[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7042903B2 - 櫛状シフト式スキューミラー - Google Patents

櫛状シフト式スキューミラー Download PDF

Info

Publication number
JP7042903B2
JP7042903B2 JP2020518776A JP2020518776A JP7042903B2 JP 7042903 B2 JP7042903 B2 JP 7042903B2 JP 2020518776 A JP2020518776 A JP 2020518776A JP 2020518776 A JP2020518776 A JP 2020518776A JP 7042903 B2 JP7042903 B2 JP 7042903B2
Authority
JP
Japan
Prior art keywords
holograms
lattice
light
grid
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020518776A
Other languages
English (en)
Other versions
JP2020536280A (ja
Inventor
アダム アーネス,
マーク, アール. アイレス,
ジョナサン ファイファー,
フリソ シュロッタウ,
ケネス, イー. アンダーソン,
Original Assignee
アコニア ホログラフィックス、エルエルシー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アコニア ホログラフィックス、エルエルシー filed Critical アコニア ホログラフィックス、エルエルシー
Publication of JP2020536280A publication Critical patent/JP2020536280A/ja
Application granted granted Critical
Publication of JP7042903B2 publication Critical patent/JP7042903B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/32Holograms used as optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1814Diffraction gratings structurally combined with one or more further optical elements, e.g. lenses, mirrors, prisms or other diffraction gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1814Diffraction gratings structurally combined with one or more further optical elements, e.g. lenses, mirrors, prisms or other diffraction gratings
    • G02B5/1819Plural gratings positioned on the same surface, e.g. array of gratings
    • G02B5/1823Plural gratings positioned on the same surface, e.g. array of gratings in an overlapping or superposed manner
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1861Reflection gratings characterised by their structure, e.g. step profile, contours of substrate or grooves, pitch variations, materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/26Processes or apparatus specially adapted to produce multiple sub- holograms or to obtain images from them, e.g. multicolour technique
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/26Processes or apparatus specially adapted to produce multiple sub- holograms or to obtain images from them, e.g. multicolour technique
    • G03H1/2645Multiplexing processes, e.g. aperture, shift, or wavefront multiplexing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/26Processes or apparatus specially adapted to produce multiple sub- holograms or to obtain images from them, e.g. multicolour technique
    • G03H1/28Processes or apparatus specially adapted to produce multiple sub- holograms or to obtain images from them, e.g. multicolour technique superimposed holograms only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • G02B2027/0174Head mounted characterised by optical features holographic
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/26Processes or apparatus specially adapted to produce multiple sub- holograms or to obtain images from them, e.g. multicolour technique
    • G03H2001/2605Arrangement of the sub-holograms, e.g. partial overlapping

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Holo Graphy (AREA)

Description

従来の誘電体ミラーは、電気的誘電率が互いに異なる材料の層で表面(典型的にはガラス)をコーティングすることによって製造される。材料の層は、典型的には、層境界からのフレネル反射が強めあう強化をして、大きな純反射率をもたらすように配置される。比較的広範な指定範囲の波長及び入射角にわたってこの条件が取得することを保証することにより、広帯域の誘電体ミラーを設計することができる。しかしながら、層が表面に堆積されるので、誘電体ミラーの反射軸は面法線と必然的に一致する(すなわち、反射軸はミラー表面に対して垂直である)。反射軸に対するこの制約のために、いくつかのデバイスでは、誘電体ミラーは最適に及ばない構成で配設される。同様に、反射軸が面法線に制約されているために、目的によっては誘電体ミラーが全く不十分なものとなる。その上に、ガラス誘電体ミラーは比較的重くなりがちで、比較的軽量の反射部品を必要する応用例向けには最適に及ばないか又は不適当である。
反対に、既存の格子構造は、格子構造が存在する媒体の面法線と異なる反射軸に関する光を反射することができる。しかしながら、所与の入射角に対して、既存の格子構造の反射角は、典型的には入射光の波長とともに共変する。したがって、光を反射するために従来の格子構造を用いることにより、反射軸が面法線と一致するという従来のミラーに内在する制約が回避される。しかしながら、実質的に一定の反射軸が必要な場合、既存の格子構造は、所与の入射角に対して、実質的に単一の波長(又は非常に狭い範囲の波長)に限定される。同様に、特定の波長の光を一定の反射軸を中心にして反射するために、従来の格子構造は、単一の入射角(又は非常に狭い入射角範囲)に限定される。
したがって、面法線に制約されない反射軸を中心にして光を反射し、所与の入射角に関する反射角が入射角範囲にわたって一定である比較的単純なデバイスに対する要求は、反射格子構造又は従来のミラーのいずれかを備える現在利用可能な反射デバイスによっては満足されない。したがって、そのような反射デバイスの必要性が存在し、かかる必要性はヘッドマウントディスプレイデバイスにおいて喫緊のものである。
記述された特徴は一般に、光を回折させる1つ以上の改良された方法、システム、又はデバイス、及び格子構造を備える光学回折デバイスに関する。方法、システム、又はデバイスは、櫛状シフト式スキューミラーを用い得る。
いくつかの例では、光学デバイスが、格子媒体と、格子媒体の第1の領域にあるホログラムの第1のセットと、格子媒体の第2の領域にあるホログラムの第2のセットと、を含み得る。第1のセット内のホログラムのそれぞれは、第1のセット内の他のホログラムのそれぞれに少なくとも部分的に重なり得る。第1のセット内のホログラムのそれぞれは、格子周波数の第1のセットからのそれぞれ異なる格子周波数を有し得る。第2内のホログラムのそれぞれは、第2のセット内の他のホログラムのそれぞれに少なくとも部分的に重なり得る。第2のセット内のホログラムのそれぞれは、格子周波数の第2のセットからのそれぞれ異なる格子周波数を有し得る。格子周波数の第2のセットは、格子周波数の第1のセット内の格子周波数間の近接周波数ギャップ内に位置し得る。
いくつかの例では、光学システムが、櫛状シフト式スキューミラーを使用して瞳孔等化を実施し得る。例えば、光学システムは、第1及び第2の領域を有する格子媒体を含み得、第2の領域は、第1及び第2のサブ領域を有する。ホログラムの第1のセットが、第1の領域内に形成され得、そこでは、ホログラムの第1のセットは、入力光の第1の部分を第1の方向に回折させるように、かつ入力光の第2の部分を第2の領域に通過させるように構成されている。ホログラムの第2のセットが、第1のサブ領域内に形成され得る。ホログラムの第3のセットが、第2のサブ領域内に形成され得る。ホログラムの第2及び第3のセットは、入力光の第2の部分を、第1の方向とは異なる第2の方向に回折させるように構成されていてもよい。ホログラムの第3のセットは、ホログラムの第2のセットに対して櫛状にシフトされ得る。
いくつかの例では、ヘッドマウントディスプレイデバイスが、第1及び第2の基材と、第1の基材と第2の基材との間の格子媒体と、を含み得る。格子媒体は、重なり合わない第1及び第2の領域を有し得る。同位置にある第1及び第2のホログラムが、第1の領域内に形成され得る。第1のホログラムは、第1の格子周波数を有し得、第2のホログラムは、第1の格子周波数から近接周波数ギャップによって隔てられた第2の格子周波数を有し得る。同位置にある第3及び第4のホログラムが、第2の領域内に形成され得る。第3のホログラムは、近接周波数ギャップ内の第3の格子周波数を有し得る。
以下の図面を参照することにより、本開示の実装形態の特質及び利点の更なる理解が実現され得る。添付図では、類似のコンポーネント又は機構は同一の参照符号を有し得る。更に、同一のタイプの種々のコンポーネントは、参照符号にダッシュが続くことにより、また、類似のコンポーネント間を識別する第2の符号によって識別されることがある。明細書において第1の参照符号だけが使用されている場合には、その説明は、第2の参照符号に関係なく同一の第1の参照符号を有する類似のコンポーネントのうちの任意のものに当てはまる。
いくつかの実施形態による、本明細書に含まれる原理が実施され得る例示的なヘッドマウントディスプレイ(HMD)の図である。
いくつかの実施形態による、実空間における例示的なスキューミラーの反射特性を示す図である。
いくつかの実施形態による、k空間における例示的なスキューミラーの図である。
いくつかの実施形態による、スキューミラー射出瞳孔等化を組み込んだ例示的な光学システムの図である。
いくつかの実施形態によるスキューミラー瞳孔等化に対応する例示的なプロットである。
いくつかの実施形態によるスキューミラー瞳孔等化に対応する例示的な光学構造の斜視図である。
いくつかの実施形態によるスキューミラー瞳孔等化に対応する例示的な光学構造の平面図である。 いくつかの実施形態によるスキューミラー瞳孔等化に対応する例示的な光学構造の平面図である。
いくつかの実施形態による、複数の格子構造を有する例示的な光学部品の図である。
いくつかの実施形態による、スキューミラーを製造するために使用できる例示的なシステムの図である。
いくつかの実施形態による、近接周波数ギャップを呈するホログラムのセットに関する、例示的なk空間及び回折光応答のプロットを示す。
いくつかの実施形態による、例示的な櫛状シフト式スキューミラーが、ホログラムの櫛状にシフトされたセットを格子媒体の異なる領域内にどのように含み得るかを示す。
いくつかの実施形態による、スキューミラーの応答を測定するために使用され得る例示的な測定システムの図である。
いくつかの実施形態による、櫛状シフトを伴わないスキューミラーに関する、回転角の関数としての強度のプロットである。
いくつかの実施形態による、格子媒体の異なる領域内に櫛状にシフトされたホログラムのセットを有する例示的な櫛状シフト式スキューミラーに関する、回転角の関数としての強度のプロットである。
いくつかの実施形態による、櫛状シフトを伴わないスキューミラー及び例示的な櫛状シフト式スキューミラーに関する、射出瞳孔位置の関数としての回折効率及び回折パワーのプロットを示す。
いくつかの実施形態による、瞳孔等化を実施する出力カプラにおいて、例示的な櫛状シフト式スキューミラーがどのように実施され得るかを示す図である。
いくつかの実施形態による、入力カプラにおいて、例示的な櫛状シフト式スキューミラーがどのように実施され得るかを示す図である。
光学ヘッドマウントディスプレイ(head-mounted display、HMD)は、投影画像を反射する能力を有し、またユーザが拡張現実感を経験することを可能にする、ウェアラブルデバイスである。ヘッドマウントディスプレイは典型的に、「仮想」画像を作り出すニアアイ光学部品を伴う。過去には、HMDは、画質を低下させ、重量及びサイズを増加させる、様々な技術的制限に対処してきた。過去の実装形態は、光の反射、屈折、又は回折のための既存の光学部品を含んでいるが、設計が大きくなる傾向がある。加えて、既存のミラー及び格子構造には生来の制約がある。例えば、既存のミラーは、面法線と必ず一致する反射軸を有し得る。既存のミラーの反射軸は、最適に及ばないミラーの向き又は性能をもたらし得る。また、既存の格子構造は、入射角及び/又は波長によって、受け入れがたいほど共変する複数の反射軸を含み得る。
それゆえに、光を反射するデバイスは、所与の入射角に対する反射角が複数の波長において一定である光を、面法線に拘束されない反射軸を中心として反射する機能を含み得る。このデバイスの実施形態は、所与の波長の入射光に対して、入射角の範囲にわたって実質的に一定の反射軸を有し得(すなわち反射軸の角度の変化が1.0度未満である反射軸)、この現象は様々な波長の入射光に対して観測され得る。いくつかの実施形態では、反射軸は、複数の入射角のセット及び複数の波長のセットのすべての組み合わせについて実質的に一定のままである。本開示の態様は、当初は、スキューミラーから所定距離にあるアイボックスの方へ光を反射する装置のコンテキストにおいて説明される。具体的な例は、格子媒体を含む装置について説明される。格子媒体は、1つ以上の格子構造を含み得る。格子構造は、格子媒体の面法線からオフセットされた反射軸に関して、特定の複数の入射角において、特定の波長の光を反射するように構成されていてもよい。本開示の態様は、櫛状シフト式スキューミラーに関連する装置の図及びシステムの図を参照して更に示され説明される。
この説明は例を提供するものであり、本明細書で説明された原理の実装形態の範囲、適用可能性又は構成を限定するようには意図されていない。むしろ、次の説明は、当該技術分野に精通している者に、本明細書で説明された原理の実施形態の実施を可能にする説明を提供するはずである。要素の機能及び機構において様々な変更形態が作製され得る。
したがって、様々な実装形態が、必要に応じて、様々なプロシージャ又は部品を省略するか、代用するか、又は追加する可能性がある。例えば、方法は、説明されたのと異なる順番で行われてよく、種々のステップが追加されるか、省略されるか、又は組み合わされてよいことを理解されたい。また、特定の実装形態に関して説明された態様及び要素は、種々の他の実装形態では組み合わされてよい。以下のシステム、方法、デバイス、及びソフトウェアは、個々に、又は総体として、より大きなシステムの部品でよく、ここにおいて、それらの適用に対して他のプロシージャが優先してよく、又は変更してよいことも理解されたい。
図1は、本明細書に含まれる原理が実施され得るヘッドマウントディスプレイ(HMD)100の図である。HMD100は、ニアアイディスプレイ(near-eye display、NED)105がユーザの目の前に固定され得る、アイウエア又はヘッドウェアを含み得る。NED105は、HMD100のレンズ組立体の内部に配置されるか又は組み込まれる、回折要素部分を含み得る。いくつかの例では、回折要素部分は、スキューミラー110で構成されていてもよいホログラフィック光学要素(holographic optical element、HOE)である。スキューミラー110に関して座標(x軸、y軸、及びz軸)が与えられている。HMD100は、レンズ組立体に動作可能に結合される光源又は投光器115を含み得る。いくつかの例では、光源又は投光器115は、導波路構成のレンズ組立体に動作可能に結合され得る。いくつかの例では、光源又は投光器115は、自由空間構成のレンズ組立体に動作可能に結合され得る。
スキューミラー110は、体積ホログラム又は他の格子構造が内部にある格子媒体を含み得る、反射デバイスである。スキューミラー110は、本明細書では体積ホログラフィック格子構造110と称される場合がある。スキューミラー110は、ガラスカバー又はガラス基材などの追加の層を含んでいてもよい。追加の層は、汚染、湿気、酸素、反応性化学種、被害などから格子媒体を保護するのに役立ち得る。追加の層は、格子媒体に対して屈折率がマッチされてもよい。格子媒体は、格子構造を内蔵することで、反射軸と称される軸を中心として光を回折させ得る物理的性質を有し、所与の入射角で格子媒体に入射する光の複数の波長に関する回折角(今後、反射角と称される)の変化は1°未満である。一部の場合には、回折角は、複数の波長及び/又は入射角に関して一定でもある。一部の場合には、格子構造は1つ以上のホログラムによって形成される。1つ以上のホログラムは、いくつかの実装形態では体積位相ホログラムであり得る。格子構造の種々の実装形態において、他のタイプのホログラムも使用され得る。
同様に、実装形態は典型的に、所与の波長の入射光に関して、入射角の範囲にわたって実質的に一定の反射軸を有し(すなわち反射軸の角度の変化が1°未満である反射軸)、この現象は種々の波長の入射光に対して観測され得る。いくつかの実装形態では、反射軸は、1組の複数の入射角及び1組の複数の波長のすべての組み合わせについて実質的に一定のままである。
ホログラムは干渉パターンの記録でよく、記録に使用された光からの強度情報と位相情報の両方を含み得る。この情報は、感光性媒体に記録され得、同媒体は、干渉パターンを、初期の干渉パターンの強度に従って以後の入射光ビームの振幅又は位相を変化させる光学要素に転換する。格子媒体は、フォトポリマー、光屈折結晶、ニクロム酸化ゼラチン、光-熱-屈折性ガラス、分散ハロゲン化銀粒子含有膜、又は入射干渉パターンに反応して同パターンを記録する能力を有する他の材料を含み得る。一部の場合には、記録されたホログラムを読み取り、かつ/又は記録するためにコヒーレントなレーザ光が使用され得る。
一部の場合には、ホログラムは、記録ビームとして知られている2つのレーザビームを使用して記録され得る。一部の場合には、記録ビームは、格子媒体に入射する角度を除けば互いに類似している単色のコリメートされた平面波ビームであり得る。いくつかの実装形態では、記録ビームは、互いに異なる振幅分布又は位相分布を有し得る。記録ビームは、記録媒体の内部で交差するように導かれ得る。記録ビームが交差する場所で、それらは、記録媒体と相互作用し、同媒体を干渉パターンの各点の強度に従って変化させる。これにより、記録媒体内に様々な光学特性のパターンが作り出される。例えば、一部の実施形態では、記録媒体の内部で屈折率が変化し得る。一部の場合には、結果として生じる干渉パターンは、(例えばマスクなどを用いて)格子媒体に記録されたそのような格子構造のすべてにわたって均一な空間分布になり得る。一部の場合には、波長又は入射角を変化させて記録媒体の内部で異なる干渉パターンを作成することにより、単一の記録媒体の内部で複数の格子構造が重ね合わされてよい。一部の場合には、1つ以上のホログラムが媒体に記録された後、媒体は、記録後の光処理において、光を用いて処理されてよい。記録媒体の感光性を大幅に低下させるか又は無くすように、光開始剤又は光活性モノマーなどの残存する反応性媒体成分を実質的に消尽するために、記録後の光処理は非コヒーレント性の高い光を用いて行われ得る。ホログラム又は他の格子構造を記録媒体に記録した後、媒体は、典型的には格子媒体と称される。格子媒体は典型的に、非感光性にされている。
いくつかの実装形態では、格子構造は、記録ビームと称される複数の光ビーム間の干渉によって生じたホログラムを含む。典型的には、必ずしもそうではないが、格子構造は複数のホログラムを含む。複数のホログラムは、複数のホログラムの間で格子媒体に入射する角度が変化する(すなわち角度多重化)記録ビーム、及び/又は複数のホログラムの間で波長が変化する(すなわち波長多重化)記録ビームを使用して記録され得る。いくつかの実装形態では、格子構造は、ホログラムが記録される最中に格子媒体への入射角が変化する2つの記録ビーム、及び/又はホログラムが記録される最中に波長が変化する2つの記録ビームを使用して記録されたホログラムを含む。実装形態は、反射軸が、格子媒体の面法線と、少なくとも1.0度、2.0度、4.0度、又は9.0度だけ異なるデバイスを更に含む。
投光器115は、レンズ組立体に画像を含んだ光を供給し得る。いくつかの例では、レンズ組立体及びスキューミラー110は、x-y面に関して実質的に平坦であり得る。しかし、レンズ組立体は、特定の実装形態ではx-y面に関して若干の曲率を有し得る。スキューミラー110からの反射光120は、スキューミラー110からz軸に沿って所定距離にあるアイボックスの方へ反射され得る。いくつかの例では、スキューミラー110は、導波路の内部に少なくとも部分的に包含されてよい。導波路は、全内部反射による入射光130をスキューミラー110の方へ伝搬させてよい。いくつかの例では、入射光130は、自由空間によってスキューミラー110の方へ伝搬してよい。スキューミラー110は、フォトポリマーで作製された格子媒体を含み得る。スキューミラー110は、格子媒体の内部に1つ以上の格子構造も含み得る。各格子構造は、互いに重なり合ってよい1つ以上の正弦曲線の体積格子を含み得る。格子構造は、格子媒体の面法線からオフセットされた反射軸に関して、特定の複数の入射角において、特定の波長の光を反射するように構成されていてもよい。格子媒体内の各格子構造は、導波路から所定距離にあるアイボックスの射出瞳孔の方へ光の一部分を反射するように構成されていてもよい。
各格子構造は、別の格子構造とは異なる様式で光を反射し得る。例えば、第1の格子構造は、第1の入射角における第1の波長の入射光を反射してもよく、第2の格子構造は、第1の入射角における第2の波長の入射光を反射してもよい(例えば、異なる格子構造を、同じ入射角の入射光に対して異なる波長の光を反射するように構成されていてもよい)。また、第1の格子構造は、第1の入射角における第1の波長の入射光を反射してよく、第2の格子構造は、第2の入射角における第1の波長の入射光を反射してよい(例えば、異なる格子構造は、異なる入射角の入射光に関して同一の波長の光を反射するように構成されていてもよい)。その上、格子構造は、第1の波長及び第1の入射角の第1の入射光を反射してよく、第2の波長及び同一の反射軸に関する第2の入射角における第2の入射光を反射してよい。このように、所与の入射角における入射光に関して特定の波長の光を選択的に反射するために、異なる格子構造を使用することができる。これらの異なる格子構造は、スキューミラー110の格子媒体の内部で重ね合わされ得る。スキューミラー110は、実質的に一定の反射軸を有し得る(例えば、スキューミラー110の各格子構造が、実質的に同一の反射軸を有する)。
いくつかの例では、ヘッドマウントディスプレイデバイスは、画像担持光を供給する光源又は投光器115と、レンズ組立体と、を備え得る。レンズ組立体は、スキューミラー110を含み得る。レンズ組立体は、光源又は投光器115から画像を含んだ光を受光するための光入力部分を備え得る。導波路は、レンズ組立体の内部に配置されて、光入力部分に動作可能に結合され得る。導波路は、少なくとも2つの基材(図示せず)と、少なくとも2つの基材の間に配置された格子媒体と、格子媒体内の第1の格子構造と、格子媒体内の第2の格子構造と、を備え得る。いくつかの例では、導波路が省略されてよく、光源又は投光器115が、自由空間構成のレンズ組立体に動作可能に結合され得る。第1の格子構造は、格子媒体の面法線からずれた第1の格子構造の第1の反射軸を中心として、ある波長の光を反射するように構成されていてもよい。第1の格子構造は、第1の入射角の光を反射するように構成されていてもよい。第2の格子構造は、第1の格子構造に少なくとも部分的に重ならないように構成されていてもよい。第2の格子構造は、第1の格子構造によって反射される光と同じ波長の光を反射するように構成されていてもよい。第2の格子構造は、格子媒体の面法線からずれた第2の格子構造の第2の反射軸を中心として、ある波長の光を反射するように構成されていてもよい。第2の格子構造は、第1の入射角とは異なる第2の入射角の光を反射するように構成されていてもよい。
図2Aは、一例による、現実空間におけるスキューミラー210の反射特性を示す断面図200である。断面図200は、格子媒体の中にホログラム230などの格子構造を含み得る。図2Aでは、格子媒体のための基材又は保護層として働き得る追加の層などの、格子媒体とは別のスキューミラー部品は省略されている。基材又は保護層は、汚染、湿気、酸素、反応性化学種、被害などから格子媒体を保護するのに役立ち得る。瞳孔等化のためのスキューミラーの実装形態は、部分反射でよい。このようにして、瞳孔等化のためのスキューミラーは、アイボックスの方に射出瞳孔を形成するために必要とされる光線を選択的に反射するように構成されていてもよい。瞳孔等化のためのスキューミラーは、反射しても所望の射出瞳孔の方に向かわないエリアに特定の入射角の光線を反射しないように構成されていてもよい。いくつかのスキューミラーの実施形態の実装形態は、結果として得られた格子媒体の比較的広い波長帯域幅及び角度範囲にわたって高い反射率を達成するために、ダイナミックレンジが比較的大きい記録媒体を必要とし得る。対照的に、瞳孔等化のためのスキューミラーが必要とするダイナミックレンジはより小さくてもよく、それによって、各ホログラムをより強くすることができる(例えば、より高い強度及び/又はより長い露光時間で記録される)。より強いホログラムからなるスキューミラーは、より明るい画像を提供するか、又はより暗い投光器によって等しい輝度の画像を提供することを可能にする。
スキューミラー210は、z軸に関して測定された角度を有する反射軸225によって特徴付けられる。z軸はスキューミラー軸205に対して垂直である。スキューミラー210は、z軸に関して測定された内部入射角を有する入射光215で照光される。主反射光220は、スキューミラー210の表面に対して実質的に垂直な内部反射角軸で反射され得る。いくつかの例では、主反射光220は、可視スペクトルの赤色領域、緑色領域、及び青色領域に存在する光の波長に対応し得る。例えば、可視スペクトルの赤色領域、緑色領域、及び青色領域は、赤色波長(例えば610~780nm)の帯域、緑色波長(例えば493~577nm)の帯域、及び青色波長(例えば405~492nm)の帯域を含み得る。他の例では、主反射光220は、可視スペクトル(例えば赤外波長及び紫外波長)の外部に存在する光の波長に対応してよい。
スキューミラー210は、すべてが実質的に同一の反射軸225を共有する複数のホログラム領域を有し得る。しかしながら、これらの複数の領域は、それぞれが、異なる範囲の入射角の光を反射する可能性がある。例えば、スキューミラー210を包含しているHOEのうちの下部の3分の1は、光を上方に、対応するアイボックスの方へ反射する格子構造のサブセットしか包含しなくてよい。次いで、中央の3分の1は、対応するアイボックスの方へ光を直接反射してよい。次いで、上部の3分の1は、光を下方に、対応するアイボックスの方へ反射する格子構造のサブセットを包含している必要がある。
図2Bは、図2Aのスキューミラー210のk空間表現250を示す。空間的に変化する屈折率成分のk空間分布は典型的に、
Figure 0007042903000001
で表される。
Figure 0007042903000002
のk空間分布260は、原点を通過し、反射軸225の角度と等しい、z軸に関して測定された角度を有する。記録用のk球255は、特定の書込み波長に対応するk球である。k空間250は、可視スペクトルの赤色領域、緑色領域、及び青色領域に存在する光の波長に対応する様々なk球を含み得る。
k空間形式は、ホログラフィック記録及び回折を解析するための方法である。k空間では、伝搬する光波及びホログラムは、実空間におけるそれらの分布の3次元フーリエ変換によって表現される。例えば、無限遠にコリメートされた単色の参照ビームは、実空間及びk空間において式(1)で表すことができる。
Figure 0007042903000003
式中、
Figure 0007042903000004
は、すべての
Figure 0007042903000005
3D空間ベクトル位置での光学スカラ場分布であり、その変換
Figure 0007042903000006
は、すべての
Figure 0007042903000007
3D空間周波数ベクトルでの光学スカラ場分布である。Aは場のスカラ複素振幅であり、
Figure 0007042903000008
は波動ベクトルであり、その長さは光波の空間周波数を示し、その方向は伝搬方向を示す。いくつかの実装形態では、すべてのビームが同一波長の光からなり、そのためすべての光波動ベクトルが同一の長さを有する必要があり、すなわち、
Figure 0007042903000009
である。したがって、すべての光伝搬ベクトルが半径
Figure 0007042903000010
の球上にある必要があり、式中、nはホログラムの平均屈折率(「バルク屈折率」)であり、λは光の真空波長である。この構造物はk球として知られている。他の実装形態では、複数の波長の光が、異なるk球上にあって長さが異なる波動ベクトルの重なり合いへと分解され得る。
別の重要なk空間分布にはホログラム自体のk空間分布がある。体積ホログラムは通常、格子媒体の内部での屈折率の空間的変化からなる。屈折率の空間的変化は典型的に
Figure 0007042903000011
と表され、屈折率変調パターンと称することができ、そのk空間分布は典型的に、
Figure 0007042903000012
と表される。第1の記録ビームと第2の記録ビームの間の干渉によって作り出された屈折率変調パターンは典型的に、式(2)に示されるように、記録用干渉パターンの空間強度に比例する。
Figure 0007042903000013
式中、
Figure 0007042903000014
は第1の記録ビーム場の空間分布であり、
Figure 0007042903000015
は第2の記録ビーム場の空間分布である。単項演算子は複素共役を表す。式(2)の最終項
Figure 0007042903000016
は、入射する第2の記録ビームを回折された第1の記録ビームへマッピングする。したがって、結果として次式のようになり得る。
Figure 0007042903000017
式中、
Figure 0007042903000018
は3D相互相関演算子である。つまり、空間領域における1つの光場と別の光場の複素共役との積は、周波数領域における、それぞれのフーリエ変換の相互相関になる。
典型的には、ホログラム230は、実空間では実数値になる屈折率分布を構成する。ホログラム230の
Figure 0007042903000019
のk空間分布の位置はそれぞれ、相互相関演算式
Figure 0007042903000020
から数学的に決定されてもよく、又はベクトル差
Figure 0007042903000021
から幾何学的に決定されてもよく、式中、
Figure 0007042903000022
は、それぞれのホログラム
Figure 0007042903000023
のk空間分布から原点(個別に示されていない)への格子ベクトルである。慣例により、波動ベクトルは小文字「k」で表現され、格子ベクトルは大文字「K」で表現されていることに留意されたい。
[0008]
ホログラム230は、記録されると、回折ビームを生成するためにプローブビームによって照明されてよい。本開示の目的のために、回折ビームはプローブビームの反射と考えることができ、入射光ビーム(例えば画像保持光)と称され得る。プローブビーム及びその反射ビームは、反射軸225によって角度的に二分される(つまり、反射軸に関するプローブビームの入射角は、反射軸に関する反射ビームの反射角と同一の大きさを有する)。回折処理は、記録処理のものに類似の、k空間における1組の数学的演算及び幾何学的演算によって表現され得る。弱い回折限界では、回折ビームの回折光分布は式(4)で与えられる。
Figure 0007042903000024
式中、
Figure 0007042903000025
はそれぞれ、回折ビーム及びプローブビームのk空間分布であり、「」は3D畳み込み演算子である。表記
Figure 0007042903000026
は、前の数式が
Figure 0007042903000027
である場合にのみ評価され、すなわち、結果がk球上にある場合にのみ評価されることを示す。畳み込み
Figure 0007042903000028
は偏光密度分布を表し、プローブビームによって誘起された格子媒体の不均質な電気双極子モーメントの巨視的総計
Figure 0007042903000029
に比例する。
典型的には、プローブビームと記録に使用される記録ビームのうちの1つとが類似しているとき、畳み込みの影響により、記録中に相互相関が反転され、回折ビームは、ホログラムを記録するのに使用される他の記録ビームと実質的に類似することになる。プローブビームと記録に使用される記録ビームとが異なるk空間分布を有するとき、ホログラムは、ホログラムを記録するのに使用されたビームとは実質的に異なる回折ビームを生成する可能性がある。記録ビームは、典型的には互いにコヒーレントであるが、プローブビーム(及び回折ビーム)はそれほど制約されないことにも留意されたい。多波長プローブビームは、それぞれが異なるk球半径の状況で、式(4)に従って、単一波長のビームの重なり合いとして解析され得る。
本明細書ではk空間におけるスキューミラーの特性を説明するときに典型的に用いる、プローブビームという用語は、本明細書では実空間におけるスキューミラー反射特性を説明するときに典型的に用いる、入射光という用語に類似する。同様に、本明細書ではk空間におけるスキューミラーの特性を説明するときに典型的に用いる、回折ビームという用語は、本明細書では実空間におけるスキューミラーの特性を説明するときに典型的に用いる、主反射光という用語に類似する。したがって、実空間におけるスキューミラーの反射特性を説明するとき、ホログラム(又は他の格子構造)によって入射光が主反射光として反射されると明示するのが典型的であるが、ホログラムによってプローブビームが回折されて回折ビームを生成すると明示するのも実質的に同じことである。同様に、k空間におけるスキューミラーの反射特性を説明するとき、ホログラム(又は他の格子構造)によってプローブビームが回折されて回折ビームを生成すると明示するのが典型的であるが、本開示の実装形態のコンテキストでは、格子構造によって入射光が反射されて主反射光を生成すると明示するのも同一の意味を有する。
図3Aは、スキューミラー射出瞳孔等化が組み込まれた光学システム300-aの図を示す。光学システム300-aは、図1のHMD 100などの、HMD、拡張現実(augmented reality、AR)、複合現実(mixed reality、MR)又は仮想現実(virtual reality、VR)の用途で利用され得るが、これらに限定されない。光学システム300-aは、大画面ディスプレイ及び光センサの用途などの種々の光結合用途でも利用され得るが、これらに限定されない。光学システム300-aは、スキューミラー305がアイボックス315などの特定の位置の方へ光を回折できるように選択的結合を採用し、それによって光度効率(例えば画像の明るさ)を改善し得る。これは、アイボックス315において射出瞳孔を生成する有利な効果を有し得る。射出瞳孔は、スキューミラー305から一定の距離にあり得る。射出瞳孔は、内部射出瞳孔に対して光学的効率を高め得る。表現された角度は、格子媒体の面法線に対する内角であり、格子媒体及び/又は基材界面における屈折、並びに基材-空気界面における屈折は、図解の目的で無視されている。光学システム300-aは、頭上の視点から見られており、ユーザの左眼又は右眼のいずれかを表すことができる。説明を容易にするために、光学システム300-aは、ユーザの左目の視点により説明される。
スキューミラー305と格子媒体310の両方は、導波路内に少なくとも部分的に配置され得る。格子媒体310は、基材307(例えば、ガラスカバーなどの保護層)によって少なくとも部分的又は全体的に囲まれ得る。スキューミラー305は、格子媒体310の内部に1つ以上の格子構造を含み得る。格子構造は、入射光を反射し、回折させ、及び/又は分割して、その後も続けて異なる方向に伝搬し得る、ビーム又は波にし得る光学デバイスである。格子をその回折角度応答によって特徴付けてもよい。正弦波格子の場合、回折角度応答は、次式で表現され得る。
Figure 0007042903000030
[0009]
回折角度応答は、入射角Δθの小さな変化に応じた反射角Δθの変化を表現する。対照的に、真のミラーは、次式で表現される角度応答を有する。
Figure 0007042903000031
式(5)及び(6)の角度は、kz軸に関するk空間内にある。
回折角度応答によって実質的に特徴付けられるデバイスは、格子様反射挙動を呈すると言える一方、真のミラー角度応答によって実質的に特徴付けられるデバイスは、ミラー様反射挙動を呈すると言える。格子様反射挙動を呈するデバイスはまた、反射軸がデバイス表面に対して垂直でない限り、入射角とともに変化する反射軸を呈することになり、この場合、cosθ=cosθとなる。したがって、面法線に制約されない反射軸を中心として光を反射する比較的単純なデバイスであって、角度の複数のブラッグ選択性にわたる入射角に対する反射角が、波長の複数のブラッグ選択性にわたる波長において一定である、デバイスに関する要件は、単一の正弦波格子によって満たされない場合がある。当業者に知られているように、光を反射するデバイス(例えば、正弦波格子)は、角度及び波長の両方のブラッグ選択性を呈し得る。
格子媒体310は、フォトポリマー、光屈折結晶、ニクロム酸化ゼラチン、光-熱-屈折性ガラス、分散ハロゲン化銀粒子含有膜、又は入射干渉パターンに反応して同パターンを記録する能力を有する他の材料で構成されていてもよい。格子構造は、限定するものではないが、体積位相ホログラムなどのホログラムで構成されていてもよい。複数のホログラムを格子媒体内部体積内に記録してもよく、こうして、複数のホログラムが格子媒体表面の下方に延びてもよい。したがって、これらのホログラムを体積ホログラムと称することがある。いくつかの実装形態では、複数のホログラムはそれぞれ、複数のホログラムの残りのうちの少なくとも1つ(しかしすべてではない)と少なくとも部分的に空間的に重なる。いくつかの例では、複数のホログラムはそれぞれ、他のすべてのホログラムと少なくとも部分的に空間的に重なっている。いくつかの実施形態では、複数のホログラムのうちのいくつかは、他のホログラムのうちのいくつかと空間的に重なっていなくてもよい。
例えば、空間的に重なるホログラムは、連続した格子媒体において、2つのホログラムが占有する空間又は共有する体積に関して重なる(例えば、空間的に重なる2つのホログラムは、格子媒体310内の同じ空間又は体積の少なくとも一部を共有するか又は一部内に共存する)。このように、第1のホログラムの様々な屈折率特性及び関連する縞模様の少なくとも一部は、格子媒体310内の第2のホログラムの種々の屈折率特性及び関連する縞模様の少なくとも一部と同じ空間又は体積を占有する(及び重なり合っているか又は入り交じっている)。ホログラムが空間的に重ならない例では、2つのホログラムは、隣接する格子媒体内ではどんな方法によっても交差も重なりもしない。例えば、第1のホログラムを、第2のホログラムから離間して配置された格子媒体310の体積部分に配置し得る。いくつかの実施形態では、スキューミラーは、格子媒体310内で空間的に重なるホログラム及び空間的に重ならないホログラムの両方を含んでもよい。
格子媒体310内の各格子構造を、スキューミラー305の反射軸を中心として光を反射するように構成されていてもよい。反射軸は、図2Aに示した反射軸225の一例であってもよい。反射軸は、格子媒体の面法線からずれていてもよい。入射光及びその反射は反射軸によって二分されて、反射軸に対する入射光の内部入射角が反射軸に対する反射光の内部反射角と同じ大きさになっている。すなわち、入射光及びその反射が反射軸について左右対称性を示してもよい。いくつかの実装形態では、格子構造を、複数の入射角と格子媒体の面法線との間の反射角で光を反射するように構成されていてもよい。
格子媒体310内の各格子構造は、特定の複数の入射角における1つ以上の波長の光を反射するように構成されていてもよい(1つ以上の波長は、少なくとも1つの可視赤色光波長、1つの可視青色光波長、及び1つの可視緑色光波長を含み得る)。格子媒体310内の各格子構造は、異なる格子構造に対応する複数の入射角とは異なる複数の入射角の光を反射し得る。格子媒体310内の各格子構造は、複数の正弦波体積格子で構成されていてもよい。
光学システム300-aは、光源又は投光器320(例えば、発光ダイオードによって照光されるマイクロディスプレイ)を示す。光は、入力カプラ340を介してスキューミラー305に進入し得る。入力カプラ340は、プリズム又はプリズム様構造、格子構造、ミラー若しくは反射構造、縁部ファセット若しくは湾曲面、又は他の入力結合技術であり得る。入力カプラ340の屈折率は、入力カプラ340が結合される基材307と屈折率が整合し得る。しかし、いくつかの例では、入力カプラは、光(例えば、画像担持光)をスキューミラーに導くために使用されなくてもよい。光は、可視光の範囲(例えば、可視赤色光、可視青色光、及び可視緑色光)を含み得る。反射光線325をアイボックス315の方へ反射させる場合、入射光330は、格子媒体310の第3の(例えば、右側)領域316の方へ全内部反射によって伝搬しなければならない。しかし、入射光330は、格子媒体310の第3の領域316に到達するために、格子媒体310の第1の(例えば、左側)領域312及び第2の(例えば、中間)領域314を通過しなければならない。例えば、既存の格子構造を格子媒体310内で利用した場合、導波路に進入する一部の光が誤って導かれ(例えば、伝搬光としてアウトカップルされ)、アイボックス315に到達しない無駄な光335を生じさせる可能性がある。しかし、光学システム300-aでは、反射光線325の光(例えば、反射光線325の可視光の各波長の光)とブラッグ整合する少なくともいくつかのホログラムが、スキューミラー305の第1の領域312及び第2の領域314に書き込まれず、選択的な結合によって(例えば、反射光線325の光をアイボックス315以外のエリアの方へ反射することになるホログラムを格子媒体310内に書き込まないことによって)第1の領域312へと減少せずに光を伝搬させることを可能にする。しかし、いくつかの例では、例えば、青色光をアイボックスの方へ上向きに導くように意図された第1の領域内の格子も、アイボックスから外れた右の方へ緑色を導く場合には、選択的結合を用いるスキューミラーによっても、いくらかの無駄な光が生じる場合がある。光学システム300-aの実施形態は、スキューミラー305が光をアイボックス315の方へ反射するように構成されているため、光を反射する等化でない場合を改善する。
一部の場合には、体積ホログラフィック格子は、互いに異なる角度及び波長の組み合わせにブラッグ整合するホログラフィック構造を含み得る。つまり、格子媒体内で、互いに異なるホログラフィック格子構造に基づいて、互いに異なる波長の光が同じ反射軸に沿って反射される。反射光線325としての反射光線に対応して格子媒体310の領域に関して同様に位置するホログラムは、反射光線がアイボックス315に入射するが、他のエリア(例えば、x軸に沿ってアイボックス315に長手方向で近接するエリア)に入射しないように、同様に省略されてもよく、又は含まれてもよい。
したがって、本開示の例によれば、入射光330は、格子媒体310の第3の領域316に少なくとも部分的に配置され、入射光330を反射光線325としてアイボックス315に向けて反射することになる、ホログラムによって選択的に反射され得る。つまり、入射光330は、入射光330に対応する入射角を有する光線に関して、第3の領域316で選択的に反射され得る。同様に、入射光332は、格子媒体310の第2の領域314に少なくとも部分的に配置され、入射光332を反射光線327としてアイボックス315の方へ反射することになる、ホログラムによって選択的に反射され得る。つまり、入射光332は、入射光332に対応する入射角を有する光線に関して、第2の領域314で選択的に反射され得る。いくつかの例では、入射光334は、格子媒体310の第1の領域312に少なくとも部分的に配置され、入射光334を反射光線329としてアイボックス315の方へ反射することになる、ホログラムによって選択的に反射され得る。つまり、入射光334は、入射光334に対応する入射角を有する光に関して、第1の領域312で選択的に反射され得る。
光学システム300-aは、格子媒体310のほぼ中心にある平面で光を反射するように示されている。しかし、当業者は、光が典型的に、特定の平面ではなく格子構造の全体にわたって反射されることを認識する。加えて、アイボックス315に導かれることが意図されている各反射光線に関して、格子媒体310の1つ以上の格子構造内の1つ以上のホログラムを、種々の波長の可視赤色光、種々の波長の可視青色光、及び種々の波長の可視緑色光に関して書き込んでもよい。
光学システム300-aの態様によれば、スキューミラー305による射出瞳孔等化及びその変形は、所望のレベルの性能を達成するために必要とされる格子媒体のダイナミックレンジを低減させ得るか、又は得られる回折効率を高め得る。スキューミラー305から反射された光は、アイボックス315(又は種々の実施態様によれば別の特定の位置)でのみ所望され得る。線分様k空間屈折率分布の空間的分布は、アイボックス315の方のみへの反射又はほとんどアイボックスの方への反射を生じさせるように低減されてもよい。いくつかの例では、単一の記録露光中にホログラムを書き込むための、格子媒体310上の照射プロファイルは、以下のように実質的に説明され得る。
Figure 0007042903000032
式中、dEBは、アイボックス315のサイズであり、dERは、アイボックス315から格子媒体310内のホログラム及び格子構造までの距離であり、θは、反射ビームがz軸となす角度である。したがって、いくつかの例では、格子媒体310内への格子構造の形成は、アイボックス315のサイズ(例えば、長さ又は幅)に少なくとも部分的に基づき得る。いくつかの例では、格子媒体310内への格子構造の形成は、アイボックス315から格子構造までの距離に少なくとも部分的に基づき得る。
図3Bは、本開示の態様によるスキューミラー瞳孔等化に対応するプロットである。プロット300-bは、軸345にホログラムの数を有し、軸350にHOEの位置(すなわち、瞳孔距離)を有する。プロット300-bのプロット線348は、30°の視野を有する厚さ200μmのスキューミラーカプラに関する最大ホログラム多重化密度の低減の例を示す。プロット300-bのプロット線348はまた、HOEに沿った各長手方向位置で必要とされ得る、重なり合うホログラムの総数を示す。本明細書に記載されるように、最大ホログラム多重化密度の領域に記録される必要があり得る、(例えば、四半値全幅(full width at quarter maximum、FWQM)規則に従う)等価数のホログラムが、著しい度合で低減され得る。
連続するホログラムは、隣接又は近接するホログラムから離間され得るか、又はずらされ得る。プロット300-bのプロット線348は、連続するホログラムのこの離間された又はずらされた分布の結果を示す。格子は、y軸に沿って媒体全体(-13mm~+13mm)にわたって広がり、x軸に沿って離間され(例えば、互い違いにされ)、それぞれ隣接格子からある距離でずらされる。距離は、1つ以上の領域にわたって一定(例えば、0.10mm)及び/又は可変であり得る。プロット線348から観察できるように、格子媒体310に沿った各長手方向位置において必要とされる重なり合うホログラムの総数は、格子媒体310の中心から(例えば、下方に)8mm離れるとほぼ83%低減され、格子媒体310の中心から(例えば、下方に)4mm離れるとほぼ25%低減され得る(例えば、格子媒体310の第1の領域312における重なり合うホログラムの総数の低減)。同様に、格子媒体310に沿った各長手方向位置において必要とされる重なり合うホログラムの総数は、格子媒体310の中心から(例えば、上方に)8mm離れるとほぼ75%低減され、格子媒体310の中心から(例えば、上方に)6mm離れるとほぼ17%低減され得る(例えば、格子媒体310の第3の領域316における重なり合うホログラムの総数の低減)。この非限定的な例では、スキューミラー305は、dER=25mmの距離でdEB=4mmのアイボックスを生成するように等化され得、射出瞳孔孔等化を伴わなければ、そのようなスキューミラーデバイスは、スキューミラーデバイスの17.5mmの長さに沿って325のホログラムの多重化を必要とするであろう。本明細書に記載される射出瞳孔等化技術を使用すると、最大ホログラム多重化密度は、139のホログラムに減少され得る。この低減は、等化でない密度の42.8%のみを表しており、同じ記録材料の格子媒体310を前提とすると、場合によっては、回折効率の5.47xの改善をもたらす。
加えて、種々の実施形態では、格子媒体310の3つよりも多くの領域が用いられ得ることを理解されたい。いくつかの例では、各ホログラム(又は、類似のホログラムのセットを有する格子構造)に別個の領域が用いられ得る。いくつかの例では、本明細書に記載される射出瞳孔等化技術は、複数の色帯域に適用され、例えば、赤色波長(例えば、610~780nm)帯域、緑色波長(例えば、493~577nm)帯域、及び青色波長(例えば、405~492nm)帯域に対応する、3つの別個のスキューミラー格子周波数帯域を生じ得る。スキューミラー等化は、所望であれば、(例えば、クロスカプラ、出力カプラ、ダクト型導波路、スラブ型導波路などを使用して)2次元で実施されてもよい。
図4Aは、本開示の種々の態様による、スキューミラー瞳孔等化に対応する光学構造400-aの斜視図である。光学構造400-aは、図1のHMD100のスキューミラー110、図2Aのスキューミラー210、及び/又は図3のスキューミラー305の態様を含み得る。光学構造400-aは、格子媒体405、第1の格子構造410、及び第2の格子構造415を含み得る。
光学構造400-aは、すべて又はほとんどの反射光が導かれる外部射出瞳孔(図示せず)を形成するために選択的結合を用い得る。システムの回折効率及び光度効率は、スキューミラー射出瞳孔等化技術を含む光学構造400-aを組み込むことによって高められ得る。光学構造400-aは、格子媒体405内の1つ以上のホログラムを使用した格子構造が目に見えない(又はほぼ見えない)ように、実質的に透明であり得る。ヘッドマウントディスプレイなどの用途では、スキューミラーから、外部射出瞳孔と概ね整列し得るアイボックス(図示せず)などの特定の場所の方へ、光を回折させ得る。
第1の格子構造410及び第2の格子構造415はそれぞれ、複数の入射角における特定の波長の光を、格子媒体の面法線からずれた反射軸を中心として反射するように構成されていてもよい。いくつかの例では、第1及び第2の格子構造のそれぞれは、格子構造を形成する複数のホログラムを含んでもよい。理解を容易にするために、第1の格子構造410及び第2の格子構造415のそれぞれは、単一のホログラムとして一般に考察される。しかし、光学構造400-aの実施形態は、そのような単一のホログラム格子構造に限定されない。
格子媒体405内の第1の格子構造410は、第1の複数の入射角におけるある波長の光を、格子媒体の面法線407からずれた第1の反射軸を中心として反射するように構成されていてもよい。格子媒体405内の第2の格子構造415は、第2の格子構造415が第1の格子構造410に少なくとも部分的に重ならないように配置され得る。第2の格子構造415は、第1の入射角とは異なる第2の入射角における波長の光を、格子媒体405の面法線407からずれた第2の反射軸を中心として反射するように構成されていてもよい。第1の格子構造410及び第2の格子構造415はそれぞれ、ホログラム又は正弦波体積格子を備え得る。いくつかの実施形態では、ホログラム又は非ホログラフィ正弦波体積格子のいずれかが、光学構造400-aの格子媒体405に使用される。他の実施形態では、ホログラムと非ホログラフィ正弦波体積格子の両方が、同じ格子媒体405に使用されてもよい。
第1の格子構造410は、第1の格子構造410及び第2の格子構造415の光学特性(例えば、様々な屈折率特性及び関連する縞模様)が重ね合わされるか又は入り交じるように、第2の格子構造415と部分的に空間的に重なり得る。いくつかの例では、第1の反射軸は、第2の反射軸と実質的に平行である。いくつかの例では、第1の入射角と第2の入射角は、少なくとも5°だけ異なる。
一例では、第1の格子構造410は、入射角の第1の範囲における波長の光を、格子媒体405の面法線407からずれた第1の反射軸を中心として反射するように更に構成されている。この入射角の第1の範囲は、上述の第1の入射角を含むことができる。入射角の第1の範囲の各入射角は、第2の入射角より大きくてもよい。加えて、入射角の第1の範囲の入射角は、それぞれのホログラムに対応してもよい(例えば、第1の格子構造410は、この例では複数のホログラムを含む)。第1の格子構造410は、(例えば、同じ波長の光を反射するための)少なくとも3つのホログラムを含み得る。少なくとも3つのホログラムのそれぞれは、入射角の第1の範囲内の固有の入射角に対応し得る。少なくとも3つのホログラムの近接する|ΔK|は、1.0×104と1.0×106ラジアン/メートル(rad/m)の間にある平均値を有し得る。格子構造内の近接するホログラムの|ΔK|関係を示すために、この例では少なくとも3つの角度が説明されており、多くの固有の入射角に対応する多くのホログラムが、第1の格子構造410及び格子媒体405内の他の格子構造に含まれ得ることを理解されたい。
第1の格子構造410及び第2の格子構造415は、ある波長(例えば、可視赤色光波長、可視青色光波長、又は可視緑色光波長)の光を反射するものとして説明されており、したがって、光学デバイス400-aは、単色の意味で説明され得るが、光学デバイス400-aの例は概して、複数の波長の光を反射するように構成された格子構造を含む。例えば、第1の格子構造410は、第1の入射角における複数の波長の光を反射するように更に構成されてもよく、第2の格子構造415は、第2の入射角における複数の波長の光を反射するように更に構成されてもよい。いくつかの実施形態では、複数の波長は、可視赤色光波長(例えば、618nm)、可視青色光波長(例えば、460nm)、及び可視緑色光波長(例えば、518nm)を含む。他の実施形態では、複数の波長は、可視赤色光波長範囲からの2つ以上の可視赤色光波長、可視青色光波長範囲からの2つ以上の可視青色光波長、及び可視緑色光波長範囲からの2つ以上の可視緑色光波長を含む。
光学構造400-aが導波路の用途に含まれる場合、各格子構造は、光学構造400-aから一定の距離に位置する射出瞳孔の方へ光の一部分を反射するように構成されていてもよい。例えば、導波路は、導波路の光入力領域から第1の格子構造410及び第2の格子構造415に光を伝達するように構成されていてもよい。格子媒体405は、少なくとも部分的に導波路内に配置されてもよく、対向する基材によって覆われてもよく、又は包囲されてもよい。
図4Bは、本開示の種々の態様による、スキューミラー瞳孔等化に対応する光学構造400-bの平面図である。光学構造400-bは、図1のHMD100のスキューミラー110、図2Aのスキューミラー210、図3のスキューミラー305、及び/又は図4Aの光学構造400-aの態様を含み得る。光学構造400-bは、格子媒体405-a、第1の格子構造410-a、第2の格子構造415-a、及び第3の格子構造420を含み得る。
第3の格子構造420は、他の格子構造とともに格子媒体405-a内に配置され得る。一部の場合には、第3の格子構造420は、第1の格子構造410-aと第2の格子構造415-aとの間に配置され得る。第3の格子構造420は、第1の格子構造410-aに少なくとも部分的に重ならなくてもよく、第2の格子構造415-aに少なくとも部分的に重ならなくてもよい。第3の格子構造は、第1の入射角及び第2の入射角とは異なる第3の入射角における波長(例えば、第1の格子構造410-a及び第2の格子構造415-aによって反射される光と同じ波長)の光を、格子媒体405の面法線407からずれた第3の反射軸を中心として反射するように構成されていてもよい。いくつかの例では、第3の反射軸は、第1の反射軸及び第2の反射軸と実質的に平行である。いくつかの実施形態では、第1の入射角は第3の入射角より大きくてもよく、第3の入射角は第2の入射角より大きくてもよい。このようにして、これらの入射角のそれぞれは、無視できない量で異なってもよく、光学構造400-bの1つ以上の領域に関連する反射機能を実施してもよい。
いくつかの例では、第1の格子構造410-a及び第2の格子構造415-aはそれぞれ、(図4Bには示していないが、本明細書に記載される他の図及び例に示している)射出瞳孔の方へ光の一部分を反射するように構成されている。射出瞳孔は、第1の格子構造410-aに重なる第2の格子構造415-aの第1の端部417に重ならない第1の格子構造410-aの第1の端部412が、第2の格子構造415-aの第1の端部417よりも射出瞳孔から離れるように、導波路(例えば、格子媒体405を含む導波路)の表面から一定の距離にあってもよい。このようにして、射出瞳孔は、x軸に沿って(格子媒体405-aに関して)長手方向で概ね中心を合わせられてもよい。
図4Cは、本開示の種々の態様による、スキューミラー瞳孔等化に対応する光学構造400-cの平面図である。光学構造400-cは、図1のHMD100のスキューミラー110、図2Aのスキューミラー210、図3のスキューミラー305、図4Aの光学構造400-a、及び/又は図4Bの光学構造400-bの態様を含み得る。光学構造400-cは、格子媒体405-b、第1の格子構造410-b、第2の格子構造415-b、及び第4の格子構造430を含み得る。
第4の格子構造430は、他の格子構造とともに格子媒体405-b内に配置され得る。一部の場合には、第4の格子構造430は、第1の格子構造410-bに重ならない。これは、長さが互いに概ね均一であり得る格子構造の長さが、格子媒体405-bの全長の少なくとも半分だけ短くなるように、複数の格子構造が格子媒体405-bにわたって広がるときに生じる。一部の場合には、第4の格子構造430はまた、第2の格子構造415-bなどの別の格子構造に少なくとも部分的に重なる。第4の格子構造430は、第1の入射角及び第2の入射角とは異なる第4の入射角における波長の光を、格子媒体405-bの面法線407からずれた第4の反射軸を中心として反射するように構成されていてもよい。いくつかの例では、第4の反射軸は、第1の反射軸及び第2の反射軸と実質的に平行である。いくつかの実施形態では、第1の入射角は第2の入射角より大きくてもよく、第2の入射角は第4の入射角より大きくてもよい。
図4Bの第3の格子構造420及び図4Cの第4の格子構造430に使用される第3及び第4の表記は、任意の表記であり、第1及び第2の格子構造に対する別の又は追加の格子構造格子構造として単にみなせることを理解されたい。第3の格子構造420及び第4の格子構造430は、スキューミラー瞳孔等化に関連する格子構造の部分的に重なる特徴及び重ならない特徴の非限定的な例を示す。
図5は、光学部品500の図であり、複数の格子構造505を示す。格子構造505は、図3及び図4を参照して説明した格子構造と同様であり得る。格子構造505は、議論のために分解組立図の様式で示されるが、これらの格子構造505は、本明細書(例えば、図4A~図4C)に記載されたように、格子媒体の体積又は空間の内部で重なり合い、入り交じり得る。また、各格子構造が異なる回折角の応答を有してよく、別の格子構造とは異なる波長の光を反射してよい。
光学部品500は、格子構造505-a及び格子構造505-bを表す。格子構造505-aは対応するk空間のグラフ510-aを有し得、格子構造505-bは対応するk空間のグラフ510-bを有し得る。k空間のグラフ510-a及び510-bは、ホログラムを照光することによるブラッグ整合の再構成の場合を示し得る。
k空間のグラフ510-aは、格子構造505-aによる入射光の反射を示し得る。k空間のグラフ510-aは、ホログラムによるプローブビームのミラー様の回折(反射と称され得る)の表現であり、反射軸に関するプローブビームの入射角は、反射軸に関する回折ビームの反射角と等しい。k空間のグラフ510-aは、z軸に関して測定された角度が格子構造505-aの反射軸530-aの角度と等しい、正の側波帯の
Figure 0007042903000033
k空間分布550-aを有する。k空間のグラフ510-aは、z軸に関して測定された角度が反射軸530-aの角度と等しい、負の側波帯の
Figure 0007042903000034
k空間分布553-aも有する。k球540-aは、可視青色光、可視緑色光、又は可視赤色光を表現し得る。
k空間のグラフ510-aは、プローブビーム535-aが、プローブビームのk球540-a上にある点状の、回折ビームのk空間分布525-a、
Figure 0007042903000035
を生成する場合を表す。回折ビームのk空間分布525-aは、式(4)の畳み込みによって生成される。
プローブビーム535-aは、やはり点状であるk空間分布
Figure 0007042903000036
を有する。この場合、プローブビームは、ホログラムに対して「ブラッグマッチする」と言われ、プローブビームの波長が、ホログラムを記録するのに使用される記録ビームの波長と異なっていても、ホログラムが有意の回折を生成する可能性がある。また畳み込み演算は、ベクトル和
Figure 0007042903000037
によって幾何学的に表され得る。式中、
Figure 0007042903000038
は回折ビームの波動ベクトル520-aを表し、
Figure 0007042903000039
はプローブビームの波動ベクトル515-aを表し、
Figure 0007042903000040
は、正の側波帯の格子ベクトル551-aを表す。ベクトル545-aは、式(4)の畳み込みによるプローブビームの波動ベクトル515-aと正の側波帯の格子ベクトル551-aとの和を表す。k空間のグラフ510-aは、負の側波帯の格子ベクトル552-aも有する。
プローブビームの波動ベクトル515-a及び回折ビームの波動ベクトル520-aは、実質的な二等辺三角形の辺を必ず形成する。この三角形の等しい角度は、どちらも反射軸530-aに関して測定された入射角及び反射角と必ず一致する。したがって、格子構造505-aは、反射軸530-aを中心として、実質的にミラー様の様式で光を反射する。
k空間のグラフ510-bは、格子構造505-bによる入射光の反射を示し得る。格子構造505-bは、格子構造505-aによって反射される入射角とは異なる複数の入射角の入射光を反射し得る。格子構造505-bは、格子構造505-aとは異なる波長の光も反射し得る。k空間のグラフ510-bは、ホログラムによるプローブビームのミラー様の回折(反射と称され得る)の表現であり、反射軸に関するプローブビームの入射角は、反射軸に関する回折ビームの反射角と等しい。k空間のグラフ510-bは、z軸に関して測定された角度が格子構造505-bの反射軸530-bの角度と等しい、正の側波帯の
Figure 0007042903000041
k空間分布550-bを有する。k空間のグラフ510-bは、z軸に関して測定された角度が反射軸530-bの角度と等しい、負の側波帯の
Figure 0007042903000042
k空間分布553-bも有する。k球540-bは、可視青色光、可視緑色光、又は可視赤色光を表現し得る。一部の実施形態では、k球は、紫外波長又は赤外波長を含む電磁放射の他の波長を表現し得るが、これらに限定されない。
k空間のグラフ510-bは、プローブビーム535-bが、プローブビームのk球540-b上にある点状の、回折ビームのk空間分布525-b、
Figure 0007042903000043
を生成する場合を表す。回折ビームのk空間分布525-bは、式(4)の畳み込みによって生成される。
プローブビーム535-bは、やはり点状であるk空間分布
Figure 0007042903000044
を有する。この場合、プローブビームは、ホログラムに対して「ブラッグマッチする」と言われ、プローブビームの波長が、ホログラムを記録するのに使用される記録ビームの波長と異なっていても、ホログラムが有意の回折を生成する可能性がある。また畳み込み演算は、ベクトル和
Figure 0007042903000045
によって幾何学的に表され得る。式中、
Figure 0007042903000046
は回折ビームの波動ベクトル520-bを表し、
Figure 0007042903000047
はプローブビームの波動ベクトル515-bを表し、
Figure 0007042903000048
は、正の側波帯の格子ベクトル551-bを表す。ベクトル545-bは、式(4)の畳み込みによるプローブビームの波動ベクトル515-bと正の側波帯の格子ベクトル551-bとの和を表す。k空間のグラフ510-bは、負の側波帯の格子ベクトル552-bも有する。
プローブビームの波動ベクトル515-b及び回折ビームの波動ベクトル520-bは、実質的な二等辺三角形の辺を必ず形成する。この三角形の等しい角度は、どちらも反射軸530-bに関して測定された入射角及び反射角と必ず一致する。したがって、格子構造505-bは、反射軸530-bを中心として、実質的にミラー様の様式で光を反射する。
図6は、本開示の種々の態様による、櫛状シフト機能を有するスキューミラーを製造するためのシステム600-aである。システム600-aは、サンプルステージ搬送台605、サンプル搬送レール610、第1の記録ビーム615-a、信号ミラー620、第2の記録ビーム625-a、参照ミラー630、参照ミラー搬送レール635、参照ミラー搬送台640、格子媒体645-a、ホログラム650、第1のプリズム655-a、及び第2のプリズム660-aを含み得る。
システム600-aは、グローバル座標(x,y,z)及びスキューミラー座標(x,y,z)を含み得る。原点は格子媒体645-aの中心に定義され得る。一部の場合には、格子媒体645-aは、一般に矩形形状を備え得、「z」は格子媒体645-aの厚さに対応し、「x」は格子媒体645-aの面内側の長さに対応し、「y」は格子媒体645-aの面内側の長さに対応する。記録のためのグローバル角度θは、格子媒体645-aの内部のx軸に関する第1の記録ビーム615-aの角度として定義され得る。スキューミラー座標(x,y,z)は、次式によってグローバル座標に変換され得る。
Figure 0007042903000049
システム600-aは、所望のアイボックスサイズにほぼ等しいサイズを有するように記録ビームを構成するのに使用され得る。一実装形態では、システム600-aは、第1の記録ビーム615-a及び第2の記録ビーム625-aの正確な角度を作り出すために、信号ミラー620及び参照ミラー630などの回転ミラーを配置し得る。信号ミラー620の角度は、幅~dEBを伴う第1の記録ビーム615-aの所望の角度(θG1)を生成するように変化し得る。サンプルステージ搬送台605及び参照ミラー搬送台640は、各露光に関して記録ビームで正確な位置を照光するように位置決めされ得る。システム600-aのサンプルステージ搬送台605は、所望の位置において格子媒体645-aを第1の記録ビーム615-aで照光するのを容易にするために、サンプル搬送レール610上に位置決めされ得る。参照ミラー搬送台640は、所望の位置において格子媒体645-aを第2の記録ビーム625-aで照光するのを容易にするために、参照ミラー搬送レール635上に位置決めされ得る。格子媒体645-aは、ホログラム記録前又はホログラム記録中に記録媒体と称される場合があり、フォトポリマーを含み得る。いくつかの実施形態では、格子媒体は、光屈折結晶、ニクロム酸化ゼラチン、光-熱-屈折性ガラス、及び/又は分散ハロゲン化銀粒子含有膜を備え得る。
信号ミラー620と参照ミラー630の組を回転させることにより、これらのミラーは、記録ビームが互いに交差し、干渉し合って、格子媒体645-a内のホログラム650として記録される干渉パターンを形成するように、第1の記録ビーム615-aと第2の記録ビーム625-aを導くように配置される。ホログラム650は、格子構造の一例である。システム600により、複数の入射角における特定の波長の光をスキュー軸665-aを中心として反射するようにそれぞれ構成された複数の格子構造が形成され得る。それぞれの格子構造は、特定の波長を有するコヒーレント光への、格子媒体645-aの複数の露光によって形成され得る。各格子構造に対応する複数の入射角は、互いから最小範囲の角度だけずれていてもよい。
いくつかの実装形態では、記録ビームの幅は互いに異なってよく、又は同一でもよい。記録ビームの強度は互いに同一でよく、又はビーム間で異なり得る。ビームの強度は不均一でよい。格子媒体645-aは典型的に、プリズムと格子媒体の両方に屈折率が整合した流体を使用して、第1のプリズム655-aと第2のプリズム660-aの間の適所に固定される。スキュー軸665-aは、面法線670-aに対するスキュー角を有する。図6Aに示されるように、スキュー角は面法線670-aに対して-30.25度であってもよい。第1の記録ビームと第2の記録ビームの間の角度は0~180度の範囲内にあってもよい。面内システム600-aの場合、面法線670-aに対して記録されるスキュー角は、φ'=(θR1+θR2-180°)/2+φである。θG2=180°-θG1となる規準ケースでは、φ'=φである。図6Aにおいて、φは、面法線に対する規準スキュー角を示す。加えて、図6Aには、θG1及びθG2の角度が正確に描写されていない。θ'G1及びθ'G2の角度が図解されており、θG1及びθG2の角度に対応する。θG1及びθG2の角度は、第1のプリズム655-a内の第1の記録ビーム615-a、及び第2のプリズム660-a内の第2の記録ビーム625-aビームに、それぞれ関連する。θ'G1及びθ'G2の角度は、θG1及びθG2の角度とは異なる。なぜならば、記録ビームがプリズムに入るときに空気とプリズムとの間の境界で屈折率のミスマッチがあるからである(例えば、スネルの法則又は屈折の法則の効果)。
スキュー軸に対する第1の記録ビームの内角とスキュー軸に対する第2の記録ビームの内角との合計が180度に等しくなるように、第1の記録ビーム615-aと第2の記録ビーム625-aは、スキュー軸665-aを中心として名目上対称である。第1の記録ビーム及び第2の記録ビームは、それぞれ典型的に、レーザ光源に由来するコリメートされた平面波ビームである。
例えば第1の記録ビーム615-aが第1のプリズム655-aの空気/プリズム境界と交差するところ、及び第2の記録ビーム625-aが第2のプリズム660-aの空気/プリズム境界と交差するところといった、空気/プリズム境界における屈折は、厳密に定量的にではなく、比喩的に示されている。プリズム/格子媒体境界でも屈折が起こり得る。実装形態では、格子媒体及びプリズムのそれぞれが、405nmの記録ビーム波長においてほぼ1.5471の屈折率を有する。
ホログラムのスキュー角(ホログラムの集合に関する平均スキュー角を含む)は、反射軸角度と実質的に同一であり得、これは、スキュー角又は平均スキュー角が反射軸角度から1.0度以内にあることを意味する。当業者ならば、本開示の利益を与えられれば、スキュー角と反射軸角度が理論上同一であり得ることを認識するであろう。しかしながら、システムの精密さ及び正確さにおける限界、ホログラムの記録中に生じる記録媒体の縮化、及び誤りの他の原因のために、記録ビーム角度に基づいて測定された、又は推定された、スキュー角又は平均スキュー角は、スキューミラーによって反射された光の入射角及び反射角によって測定された反射軸角度と完全には一致しない可能性がある。それにもかかわらず、記録ビーム角度に基づいて判定されたスキュー角は、媒体縮化及びシステム不完全性がスキュー角及び反射軸角度の推定における誤りに寄与する場合でさえ、入射光の角度及びその反射の角度に基づいて判定された反射軸角度から1.0度以内にあり得る。これらの媒体縮化及びシステム不完全性は、瞳孔等化を伴うスキューミラーの生産では、任意に小さくできることが理解される。この点に関して、これらの媒体縮化及びシステム不完全性は、通常の、又は既存のミラーの平面度に類似するものと考えられてよい。いくつかの例では、体積ホログラムを使用するスキューミラーの生産に関連付けられた基本的な限界は、記録媒体の厚さに基づき得る。
スキュー軸/反射軸は、スキューミラーの作製に言及するとき(例えばスキューミラー格子媒体にホログラムを記録することを説明するとき)には一般にスキュー軸と称され、スキューミラーの光反射特性に言及するときには反射軸と称される。ホログラムのスキュー角(ホログラムの集合に関する平均スキュー角を含む)は、反射軸角度と実質的に同一であり得、これは、スキュー角又は平均スキュー角が反射軸角度から1.0度以内にあることを意味する。本開示の利益を与えられた、当該技術分野に精通している者なら、スキュー角と反射軸角度が理論上同一であり得ることを認識するであろう。しかしながら、システムの精密さ及び正確さにおける限界、ホログラムの記録中に生じる記録媒体の縮化、及び誤りの他の原因のために、記録ビーム角度に基づいて測定された、又は推定された、スキュー角又は平均スキュー角は、スキューミラーによって反射された光の入射角及び反射角によって測定された反射軸角度と完全には一致しない可能性がある。それにもかかわらず、記録ビーム角度に基づいて判定されたスキュー角は、媒体縮化及びシステム不完全性がスキュー角及び反射軸角度の推定における誤りに寄与する場合でさえ、入射光の角度及びその反射の角度に基づいて判定された反射軸角度から1.0度以内にあり得る。本開示の利益を与えられた、当該技術分野に精通している者なら、所与のホログラムに関するスキュー角がそのホログラムに関する格子ベクトル角度と同一であることを認識するであろう。
システム600-aの変形形態では、第1の記録ビーム及び第2の記録ビームの波長を変化させるために可変波長レーザが使用される。第1の記録ビームと第2の記録ビームの入射角は、(必須ではないが)一定に保たれてもよく、第1の記録ビーム及び第2の記録ビームの波長が変化される。波長は、可視赤色光波長、可視青色光波長、可視緑色光波長、紫外(ultraviolet、UV)波長、及び/又は赤外(infrared、IR)波長で構成されていてもよい。システム600-aの各格子構造は、別の格子構造とは異なる波長における入射角を反射し得る。システム600-aは、記録ビームの波長と実質的に異なる波長の光、特に、記録ビームの波長よりもかなり長い波長の光を反射できる反射特性を有し得る。
本明細書に記載されるスキューミラー内の任意の2つのホログラム間の格子周波数の差の大きさは、周波数ギャップ|ΔK|と称されることがある。周波数ギャップ|ΔK|は、ホログラム「間隔」(例えば、任意の2つのホログラムの格子ベクトルが、k空間において互いにどの程度近接しているか)を説明するための有用な尺度とすることができる。(例えば、k空間において)所与のホログラムと近接するホログラムとの間の周波数ギャップ|ΔK|は、近接周波数ギャップ|ΔK|と称されることがある。
複数のホログラムのセット(例えば、体積ホログラフィック格子のセット)の中で、セット内の各ホログラムは、k空間において対応する格子ベクトルを有する。格子ベクトルは、対応する格子ベクトルの大きさKを有する。セット内の第1のホログラムは、ホログラムのセット内の第2のホログラムの格子ベクトルKが、(セット内のホログラムの中で)第1のホログラムの格子ベクトルの次に最も大きいか又は次に最も小さいときに、第2のホログラムに「近接する」と称されることがある。セット内の各ホログラムは、セット内の1つ又は2つの近接するホログラムから近接周波数ギャップ|ΔK|によって隔てられ得る。近接周波数ギャップ|ΔK|は、近接するホログラムについての格子ベクトルの大きさKの差の大きさであり得る。例えば、セット内の第1のホログラムは、第1の格子ベクトルの大きさKG1を有し得、セット内の第2のホログラムは、第2の格子ベクトルの大きさKG2を有し得、第1の格子ベクトルの大きさKG1は、k空間において第2の格子ベクトルの大きさKG2から近接周波数ギャップ|ΔK|によって隔てられ得る。
セット内の各ホログラムは、対応する近接周波数ギャップ|ΔK|(例えば、近接周波数ギャップは、セットにわたって均一である必要はない)によって、セット内の1つ以上の他のホログラムから隔てられる。いくつかの実施形態では、ホログラムのセット全体の平均近接周波数ギャップ|ΔK|は、スキューミラーの性能に影響を及ぼし得る。所与のホログラムの格子ベクトルの大きさKは、ホログラムの格子周波数(例えば、物理空間における格子媒体の屈折率変調の周波数、及びホログラムにブラッグ整合する光の波長)を決定し得る。したがって、格子ベクトルの大きさKは、本明細書では格子周波数Kと称されることがある。ホログラムのセット内の各ホログラムは、対応する格子周波数Kを有する。格子周波数Kに関連する格子ベクトルの方向は、物理空間における格子媒体の屈折率変調の方向(向き)、及びホログラムが光を回折させる角度を与え得る。格子周波数K及び周波数ギャップ|ΔK|は、メートル当りラジアン(rad/m)及び/又はsincピーク-sincヌルを含むが、これらに限定されない、種々の単位で表され得る。
ホログラムのセットの比較的小さな平均近接周波数ギャップ|ΔK|は、(例えば、ホログラムのセット全体の)比較的高いスキューミラー画像忠実度に対応することができる。しかし、ホログラムのセットの平均近接周波数ギャップ|ΔK|が比較的小さい場合、セット内のホログラムの総数は、セットの所与の近接周波数ギャップ|ΔK|の範囲にわたるために、より多くなる。更に、格子媒体の記録容量が典型的にダイナミックレンジ(通常はΔnとして表される)によって制限されることを前提とすれば、より多くのホログラムをセット内に記録することは通常、セット内の各ホログラムがより弱くなる(つまり、媒体内により微かに記録される)ことを意味する。したがって、ホログラムのセットに関して比較的小さな近接周波数ギャップ|ΔK|を有すること(他のものが等しいと、より多くのホログラムを必要とする)と、セットに関してより大きな近接周波数ギャップ|ΔK|を有し、より少ないがより強いホログラムの記録を可能にすること、との間に葛藤がある。
より少なく、より強いホログラムは典型的に、スキューミラーの幾何学的形状及びスキュー軸に応じて、より強い反射率又はより強い出力結合をもたらす。光がスキューミラーと1つの相互作用のみを有する反射幾何学的形状では、最大反射率は、各ホログラムが100%の回折効率を有するように、ホログラムの数が材料のM#に等しいときに生じる。導波路の幾何学的形状では、ホログラフィック記録による複数の相互作用があり、相互作用の数は、誘導角度に依存し、したがって、最大出力結合がより複雑になる。アイボックス効率(例えば、「アイボックス」内の光の量と、結合されている光の量との比率)を最適化するために、より低密度のホログラムが使用される。しかし、これにより、アイボックスにわたって著しい強度変化が生じる。したがって、導波路の幾何学的形状では、高いアイボックス効率とアイボックスにわたる強度の均一性との間に葛藤がある。
これらの問題を緩和するために、スキューミラー(例えば、体積ホログラフィック格子の1つ以上のセットを含む体積ホログラフィック格子構造)は、「櫛状シフト」書込み方法によって、読み取りソースの帯域内のより大きな角度範囲及び/又はより大きな波長範囲に関して、より高い回折効率を呈するように構成されていてもよい。いくつかの実施形態では、スキューミラーホログラム櫛状シフト書込み及び設計された視野(field of view、FOV)にわたるホログラムの疎な書込みは、所望のレベルの性能を達成するために必要とされる媒体ダイナミックレンジ(しばしばΔnと表される)を低減させ得、又は得られる回折効率を高め得る。疎な書込みは典型的に、4.0 sincピーク-sincヌルよりも大きな近接周波数ギャップ|ΔK|を有する複数のホログラムを指す。いくつかの実施形態では、疎に書き込まれたホログラムは、約12近接周波数ギャップ|ΔK|を有する。いくつかの実施形態では、疎に書き込まれたホログラムは、8.0~12 sincピーク-sincヌルの範囲の近接周波数ギャップ|ΔKG|を有する。
図7には、読み取りソースの帯域内の波長範囲に関して回折角の範囲を低減させる、疎に書き込まれたホログラムの図が示される。図7の例は、読み取りソースの帯域内の波長範囲が、射出瞳孔の方へ回折されないことを実証する。
図7に示すように、k空間のグラフ700は、疎に書き込まれたスキューミラー内のホログラムの分布をプロットしており、グラフ702は、読み取りソースの帯域幅からの回折光(例えば、単一方向/画素で回折された光のスペクトル)の代表的な図である。グラフ700によって示すように、スキューミラーは、ホログラムのセットを含み得、セット内の各ホログラムは、点714によって示すように、対応する格子周波数Kを有する(例えば、各点714は、点から原点までの距離に対応する関連する格子周波数を有する)。セット内の各ホログラムは、例えば、格子媒体の同じ物理体積内にあってもよい(例えば、各ホログラムは、セット内の他のホログラムに重なり、重ね合わされてもよい)。セット内の各ホログラムの格子ベクトルは、(例えば、軸716に沿う)同じ方向に向けられ得る。このようにして、セット内のホログラムのそれぞれは、所望の方向に(例えば、アイボックスの方へ)光を反射するための実質的に一定の(均一な)反射軸を呈し得る。各格子周波数は、k空間における点714間のギャップ712として図7に示されるそれぞれの近接周波数ギャップ|ΔK|(例えば、ギャップ712の長さが近接周波数ギャップ|ΔK|を規定する)によって、ホログラムのセットの近接する格子周波数から隔てられ得る。セット内には、ギャップ712に関連する近接周波数ギャップ内にあるホログラムがなくてもよい。
セット内のホログラム(例えば、k空間における点714に関連する格子周波数を有するホログラム)はそれぞれ、特定の波長の光を所与の方向に回折させ得る(例えば、ホログラムは、特定の波長にブラッグ整合し得る)。つまり、セット内の各ホログラムは、グラフ702のそれぞれのピーク710に対応する光を回折させ得る。ホログラムのセットは、包絡線704によって示すような「帯域1」、包絡線706によって示すような「帯域2」、及び包絡線708によって示すような「帯域3」などの、異なる波長帯域内の光を回折させるように構成されていてもよい。帯域1、2、及び3は、回折される光(例えば、図3Aの投光器320によって生成された光)の波長に整合するように選択され得る。一例として、(例えば、RGB投影システムの場合)帯域1は青色波長に対応し得、帯域2は緑色波長に対応し得、帯域3は赤色波長に対応し得る。
ホログラムのセット内の近接周波数ギャップ(例えば、ギャップ712に関連する周波数ギャップ)は、(例えば、ホログラムが、ギャップ712内になく、ヌル718に関連する波長の光にブラッグ整合しないため)スキューミラーによって回折された光にスペクトルヌル718を生じさせ得る。このようにして、ホログラムのセットは、波長の関数として櫛状の回折応答を呈し得る。ホログラム分布が所与の光学設計にとって十分に密でない場合、(例えば、特に、インカップルされた光が、整列したピーク710を有するスキューミラーの多くの異なる領域を横断するシナリオにおいて)スペクトルヌル718は、アイボックスに到達する回折光に望ましくない色ギャップを生じさせる場合がある。
これらの影響を緩和するために、スキューミラーは、複数の領域にわたるホログラム(格子)の複数のセットを空間多重化することによって、アイボックスに対するより大きな回折パワーが可能になる櫛状シフト操作を実施するように構成されていてもよい。加えて、櫛状シフト操作は、アイボックスのエリアにわたって回折をより均質にし得る。
図8は、スキューミラーが櫛状シフト操作をどのように実施し得るかを示す。図8に示すように、スキューミラーは、格子媒体822の領域820にあるホログラムの第1のセット816と、格子媒体822の領域818にあるホログラムの第2のセット814と、を含み得る。領域818及び820は、例えば、領域間でホログラムの重なりがほとんど又は全くないように、互いに横方向にずらされ得る。別の好適な構成では、領域818は、領域820に部分的に重なってもよい。セット816内の各ホログラムは、格子媒体822の同じ物理体積内にあってもよい(例えば、各ホログラムは、セット816内の他のホログラムに重なり、重ね合わされてもよい)。同様に、セット814内の各ホログラムは、格子媒体822の同じ物理体積内にあってもよい(例えば、各ホログラムは、セット814内の他のホログラムに重なり、重ね合わされてもよい)。入射光812は、領域820を通過し得る。領域820にあるホログラムのセット816によって回折されない光812は、領域818に伝搬し得る。格子媒体822内のホログラムのセットは、任意の所望の回折操作(例えば、入力結合、出力結合、クロス結合など)を実施し得る。一例として本明細書に記載される好適な一構成では、格子媒体822内のホログラムのセットは、(例えば、光812をアイボックス内に回折させるための)出力カプラ810を形成するために使用される。
セット816内の各ホログラムは、k空間のグラフ802の点714(例えば、図7に示すような点714)によって示すような対応する格子周波数を有し得る。格子媒体822の他の領域にホログラムの他のセットが存在しない場合、近接周波数ギャップ(例えば、図7のギャップ712に関連する周波数ギャップ)が、セット816の各格子周波数の間に存在してもよい。しかし、セット814内のホログラムは、セット816内のホログラムに対して櫛状にシフトされてもよい。例えば、セット814内の各ホログラムは、k空間のグラフ802の点808によって示すような対応する格子周波数を有してもよい(各点808は、点から原点までの距離に対応する関連する格子周波数を有する)。点808に関連する格子周波数は、点714に関連する格子周波数間の近接周波数ギャップ内にあるように選択され得る(例えば、点808に関連する格子周波数は、図7の点714間のギャップ712内にあり得る)。点808に関連する格子ベクトル(例えば、セット814の格子ベクトル)は、(例えば、軸線716に沿って)セット816の格子ベクトルと同じ方向に向けられ得る。これにより、セット814は、(例えば、アイボックスの方へ)セット816と同じ方向に光812を回折させるように構成されていてもよい。
セット814内の各ホログラムは、グラフ804のそれぞれのピーク806に対応する光を回折させ得る。格子周波数808が、点714に関連する格子周波数間の周波数ギャップ内にあるため、セット814内の各ホログラムは、セット816に関連するピーク710間、及び点714に関連する格子周波数間のヌルにある波長で光を回折させ得る(例えば、ピーク806は、図7のスペクトルヌル718内にあり得る)。これらの波長の光812が、最初にセット816を通過した後に残るため(例えば、これらの波長の光がセット816によって回折されないため)、セット814は、これらの波長の光を所望の方向に(例えば、アイボックスの方へ)回折させ得る。
つまり、出力カプラ810を、スキュー軸に沿って互いにわずかにシフトされた格子周波数を有するホログラムのそれぞれのセット816及び814をそれぞれに有する2つの別個の領域820及び818に分割することで、2つの領域からの回折ピークが、(例えば、グラフ804に示すように)互いにインターリーブされ得る。領域820からの回折は、領域818によって後で回折され得る光812を使い果たさない。これにより、領域間でシフトされた格子周波数により、光源の帯域幅内のより多くの光が、アイボックスに回折される(例えば、図3Aの投光器320、読み取りLEDなど)。
図8の例は、ホログラムの空間多重化された2つのセットのみを含むが、一般に、格子媒体812は、図8の左から右に、ホログラムの空間多重化された任意の所望の数のセットを含んでもよい。同様の構造を使用して、第1の瞳孔拡張器(例えば、2D拡張された導波路内のクロスカプラ)又は光学システム(例えば、出力カプラ、クロスカプラ、及び/若しくは入力カプラ)における任意の他の所望の光方向転換部品の出力効率を高めることもできる。
図9は、図8のセット816及び814などの、ホログラムの空間多重化されたセットを有する格子媒体の性能を測定するために使用され得る例示的な光学システム900を示す。図9に示すように、コリメートされたレーザビーム908を使用して、サンプル(例えば、導波路906内に配置されたサンプルスキューミラー)のホログラフィック領域910をプローブしてもよい。サンプルは、X-Z平面内で角度904だけ回転され得、回折効率は、導波路に結合された光の量によって定量化され得、導波路内に回折/結合された光は、光検出器902によって測定される透過強度の低下をもたらす。加えて、サンプルは平行移動され得、回折効率は、サンプル内の異なる空間位置(領域)で測定され得る。この構成では、スキューミラーは入力カプラとして動作する。
図10は、櫛状シフトを伴うサンプル規準スキューミラー(例えば、格子媒体全体にわたって全体的に重なり合う127のホログラムを有するサンプルスキューミラー)に関して、サンプルの長さに沿った4つの異なる領域でプローブされた、光検出器902の測定応答を、図9の角度904の関数として示す。図10における角度の関数としての減少は、例えば、図7及び図8における波長の関数としての(例えば、サンプルをプローブするために使用された、図9のシステム900の配置による)ピークに対応し得る。図10に示すように、サンプルは、4つの異なる領域でプローブされ、応答曲線1000が第1の領域で測定され、応答曲線1002が第2の領域で測定され、応答曲線1004が第3の領域で測定され、応答曲線1006が第4の領域で測定されている。曲線1000~1006によって示すように、ホログラムの角度位置は、4つの領域のそれぞれにわたって同じままである。
図11は、4つの領域間の櫛状シフトを伴うサンプルスキューミラーに関して、光検出器902の測定応答を、図9の角度904の関数として示す。4つの領域のそれぞれは、例えば、他の領域にあるホログラムのセットの周波数ギャップ内にある、ホログラムの対応するセットを含み得る。図11に示すように、サンプルは、4つの異なる領域のそれぞれでプローブされ、応答曲線1100が第1の領域で測定され、応答曲線1102が第2の領域で測定され、応答曲線1104が第3の領域で測定され、応答曲線1106が第4の領域で測定されている。
単なる一例として、第1の領域は、ホログラムの第1のセット(例えば、127の同位置ホログラム)を含み得、第2の領域は、ホログラムの第2のセット(例えば、127の同位置ホログラム)を含み得、第3の領域は、ホログラムの第3のセット(例えば、127の同位置ホログラム)を含み得、第4の領域は、ホログラムの第4のセット(例えば、127の同位置ホログラム)を含み得る。各領域は、所望であれば、他の数のホログラムを含んでもよい。第1、第2、第3、及び第4の領域のそれぞれは、単なる一例として、幅がほぼ4.5mmであり得る。各領域内で、その領域の複数のホログラムは、単なる一例として、ほぼ12 sincピーク-sincヌルの平均近接周波数ギャップを有し得る。集合的に、カプラ内の508(領域当たり127)のすべてのホログラムは、3 sincピーク-sincヌルの平均近接周波数ギャップを有する。これは単なる例示にすぎない。各領域は、4~20 sincピーク-sincヌル、6~14 sincピーク-sincヌル、20 sincピーク-sincヌル超、4 sincピーク-sincヌル超などの近接周波数ギャップを有してもよい。カプラの平均近接周波数ギャップ(例えば、集合的に領域のすべて)は、例えば、領域(セット)のうちの1つの近接周波数ギャップを、領域(セット)の総数で割ったものにほぼ等しくなり得る。
曲線1100~1106によって示すように、櫛状シフト式スキューミラーのホログラムの角度位置は、各後続領域において角度1108(例えば、ほぼ0.15度)だけ互いにシフトされる。したがって、各領域内の回折は、後続領域によって後で回折される光を使い果たさない。
図10及び図11に示すデータは、スキューミラー(例えば、櫛状シフト式スキューミラー)内で櫛状シフトする方法を実証する。スキューミラーは、入力カプラ、出力カプラ、インターリーブカプラ、ダイヤモンド拡張器、及び/又はクロスカプラ又は他の光方向転換要素を形成するために使用され得る。櫛状シフト式スキューミラーは、異なる露光領域に関して光源(例えば、LED)の帯域幅内の異なる波長セットからの回折を可能にする。前述したように、これにより、ホログラフィック領域全体にわたるより高い回折効率、及びアイボックスにわたるより一貫した強度がもたらされる。ビームは、一例として、内部誘導角が60度に設定された、(例えば、図9のシステム900における)櫛状シフト式スキューミラーに結合され得る。ビームは、出力カプラと複数回(例えば、4回)相互作用し、光検出器によって測定される複数の(例えば、4つの)複製された瞳孔を生成し得る。
図10に関連する規準スキューミラーと図11に関連する櫛状シフト式スキューミラーの両方に関して、出力カプラにわたって測定された回折効率を図12に示す。図12に示すように、グラフ1200の実線は、櫛状シフト式スキューミラーに関して、(例えば、単一格子ではなく出力カプラ内の格子の集合の)出力カプラにわたる回折効率を示し、破線は、櫛状シフトを伴わない規準スキューミラーに関して、(例えば、単一格子ではなく出力カプラ内の格子の集合の)出力カプラにわたる回折効率を示す。グラフ1202中の実線は、櫛状シフト式スキューミラーに関して出力カプラにわたる全回折パワーを示すが、破線は、櫛状シフトを伴わない規準スキューミラーに関して出力カプラにわたる全回折パワーを示す。グラフ1202及び1200によって示すように、スキューミラーを櫛状シフトさせることで、射出瞳孔位置にわたって回折効率及び回折パワーを高め得る(例えば、ホログラフィック領域全体にわたって、アイボックスにわたるより一貫した強度を生じさせ得る)。
上述した櫛状シフト式スキューミラーは、任意の所望の光方向転換の実装形態で使用され得る。1つの好適な構成では、櫛状シフト式スキューミラーは、所望であれば、(例えば、図3に関連して上述したように)アイボックス等化を実施するために使用され得る。櫛状シフト式スキューミラーを生成してアイボックス等化を実施するために、アイボックス内の複数の領域にわたる複数の格子のセットに関して空間多重化を可能にするように、ホログラムの書き込み中に格子媒体の露光領域のサイズを低減させる必要がある。格子の局所密度は、高い回折効率を可能にし、カプラのすべての露光領域の合計は、高いホログラム密度を有する。
図13は、アイボックス等化を実施するために、櫛状シフト式スキューミラーをどのように使用し得るかを示す図である。図13に示すように、入力光1314をアイボックス1302に方向転換させる出力カプラを形成するために、櫛状シフト式スキューミラー1328を使用し得る。櫛状シフト式スキューミラー1328(本明細書では櫛状シフト式体積ホログラフィック格子構造1328と称されることがある)は、領域1316-1、1316-2、及び1316-3(例えば、図3Aの領域312、314、及び316などの領域)などの複数の領域1316(例えば、アイボックス1302の幅に等しい幅を有する領域)に分割された格子媒体1300を含み得る。各領域1316は、入力光をアイボックス1302に向かうそれぞれの方向に回折させるように構成されたホログラムの複数のセットを含み得る。例えば、領域1316-1内の体積ホログラムは、入力光をアイボックス1302に向かう方向1304に回折させるように選択された格子周波数を有する格子ベクトルを有し得る。領域1316-2内の体積ホログラムは、領域1316-1で回折されなかった入力光を、アイボックス1302に向かう方向1306に回折させるように選択された格子周波数を有する格子ベクトルを有し得る。領域1316-3内の体積ホログラムは、領域1316-1及び1316-2で回折されなかった入力光をアイボックス1302に向かう方向1308に回折させるように選択された格子周波数を有する格子ベクトルを有し得る(例えば、各領域内の格子ベクトルは、同じ格子ベクトル方向を有し得るが、格子周波数は、光をアイボックスの方へ回折させるように調節される)。
各領域1316は、多数のサブ領域1326に分割され得る。各サブ領域1326は、近接周波数ギャップによって隔てられた格子周波数を有する体積ホログラムの対応するセットを含み得る(例えば、各サブ領域1326は、図8のセット816又は814などの格子のセットを含み得る)。各領域1316内の格子の各セットは、その領域1316内の格子の他のセットに対して櫛状にシフトされ得る(例えば、各サブ領域1326は、対応する領域1316内の他のサブ領域1326の近接周波数ギャップを埋める、ホログラムの対応するセットを有し得る)。
例えば、領域1316-3は、複数のサブ領域1326を含み得る。領域1316-3内の第1の(左端の)サブ領域1326は、光を方向1308に回折させる格子周波数を有し、近接周波数ギャップによって隔てられた、格子ベクトルの第1のセットを有し得る(例えば、領域1316-3内の第1のサブ領域1326は、図8に示すように、点714に関連する格子周波数を有し得る)。領域1316-3内の第2の(左端から2番目の)サブ領域1326は、光を方向1308に回折させる格子周波数を有し、第1のサブ領域1326内のホログラムのセットの近接周波数ギャップ内にある、格子ベクトルを有し得る(例えば、領域1316-3内の第2のサブ領域1326は、図8に示すように格子周波数808を有し得る)。同様に、領域1316-3内の後続のサブ領域1326は、領域1316-3内の前のサブ領域1326によってカバーされていない残りの周波数ギャップを埋め得る。このようにして、領域1316-3内のサブ領域1326内のホログラムの異なるセットは、多くの波長の光をアイボックス1302に向かう同じ方向に回折させ得る。これは、(例えば、到達サブ領域1326内の)任意の所与の体積の格子媒体1300内の重ね合わされたホログラムの数を比較的少なくすることを可能にしながら、色の有意なギャップなしに領域1316-3からの均一な強度の光でアイボックス1302を埋め得る。同様のプロセスは、瞳孔等化を実施するために、スキューミラー1328の長さにわたって各領域1316内のサブ領域1326によって実施され得る。
櫛状シフトを伴わない規準スキューミラーでは、ホログラムを領域1316に書き込むために、スリット1322などの比較的大きなスリットが使用される。スリット1322は、幅1312(例えば、各領域1316の幅及びアイボックス1302の幅に等しい幅)を有し得る。スリット1322は、このシナリオでは、(例えば、格子媒体の残り部分がマスクされている間にスリットを通して格子媒体1300を照光することによって)ホログラムが領域1316全体に1回で書き込まれるように、書き込み中に各領域1316の上に配置される。スリットは、他の領域1316にホログラムを記録するために、格子媒体1300の長さにわたって移動される。スキューミラー1328などの、櫛状シフトを伴うスキューミラーでは、ホログラムを記録するために、スリット1324などのより小さなスリットが使用される。スリット1324は、幅1312よりも小さな幅1310を有し得る(例えば、幅1324は、サブ領域1326の幅と等しくてもよい)。スリット1310は、ホログラムが各サブ領域1326に記録され得るように、各サブ領域の上に配置される。スリットは、他のサブ領域1326にホログラムを記録するために、格子媒体1300の長さにわたって移動される。
隔てられた3つの領域1316のみを示す図13の例は、単なる例示に過ぎない。実際には、所望であれば、より微細な粒度で瞳孔等化を実施するために、図13に示す領域に重なる他の領域1316が存在してもよい。可能性のある重複領域1316のセットのそれぞれは、重なり合わないサブ領域1326のそれ自体の対応するセットによってそれぞれにわたり得る。
いくつかの実施形態では、入力カプラを形成するために、本明細書に記載されるような櫛状シフト式スキューミラーを使用してもよい。入力カプラを含むいくつかの実施形態では、大きな入力カプラを必要とする、FOV全体のアイボックスにわたる最適な瞳孔縫合のための大きな瞳孔が望ましい場合がある。しかし、輝度に関して最適化された規準スキューミラー入力カプラでは、これにより、導波路に結合されることがない多くの角度及び光学帯域幅、並びに誘導モードとの重なり及び入力カプラの物理的範囲による大きな損失が生じる場合がある。櫛状シフト式スキューミラーを入力カプラに使用することにより、より多くの角度及び光学帯域幅が瞳孔にわたってサンプリングされることになり、入力カプラによる出力結合の量は、櫛状にシフトされた異なる領域が、角度及び光学帯域幅の異なる部分をサンプリングしているため、大幅に低減されるか又は無くされることになる。ホログラムの櫛状にシフトされたセットを有する入力カプラの図を図14に示す。
図14に示すように、入力カプラ1400は、領域A内の第1のセット1406、領域B内の第2のセット1408、及び領域C内の第3のセット1410などの、ホログラムの複数のセット(サブ領域)を有する櫛状シフト式スキューミラーを含み得る。各領域の格子ベクトルは、光1412によって示すように、入力光1404を導波路1402に結合するように向けられ得る。セット1408の格子周波数は、セット1406及び1410の格子周波数間の近接周波数ギャップ内にあってもよい(例えば、セット1406の格子周波数は、セット1408及び1410の格子周波数に対して櫛状にシフトされ得る)。
本明細書では種々の実施形態について説明及び例示してきたが、本明細書で説明した機能を行い並びに/又は結果及び/若しくは優位点の1つ以上を取得するための他の手段及び/又は構造を使用してもよく、このような変形及び/又は変更はそれぞれ、本明細書で説明した実施形態の範囲内であるとみなされる。より一般的には、本明細書で説明したすべてのパラメータ、寸法、材料、及び構成は単に例示的であり、実際のパラメータ、寸法、材料、及び/又は構成は、実施形態を用いる特定の応用例又は応用例に依存し得る。実施形態を任意の所望の組み合わせで実施してもよい。また、種々のコンセプトを、例を示した1つ以上の方法、デバイス、又はシステムとして具体化してもよい。方法又は動作の一部として行う行為を、任意の好適な方法で順序付けてもよい。したがって、実施形態を、図解されたものと異なる順序で動作を遂行するように構成されていてもよく、実施形態においては順次動作として示されていても、複数の動作を同時に遂行することも含み得る。本明細書で使用する場合、1つ以上の要素のリストに関する「少なくとも1つの~」という句は、要素のリスト内の任意の1つ以上の要素から選択された少なくとも1つの要素を意味するものであるが、要素のリスト内に具体的に列記されたすべての要素のうちの少なくとも1つを必ずしも含むわけではなく、また要素のリスト内の要素の任意の組み合わせを除外しないことを理解されたい。移行句、例えば「備える」、「含む」、「保持する」、「有する」、「含有する」、「伴う」、「保持する」、「からなる」などはオープンエンドであると、すなわち、含んでいるが限定されないことを意味すると理解されたい。「ほぼ」という用語は、所与の値の±10%を参照するものである。
本明細書で使用される「ほぼ」という用語は、所与の値の±10%を指す。「約」という用語は、所与の値の±20%を参照するものである。反射光に関する「主に」という用語は、格子構造によって反射された光を指す。主に記載の角度で反射される光は、他の角度で反射されるよりも多くの光を含む(表面反射を除く)。列挙された反射軸を中心として主に反射される光は、他の反射軸を中心として反射されるよりも多くの反射光を含む(表面反射を除く)。主に反射される光を考慮する場合、デバイス表面で反射される光は含まれない。「反射軸」という用語は、入射光の、その反射に対する角度を二分する軸を参照するものである。入射光の、入射角の反射軸に対する絶対値は、反射軸に対する入射光の反射の反射角の絶対値に等しい。既存のミラーに関して、反射軸は面法線と一致する(つまり、反射軸はミラー表面に対して垂直である)。反対に、本開示によるスキューミラーの実装形態は、面法線と異なる反射軸を有し得、又は、一部の場合には、面法線と一致する反射軸を有し得る。反射軸角度を、入射角をその対応する反射角に加えて、得られた合計を2で割ることによって判定してもよい。入射角及び反射角は、平均値を得るために使用される複数の(一般に3回以上の)測定で実験的に判定され得る。
この開示では、「回折」が通常は適切な用語と考えられ得るいくつかの場合において、「反射」及び類似の用語が使用されている。この「反射」の使用は、スキューミラーが発揮するミラー状の特性と合致し、混乱を招く可能性のある用語法を回避するのに役立つ。例えば、格子構造が入射光を「反射する」ように構成されていると言う場合には、格子構造が光に対して回折によって作用すると一般に考えられているので、既存の技工は、格子構造が入射光を「回折する」ように構成されていると言うのを好む可能性がある。しかしながら、「回折させる」という用語をそのように使用すると、「入射光が実質的に一定の反射軸を中心として回折される」などといった表現をもたらすことになり、紛らわしくなる恐れがある。それゆえに、入射光が格子構造によって「反射された」と言う場合、当該技術分野に精通している者なら、この開示の利点を考慮すると、格子構造が実際には回折の機構によって光を「反射している」ことを認識するであろう。"そのような「反射する」の使用は、既存のミラーが、そのような反射における「回折」の主な役割にもかかわらず、一般に、光を「反射する」と言われているので、光学部品における先例がないわけではない。したがって、ほとんどの「反射」は回折の特性を含み、また、スキューミラー又はその部品による「反射」は回折も含むことが、当業者には認識される。
「光」という用語は、電磁放射線を指す。特定の波長、又は人間の目に見える電磁スペクトルの一部分を指す「可視光」などの波長の範囲が参照されていなければ、電磁放射はあらゆる波長を有し得る。「ホログラム」及び「ホログラフィック格子」という用語は、複数の交差する光ビーム間の干渉によって発生した干渉パターンの記録を参照するものである。いくつかの例では、ホログラム又はホログラフィック格子は、それぞれが露光時間にわたって不変のままである複数の交差する光ビーム間の干渉によって発生され得る。他の例では、ホログラムが記録されている間に、格子媒体上の複数の交差する光ビームの少なくとも1つの入射角が変化する場合、及び/又はホログラムが記録されている間に波長が変化する場合(例えば複素ホログラム又は複素ホログラフィック格子)、複数の交差する光ビーム間の干渉によってホログラム又はホログラフィック格子が発生し得る。
「正弦曲線の体積格子」という用語は、体積領域の全体にわたって実質的に正弦曲線のプロファイルで調整された屈折率などの光学的性質を有する光学部品を参照するものである。それぞれの(簡単な/正弦波)格子は、k空間における単一の共役ベクトル対(又はk空間における実質的に点状の共役対の分布)に対応する。「回折効率」という用語は、格子媒体上での入射光に対する反射光のパワーとの比を指す。「入射瞳孔」という用語は、結像光学系に入る光線を、その最小サイズで通す実開口部又は仮想開口部を参照するものである。「アイボックス」という用語は、領域の輪郭を描く2次元領域を参照するものであり、ここにおいて、人間の瞳孔は、格子構造からの所定距離において図の全視野を観察するように置かれ得る。「瞳孔距離」という用語は、格子構造と、対応するアイボックスの間の所定距離を参照するものである。「射出瞳孔」という用語は、結像光学系から出る光線を、その最小サイズで通す実開口部又は仮想開口部を参照するものである。使用において、結像光学系システムは、典型的には、光線を画像キャプチャ手段の方へ向けるように構成されている。画像キャプチャ手段の例として、ユーザの眼、カメラ、又は他の光検出器が挙げられるが、これらに限定されない。一部の場合には、射出瞳孔は、結像光学系から出る光線のサブセットを含んでもよい。
「格子媒体」という用語は、光の反射する格子構造で構成された物理的媒体を参照するものである。格子媒体は複数の格子構造を含み得る。「格子構造」という用語は、光を反射するように構成された1つ以上の格子を参照するものである。いくつかの例では、格子構造は、少なくとも1つの共通の属性又は特性(例えば、その組の格子のそれぞれが応答する、光の同一の波長)を共有する1組の格子を含み得る。いくつかの実装形態では、格子構造は1つ以上のホログラムを含み得る。他の実装形態では、格子構造は1つ以上の正弦曲線の体積格子を含み得る。いくつかの例では、格子構造は、1つ以上の格子(例えばホログラム又は正弦曲線の格子)のそれぞれについて、反射軸に対して均一であり得る。代わりに又は加えて、格子構造は、格子媒体内の1つ以上の格子(例えばホログラム又は正弦波体積格子)のそれぞれについて、長さ又は体積に関して均一であり得る。本明細書に記載されるようなスキューミラーは、本明細書では、格子構造、ホログラフィック格子構造、又は体積ホログラフィック格子構造と称される場合もある。
一実施形態によれば、光学デバイスであって、格子媒体と、格子媒体の第1の領域にあるホログラムの第1のセットであって、第1のセット内のホログラムのそれぞれが、第1のセット内の他のホログラムのそれぞれに少なくとも部分的に重なり、第1のセット内のホログラムのそれぞれが、格子周波数の第1のセットからのそれぞれ異なる格子周波数を有する、ホログラムの第1のセットと、格子媒体の第2の領域にあるホログラムの第2のセットであって、第2のセット内のホログラムのそれぞれが、第2のセット内の他のホログラムのそれぞれに少なくとも部分的に重なり、第2のセット内のホログラムのそれぞれが、格子周波数の第2のセットからのそれぞれ異なる格子周波数を有し、格子周波数の第2のセットが、格子周波数の第1のセット内の格子周波数間の近接周波数ギャップ内に位置している、ホログラムの第2のセットと、を含む光学デバイスが提供される。
上記実施形態の任意の組み合わせによれば、ホログラムの第1のセットは、第1の格子周波数を有する第1のホログラムと、第1の格子周波数から第1の近接周波数ギャップによって隔てられた第2の格子周波数を有する第2のホログラムと、を含む。
上記実施形態の任意の組み合わせによれば、ホログラムの第2のセットは、第3の格子周波数を有する第3のホログラムと、第3の格子周波数から第2の近接周波数ギャップによって隔てられた第4の格子周波数を有する第4のホログラムと、を含む。
上記の実施形態の任意の組み合わせによれば、第3の格子周波数は、第1の近接周波数ギャップ内にある。
上記の実施形態の任意の組み合わせによれば、第2の格子周波数は、第2の近接周波数ギャップ内にある。
上記実施形態の任意の組み合わせによれば、第1のセット内のホログラムのそれぞれは、所与の方向を指す対応する格子ベクトルを有し、第2のセット内のホログラムのそれぞれは、所与の方向を指す対応する格子ベクトルを有する。
上記実施形態の任意の組み合わせによれば、ホログラムの第1のセットの平均近接周波数ギャップが、4.0 sincピーク-sincヌルよりも大きい。
上記の実施形態の任意の組み合わせによれば、光学デバイスは、格子媒体並びにホログラムの第1及び第2のセットを含む、出力カプラを更に含む。
上記の実施形態の任意の組み合わせによれば、光学デバイスは、格子媒体並びにホログラムの第1及び第2のセットを含む、入力カプラを更に含む。
上記の実施形態の任意の組み合わせによれば、光学デバイスは、格子媒体並びにホログラムの第1及び第2のセットを含む、クロスカプラを更に含む。
上記実施形態の任意の組み合わせによれば、第1のセット内のホログラムのそれぞれは、所与の角度から0.50度以内にある格子ベクトルを有する。
別の実施形態によれば、光学システムであって、第1及び第2の領域を有する格子媒体であって、第2の領域が、第1及び第2のサブ領域を有する、格子媒体と、第1の領域にあるホログラムの第1のセットであって、入力光の第1の部分を第1の方向に回折させるように、かつ入力光の第2の部分を第2の領域に通過させるように構成されている、ホログラムの第1のセットと、第1のサブ領域にあるホログラムの第2のセットと、第2のサブ領域にあるホログラムの第3のセットであって、ホログラムの第2及び第3のセットが、入力光の第2の部分を、第1の方向とは異なる第2の方向に回折させるように構成されており、ホログラムの第3のセットが、ホログラムの第2のセットに対して櫛状にシフトされている、ホログラムの第3のセットと、を含む光学システムが提供される。
上記実施形態の任意の組み合わせによれば、ホログラムの第2のセットは、近接周波数ギャップによって隔てられた第1の格子周波数を有し、ホログラムの第3のセットは、第1の格子周波数の近接周波数ギャップ内にある第2の格子周波数を有する。
上記実施形態の任意の組み合わせによれば、ホログラムの第2のセットの平均近接周波数ギャップが、4.0 sincピーク-sincヌルよりも大きい。
上記の実施形態の任意の組み合わせによれば、第1のサブ領域は、格子媒体の第2のサブ領域と第1の領域との間に介在している。
上記実施形態の任意の組み合わせによれば、ホログラムの第1のセットは、第1の方向に向けられた第1の格子ベクトルを有し、ホログラムの第2のセットは、第2の方向に向けられた第2の格子ベクトルを有し、ホログラムの第3のセットは、第2の方向に向けられた第3の格子ベクトルを有する。
上記の実施形態の任意の組み合わせによれば、格子媒体は第3の領域を有し、第2の領域は、第1の領域と第3の領域との間に介在しており、光学システムは、第3の領域にあるホログラムの第4のセットであって、ホログラムの第2及び第3のセットによって回折されない光の第2の部分の少なくとも一部を、第1及び第2の方向とは異なる第3の方向に回折させるように構成されている、ホログラムの第4のセットを更に含む。
別の実施形態によれば、ヘッドマウントディスプレイデバイスであって、第1及び第2の基材と、第1の基材と第2の基材との間の格子媒体であって、重なり合わない第1及び第2の領域を有する格子媒体と、第1の領域内の同位置にある第1及び第2のホログラムであって、第1のホログラムが第1の格子周波数を有し、第2のホログラムが、第1の格子周波数から近接周波数ギャップによって隔てられた第2の格子周波数を有する、第1及び第2のホログラムと、第2の領域内の同位置にある第3及び第4のホログラムであって、第3のホログラムが、近接周波数ギャップ内の第3の格子周波数を有する、第3及び第4のホログラムと、を含むヘッドマウントディスプレイデバイスが提供される。
上記実施形態の任意の組み合わせによれば、第4のホログラムは、第3の格子周波数から追加の近接周波数ギャップによって隔てられた第4の格子周波数を有し、第2の格子周波数は、追加の近接周波数ギャップ内にある。
上記実施形態の任意の組み合わせによれば、ヘッドマウントディスプレイは、画像担持光を提供するための光源であって、第1及び第2のホログラム並びに第3及び第4のホログラムが、画像担持光の少なくとも一部を、第2の基材の表面から一定の距離にある射出瞳孔の方へ回折させるように構成されている、光源を更に含む。
前述は、単なる例示に過ぎず、説明された実施形態に対して多様な変更を行うことができる。前述の実施形態は、個別に又は任意の組み合わせで実施することができる。

Claims (11)

  1. 格子媒体と、
    前記格子媒体の第1の領域にあるホログラムの第1のセットであって、前記第1のセット内の前記ホログラムのそれぞれが、前記第1の領域を成す前記格子媒体の同じ物理体積内にあるように前記第1のセット内の他のホログラムのそれぞれに少なくとも部分的に重なり、前記第1のセット内の前記ホログラムのそれぞれが、k空間において、格子周波数の第1のセットからのそれぞれ異なる格子周波数及びそれぞれ異なる格子ベクトルを有する、ホログラムの第1のセットと、
    前記格子媒体の第2の領域にあるホログラムの第2のセットであって、前記第2のセット内の前記ホログラムのそれぞれが、前記第2の領域を成す前記格子媒体の同じ物理体積内にあるように前記第2のセット内の他のホログラムのそれぞれに少なくとも部分的に重なり、前記第2のセット内の前記ホログラムのそれぞれが、前記k空間において、格子周波数の第2のセットからのそれぞれ異なる格子周波数及びそれぞれ異なる格子ベクトルを有する、ホログラムの第2のセットと、を備え、
    ホログラムの前記第2のセット内の前記ホログラムの前記格子周波数は、前記k空間において、前記第1のセット内の前記格子周波数間の近接周波数ギャップ内にあり、
    ホログラムの前記第2のセット内の前記ホログラムの前記格子ベクトル及びホログラムの前記第1のセット内のホログラムの前記格子ベクトルは、前記k空間において、同じ方向に向けられており、
    ホログラムの前記第1のセットは、前記第1のセットに入射する前記光の所定の波長を角度付きで回折するように構成され、
    ホログラムの前記第2のセットは、格子周波数の前記第1のセット内の前記格子周波数間の近接周波数ギャップに対応するホログラムの前記第1のセットを通過した前記光の波長を前記角度で回折するように構成された、光学デバイス。
  2. ホログラムの前記第1のセットは、第1の格子周波数を有する第1のホログラムと、前記第1の格子周波数から第1の近接周波数ギャップによって隔てられた第2の格子周波数を有する第2のホログラムと、を含む、請求項1に記載の光学デバイス。
  3. ホログラムの前記第2のセットは、第3の格子周波数を有する第3のホログラムと、前記第3の格子周波数から第2の近接周波数ギャップによって隔てられた第4の格子周波数を有する第4のホログラムと、を含む、請求項2に記載の光学デバイス。
  4. 前記第3の格子周波数は、前記第1の近接周波数ギャップ内にある、請求項3に記載の光学デバイス。
  5. 前記第2の格子周波数は、前記第2の近接周波数ギャップ内にある、請求項4に記載の光学デバイス。
  6. 前記第1のセット内の前記ホログラムのそれぞれは、所与の方向に光を回折させるように構成されており、前記第2のセット内の前記ホログラムのそれぞれは、前記所与の方向に光を回折させるように構成されている、請求項5に記載の光学デバイス。
  7. ホログラムの前記第1のセットの平均近接周波数ギャップが、4.0 sincピーク-sincヌルよりも大きい、請求項5に記載の光学デバイス。
  8. 前記格子媒体並びにホログラムの前記第1及び第2のセットを含む、出力カプラを更に備える、請求項1に記載の光学デバイス。
  9. 前記格子媒体並びにホログラムの前記第1及び第2のセットを含む、入力カプラを更に備える、請求項1に記載の光学デバイス。
  10. 前記光学デバイスは、クロスカプラ、入力カプラ、出力カプラ、ダイヤモンド拡張器、及びインターリーブカプラからなる群から選択される光学デバイスを備える、請求項1に記載の光学デバイス。
  11. 前記第1のセット内の前記ホログラムのそれぞれは、所与の角度から0.50度以内にある格子ベクトルを有し、前記光学デバイスは、前記格子媒体内の4つの対応する領域内にホログラムの4つのセットを更に含み、ホログラムの前記4つのセットのそれぞれは、前記近接周波数ギャップ内の格子周波数を有する、請求項1に記載の光学デバイス。
JP2020518776A 2017-10-04 2018-09-27 櫛状シフト式スキューミラー Active JP7042903B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201762568270P 2017-10-04 2017-10-04
US62/568,270 2017-10-04
PCT/US2018/053155 WO2019070504A1 (en) 2017-10-04 2018-09-27 OBLIQUE MIRRORS DECALED IN COMB

Publications (2)

Publication Number Publication Date
JP2020536280A JP2020536280A (ja) 2020-12-10
JP7042903B2 true JP7042903B2 (ja) 2022-03-28

Family

ID=63966094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020518776A Active JP7042903B2 (ja) 2017-10-04 2018-09-27 櫛状シフト式スキューミラー

Country Status (6)

Country Link
US (1) US11782273B2 (ja)
EP (1) EP3692400B1 (ja)
JP (1) JP7042903B2 (ja)
KR (1) KR102574653B1 (ja)
CN (2) CN114690305A (ja)
WO (1) WO2019070504A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021118850A1 (en) * 2019-12-12 2021-06-17 Akalana Management Llc Optical systems with resolution-enhancing holographic elements
US11514649B2 (en) * 2020-05-29 2022-11-29 Microsoft Technology Licensing, Llc Camera for augmented reality display

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104035157A (zh) 2014-05-26 2014-09-10 北京理工大学 一种基于衍射光学元件的波导显示器
JP2015523586A (ja) 2012-04-25 2015-08-13 ロックウェル・コリンズ・インコーポレーテッド ホログラフィック広角ディスプレイ
CN106707389A (zh) 2016-12-30 2017-05-24 浙江大学 一种渐变体全息光栅及其制作方法与装置

Family Cites Families (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4017158A (en) 1975-03-17 1977-04-12 E. I. Du Pont De Nemours And Company Spatial frequency carrier and process of preparing same
US4930847A (en) 1987-07-09 1990-06-05 Environmental Research Institute Of Michigan Multicolor holographic element and apparatus for head-up display applications
JPH11265139A (ja) 1998-03-17 1999-09-28 Asahi Glass Co Ltd 多層体積ホログラムの作製方法
US6604839B2 (en) 2001-06-15 2003-08-12 Lumileds Lighting, U.S., Llc Multi-chip LED color mixing by diffraction
JP2003139958A (ja) 2001-10-31 2003-05-14 Sony Corp 透過型積層ホログラム光学素子、画像表示素子及び画像表示装置
JP2003222727A (ja) 2002-01-31 2003-08-08 Hitachi Chem Co Ltd ホログラフィーによる光制御拡散体
AU2003279909A1 (en) 2002-07-01 2004-01-19 Toray Plastics (America), Inc. Patterned deposition of refractive layers for high security holograms
CN100337417C (zh) * 2002-12-13 2007-09-12 北京工业大学 级联式体全息光栅密集波分复用器件制作方法及其系统
US7092133B2 (en) * 2003-03-10 2006-08-15 Inphase Technologies, Inc. Polytopic multiplex holography
JP4574183B2 (ja) * 2004-02-13 2010-11-04 パイオニア株式会社 ホログラム記録媒体
CN100410727C (zh) 2004-03-29 2008-08-13 索尼株式会社 光学装置以及虚像显示装置
US20060126181A1 (en) 2004-12-13 2006-06-15 Nokia Corporation Method and system for beam expansion in a display device
US7162136B1 (en) 2004-12-22 2007-01-09 West Virginia University Non-circular, mechanically variable optical attenuator
US7321466B2 (en) 2005-02-11 2008-01-22 Wasatch Photonics, Inc. High dispersion diffraction grating including multiple holographic optical elements
CA2541568C (en) 2005-04-06 2014-05-13 Jds Uniphase Corporation Dynamic appearance-changing optical devices (dacod) printed in a shaped magnetic field including printable fresnel structures
JP2006323291A (ja) * 2005-05-20 2006-11-30 Sony Corp 記録媒体、再生装置、再生方法
JP4655771B2 (ja) * 2005-06-17 2011-03-23 ソニー株式会社 光学装置及び虚像表示装置
JP4862298B2 (ja) 2005-06-30 2012-01-25 ソニー株式会社 光学装置及び虚像表示装置
JP4810949B2 (ja) 2005-09-29 2011-11-09 ソニー株式会社 光学装置及び画像表示装置
US20070217692A1 (en) 2006-03-17 2007-09-20 Data Trace Information Services, Llc Property record document data verification systems and methods
WO2008081070A1 (en) 2006-12-28 2008-07-10 Nokia Corporation Device for expanding an exit pupil in two dimensions
US20080309998A1 (en) 2007-06-13 2008-12-18 Sharp Kabushiki Kaisha Hologram element deflecting optical beam, hologram element fabricating apparatus, hologram element fabricating method, deflection optical unit, and information recording apparatus and information reconstructing apparatus using deflection optical unit
TW200947002A (en) 2008-05-14 2009-11-16 Ind Tech Res Inst Gratings at optical fiber side and coupling apparatus using the same
US8233204B1 (en) 2009-09-30 2012-07-31 Rockwell Collins, Inc. Optical displays
US9075184B2 (en) 2012-04-17 2015-07-07 Milan Momcilo Popovich Compact edge illuminated diffractive display
FR2957683B1 (fr) 2010-03-17 2012-03-23 Delphi Tech Inc Combineur diffractif pour afficheur tete haute couleur
JP5698498B2 (ja) 2010-11-10 2015-04-08 旭化成イーマテリアルズ株式会社 光線制御ユニット、直下型バックライト装置及び液晶表示装置
WO2012131970A1 (ja) 2011-03-31 2012-10-04 トヨタ自動車株式会社 内燃機関の制御装置およびそれを搭載する車両
US8189263B1 (en) 2011-04-01 2012-05-29 Google Inc. Image waveguide with mirror arrays
GB201114149D0 (en) 2011-08-17 2011-10-05 Bae Systems Plc Projection display
US8903207B1 (en) 2011-09-30 2014-12-02 Rockwell Collins, Inc. System for and method of extending vertical field of view in head up display utilizing a waveguide combiner
JP5846631B2 (ja) 2011-11-02 2016-01-20 株式会社エンプラス 導光板およびこれを備えた光学系
US9207461B2 (en) 2011-11-18 2015-12-08 Ciena Corporation Fiber optical package interconnect
US8665178B1 (en) 2012-03-01 2014-03-04 Google, Inc. Partially-reflective waveguide stack and heads-up display using same
US9274338B2 (en) 2012-03-21 2016-03-01 Microsoft Technology Licensing, Llc Increasing field of view of reflective waveguide
US9456744B2 (en) 2012-05-11 2016-10-04 Digilens, Inc. Apparatus for eye tracking
US9151881B2 (en) 2012-11-12 2015-10-06 Kla-Tencor Corporation Phase grating for mask inspection system
US9933684B2 (en) 2012-11-16 2018-04-03 Rockwell Collins, Inc. Transparent waveguide display providing upper and lower fields of view having a specific light output aperture configuration
US9664824B2 (en) 2012-12-10 2017-05-30 Bae Systems Plc Display comprising an optical waveguide and switchable diffraction gratings and method of producing the same
US10146053B2 (en) * 2012-12-19 2018-12-04 Microsoft Technology Licensing, Llc Multiplexed hologram tiling in a waveguide display
US20140204437A1 (en) * 2013-01-23 2014-07-24 Akonia Holographics Llc Dynamic aperture holographic multiplexing
US10533850B2 (en) 2013-07-12 2020-01-14 Magic Leap, Inc. Method and system for inserting recognized object data into a virtual world
JP6362364B2 (ja) 2014-03-10 2018-07-25 キヤノン株式会社 回折格子、および回折格子の製造方法
WO2015184413A1 (en) 2014-05-30 2015-12-03 Magic Leap, Inc. Methods and systems for generating virtual content display with a virtual or augmented reality apparatus
US10852838B2 (en) 2014-06-14 2020-12-01 Magic Leap, Inc. Methods and systems for creating virtual and augmented reality
US10241330B2 (en) 2014-09-19 2019-03-26 Digilens, Inc. Method and apparatus for generating input images for holographic waveguide displays
US10008822B2 (en) 2014-10-10 2018-06-26 The Boeing Company Laser system and method for controlling the wave front of a laser beam
CN104656259B (zh) * 2015-02-05 2017-04-05 上海理湃光晶技术有限公司 共轭窄带三基色交错的体全息光栅波导近眼光学显示器件
CN104777535B (zh) 2015-03-25 2017-05-24 东南大学 一种复用体全息光栅
WO2016162606A1 (en) * 2015-04-08 2016-10-13 Dispelix Oy Optical see-through display element and device utilizing such element
US10180520B2 (en) * 2015-08-24 2019-01-15 Akonia Holographics, Llc Skew mirrors, methods of use, and methods of manufacture
EP3420388A4 (en) 2016-04-04 2019-11-27 Akonia Holographics, LLC EQUALIZATION OF PUPILLE
JP6993405B2 (ja) 2016-08-22 2022-01-13 マジック リープ, インコーポレイテッド ウェアラブルディスプレイデバイスのためのディザリング方法および装置
EP3510321B1 (en) 2016-09-07 2023-10-25 Magic Leap, Inc. Virtual reality, augmented reality, and mixed reality systems including thick media and related methods
IL307783A (en) 2017-01-23 2023-12-01 Magic Leap Inc Eyepiece for virtual, augmented or mixed reality systems
GB2573717B (en) * 2017-02-15 2022-11-09 Akonia Holographics Llc Skew Illuminator
US10859833B2 (en) 2017-08-18 2020-12-08 Tipd, Llc Waveguide image combiner for augmented reality displays
US11119261B1 (en) * 2017-11-01 2021-09-14 Akonia Holographics Llc Coherent skew mirrors
US11966053B2 (en) * 2017-12-19 2024-04-23 Apple Inc. Optical system with dispersion compensation
WO2019125575A1 (en) * 2017-12-19 2019-06-27 Akonia Holographics Llc Optical system with dispersion compensation
JP7157600B2 (ja) * 2018-09-05 2022-10-20 株式会社日立エルジーデータストレージ 導光板、導光板製造方法及びそれを用いた映像表示装置
CN113728258A (zh) * 2019-03-12 2021-11-30 迪吉伦斯公司 全息波导背光及相关制造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015523586A (ja) 2012-04-25 2015-08-13 ロックウェル・コリンズ・インコーポレーテッド ホログラフィック広角ディスプレイ
CN104035157A (zh) 2014-05-26 2014-09-10 北京理工大学 一种基于衍射光学元件的波导显示器
CN106707389A (zh) 2016-12-30 2017-05-24 浙江大学 一种渐变体全息光栅及其制作方法与装置

Also Published As

Publication number Publication date
CN111247465A (zh) 2020-06-05
WO2019070504A1 (en) 2019-04-11
CN114690305A (zh) 2022-07-01
EP3692400A1 (en) 2020-08-12
KR102574653B1 (ko) 2023-10-06
CN111247465B (zh) 2022-05-13
JP2020536280A (ja) 2020-12-10
EP3692400B1 (en) 2023-10-11
US11782273B2 (en) 2023-10-10
KR20200046098A (ko) 2020-05-06
US20200264435A1 (en) 2020-08-20

Similar Documents

Publication Publication Date Title
US11762198B2 (en) Pupil equalization
US20210325592A1 (en) Skew Mirrors, Methods of Use, and Methods Of Manufacture
US20210231961A1 (en) Pupil expansion
US10317679B2 (en) Light homogenization
CN111201476B (zh) 二维光均化
US11835746B2 (en) Coherent skew mirrors
JP6987251B2 (ja) 分散補償を有する光学システム
US20200192101A1 (en) Pupil expansion
JP7042903B2 (ja) 櫛状シフト式スキューミラー
TW201825932A (zh) 光瞳等化

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200401

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20210120

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20210210

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20210209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210707

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211227

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20211227

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220113

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220315

R150 Certificate of patent or registration of utility model

Ref document number: 7042903

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150