その比率を算出し、平均の小数点第2位を四捨五入して、小数点第1位まで求めた値を構成繊維の異形度とした。
B. Degree of Deformity In an image of the cross section of a fiber taken with an electron microscope SU-1510 manufactured by Hitachi High-Technologies Corporation, the circumscribed circle diameter and inscribed circle diameter of the fiber cross section were measured for 20 arbitrary constituent fibers, and the ratio was determined. The calculated value was rounded off to the first decimal place of the average, and the value obtained up to the first decimal place was taken as the degree of deformation of the constituent fibers.
C.平均ポアサイズおよびポアサイズ分布頻度
多孔質材料自動細孔測定システム Perm-Porometer(PMI社製)を用いて、バブルポイント法(ASTMF-316-86に基づく)によって平均ポアサイズを算出した。測定サンプル径を25mmとし、表面張力既知の測定液としては、Galwick(表面張力:16mN/m)を使用して細孔径分布測定を実施した。この測定器により自動計算して得られたMEAN FLOW PORE DIAMETERを平均ポアサイズの値とした。また、測定は1サンプルにつき任意の5ヶ所をサンプリングし、その平均の小数点以下2桁目を四捨五入して小数点以下1桁目まで求めた値を用いた。また、ポアサイズ分布頻度は自動計算により得られた値を百分率で換算して%表示とし、小数点以下2桁目を四捨五入して小数点以下1桁目まで求めた値を用いた。
C. Average pore size and pore size distribution frequency The average pore size was calculated by the bubble point method (based on ASTMF-316-86) using the porous material automatic pore measurement system Perm-Porometer (manufactured by PMI). The measurement sample diameter was 25 mm, and the pore size distribution was measured using Galwick (surface tension: 16 mN / m) as a measuring solution having a known surface tension. The MEAN FLOW PORE DIAMETER automatically calculated by this measuring instrument was used as the average pore size value. In addition, for the measurement, an arbitrary 5 points were sampled per sample, and the value obtained by rounding off the 2nd decimal place of the average to the 1st decimal place was used. For the pore size distribution frequency, the value obtained by automatic calculation was converted into a percentage and displayed as a percentage, and the value obtained by rounding off the second decimal place to the first decimal place was used.
D.目付
250mm×250mm角に切り出した繊維シートの重量を秤量し、単位面積(1m2)当たりの重量に換算した値の小数点以下1桁目を四捨五入して整数値としたものを湿式不織布の目付とした。
D. Weight of fiber sheet cut into 250 mm x 250 mm square is weighed, and the value converted to weight per unit area (1 m 2 ) is rounded off to the first decimal place to obtain an integer value. bottom.
E.厚み
ダイヤルシックネスゲージ(TECLOCK社 SM-114 測定子形状10mmφ、目量0.01mm、測定力2.5N以下)を用いて湿式不織布の厚みを測定した。測定は1サンプルにつき任意の5ヶ所で行い、その平均の小数点以下3桁目を四捨五入して小数点以下2桁目まで求めた値を湿式不織布の厚みとした。
E. Thickness The thickness of the wet nonwoven fabric was measured using a dial thickness gauge (TECLOCK SM-114
F.捕集効率
作製した湿式不織布を有効間口面積0.1m2のホルダーにセットし、面風速6.5minで鉛直方向に空気を通過させ、フィルター上流および下流の粒径0.3~0.5μmの大気塵粉塵数をパーティクルカウンター(RION社製、型式:KC-01D)で測定し、次式より捕集効率を算出した。
捕集効率(%)=1-(下流粒子数/上流粒子数)×100
測定は1サンプルから任意に3ヵ所サンプリングして実施し、その平均の小数点以下1桁目を四捨五入して整数値としたものを捕集効率とした。なお、捕集効率はエレクトレット加工(コロナ荷電法)を施した帯電時と帯電した繊維シートをイソプロピルアルコールに2分間浸漬後に乾燥し、除電した状態の各々について測定を実施した。
F. Collection efficiency The prepared wet non-woven fabric is set in a holder with an effective frontage area of 0.1 m 2 and air is passed through in the vertical direction at a surface wind speed of 6.5 min, and the particle size upstream and downstream of the filter is 0.3 to 0.5 μm. The number of air dust was measured with a particle counter (manufactured by RION, model: KC-01D), and the collection efficiency was calculated from the following formula.
Collection efficiency (%) = 1- (number of downstream particles / number of upstream particles) x 100
The measurement was carried out by arbitrarily sampling three places from one sample, and the first digit after the decimal point of the average was rounded off to obtain an integer value, which was used as the collection efficiency. The collection efficiency was measured at the time of charging by electret processing (corona charging method) and after immersing the charged fiber sheet in isopropyl alcohol for 2 minutes and then drying and removing static electricity.
G.圧力損失
作製した繊維シートを有効間口面積0.1m2のホルダーにセットし、面風速6.5m/minで鉛直方向に空気を通過させ、フィルター上下流の圧力差を差圧計にて測定した。測定は1サンプルから任意の3ヶ所をサンプリングして実施し、その平均の小数点以下1桁目を四捨五入して整数値としたものを圧力損失とした。
G. Pressure loss The prepared fiber sheet was set in a holder with an effective frontage area of 0.1 m 2 , air was passed in the vertical direction at a surface wind speed of 6.5 m / min, and the pressure difference between the upstream and downstream of the filter was measured with a differential pressure gauge. The measurement was carried out by sampling any three points from one sample, and the first digit after the decimal point of the average was rounded off to obtain an integer value, which was defined as the pressure loss.
H.トナー粒子付着試験(エレクトレット化の確認試験)
エレクトレット加工を施した繊維シートに正帯電性の赤色トナー粒子および負帯電性の青色トナー粒子の混合物をふりかけた。静電気力によらずに滞留している余剰トナー粒子を振り払った後に、繊維シートをデジタルマイクロスコープ(キーエンス社製、VHX-2000)にて観察した。
赤色と青色のトナー粒子が分離して付着したものをエレクトレット化されていると判定し、赤色と青色のトナーが混合したまま付着して紫色に見える状態、およびトナー粒子が脱落して、付着しなかったものについては、エレクトレット化されていないと判定した。
H. Toner particle adhesion test (confirmation test for electret formation)
A mixture of positively charged red toner particles and negatively charged blue toner particles was sprinkled on the electret-processed fiber sheet. After shaking off the excess toner particles that had accumulated regardless of the electrostatic force, the fiber sheet was observed with a digital microscope (VHX-2000, manufactured by KEYENCE CORPORATION).
It is judged that the red and blue toner particles are separated and adhered to each other, and it is judged that the red and blue toner particles are adhered while being mixed and appear purple, and the toner particles are dropped and adhered. Those that did not exist were judged not to be electrified.
実施例1
ポリプロピレン(PP)樹脂S135(プライムポリマー社製)にキマソーブ(登録商標)944LD(BASF製)を2wt%添加したものを分割成分、ポリブチレンテレフタレート(PBT)樹脂トレコン1200S(東レ株式会社製)を芯成分とし、(図のような形状の断面を有する剥離分割型複合繊維(島成分径:0.7μm、複合比率(重量比):分割成分/芯成分=30/70)を溶融紡糸により作製し、1mm長にカットした。この剥離分割型複合繊維が80重量%、バインダー繊維として、熱融着性の芯鞘複合繊維(芯成分:PET、鞘成分:テレフタル酸60mol%、イソフタル酸40mol%、エチレングリコール85mol%、ジエチレングリコール15mol%の割合で共重合した融点110℃のポリエステル(共重合ポリエステル1))の短繊維(5mm長)が20重量%となるように離解機によって水と均一に混合分散して白水を調製した。ついで、円網抄紙機(川之江造機社製)を用いて抄紙を行い、110℃の熱カレンダーロールに接触させて、乾燥・熱処理を施すことにより湿式不織布を得た。湿式不織布中では、剥離分割型複合繊維の分割が進行しており、繊維断面外周にスリットを29箇所有する短繊維A(繊維径:16.0μm)が56重量%、繊維径が0.5μm、異形度が1.5の短繊維Bが12重量%、繊維径が5.0μm、異形度が1.5の短繊維Cが12重量%、熱接着性の芯鞘複合繊維が20重量%含まれる湿式不織布を得た。また、繊維Cの繊維径は、短繊維Bの10倍であった。なお、該不織布を構成する繊維は、熱融着性のバインダー繊維により熱接着されているものであった。
Example 1
Polybutylene terephthalate (PBT) resin Trecon 1200S (manufactured by Toray Industries, Inc.) is the core of polypropylene (PP) resin S135 (manufactured by Prime Polymer) plus 2 wt% of Kimasorb (registered trademark) 944LD (manufactured by BASF). As a component, (peeling split type composite fiber having a cross section having a shape as shown in the figure (island component diameter: 0.7 μm, composite ratio (weight ratio): split component / core component = 30/70) was produced by melt spinning. This peel-off split type composite fiber is 80% by weight, and as a binder fiber, a heat-sealing core-sheath composite fiber (core component: PET, sheath component: terephthalic acid 60 mol%, isophthalic acid 40 mol%, Short fibers (5 mm length) of polyester (polybutylene terebra 1) having a melting point of 110 ° C., which is copolymerized at a ratio of 85 mol% of ethylene glycol and 15 mol% of diethylene glycol, are uniformly mixed and dispersed with water by a disintegrator so as to be 20% by weight. Then, white water was prepared. Then, paper was made using a circular net paper making machine (manufactured by Kawanoe Zoki Co., Ltd.), contacted with a thermal calendar roll at 110 ° C., and dried and heat-treated to obtain a wet non-woven fabric. In the wet non-woven fabric, the separation-split type composite fiber is being divided, and short fiber A (fiber diameter: 16.0 μm) having 29 slits on the outer periphery of the fiber cross section is 56% by weight, and the fiber diameter is 0.5 μm. Contains 12% by weight of short fiber B with a degree of deformation of 1.5, 12% by weight of short fiber C with a fiber diameter of 5.0 μm, and 20% by weight of heat-adhesive core-sheath composite fiber. The wet non-woven fabric was obtained. The fiber diameter of the fiber C was 10 times that of the short fiber B. The fibers constituting the non-woven fabric were heat-bonded by a heat-sealing binder fiber. Met.
得られた湿式不織布は目付が45g/m2、厚みが0.28mmであった。バブルポイント法で算出した平均ポアサイズは13.2μmであり、ポアサイズ15.0μm以上の分布頻度は20.3%であった。極細繊維が湿式不織布内で分散して、網目状に分布しており、分散状態に優れたものであった。この湿式不織布をコロナ荷電法により帯電させた状態で粒径0.3~0.5μmの大気塵捕集効率および圧力損失を測定した結果、96%と捕集効率に優れ、圧力損失は50Paと低圧損性に優れたものであった。また、この湿式不織布をイソプロピルアルコールに浸漬し、除電した状態での捕集効率は45%であり、除電後捕集効率に優れたものであった。なお、荷電後のトナー粒子付着試験の結果、湿式不織布には赤色および青色粒子が共に分離して付着しており、エレクトレット化されていると判定した。 The obtained wet non-woven fabric had a basis weight of 45 g / m 2 and a thickness of 0.28 mm. The average pore size calculated by the bubble point method was 13.2 μm, and the distribution frequency with a pore size of 15.0 μm or more was 20.3%. The ultrafine fibers were dispersed in the wet non-woven fabric and distributed in a mesh pattern, and the dispersed state was excellent. As a result of measuring the atmospheric dust collection efficiency and pressure loss with a particle size of 0.3 to 0.5 μm in a state where this wet non-woven fabric is charged by the corona charging method, the collection efficiency is excellent at 96% and the pressure loss is 50 Pa. It was excellent in low pressure loss. Further, the collection efficiency in the state where the wet non-woven fabric was immersed in isopropyl alcohol and statically removed was 45%, and the collection efficiency after static elimination was excellent. As a result of the toner particle adhesion test after charging, it was determined that both the red and blue particles were separated and adhered to the wet nonwoven fabric and were electretized.
実施例2~4
剥離分割型複合繊維の繊維断面において、分割箇所の数が種々異なるものを使用し、湿式不織布中に発生させる短繊維Aのスリット数を17箇所(実施例2)、9箇所(実施例3)、68箇所(実施例4)に変更したこと以外は、実施例1に従い実施した。
Examples 2-4
In the fiber cross section of the peel-off split type composite fiber, the number of split points is different, and the number of slits of the short fibers A generated in the wet nonwoven fabric is 17 (Example 2) and 9 (Example 3). , Except for the change to 68 locations (Example 4), the procedure was carried out according to Example 1.
実施例2の湿式不織布は、厚みが0.24mm、平均ポアサイズが12.7μmであり、ポアサイズ15.0μm以上の分布頻度は17.6%であった。帯電時の捕集効率が93%、除電後捕集効率が52%と優れたものであった。圧力損失は53Paと低圧損性が良好なものであった。 The wet nonwoven fabric of Example 2 had a thickness of 0.24 mm, an average pore size of 12.7 μm, and a distribution frequency of a pore size of 15.0 μm or more was 17.6%. The collection efficiency during charging was 93%, and the collection efficiency after static elimination was 52%, which were excellent. The pressure loss was 53 Pa, which was good for low pressure loss.
実施例3の湿式不織布は、厚みが0.22mm、平均ポアサイズが11.8μmであり、ポアサイズ15.0μm以上の分布頻度は12.4%であった。帯電時の捕集効率が95%、除電後捕集効率が56%と捕集効率に優れたものであった。圧力損失は71Paと十分な低圧損性を示すものであった。 The wet nonwoven fabric of Example 3 had a thickness of 0.22 mm, an average pore size of 11.8 μm, and a distribution frequency of 15.0 μm or more with a pore size of 12.4%. The collection efficiency at the time of charging was 95%, and the collection efficiency after static elimination was 56%, which were excellent in the collection efficiency. The pressure loss was 71 Pa, which was a sufficient low pressure loss.
実施例4の湿式不織布は、厚みが0.30mm、平均ポアサイズが17.5μmであり、ポアサイズ15.0μm以上の分布頻度は25.2%であった。帯電時の捕集効率が81%、除電後捕集効率が47%、圧力損失が39Paと捕集効率および低圧損性に優れたものであった。
なお、実施例2~4の湿式不織布はいずれも、荷電後のトナー粒子付着試験の結果、エレクトレット化されていると判定した。
The wet nonwoven fabric of Example 4 had a thickness of 0.30 mm, an average pore size of 17.5 μm, and a distribution frequency of a pore size of 15.0 μm or more was 25.2%. The collection efficiency during charging was 81%, the collection efficiency after static elimination was 47%, and the pressure loss was 39 Pa, which were excellent in collection efficiency and low pressure loss.
As a result of the toner particle adhesion test after charging, it was determined that all of the wet nonwoven fabrics of Examples 2 to 4 were electretized.
比較例1
剥離分割型複合繊維の繊維断面において、分割箇所の数が7箇所であるものを使用して、湿式不織布中に発生させる短繊維Aのスリット数を7箇所に変更したこと以外は、実施例1に従い実施した。
Comparative Example 1
Example 1 except that the number of slits of the short fiber A generated in the wet nonwoven fabric was changed to 7 by using the fiber cross section of the peeling split type composite fiber having 7 split points. It was carried out according to.
得られた湿式不織布は、厚みが0.18mm、平均ポアサイズが10.3μmであり、ポアサイズ15.0μm以上の分布頻度は9.7%であった。帯電時の捕集効率が96%、除電後捕集効率は58%と優れたものであったが、圧力損失は93Paと非常に高く、低圧損性が不十分であった The obtained wet nonwoven fabric had a thickness of 0.18 mm, an average pore size of 10.3 μm, and a distribution frequency of a pore size of 15.0 μm or more was 9.7%. The collection efficiency during charging was 96%, and the collection efficiency after static elimination was 58%, which was excellent, but the pressure loss was as high as 93 Pa, and the low pressure loss was insufficient.
実施例5~10
剥離分割型複合繊維における芯部分の繊維径が種々異なるものを使用して、湿式不織布中に発生させる短繊維Aの繊維径を5.0μm(実施例5)、7.0μm(実施例6)、9.0μm(実施例7)、35.0μm(実施例8)、40.0μm(実施例9)、50.0μm(実施例10)に変更したこと以外は、実施例1に従い実施した。
Examples 5-10
The fiber diameters of the short fibers A generated in the wet non-woven fabric are 5.0 μm (Example 5) and 7.0 μm (Example 6) using fibers having various core portions of the peel-off split type composite fibers. , 9.0 μm (Example 7), 35.0 μm (Example 8), 40.0 μm (Example 9), and 50.0 μm (Example 10), except that the procedure was carried out according to Example 1.
実施例5の湿式不織布は、厚みが0.13mm、平均ポアサイズが9.6μmであり、ポアサイズ15.0μm以上の分布頻度は10.2%であった。帯電時の捕集効率が92%、除電後捕集効率が53%と捕集効率に優れたものであった。圧力損失は88Paと十分な低圧損性を示すものであった。 The wet nonwoven fabric of Example 5 had a thickness of 0.13 mm, an average pore size of 9.6 μm, and a distribution frequency of a pore size of 15.0 μm or more was 10.2%. The collection efficiency at the time of charging was 92%, and the collection efficiency after static elimination was 53%, which were excellent in the collection efficiency. The pressure loss was 88 Pa, which was a sufficient low pressure loss.
実施例6の湿式不織布は、厚みが0.14mm、平均ポアサイズが11.2μmであり、ポアサイズ15.0μm以上の分布頻度は15.1%であった。帯電時の捕集効率が92%、除電後捕集効率が51%と捕集効率に優れたものであった。圧力損失は69Paと低圧損性が良好なものであった。 The wet nonwoven fabric of Example 6 had a thickness of 0.14 mm, an average pore size of 11.2 μm, and a distribution frequency of a pore size of 15.0 μm or more was 15.1%. The collection efficiency at the time of charging was 92%, and the collection efficiency after static elimination was 51%, which were excellent in the collection efficiency. The pressure loss was 69 Pa, which was good for low pressure loss.
実施例7の湿式不織布は、厚みが0.17mm、平均ポアサイズが12.8μmであり、ポアサイズ15.0μm以上の分布頻度は17.7%であった。帯電時の捕集効率が93%、除電後捕集効率が51%、圧力損失が50Paと捕集効率および低圧損性に優れたものであった。 The wet nonwoven fabric of Example 7 had a thickness of 0.17 mm, an average pore size of 12.8 μm, and a distribution frequency of a pore size of 15.0 μm or more was 17.7%. The collection efficiency during charging was 93%, the collection efficiency after static elimination was 51%, and the pressure loss was 50 Pa, which were excellent in collection efficiency and low pressure loss.
実施例8の湿式不織布は、厚みが0.73mm、平均ポアサイズが23.9μmであり、ポアサイズ15.0μm以上の分布頻度は66.7%であった。帯電時の捕集効率が80%、除電後捕集効率が41%、圧力損失が25Paと捕集効率および低圧損性に優れたものであった。 The wet nonwoven fabric of Example 8 had a thickness of 0.73 mm, an average pore size of 23.9 μm, and a distribution frequency of a pore size of 15.0 μm or more was 66.7%. The collection efficiency during charging was 80%, the collection efficiency after static elimination was 41%, and the pressure loss was 25 Pa, which were excellent in collection efficiency and low pressure loss.
実施例9の湿式不織布は、厚みが0.92mm、平均ポアサイズが28.6μmであり、ポアサイズ15.0μm以上の分布頻度は77.2%であった。帯電時の捕集効率が61%、除電後捕集効率が30%と捕集効率が良好なものであった。圧力損失は20Paと低圧損性に優れたものであった。 The wet nonwoven fabric of Example 9 had a thickness of 0.92 mm, an average pore size of 28.6 μm, and a distribution frequency of a pore size of 15.0 μm or more was 77.2%. The collection efficiency at the time of charging was 61%, and the collection efficiency after static elimination was 30%, and the collection efficiency was good. The pressure loss was 20 Pa, which was excellent in low pressure loss.
実施例10の湿式不織布は、厚みが1.06mm、平均ポアサイズが32.3μmであり、ポアサイズ15.0μm以上の分布頻度は93.5%であった。帯電時の捕集効率が50%、除電後捕集効率が22%と十分な捕集効率を示した。圧力損失は18Paと低圧損性に優れたものであった。 The wet nonwoven fabric of Example 10 had a thickness of 1.06 mm, an average pore size of 32.3 μm, and a distribution frequency of a pore size of 15.0 μm or more was 93.5%. The collection efficiency during charging was 50%, and the collection efficiency after static elimination was 22%, showing sufficient collection efficiency. The pressure loss was 18 Pa, which was excellent in low pressure loss.
なお、実施例5~10の湿式不織布はいずれも、荷電後のトナー粒子付着試験の結果、エレクトレット化されていると判定した。 As a result of the toner particle adhesion test after charging, it was determined that all of the wet nonwoven fabrics of Examples 5 to 10 were electretized.
比較例2および3
剥離分割型複合繊維における芯部分の繊維径が種々異なるものを使用して、湿式不織布中に発生させる短繊維Aの繊維径を4.0μm(比較例2)、60.0μm(比較例3)に変更したこと以外は、実施例1に従い実施した。
Comparative Examples 2 and 3
The fiber diameters of the staple fibers A generated in the wet non-woven fabric are 4.0 μm (Comparative Example 2) and 60.0 μm (Comparative Example 3) by using different fiber diameters of the core portion of the peeling split type composite fiber. It was carried out according to Example 1 except that it was changed to.
比較例2の湿式不織布は、厚みが0.12mm、平均ポアサイズが8.4μmであり、ポアサイズ15.0μm以上の分布頻度は3.8%であった。帯電時の捕集効率が94%、除電後捕集効率が56%と優れたものであったが、圧力損失は104Paと非常に高く、低圧損性が不十分であった。 The wet nonwoven fabric of Comparative Example 2 had a thickness of 0.12 mm, an average pore size of 8.4 μm, and a distribution frequency of a pore size of 15.0 μm or more was 3.8%. The collection efficiency during charging was 94% and the collection efficiency after static elimination was 56%, which were excellent, but the pressure loss was as high as 104 Pa, and the low pressure loss was insufficient.
比較例3の湿式不織布は、厚みが1.18mm、平均ポアサイズが41.3μmであり、ポアサイズ15.0μm以上の分布頻度は98.7%であった。圧力損失は12Paと低圧損性に優れたものの、帯電時の捕集効率が38%、除電後捕集効率が9%と捕集効率が不十分であった。 The wet nonwoven fabric of Comparative Example 3 had a thickness of 1.18 mm, an average pore size of 41.3 μm, and a distribution frequency of a pore size of 15.0 μm or more was 98.7%. Although the pressure loss was 12 Pa, which was excellent in low pressure loss, the collection efficiency during charging was 38%, and the collection efficiency after static elimination was 9%, which was insufficient.
実施例11~16
剥離分割型複合繊維における分割部分の繊維径が種々異なるものを使用して、湿式不織布中に発生させる短繊維Bの繊維径を0.1μm(実施例11)、0.2μm(実施例12)、0.3μm(実施例13)、1.5μm(実施例14)、2.0μm(実施例15)、3.0μm(実施例16)に変更したこと以外は、実施例1に従い実施した。
Examples 11-16
The fiber diameters of the short fibers B generated in the wet non-woven fabric are 0.1 μm (Example 11) and 0.2 μm (Example 12) using fibers having variously different fiber diameters at the split portions of the peelable split type composite fiber. , 0.3 μm (Example 13), 1.5 μm (Example 14), 2.0 μm (Example 15), 3.0 μm (Example 16), except that the procedure was carried out according to Example 1.
実施例11の湿式不織布は、厚みが0.25mm、平均ポアサイズが8.8μmであり、ポアサイズ15.0μm以上の分布頻度は10.1%であった。帯電時の捕集効率が98%、除電後捕集効率が63%と捕集効率に優れたものであった。圧力損失は82Paと十分な低圧損性を示すものであった。 The wet nonwoven fabric of Example 11 had a thickness of 0.25 mm, an average pore size of 8.8 μm, and a distribution frequency of a pore size of 15.0 μm or more was 10.1%. The collection efficiency at the time of charging was 98%, and the collection efficiency after static elimination was 63%, which were excellent in the collection efficiency. The pressure loss was 82 Pa, which was a sufficient low pressure loss.
実施例12の湿式不織布は、厚みが0.25mm、平均ポアサイズが11.3μmであり、ポアサイズ15.0μm以上の分布頻度は12.2%であった。帯電時の捕集効率が97%、除電後捕集効率が58%と捕集効率に優れたものであった。圧力損失は68Paと低圧損性が良好なものであった。 The wet nonwoven fabric of Example 12 had a thickness of 0.25 mm, an average pore size of 11.3 μm, and a distribution frequency of a pore size of 15.0 μm or more was 12.2%. The collection efficiency at the time of charging was 97%, and the collection efficiency after static elimination was 58%, which were excellent in the collection efficiency. The pressure loss was 68 Pa, which was good for low pressure loss.
実施例13の湿式不織布は、厚みが0.26mm、平均ポアサイズが12.5μmであり、ポアサイズ15.0μm以上の分布頻度は17.9%であった。帯電時の捕集効率が94%、除電後捕集効率が52%、圧力損失が50Paと捕集効率および低圧損性に優れたものであった。 The wet nonwoven fabric of Example 13 had a thickness of 0.26 mm and an average pore size of 12.5 μm, and the distribution frequency of the pore size of 15.0 μm or more was 17.9%. The collection efficiency during charging was 94%, the collection efficiency after static elimination was 52%, and the pressure loss was 50 Pa, which were excellent in collection efficiency and low pressure loss.
実施例14の湿式不織布は、厚みが0.28mm、平均ポアサイズが24.3μmであり、ポアサイズ15.0μm以上の分布頻度は64.5%であった。帯電時の捕集効率が81%、除電後捕集効率が40%、圧力損失が26Paと捕集効率および低圧損性に優れたものであった。 The wet nonwoven fabric of Example 14 had a thickness of 0.28 mm, an average pore size of 24.3 μm, and a distribution frequency of a pore size of 15.0 μm or more was 64.5%. The collection efficiency during charging was 81%, the collection efficiency after static elimination was 40%, and the pressure loss was 26 Pa, which were excellent in collection efficiency and low pressure loss.
実施例15の湿式不織布は、厚みが0.28mm、平均ポアサイズが27.5μmであり、ポアサイズ15.0μm以上の分布頻度は78.4%であった。帯電時の捕集効率が61%、除電後捕集効率が32%と捕集効率が良好なものであった。圧力損失は19Paと低圧損性に優れたものであった。 The wet nonwoven fabric of Example 15 had a thickness of 0.28 mm, an average pore size of 27.5 μm, and a distribution frequency of a pore size of 15.0 μm or more was 78.4%. The collection efficiency at the time of charging was 61%, and the collection efficiency after static elimination was 32%, and the collection efficiency was good. The pressure loss was 19 Pa, which was excellent in low pressure loss.
実施例16の湿式不織布は、厚みが0.28mm、平均ポアサイズが34.4μmであり、ポアサイズ15.0μm以上の分布頻度は93.8%であった。帯電時の捕集効率が53%、除電後捕集効率が21%と十分な捕集効率を示した。圧力損失は15Paと低圧損性に優れたものであった。 The wet nonwoven fabric of Example 16 had a thickness of 0.28 mm, an average pore size of 34.4 μm, and a distribution frequency of a pore size of 15.0 μm or more was 93.8%. The collection efficiency during charging was 53%, and the collection efficiency after static elimination was 21%, showing sufficient collection efficiency. The pressure loss was 15 Pa, which was excellent in low pressure loss.
なお、実施例11~16の湿式不織布はいずれも、荷電後のトナー粒子付着試験の結果、エレクトレット化されていると判定した。 As a result of the toner particle adhesion test after charging, it was determined that all of the wet nonwoven fabrics of Examples 11 to 16 were electretized.
比較例4
剥離分割型複合繊維における分割部分の繊維径が4.0μmのものを使用して、湿式不織布中に発生させる短繊維Bの繊維径を4.0μmに変更したこと以外は、実施例1に従い実施した。
得られた湿式不織布は、厚みが0.28mm、平均ポアサイズが39.6μmであり、ポアサイズ15.0μm以上の分布頻度は98.0%であった。圧力損失は13Paと低圧損性に優れたものの、帯電時の捕集効率が44%、除電後捕集効率が16%と捕集効率が不十分であった。
Comparative Example 4
It was carried out according to Example 1 except that the fiber diameter of the split portion of the peeling split type composite fiber was 4.0 μm and the fiber diameter of the staple fiber B generated in the wet nonwoven fabric was changed to 4.0 μm. bottom.
The obtained wet nonwoven fabric had a thickness of 0.28 mm, an average pore size of 39.6 μm, and a distribution frequency of a pore size of 15.0 μm or more was 98.0%. Although the pressure loss was 13 Pa, which was excellent in low pressure loss, the collection efficiency during charging was 44%, and the collection efficiency after static elimination was 16%, which was insufficient.
実施例17および18
剥離分割型複合繊維における分割部分の形状が種々異なるものを使用して、湿式不織布中に発生させる短繊維Bの異形度を1.1(実施例17)、5.0(実施例18)に変更したこと以外は、実施例1に従い実施した。
Examples 17 and 18
The degree of deformation of the staple fibers B generated in the wet non-woven fabric was set to 1.1 (Example 17) and 5.0 (Example 18) by using different shapes of the divided portions in the peeling-divided composite fiber. Except for the changes, it was carried out according to Example 1.
実施例17の湿式不織布は、厚みが0.27mm、平均ポアサイズが19.1μmであり、ポアサイズ15.0μm以上の分布頻度は22.7%であった。帯電時の捕集効率が94%、除電後捕集効率が42%、圧力損失が46Paと捕集効率および低圧損性に優れたものであった。 The wet nonwoven fabric of Example 17 had a thickness of 0.27 mm, an average pore size of 19.1 μm, and a distribution frequency of a pore size of 15.0 μm or more was 22.7%. The collection efficiency during charging was 94%, the collection efficiency after static elimination was 42%, and the pressure loss was 46 Pa, which were excellent in collection efficiency and low pressure loss.
実施例18の湿式不織布は、厚みが0.28mm、平均ポアサイズが12.2μmであり、ポアサイズ15.0μm以上の分布頻度は20.6%であった。帯電時の捕集効率が96%、除電後捕集効率が56%、圧力損失が44Paと捕集効率および低圧損性に優れたものであった。 The wet nonwoven fabric of Example 18 had a thickness of 0.28 mm, an average pore size of 12.2 μm, and a distribution frequency of a pore size of 15.0 μm or more was 20.6%. The collection efficiency during charging was 96%, the collection efficiency after static elimination was 56%, and the pressure loss was 44 Pa, which were excellent in collection efficiency and low pressure loss.
なお、実施例17および18の湿式不織布はいずれも、荷電後のトナー粒子付着試験の結果、エレクトレット化されていると判定した。 As a result of the toner particle adhesion test after charging, it was determined that the wet nonwoven fabrics of Examples 17 and 18 were electretized.
実施例19および20
剥離分割型複合繊維における分割部分の繊維径が種々異なるものを使用して、湿式不織布中に発生させる短繊維Cの繊維径を1.0μm(実施例19)、1.5μm(実施例20)に変更したこと以外は、実施例1に従い実施した。
Examples 19 and 20
The fiber diameters of the short fibers C generated in the wet non-woven fabric are 1.0 μm (Example 19) and 1.5 μm (Example 20) by using different fiber diameters of the split portions of the peeling split type composite fiber. It was carried out according to Example 1 except that it was changed to.
実施例19の湿式不織布は、短繊維Cの繊維径が短繊維Bに対して2倍の大きさであり、厚みが0.22mm、平均ポアサイズが10.8μmであり、ポアサイズ15.0μm以上の分布頻度は11.0%であった。帯電時の捕集効率が93%、除電後捕集効率が56%と捕集効率に優れたものであった。圧力損失は82Paと十分な低圧損性を示すものであった。 In the wet non-woven fabric of Example 19, the fiber diameter of the short fiber C is twice as large as that of the short fiber B, the thickness is 0.22 mm, the average pore size is 10.8 μm, and the pore size is 15.0 μm or more. The distribution frequency was 11.0%. The collection efficiency at the time of charging was 93%, and the collection efficiency after static elimination was 56%, which were excellent in the collection efficiency. The pressure loss was 82 Pa, which was a sufficient low pressure loss.
実施例20の湿式不織布は、短繊維Cの繊維径が短繊維Bに対して3倍の大きさであり、厚みが0.23mm、平均ポアサイズが12.5μmであり、ポアサイズ15.0μm以上の分布頻度は14.3%であった。帯電時の捕集効率が91%、除電後捕集効率が52%と捕集効率に優れたものであった。圧力損失は67Paと低圧損性が良好なものであった。
なお、実施例19および20の湿式不織布はいずれも、荷電後のトナー粒子付着試験の結果、エレクトレット化されていると判定した。
In the wet non-woven fabric of Example 20, the fiber diameter of the short fiber C is three times as large as that of the short fiber B, the thickness is 0.23 mm, the average pore size is 12.5 μm, and the pore size is 15.0 μm or more. The distribution frequency was 14.3%. The collection efficiency at the time of charging was 91%, and the collection efficiency after static elimination was 52%, which were excellent in the collection efficiency. The pressure loss was 67 Pa, which was good for low pressure loss.
As a result of the toner particle adhesion test after charging, it was determined that the wet nonwoven fabrics of Examples 19 and 20 were electretized.
比較例5
剥離分割型複合繊維における分割部分のうち、1箇所の繊維径を0.8μmとしたものを使用して、湿式不織布中に発生させる短繊維Cの繊維径を0.8μmに変更したこと以外は、実施例1に従い実施した。
Comparative Example 5
Except for the fact that the fiber diameter of the short fiber C generated in the wet non-woven fabric was changed to 0.8 μm by using a split portion of the peel-off split type composite fiber having a fiber diameter of 0.8 μm at one location. , It was carried out according to Example 1.
得られた湿式不織布は、繊維Cの繊維径が短繊維Bに対して1.5倍の大きさであり、厚みが0.18mm、平均ポアサイズが16.3μmであり、ポアサイズ15.0μm以上の分布頻度は7.8%であった。帯電時の捕集効率が88%、除電後捕集効率が48%と優れたものであったが、圧力損失は98Paと非常に高く、低圧損性が不十分であった。 The obtained wet non-woven fabric has a fiber diameter of 1.5 times that of the short fiber B, a thickness of 0.18 mm, an average pore size of 16.3 μm, and a pore size of 15.0 μm or more. The distribution frequency was 7.8%. The collection efficiency during charging was 88% and the collection efficiency after static elimination was 48%, which were excellent, but the pressure loss was as high as 98 Pa, and the low pressure loss was insufficient.
実施例21および22
剥離分割型複合繊維における分割部分のうち1箇所の形状が種々異なるものを使用して、湿式不織布中に発生させる短繊維Cの異形度を1.2(実施例21)、8.0(扁平形状、実施例22)に変更したこと以外は、実施例1に従い実施した。
Examples 21 and 22
The degree of deformation of the staple fibers C generated in the wet nonwoven fabric was 1.2 (Example 21) and 8.0 (flat) by using one of the split portions of the peelable split type composite fiber having various different shapes. It was carried out according to Example 1 except that the shape was changed to Example 22).
実施例21の湿式不織布は、厚みが0.27mm、平均ポアサイズが15.9μmであり、ポアサイズ15.0μm以上の分布頻度は10.2%であった。帯電時の捕集効率が90%、除電後捕集効率が46%と捕集効率に優れたものであった。圧力損失は81Paと十分な低圧損性を示すものであった。 The wet nonwoven fabric of Example 21 had a thickness of 0.27 mm, an average pore size of 15.9 μm, and a distribution frequency of a pore size of 15.0 μm or more was 10.2%. The collection efficiency at the time of charging was 90%, and the collection efficiency after static elimination was 46%, which were excellent in the collection efficiency. The pressure loss was 81 Pa, which was sufficient for low pressure loss.
実施例22の湿式不織布は、厚みが0.28mm、平均ポアサイズが13.0μmであり、ポアサイズ15.0μm以上の分布頻度は23.1%であった。帯電時の捕集効率が96%、除電後捕集効率が50%、圧力損失が36Paと捕集効率および低圧損性に優れたものであった。
なお、実施例21~22の湿式不織布はいずれも、荷電後のトナー粒子付着試験の結果、エレクトレット化されていると判定した。
The wet nonwoven fabric of Example 22 had a thickness of 0.28 mm, an average pore size of 13.0 μm, and a distribution frequency of a pore size of 15.0 μm or more was 23.1%. The collection efficiency during charging was 96%, the collection efficiency after static elimination was 50%, and the pressure loss was 36 Pa, which were excellent in collection efficiency and low pressure loss.
As a result of the toner particle adhesion test after charging, it was determined that all of the wet nonwoven fabrics of Examples 21 to 22 were electretized.
比較例6
剥離分割型複合繊維における分割部分のうち1箇所の異形度が1.0のものを使用して、湿式不織布中に発生させる短繊維Cの異形度を1.0に変更したこと以外は、実施例1に従い実施した。
Comparative Example 6
It was carried out except that the deformability of one of the split portions of the peelable split type composite fiber was 1.0 and the deformity of the staple fiber C generated in the wet nonwoven fabric was changed to 1.0. It was carried out according to Example 1.
得られた湿式不織布は、厚みが0.27mm、平均ポアサイズが15.2μmであり、ポアサイズ15.0μm以上の分布頻度は7.3%であった。帯電時の捕集効率が90%、除電後捕集効率が46%と優れたものであったが、圧力損失は93Paと非常に高く、低圧損性が不十分であった。 The obtained wet nonwoven fabric had a thickness of 0.27 mm, an average pore size of 15.2 μm, and a distribution frequency of a pore size of 15.0 μm or more was 7.3%. The collection efficiency during charging was 90% and the collection efficiency after static elimination was 46%, which were excellent, but the pressure loss was as high as 93 Pa, and the low pressure loss was insufficient.
実施例23
複合比率(重量比)を分割成分/芯成分=15/85とした剥離分割型複合繊維を使用し、抄紙時に分割型複合繊維を95重量%、バインダー繊維を5重量%の配合に変更したこと以外は、実施例1に従い実施した。
Example 23
A peeling split type composite fiber having a composite ratio (weight ratio) of split component / core component = 15/85 was used, and the split type composite fiber was changed to 95% by weight and the binder fiber was changed to 5% by weight at the time of papermaking. Other than that, it was carried out according to Example 1.
得られた湿式不織布は、厚みが0.35mm、平均ポアサイズが31.4μmであり、ポアサイズ15.0μm以上の分布頻度は94.1%であった。帯電時の捕集効率が52%、除電後捕集効率が21%と十分な捕集効率を示した。圧力損失は15Paと低圧損性に優れたものであった。 The obtained wet nonwoven fabric had a thickness of 0.35 mm, an average pore size of 31.4 μm, and a distribution frequency of a pore size of 15.0 μm or more was 94.1%. The collection efficiency during charging was 52%, and the collection efficiency after static elimination was 21%, showing sufficient collection efficiency. The pressure loss was 15 Pa, which was excellent in low pressure loss.
実施例24
複合比率(重量比)を分割成分/芯成分=20/80とし、剥離分割後の短繊維Bに相当する部分の重量が剥離分割後の短繊維Cに相当する部分の重量の2.2倍である剥離分割型複合繊維を使用したこと以外は、実施例1に従い実施した。
Example 24
The composite ratio (weight ratio) is set to split component / core component = 20/80, and the weight of the portion corresponding to the short fiber B after peeling and splitting is 2.2 times the weight of the portion corresponding to the staple fiber C after peeling and splitting. It was carried out according to Example 1 except that the stripping split type composite fiber was used.
得られた湿式不織布は、厚みが0.29mm、平均ポアサイズが13.6μmであり、ポアサイズ15.0μm以上の分布頻度は20.4%であった。帯電時の捕集効率が90%、除電後捕集効率が46%、圧力損失が40Paと捕集効率および低圧損性に優れたものであった。 The obtained wet nonwoven fabric had a thickness of 0.29 mm, an average pore size of 13.6 μm, and a distribution frequency of a pore size of 15.0 μm or more was 20.4%. The collection efficiency during charging was 90%, the collection efficiency after static elimination was 46%, and the pressure loss was 40 Pa, which were excellent in collection efficiency and low pressure loss.
実施例25
複合比率(重量比)を分割成分/芯成分=35/65とし、剥離分割後の短繊維Bに相当する部分の重量が剥離分割後の短繊維Cに相当する部分の重量の4.6倍である剥離分割型複合繊維を使用したこと以外は、実施例1に従い実施した。
得られた湿式不織布は、厚みが0.20mm、平均ポアサイズが12.0μmであり、ポアサイズ15.0μm以上の分布頻度は10.4%であった。帯電時の捕集効率が98%、除電後捕集効率が60%と捕集効率に優れたものであった。圧力損失は71Paと十分な低圧損性を示すものであった。
Example 25
The composite ratio (weight ratio) is set to split component / core component = 35/65, and the weight of the portion corresponding to the staple fiber B after peeling and splitting is 4.6 times the weight of the portion corresponding to the staple fiber C after peeling and splitting. It was carried out according to Example 1 except that the stripping split type composite fiber was used.
The obtained wet nonwoven fabric had a thickness of 0.20 mm, an average pore size of 12.0 μm, and a distribution frequency of a pore size of 15.0 μm or more was 10.4%. The collection efficiency at the time of charging was 98%, and the collection efficiency after static elimination was 60%, which were excellent in the collection efficiency. The pressure loss was 71 Pa, which was a sufficient low pressure loss.
実施例26
複合比率(重量比)を分割成分/芯成分=20/80とし、剥離分割後の短繊維Cに相当する部分の重量が剥離分割後の短繊維Bに相当する部分の重量の2.2倍(である剥離分割型複合繊維を使用したこと以外は、実施例1に従い実施した。
Example 26
The composite ratio (weight ratio) is set to split component / core component = 20/80, and the weight of the portion corresponding to the short fiber C after peeling and splitting is 2.2 times the weight of the portion corresponding to the short fiber B after peeling and splitting. (Except for the use of the stripped split type composite fiber, the procedure was carried out according to Example 1.
得られた湿式不織布は、厚みが0.29mm、平均ポアサイズが11.6μmであり、ポアサイズ15.0μm以上の分布頻度は17.2%であった。帯電時の捕集効率が75%、除電後捕集効率が35%、圧力損失が52Paと捕集効率および低圧損性が良好なものであった。 The obtained wet nonwoven fabric had a thickness of 0.29 mm, an average pore size of 11.6 μm, and a distribution frequency of a pore size of 15.0 μm or more was 17.2%. The collection efficiency during charging was 75%, the collection efficiency after static elimination was 35%, and the pressure loss was 52 Pa, and the collection efficiency and low pressure loss were good.
実施例27
複合比率(重量比)を分割成分/芯成分=35/65とし、剥離分割後の短繊維Cに相当する部分の重量が剥離分割後の短繊維Bに相当する部分の重量の4.6倍である剥離分割型複合繊維を使用したこと以外は、実施例1に従い実施した。
得られた湿式不織布は、厚みが0.23mm、平均ポアサイズが10.4μmであり、ポアサイズ15.0μm以上の分布頻度は13.3%であった。帯電時の捕集効率が77%、除電後捕集効率が38%と捕集効率が良好なものであった。圧力損失は72Paと十分な低圧損性を示すものであった。
なお、実施例23~27の湿式不織布はいずれも、荷電後のトナー粒子付着試験の結果、エレクトレット化されていると判定した。
Example 27
The composite ratio (weight ratio) is set to split component / core component = 35/65, and the weight of the portion corresponding to the staple fiber C after the peel split is 4.6 times the weight of the portion corresponding to the staple fiber B after the peel split. It was carried out according to Example 1 except that the stripping split type composite fiber was used.
The obtained wet nonwoven fabric had a thickness of 0.23 mm, an average pore size of 10.4 μm, and a distribution frequency of a pore size of 15.0 μm or more was 13.3%. The collection efficiency at the time of charging was 77%, and the collection efficiency after static elimination was 38%, and the collection efficiency was good. The pressure loss was 72 Pa, which was a sufficient low pressure loss.
As a result of the toner particle adhesion test after charging, it was determined that all of the wet nonwoven fabrics of Examples 23 to 27 were electretized.
実施例28および29
抄紙時の繊維配合を剥離分割型複合繊維95重量%、バインダー繊維5重量%(実施例28)、または剥離分割型複合繊維72重量%、バインダー繊維28重量%(実施例29)に変更したこと以外は、実施例1に従い実施した。
Examples 28 and 29
The fiber composition at the time of papermaking was changed to 95% by weight of the peeling split type composite fiber and 5% by weight of the binder fiber (Example 28), or 72% by weight of the peeling split type composite fiber and 28% by weight of the binder fiber (Example 29). Other than that, it was carried out according to Example 1.
実施例28の湿式不織布は、厚みが0.32mm、平均ポアサイズが12.6μmであり、ポアサイズ15.0μm以上の分布頻度は17.9%であった。帯電時の捕集効率が82%、除電後捕集効率が42%、圧力損失が38Paと捕集効率および低圧損性に優れたものであった。 The wet non-woven fabric of Example 28 had a thickness of 0.32 mm, an average pore size of 12.6 μm, and a distribution frequency of a pore size of 15.0 μm or more was 17.9%. The collection efficiency during charging was 82%, the collection efficiency after static elimination was 42%, and the pressure loss was 38 Pa, which were excellent in collection efficiency and low pressure loss.
実施例29の湿式不織布は、厚みが0.21mm、平均ポアサイズが10.6μmであり、ポアサイズ15.0μm以上の分布頻度は11.3%であった。帯電時の捕集効率が93%、除電後捕集効率が52%と捕集効率に優れたものであった。圧力損失は65Paと低圧損性が良好なものであった。 The wet nonwoven fabric of Example 29 had a thickness of 0.21 mm, an average pore size of 10.6 μm, and a distribution frequency of a pore size of 15.0 μm or more was 11.3%. The collection efficiency at the time of charging was 93%, and the collection efficiency after static elimination was 52%, which were excellent in the collection efficiency. The pressure loss was 65 Pa, which was good for low pressure loss.
実施例30および31
抄紙時の白水供給量を調整して、湿式不織布の目付を20g/m2(実施例30)、100g/m2(実施例31)に変更したこと以外は、実施例1に従い実施した。
Examples 30 and 31
The procedure was carried out according to Example 1 except that the basis weight of the wet nonwoven fabric was changed to 20 g / m 2 (Example 30) and 100 g / m 2 (Example 31) by adjusting the amount of white water supplied at the time of papermaking.
実施例30の湿式不織布は、厚みが0.17mm、平均ポアサイズが30.7μmであり、ポアサイズ15.0μm以上の分布頻度は93.3%であった。帯電時の捕集効率が58%、除電後捕集効率が26%と十分な捕集効率を示した。圧力損失は18Paと低圧損性に優れたものであった。 The wet nonwoven fabric of Example 30 had a thickness of 0.17 mm, an average pore size of 30.7 μm, and a distribution frequency of a pore size of 15.0 μm or more was 93.3%. The collection efficiency during charging was 58%, and the collection efficiency after static elimination was 26%, showing sufficient collection efficiency. The pressure loss was 18 Pa, which was excellent in low pressure loss.
実施例31の湿式不織布は、厚みが0.46mm、平均ポアサイズが8.2μmであり、ポアサイズ15.0μm以上の分布頻度は10.3%であった。帯電時の捕集効率が99%、除電後捕集効率が65%と捕集効率に優れたものであった。圧力損失は87Paと十分な低圧損性を示すものであった。 The wet nonwoven fabric of Example 31 had a thickness of 0.46 mm, an average pore size of 8.2 μm, and a distribution frequency of a pore size of 15.0 μm or more was 10.3%. The collection efficiency at the time of charging was 99%, and the collection efficiency after static elimination was 65%, which were excellent in the collection efficiency. The pressure loss was 87 Pa, which was a sufficient low pressure loss.
実施例32
剥離分割型複合繊維における分割成分をPBT、芯成分をPPに変更したこと以外は、実施例1に従い実施した。
Example 32
It was carried out according to Example 1 except that the split component in the peel-split type composite fiber was changed to PBT and the core component was changed to PP.
得られた湿式不織布は、厚みが0.28mm、平均ポアサイズが13.1μmであり、ポアサイズ15.0μm以上の分布頻度は20.5%であった。帯電時の捕集効率が96%、除電後捕集効率が50%、圧力損失が45Paと捕集効率および低圧損性に優れたものであった。 The obtained wet nonwoven fabric had a thickness of 0.28 mm, an average pore size of 13.1 μm, and a distribution frequency of a pore size of 15.0 μm or more was 20.5%. The collection efficiency during charging was 96%, the collection efficiency after static elimination was 50%, and the pressure loss was 45 Pa, which were excellent in collection efficiency and low pressure loss.
実施例33
芯成分をポリエチレン(PE)樹脂ULT-ZEX20100J(プライムポリマー社製)とした剥離分割型複合繊維を作製して、抄紙したこと以外は、実施例1に従い実施した。
得られた湿式不織布は、厚みが0.28mm、平均ポアサイズが13.2μmであり、ポアサイズ15.0μm以上の分布頻度は21.3%であった。帯電時の捕集効率が99%、除電後捕集効率が51%、圧力損失が43Paと捕集効率および低圧損性に優れたものであった。
なお、実施例28~33の湿式不織布はいずれも、荷電後のトナー粒子付着試験の結果、エレクトレット化されていると判定した。
Example 33
A peeling split type composite fiber having a core component of polyethylene (PE) resin ULT-ZEX20100J (manufactured by Prime Polymer Co., Ltd.) was prepared, and the process was carried out according to Example 1 except that papermaking was performed.
The obtained wet nonwoven fabric had a thickness of 0.28 mm, an average pore size of 13.2 μm, and a distribution frequency of a pore size of 15.0 μm or more was 21.3%. The collection efficiency during charging was 99%, the collection efficiency after static elimination was 51%, and the pressure loss was 43 Pa, which were excellent in collection efficiency and low pressure loss.
As a result of the toner particle adhesion test after charging, it was determined that all of the wet nonwoven fabrics of Examples 28 to 33 were electretized.
本発明の湿式不織布により、長期的に高捕集効率と低圧力損失を両立するエレクトレット化濾材が得られ、住宅、病院、オフィス等で使用される空気清浄機用、エアコン用、ビル空調用、産業クリーンルーム用および自動車や列車等の車室用等のフィルター濾材、サージカルマスク、フェイスマスクおよび防塵マスクとして有用である。 The wet non-woven fabric of the present invention provides an electretized filter medium that achieves both high collection efficiency and low pressure loss over the long term, and is used for air purifiers, air conditioners, building air conditioners, etc. used in houses, hospitals, offices, etc. It is useful as a filter filter medium for industrial clean rooms and for passenger compartments of automobiles and trains, surgical masks, face masks and dustproof masks.
1 短繊維A(スリットを有する繊維)
2 短繊維B(極細繊維)
3 短繊維C(異形断面繊維)
4 熱融着したバインダー繊維
5 剥離分割型複合繊維の断面における芯部分(剥離分割後の短繊維Aに相当)
6 剥離分割型複合繊維の断面における分割部分(剥離分割後の短繊維Bに相当)
7 剥離分割型複合繊維の断面における分割部分(剥離分割後の短繊維Cに相当)
8 異形断面繊維の断面における外接円
9 異形断面繊維の断面
10異形断面繊維の断面における内接円
1 Staple A (fiber with slit)
2 Staple B (ultrafine fiber)
3 Staple C (deformed cross-section fiber)
4 Heat-sealed
6 Split portion in the cross section of the peel-off split type composite fiber (corresponding to the short fiber B after peel-splitting)
7 Divided portion in the cross section of the peeling split type composite fiber (corresponding to the short fiber C after peeling split)
8 Circumscribed circle in cross section of deformed
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018098696A JP7047593B2 (en) | 2018-05-23 | 2018-05-23 | Wet non-woven fabric |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018098696A JP7047593B2 (en) | 2018-05-23 | 2018-05-23 | Wet non-woven fabric |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019203216A JP2019203216A (en) | 2019-11-28 |
JP7047593B2 true JP7047593B2 (en) | 2022-04-05 |
Family
ID=68726260
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018098696A Active JP7047593B2 (en) | 2018-05-23 | 2018-05-23 | Wet non-woven fabric |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7047593B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022158544A1 (en) | 2021-01-22 | 2022-07-28 | 東レ株式会社 | Wet-laid nonwoven fabric sheet |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000053831A1 (en) | 1999-03-08 | 2000-09-14 | Chisso Corporation | Split type conjugate fiber, method for producing the same and fiber formed article using the same |
JP2009000608A (en) | 2007-06-20 | 2009-01-08 | Toyota Boshoku Corp | Filter medium for filter, filter for filtration of fluid and oil filter for engine |
JP2010528194A (en) | 2007-05-24 | 2010-08-19 | Esファイバービジョンズ株式会社 | Split type composite fiber, aggregate thereof, and fiber molded body using the split type composite fiber |
WO2016104784A1 (en) | 2014-12-26 | 2016-06-30 | 株式会社クラレ | Filter fiber, filter, and water treatment method |
JP2016176173A (en) | 2015-03-18 | 2016-10-06 | 東レ株式会社 | Ultrafine fiber sheet |
JP2017131890A (en) | 2017-04-19 | 2017-08-03 | ダイワボウホールディングス株式会社 | Electrostatic filter |
JP2018100459A (en) | 2016-12-20 | 2018-06-28 | 東レ株式会社 | Split type composite fiber |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU525860B2 (en) * | 1978-03-03 | 1982-12-02 | Akzo N.V. | Fibre structures of split multicomponent fibres |
JP3660055B2 (en) * | 1996-05-20 | 2005-06-15 | 大和紡績株式会社 | Cartridge filter and manufacturing method thereof |
-
2018
- 2018-05-23 JP JP2018098696A patent/JP7047593B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000053831A1 (en) | 1999-03-08 | 2000-09-14 | Chisso Corporation | Split type conjugate fiber, method for producing the same and fiber formed article using the same |
JP2010528194A (en) | 2007-05-24 | 2010-08-19 | Esファイバービジョンズ株式会社 | Split type composite fiber, aggregate thereof, and fiber molded body using the split type composite fiber |
JP2009000608A (en) | 2007-06-20 | 2009-01-08 | Toyota Boshoku Corp | Filter medium for filter, filter for filtration of fluid and oil filter for engine |
WO2016104784A1 (en) | 2014-12-26 | 2016-06-30 | 株式会社クラレ | Filter fiber, filter, and water treatment method |
JP2016176173A (en) | 2015-03-18 | 2016-10-06 | 東レ株式会社 | Ultrafine fiber sheet |
JP2018100459A (en) | 2016-12-20 | 2018-06-28 | 東レ株式会社 | Split type composite fiber |
JP2017131890A (en) | 2017-04-19 | 2017-08-03 | ダイワボウホールディングス株式会社 | Electrostatic filter |
Also Published As
Publication number | Publication date |
---|---|
JP2019203216A (en) | 2019-11-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8118902B2 (en) | Filtering medium and filter unit | |
EP2987544B1 (en) | Filter material for air filter, method for manufacturing same, and air filter provided with same | |
US7691168B2 (en) | Highly charged, charge stable nanofiber web | |
US20030203696A1 (en) | High efficiency ashrae filter media | |
AU2007356885B2 (en) | Highly charged, charge stable nanofiber web | |
JP2010234285A (en) | Filter medium for air filter | |
KR20010073090A (en) | High efficiency synthetic filter medium | |
JP2008043885A (en) | Filter element, its manufacturing method, and method of application | |
JP2013034941A (en) | Oil proof filter | |
JP2015183327A (en) | Melt-blown nonwoven fabric and composite filter medium | |
JP5504779B2 (en) | Electret filter medium and method for producing the same | |
JP6888242B2 (en) | Extra fine fiber sheet | |
JP2017113670A (en) | Filter medium for air filter and air filter | |
JP7047593B2 (en) | Wet non-woven fabric | |
JP5239466B2 (en) | Nonwoven fabric for filter and filter using the same | |
JP2012170914A (en) | Electret filter medium | |
JP6627525B2 (en) | Mixed non-woven fabric | |
EP4079392A1 (en) | High burst strength wet-laid nonwoven filtration media and processes for producing same | |
JP7567447B2 (en) | Meltblown nonwoven fabrics and air filters | |
JP2019166513A (en) | Dust collection deodorizing filter material and dust collection deodorizing filter | |
CN110856780A (en) | Air filter medium and air filter | |
JP6427922B2 (en) | Blended nonwoven fabric | |
JP2003220310A (en) | Electret filter medium and method for producing the same | |
JP2018071018A (en) | Electret fiber sheet | |
JP2024141431A (en) | Nonwoven fabric and its manufacturing method, filter unit, and air purifier |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210409 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220117 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220222 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220307 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 7047593 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |