[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7042748B2 - Male screw and screw fastening structure - Google Patents

Male screw and screw fastening structure Download PDF

Info

Publication number
JP7042748B2
JP7042748B2 JP2018547195A JP2018547195A JP7042748B2 JP 7042748 B2 JP7042748 B2 JP 7042748B2 JP 2018547195 A JP2018547195 A JP 2018547195A JP 2018547195 A JP2018547195 A JP 2018547195A JP 7042748 B2 JP7042748 B2 JP 7042748B2
Authority
JP
Japan
Prior art keywords
thread
angle
flank surface
male
screw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018547195A
Other languages
Japanese (ja)
Other versions
JPWO2018079137A1 (en
Inventor
裕史 中野
直樹 堀内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topura Co Ltd
Original Assignee
Topura Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topura Co Ltd filed Critical Topura Co Ltd
Publication of JPWO2018079137A1 publication Critical patent/JPWO2018079137A1/en
Application granted granted Critical
Publication of JP7042748B2 publication Critical patent/JP7042748B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B33/00Features common to bolt and nut
    • F16B33/02Shape of thread; Special thread-forms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B39/00Locking of screws, bolts or nuts
    • F16B39/22Locking of screws, bolts or nuts in which the locking takes place during screwing down or tightening
    • F16B39/28Locking of screws, bolts or nuts in which the locking takes place during screwing down or tightening by special members on, or shape of, the nut or bolt
    • F16B39/30Locking exclusively by special shape of the screw-thread

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Connection Of Plates (AREA)

Description

本発明は、耐ゆるみ性及び耐疲労強度の高いおねじ、及びそれを用いたねじ締結構造に関し、特にねじ山の形状に関する。 The present invention relates to a male screw having high loosening resistance and fatigue resistance, and a screw fastening structure using the same, and particularly to a thread shape.

従来のこの種のおねじとして、本出願人は、既に、特許文献1に記載のようなねじ山形状を提案している。
すなわち、特許文献1に記載のおねじのねじ山は、ねじ有効径近傍より山頂側の角度を、底辺側(根元側)の角度より小さくしたものである。底辺側の角度は、めねじのねじ山の角度と同じであり、おねじのねじ山の山頂部を、めねじのねじ山のフランク面に対して線接触させ、弾性変形させることにより、耐ゆるみ性を高めている。さらに、締め付け荷重を、めねじのねじ山に嵌合する複数の嵌合ねじ山に分散させることで、耐疲労強度の高いねじを実現していた。
As a conventional screw of this type, the applicant has already proposed a thread shape as described in Patent Document 1.
That is, the thread of the screw described in Patent Document 1 has an angle on the peak side of the vicinity of the effective diameter of the screw smaller than the angle on the bottom side (root side). The angle on the bottom side is the same as the angle of the thread of the female thread, and the thread top of the male thread is brought into line contact with the flank surface of the thread of the female thread to be elastically deformed. Increases looseness. Further, by distributing the tightening load to a plurality of fitting threads that are fitted to the threads of the female thread, a screw having high fatigue resistance has been realized.

特許第3344747号公報Japanese Patent No. 3344747

しかしながら、近年、安全性に対する要求が高まっており、ねじ締結部の耐ゆるみ性、おねじの耐疲労強度については、さらなる向上が要請されている。本発明者等は、この要請に応えるべく、鋭意研究を重ねた結果、新たなねじ山形状についての知見を得た。
本発明は、耐ゆるみ性が高く、さらなる耐疲労強度の向上を図り得るおねじ及びねじ締結構造を提供することにある。
However, in recent years, the demand for safety has been increasing, and further improvement is required in the loosening resistance of the screw fastening portion and the fatigue resistance strength of the male screw. As a result of diligent research in order to meet this demand, the present inventors have obtained knowledge about a new thread shape.
The present invention is to provide a male screw and a screw fastening structure which have high loosening resistance and can further improve fatigue resistance.

上記目的を達成するために、本発明のおねじは、ねじ山の圧力側フランク面の山頂側の角度を、おねじが螺合するめねじのねじ山の圧力側フランク面と同等とし、根元側の角度を、山頂側の角度より大きく設定し
前記おねじのねじ山のピッチを、前記めねじのねじ山のピッチより、おねじのねじ山とめねじのねじ山との嵌合クリアランスの許容範囲内で、小さく設定したことを特徴とする。前記ねじ山の圧力側フランク面の山頂側の角度を30°、根元側の角度を30°を超え35°以下とすることができる。
また、他の発明は、おねじのねじ山が、めねじのねじ山に螺合して締め付けられるねじ締結構造であって、
前記おねじのねじ山の圧力側フランク面の山頂側の角度を、前記おねじが螺合する前記めねじのねじ山の圧力側フランク面と同等とし、根元側の角度を、山頂側の角度より大きく設定し、
前記めねじのねじ山の圧力側フランク面は、山頂側から根元側まで一定角度であり、前記おねじのねじ山の圧力側フランク面の根元側部分に、前記めねじ側の圧力側フランク面の山頂側角部が当接し、締め付け荷重によって前記山頂側角部を支点にしてめねじのねじ山が弾性変形してめねじのねじ山の圧力側フランク面が前記おねじのねじ山の圧力側フランク面に面接触する構成となっていることを特徴とする。
前記おねじのねじ山の圧力側フランク面の山頂側の角度を30°、根元側の角度を31°~35°とすることができる。
また、前記おねじのねじ山の遊び側フランク面についても、圧力側フランク面と同じく、根元側の角度が山頂側の角度より大きく設定することができる。
さらに、ねじ山のピッチを、前記めねじのねじ山のピッチより、おねじのねじ山とめねじのねじ山との嵌合クリアランスの許容範囲内で、小さく設定してもよい。
In order to achieve the above object, in the screw of the present invention, the angle of the ridge side of the pressure side flank surface of the thread is equal to the pressure side flank surface of the thread of the female thread to which the male thread is screwed, and the root side. Set the angle of to be larger than the angle on the mountaintop side ,
The pitch of the male thread is set smaller than the pitch of the female thread within the allowable range of the fitting clearance between the male thread and the female thread. .. The angle of the peak side of the pressure side flank surface of the thread can be 30 °, and the angle of the root side can be more than 30 ° and 35 ° or less .
Another invention is a screw fastening structure in which the thread of the male thread is screwed and tightened to the thread of the female thread.
The angle of the ridge side of the pressure side flank surface of the thread of the male thread is equal to the angle of the pressure side flank surface of the thread of the female thread to which the male thread is screwed, and the angle of the root side is the angle of the ridge side. Set larger and
The pressure-side flank surface of the female thread has a constant angle from the mountain top side to the root side, and the pressure-side flank surface on the female thread side is on the root side portion of the pressure-side flank surface of the male thread. The ridge side corner of the thread abuts, and the tightening load causes the female thread to elastically deform with the ridge side corner as the fulcrum, and the pressure side flank surface of the female thread is the pressure of the male thread. It is characterized in that it is configured to make surface contact with the side flank surface.
The angle on the ridge side of the pressure side flank surface of the thread of the male thread can be 30 °, and the angle on the root side can be 31 ° to 35 °.
Further, as for the play side flank surface of the thread of the male screw, the angle on the root side can be set larger than the angle on the mountain top side as in the pressure side flank surface.
Further, the thread pitch may be set smaller than the pitch of the female thread within the allowable range of the fitting clearance between the male thread and the female thread.

本発明によれば、おねじとめねじの締結部において、外部荷重の変動によっておねじの軸力が低下し、めねじのねじ山の圧力側フランク面と、おねじのねじ山の圧力側フランク面の山頂側部分との間に隙間が開いたとしても、めねじのねじ山の山頂側角部の弾性変形分で、接触面圧を確保することができ、弛み止めを図ることができる。
一方、おねじのねじ山の圧力側フランク面の根元側部分に、めねじ側の圧力側フランク面の山頂側角部が当接して弾性変形する構成となっているので、弾性変形によって、めねじに係合する嵌合ねじ山の内、めねじの座面側の第1嵌合ねじ山だけでなく、複数の嵌合ねじ山にもめねじのねじ山が当接し、締め付け荷重を複数の嵌合ねじ山に分散させることができる。
また、めねじの圧力側フランク面の山頂側角部の当接部は、おねじのねじ山の圧力側フランク面の根元側部分なので、おねじの第1嵌合ねじ山の付け根に位置する第1谷部との距離が短く、第1谷部に作用する引張応力が小さくなり、前記軸力の分散と相まって、おねじの第1谷部に作用する応力を低下させることができ、耐疲労強度を増大させることができる。
さらに、おねじのねじ山のピッチを、めねじに対してピッチ差を設けることで、おねじの第1谷部にかかる最大主応力の低減と共に、各ねじ山の接触面圧の均一化を図ることができる。
According to the present invention, at the fastening portion between the male thread and the female thread, the axial force of the male thread decreases due to the fluctuation of the external load, and the pressure side flank surface of the thread of the female thread and the pressure side flank of the thread of the male thread. Even if there is a gap between the surface and the ridge side portion, the contact surface pressure can be secured by the elastic deformation of the ridge side corner of the female thread, and slack can be prevented.
On the other hand, the corner of the pressure-side flank surface on the female thread side abuts on the root side of the pressure-side flank surface of the male thread and is elastically deformed. Of the fitting threads that engage with the screw, not only the first fitting thread on the bearing surface side of the female thread, but also the threads of the female thread come into contact with multiple fitting threads, and multiple tightening loads are applied. Can be dispersed over threads.
Further, since the contact portion of the ridge side corner of the pressure side flank surface of the female thread is the root side portion of the pressure side flank surface of the male thread, it is located at the base of the first fitting thread of the male thread. The distance from the first valley portion is short, the tensile stress acting on the first valley portion becomes smaller, and the stress acting on the first valley portion of the male screw can be reduced in combination with the dispersion of the axial force, and the resistance can be reduced. Fatigue strength can be increased.
Furthermore, by providing a pitch difference between the thread of the male thread and the female thread, the maximum principal stress applied to the first valley of the male thread can be reduced and the contact surface pressure of each thread can be made uniform. Can be planned.

図1は本発明の実施形態1に係るねじ締結構造を示すもので、(A)はおねじのねじ山を示す断面図、(B)は締結初期状態を示す図、(C)は締結完了状態を示す図、(D)は全体構造を示す概略図である。1A and 1B show a screw fastening structure according to the first embodiment of the present invention, where FIG. 1A is a cross-sectional view showing a thread of a male screw, FIG. 1B is a diagram showing an initial fastening state, and FIG. 1C is a fastening completed state. The figure showing the above, (D) is a schematic view showing the whole structure. 図2(A)、(C)、(E)は本発明の実施形態1、比較例1及び比較例2のおねじのねじ山を示す図、図2(B)、(D)、(F)は、それぞれ(A)、(C)、(E)のおねじとJIS標準ねじ山のめねじとの初期当接状態を模式的に示す図である。2 (A), (C), and (E) are views showing the threads of the screws of Embodiment 1, Comparative Example 1 and Comparative Example 2 of the present invention, FIGS. 2 (B), (D), (F). ) Is a diagram schematically showing the initial contact state between the threads (A), (C), and (E) and the female thread of the JIS standard thread. (A),(B)は、本発明の実施形態1のねじ締結構造のおねじとめねじに作用する最大主応力の解析結果、(C),(D)は、比較例1のねじ締結構造のおねじとめねじに作用する最大主応力の解析結果、(E),(F)は比較例2のねじ締結構造のおねじとめねじに作用する最大主応力の解析結果を示すグラフである。(A) and (B) are analysis results of the maximum principal stress acting on the screw and female screw of the screw fastening structure of the first embodiment of the present invention, and (C) and (D) are the screw fastening structure of Comparative Example 1. The analysis results of the maximum principal stress acting on the male and female threads, and (E) and (F) are graphs showing the analysis results of the maximum principal stress acting on the thread and female thread of the screw fastening structure of Comparative Example 2. (A)は、図1のねじ山角度を変えた場合の、おねじの谷部に作用する最大主応力の解析結果を示すグラフ、(B)は、本発明の実施形態2のピッチ差を設ける場合の嵌合クリアランスの説明図である。(A) is a graph showing the analysis result of the maximum principal stress acting on the valley portion of the male thread when the thread angle of FIG. 1 is changed, and (B) is the pitch difference of the second embodiment of the present invention. It is explanatory drawing of the fitting clearance at the time of providing. (A)は、ピッチ変化率と山角度を変えた場合のねじ谷部にかかる最大主応力を示すグラフ、(B)は、(A)の各ピッチ変化率に対応する最大主応力と基準ピッチの最大主応力の比較結果を示す図である。(A) is a graph showing the maximum principal stress applied to the thread valley portion when the pitch change rate and the crest angle are changed, and (B) is the maximum principal stress and the reference pitch corresponding to each pitch change rate of (A). It is a figure which shows the comparison result of the maximum principal stress of.

以下に本発明を図示の実施形態に基づいて詳細に説明する。
図1(D)は、本発明の実施形態1に係るねじ締結構造を示している。
すなわち、このねじ締結構造は、被締め付け部材100を、ボルト等のおねじ10と、ナット等のめねじ20とによって締結する構成となっている。
おねじ10は、ねじ軸部11の一端に頭部12が設けられ、ねじ軸部11外周には螺旋状のねじ山13が形成されている。めねじ20は、ねじ穴22が貫通形成され、ねじ穴22内周におねじのねじ山13が螺合する複数のねじ山23が形成されている。
Hereinafter, the present invention will be described in detail based on the illustrated embodiments.
FIG. 1D shows a screw fastening structure according to the first embodiment of the present invention.
That is, this screw fastening structure is configured to fasten the tightened member 100 with a screw 10 such as a bolt and a female screw 20 such as a nut.
The male screw 10 is provided with a head portion 12 at one end of the screw shaft portion 11, and a spiral thread 13 is formed on the outer periphery of the screw shaft portion 11. In the female screw 20, a screw hole 22 is formed through the screw hole 22, and a plurality of threads 23 into which the thread 13 of the screw is screwed are formed on the inner circumference of the screw hole 22.

図1(A)には、おねじ10のねじ山13を拡大して示している。
この発明では、おねじ10のねじ山13の圧力側フランク面14の根元側の角度β2(ねじの軸線Nを含む断面形においてフランク面が軸線Nに直角なねじ山13の中心線Mとなす角)を、山頂側の角度β1より大きく設定している。圧力側フランク面14の山頂側部分141と根元側部分142とは、有効径d近傍が境界となっている。また、遊び側フランク面15は、ねじ山13の山頂部16を通る中心線Mに対して線対称となっており、圧力側フランク面14と同様に、根元側部分152の角度β4(=β2)が、山頂側部分151の角度β3(=β1)より大きく設定されている。
一方、図1(B)に示すように、めねじ20のねじ山23の圧力側フランク面24の角度β5は、山頂部26から根元まで一定で、おねじ10のねじ山13の圧力側フランク面14の山頂側部分141の角度β1と同一角度に設定されている。また、めねじ20のねじ山23の遊び側フランク面25も圧力側フランク面14と線対称でその角度は同一角度であり、めねじ20のピッチPiはおねじ10のピッチPmと同一ピッチである(図1(D)参照)。
FIG. 1A shows an enlarged thread 13 of the male thread 10.
In the present invention, the angle β2 on the root side of the pressure side flank surface 14 of the thread 13 of the male thread 10 (the flank surface is the center line M of the thread 13 perpendicular to the axis N in the cross-sectional shape including the axis N of the screw). The angle) is set to be larger than the angle β1 on the mountaintop side. The peak side portion 141 and the root side portion 142 of the pressure side flank surface 14 are bordered by the vicinity of the effective diameter d. Further, the play-side flank surface 15 is line-symmetrical with respect to the center line M passing through the peak portion 16 of the screw thread 13, and the angle β4 (= β2) of the root-side portion 152 is similar to the pressure-side flank surface 14. ) Is set to be larger than the angle β3 (= β1) of the mountaintop side portion 151.
On the other hand, as shown in FIG. 1 (B), the angle β5 of the pressure-side flank surface 24 of the thread 23 of the female thread 20 is constant from the peak portion 26 to the root, and the pressure-side flank of the thread 13 of the male thread 10 is constant. The angle is set to be the same as the angle β1 of the mountaintop side portion 141 of the surface 14. Further, the play-side flank surface 25 of the thread 23 of the female thread 20 is also line-symmetrical with the pressure-side flank surface 14 and its angle is the same, and the pitch Pi of the female thread 20 is the same pitch as the pitch Pm of the male thread 10. (See FIG. 1 (D)).

この実施形態では、ねじ山13の形状寸法については、ねじ山13の根元側部分142の角度β2以外は、もっとも一般的なJISB0205のメートル並目ねじに準拠するもので、ねじ山13の山頂側部分141の山角度α1(圧力側フランク面14と遊び側フランク面15とのなす角)は60°に設定され、根元側部分142の山角度α2が60°を超えて70°以下、より好ましくは62°以上70°以下、より好ましくは62°以上63°以下に設定される。
圧力側フランク面14の角度では、山頂側部分141の角度β1は、山角度の半角で30°、根元側部分142の角度β2は、30°を超えて35°以下、好ましくは31°以上35°以下、より好ましくは31°以上31.5°以下程度である。
一方、めねじ20のねじ山23の形状寸法については、一般的なメートル並目ねじであり、山角度α5は60°であり、圧力側フランク面24の角度β5は、山角度の半角で30°である。
In this embodiment, the shape and dimensions of the thread 13 conform to the most common JISB0205 metric coarse thread except for the angle β2 of the root side portion 142 of the thread 13, and the thread top side of the thread 13. The peak angle α1 of the portion 141 (the angle formed by the pressure side flank surface 14 and the play side flank surface 15) is set to 60 °, and the peak angle α2 of the root side portion 142 exceeds 60 ° and is 70 ° or less, more preferably. Is set to 62 ° or more and 70 ° or less, more preferably 62 ° or more and 63 ° or less.
At the angle of the pressure side flank surface 14, the angle β1 of the mountaintop side portion 141 is 30 ° at the half angle of the mountain angle, and the angle β2 of the root side portion 142 exceeds 30 ° and is 35 ° or less, preferably 31 ° or more and 35. ° or less, more preferably 31 ° or more and 31.5 ° or less.
On the other hand, the shape and dimension of the thread 23 of the female thread 20 is a general metric coarse thread, the thread angle α5 is 60 °, and the angle β5 of the pressure side flank surface 24 is 30 at a half angle of the thread angle. °.

このように設定すれば、締め付け時に、まず、めねじ20のねじ山23の圧力側フランク面24の山頂側角部24a(山頂部26との角部)が、おねじ10のねじ山13の圧力側フランク面14の根元側部分142に接触し(図1(B))、締め付け荷重の増大とともに山頂側角部24a付近から弾性変形して接触面積が増大し、最終的に根元側まで隙間なく密接して締め付けが完了する(図1(C))。この締付け時には、図1(C)に誇張して示すように、おねじ10の根元部は剛性が高いので、めねじ20のねじ山23の山頂部26近傍が撓み変形する。
したがって、外部荷重の変動によっておねじ10の軸力が低下し、めねじ20のねじ山23の圧力側フランク面24と、おねじ10のねじ山13の圧力側フランク面14の山頂側部分141との間に隙間が開いたとしても、めねじ20のねじ山23の山頂側角部24a側の弾性変形分で、接触面圧を確保することができ、弛み止めを図ることができる。
With this setting, at the time of tightening, first, the ridge side corner portion 24a (corner portion with the ridge portion 26) of the pressure side flank surface 24 of the thread 23 of the female thread 20 becomes the thread 13 of the male thread 10. It comes into contact with the root side portion 142 of the pressure side flank surface 14 (FIG. 1 (B)), and as the tightening load increases, elastic deformation occurs from the vicinity of the corner portion 24a on the mountaintop side to increase the contact area, and finally a gap to the root side. Tightening is completed without close contact (Fig. 1 (C)). At the time of this tightening, as shown in an exaggerated manner in FIG. 1 (C), since the root portion of the male screw 10 has high rigidity, the vicinity of the peak portion 26 of the thread 23 of the female screw 20 is bent and deformed.
Therefore, the axial force of the male thread 10 decreases due to the fluctuation of the external load, and the peak side portion 141 of the pressure side flank surface 24 of the thread 23 of the female thread 20 and the pressure side flank surface 14 of the thread 13 of the male thread 10 Even if a gap is opened between the screw thread 20 and the screw thread 23, the contact surface pressure can be secured by the elastic deformation on the ridge side corner portion 24a side of the thread 23 of the female screw 20, and the slack can be prevented.

一方、ねじ締結部において、おねじ10のねじ軸部11は、頭部12からめねじ20との嵌合部までの間が軸力によって伸びるので、めねじ20のねじ山23に嵌合するおねじ10の嵌合ねじ山のうち、めねじ20の締め付け座面20a側の第1嵌合ねじ山131に、めねじ20のねじ山23が片当たりする傾向となる。
本発明では、おねじ10のねじ山13の圧力側フランク面14の根元側部分142に、めねじ20の圧力側フランク面24の山頂側角部24aが当接して弾性変形する構成となっているので、弾性変形によって、第1嵌合ねじ山131だけでなく複数の嵌合ねじ山、たとえば、図1(D)に示すように、第2嵌合ねじ山132、第3嵌合ねじ山133、・・にもめねじ20のねじ山23が当接し、軸力は複数の嵌合ねじ山に分散させることができる。
また、めねじ20の圧力側フランク面24の山頂側角部24aの当接部は、おねじ10のねじ山23の圧力側フランク面24の根元側部分142なので、ねじ山23の付け根に位置する谷部17との距離が短く、谷部17に作用する曲げ応力を小さくすることができる。しかも、おねじ10のねじ山13の圧力側フランク面14の根元側部分の角度β2は大きいので、剛性が高く、谷部17に作用する応力はより一層小さくすることができる。
特に、本実施形態では、遊び側フランク面15の根元側部分の角度β4も大きく、根元部の断面積がさらに大きくなって、応力をより一層小さくすることができる。したがって、前記軸力の複数の嵌合ねじ山への分散と相まって、おねじ10の第1嵌合ねじ山131の付け根に位置する第1谷部171に作用する応力を低下させることができ、耐疲労強度を増大させることができる。
On the other hand, in the screw fastening portion, the screw shaft portion 11 of the male screw 10 extends from the head portion 12 to the fitting portion with the female screw 20 due to the axial force, so that the screw shaft portion 11 is fitted to the thread 23 of the female screw 20. Of the fitting threads of the screw 10, the thread 23 of the female thread 20 tends to hit one side with the first fitting thread 131 on the tightening seat surface 20a side of the female screw 20.
In the present invention, the root side portion 142 of the pressure side flank surface 14 of the thread 13 of the male thread 10 is in contact with the mountaintop side corner portion 24a of the pressure side flank surface 24 of the female thread 20 to be elastically deformed. Therefore, due to the elastic deformation, not only the first fitting thread 131 but also a plurality of fitting threads, for example, the second fitting thread 132 and the third fitting thread 132 as shown in FIG. 1 (D). 133, ... The thread 23 of the female screw 20 abuts, and the axial force can be distributed to a plurality of fitting threads.
Further, since the contact portion of the mountaintop side corner portion 24a of the pressure side flank surface 24 of the female screw 20 is the root side portion 142 of the pressure side flank surface 24 of the thread 23 of the male thread 10, it is located at the base of the thread 23. The distance to the valley portion 17 is short, and the bending stress acting on the valley portion 17 can be reduced. Moreover, since the angle β2 of the root side portion of the pressure side flank surface 14 of the thread 13 of the male screw 10 is large, the rigidity is high and the stress acting on the valley portion 17 can be further reduced.
In particular, in the present embodiment, the angle β4 of the root side portion of the play side flank surface 15 is also large, the cross-sectional area of the root portion is further increased, and the stress can be further reduced. Therefore, coupled with the distribution of the axial force to the plurality of fitting threads, the stress acting on the first valley portion 171 located at the base of the first fitting thread 131 of the male thread 10 can be reduced. Fatigue resistance strength can be increased.

次に、本実施形態1のねじ締結構造の最大主応力の解析結果について、従来例と比較して説明する。
図2(A)は、本発明のおねじのねじ山、図2(C)は、比較例1として、従来のおねじの標準的なねじ山103(JIS標準ねじ山)、図2(E)は、比較例2として、従来技術で記載の山頂部分の山角度を小さくしたおねじのねじ山203を示している。
図2(B)、(D)、(F)は、それぞれ本発明のねじ山13のおねじ10と、比較例1,2のおねじ110、120を既存のJIS標準ねじ山のめねじ20に締結した締結構造を示している。
ねじサイズは、M10×1.25であり、本発明のねじ山13の山角度は、山頂部側が60°(圧力側フランク面の角度は30°)、根元側が63°(圧力側フランク面の角度は31.5°)、比較例1のねじ山103の山角度は山頂側から根元側まで一定で60°(圧力側フランク面の角度は30°)、比較例2のねじ山203の山角度は、山頂部側が50°(圧力側フランク面の角度は25°)、根元側が60°(圧力側フランク面の角度は30°)である。
Next, the analysis result of the maximum principal stress of the screw fastening structure of the first embodiment will be described in comparison with the conventional example.
FIG. 2A shows a thread of the screw of the present invention, and FIG. 2C shows a standard thread 103 (JIS standard thread) of a conventional screw and FIG. 2 (E) as Comparative Example 1. ) Shows, as Comparative Example 2, the thread 203 of the male thread in which the thread angle of the mountain peak portion described in the prior art is reduced.
2 (B), (D), and (F) show the screw 10 of the thread 13 of the present invention and the threads 110 and 120 of Comparative Examples 1 and 2, respectively, and the female thread 20 of the existing JIS standard thread. The fastening structure fastened to is shown.
The thread size is M10 × 1.25, and the thread angle of the thread 13 of the present invention is 60 ° on the mountaintop side (the angle of the flank surface on the pressure side is 30 °) and 63 ° on the root side (of the flank surface on the pressure side). The angle is 31.5 °), the thread angle of the thread 103 of Comparative Example 1 is constant from the peak side to the root side and is 60 ° (the angle of the flank surface on the pressure side is 30 °), and the thread 203 of Comparative Example 2 is threaded 203. The angle is 50 ° on the mountaintop side (the angle of the flank surface on the pressure side is 25 °) and 60 ° on the root side (the angle of the flank surface on the pressure side is 30 °).

図3には、これらのねじ締結構造について、同一荷重を負荷した(弾性締付けを想定)場合の、各ねじ山に作用する最大主応力の解析結果を示している。負荷荷重は、ボルト保証荷重の20%程度の荷重を負荷している。それぞれ、嵌合ねじ山数は6山とし、測定ポイントを、おねじについては、第1谷部から第6谷部をP1~P6とし、めねじについては、Pn1~Pn6としている。おねじのP0については、頭部から第1谷部までの間のねじの谷部に対応し、軸力の引張荷重による応力集中を示している。
比較例1のねじ山103(JIS標準ねじ山)の場合、第1谷部(測定ポイントP1)が最大で312MPaであるところ(図3(C)参照)、比較例2の場合は359MPaと15%増大しているのに対して(図3(E)参照)、本発明では、第1谷部(測定ポイントP1)の主応力は低下して第2谷部(測定ポイントP2)が最大で、最大値は271MPaと、JIS標準品に対して13%低減している(図3(A)参照)。さらに、第3谷部の最大主応力(測定ポイントP3)がJIS標準品に比べて大きくなっており、荷重が第1谷部、第2谷部、第3谷部に分散していることが窺える。
一方、めねじ側は、比較例1(JIS標準ねじ山)の場合、第1谷部(測定ポイントPn1)で200MPa(図3(D)参照)、比較例の場合第1谷部(測定ポイントPn1)で201MPaのところ(図3(F)参照)、本発明の場合、第1谷部(測定ポイントPn1)では237MPaと、JIS標準品に対して19%増大しているものの(図3(B)参照)、おねじ10の第1谷部に作用する最大主応力(271MPa)よりも小さくなっている。
図4は、ねじ山角度を変えた場合の、ねじの谷部の最大主応力の解析結果である。
本発明のサンプルとしては、図1に示したように、遊び側フランク面15側も、圧力側フランク面14と対称的に、山頂側の角度β3よりも根元側の角度β4を大きくしており、ねじ山13の山角度(圧力側フランク面と遊び側フランク面との角度)をパラメータとし、山頂側の山角度α1(60°)に対して、根元側の山角度α2を、60°から70°まで、1°刻みで変えた場合について解析を行った。したがって、圧力側フランク面14の山頂側および根元側の角度β1,β2は、山頂側および根元側の山角度α1,α2の半角である。なお、根元側の山角度α2が60°のものはJIS規格のねじ山である。
ねじサイズは、M10×1.25であり、これらの山角度のねじ山13を有するおねじ10と、既存のJIS標準ねじ山のめねじ20に締結した状態で、ボルト保証荷重の40%付近の荷重をかけ、それぞれの山角度について、谷部に作用する最大主応力を求めた。
図4(A)に示す通り、第1谷部P1にかかる最大主応力は、60°から63°まで減少傾向にあり、63°を超えるとほぼ一定値となっている。この結果から、根元側の山角度α2が60°を超えると最大応力の軽減効果が期待できることが分かる。一方、あまり大きくすると、おねじの遊び側フランク面15がめねじ20のねじ山23の遊び側フランク面25と干渉するおそれがあるので、70°程度を上限とする。また、63°を超えるとほぼ一定となるので、最大主応力低減の観点では、63°程度までで充分である。
FIG. 3 shows the analysis results of the maximum principal stress acting on each thread when the same load is applied (assuming elastic tightening) for these screw fastening structures. The load is about 20% of the guaranteed bolt load. In each case, the number of fitting threads is 6, and the measurement points are P1 to P6 for the male threads from the first valley to the sixth valley, and Pn1 to Pn6 for the female threads. Regarding P0 of the male screw, it corresponds to the valley portion of the screw between the head and the first valley portion, and shows the stress concentration due to the tensile load of the axial force.
In the case of the thread 103 (JIS standard thread) of Comparative Example 1, the first valley portion (measurement point P1) is 312 MPa at the maximum (see FIG. 3C), and in the case of Comparative Example 2, 359 MPa and 15 In contrast to the increase by% (see FIG. 3E), in the present invention, the principal stress of the first valley portion (measurement point P1) decreases and the second valley portion (measurement point P2) has a maximum. The maximum value is 271 MPa, which is 13% lower than that of the JIS standard product (see FIG. 3 (A)). Furthermore, the maximum principal stress (measurement point P3) in the third valley is larger than that of the JIS standard product, and the load is dispersed in the first, second, and third valleys. I can see.
On the other hand, on the female thread side, in the case of Comparative Example 1 (JIS standard thread), the first valley portion (measurement point Pn1) is 200 MPa (see FIG. 3D), and in the case of the comparative example, the first valley portion (measurement point). At 201 MPa at Pn1) (see FIG. 3 (F)), in the case of the present invention, it is 237 MPa at the first valley portion (measurement point Pn1), which is an increase of 19% compared to the JIS standard product (FIG. 3 (FIG. 3). B)), which is smaller than the maximum principal stress (271 MPa) acting on the first valley of the male thread 10.
FIG. 4 shows the analysis result of the maximum principal stress of the valley portion of the screw when the thread angle is changed.
As a sample of the present invention, as shown in FIG. 1, the angle β4 on the root side is larger than the angle β3 on the mountaintop side on the play side flank surface 15 side as well as the pressure side flank surface 14. , The angle of the thread 13 (the angle between the flank surface on the pressure side and the flank surface on the play side) is used as a parameter, and the mountain angle α2 on the root side is set from 60 ° with respect to the mountain angle α1 (60 °) on the mountaintop side. The analysis was performed when the temperature was changed in 1 ° increments up to 70 °. Therefore, the angles β1 and β2 on the peak side and the root side of the pressure side flank surface 14 are half angles of the peak angles α1 and α2 on the peak side and the root side. If the thread angle α2 on the root side is 60 °, it is a JIS standard thread.
The thread size is M10 x 1.25, and when fastened to a male thread 10 having threads 13 with these thread angles and a female thread 20 of an existing JIS standard thread, the bolt is around 40% of the guaranteed load. The maximum principal stress acting on the valley was obtained for each mountain angle.
As shown in FIG. 4A, the maximum principal stress applied to the first valley portion P1 tends to decrease from 60 ° to 63 °, and when it exceeds 63 °, it becomes a substantially constant value. From this result, it can be seen that the maximum stress reduction effect can be expected when the mountain angle α2 on the root side exceeds 60 °. On the other hand, if it is made too large, the play side flank surface 15 of the male thread may interfere with the play side flank surface 25 of the thread 23 of the female thread 20, so the upper limit is about 70 °. Further, since it becomes almost constant when it exceeds 63 °, it is sufficient to reach about 63 ° from the viewpoint of reducing the maximum principal stress.

次に本発明の実施形態2について説明する。
実施形態2に係るおねじ及びねじ締結構造の基本的な構成は、図1と同じであるので、構成については、図1を参照し、実施形態1と異なる点について説明するものとする。
この実施形態2のおねじ10も、実施形態1と同じく、ねじ山13の圧力側フランク面14の山頂側の角度β1を、おねじ10が螺合するめねじ20のねじ山23の圧力側フランク面24と同等とし、根元側の角度β2を、山頂側の角度β1より大きく設定した点を基本構成とし、遊び側フランク面15についても、根元側の角度β4を山頂側の角度β3よりも大きく設定している。
本実施形態2では、実施形態1に加えて、おねじ10のねじ山13のピッチPmを、めねじ20のねじ山23のピッチPiに対して、おねじ10のねじ山13とめねじ20のねじ山23との嵌合クリアランスの許容範囲内で、小さく設定したものである。
このように、おねじ10のねじ山13のピッチPmを、めねじ20のねじ山23のピッチPiに対してピッチ差を設けることで、おねじ10の第1谷部にかかる最大主応力の低減と共に、各ねじ山の接触面圧の均一化を図ることができる。 めねじ20を標準ねじピッチ(基準ピッチ)とすると、めねじ20のピッチに対するおねじ10とめねじのピッチ差の比率であるピッチ変化率a(%)(a=[(Pi-Pm)/Pi]×100)は、0.1%~0.56%、好ましくは0.16%~0.32%の範囲とする。
基準ピッチは、おねじ10とめねじ20のねじピッチが等しい場合のねじピッチであり、たとえば、JISの並目ねじの場合、呼び径M6では1.0mmで、ピッチ変化率aは、この1.0mmに対する変化率、M8及びM10の場合は1.25mmで、ピッチ変化率aは、1.25mmに対する変化率である。

図5(A)は、M10のおねじ10のピッチPmを、基準ピッチ1.25mmに対して、1.249mm(ピッチ変化率a:0.08%)、1.248mm(ピッチ変化率a:0.16%),1.247mm(ピッチ変化率a:0.24%),1.246mm(ピッチ変化率a:0.32%)、1.245mm(ピッチ変化率a:0.4%)、1.243mm(ピッチ変化率a:0.56%)と、小さくし、さらに、根元側の山角度α2を、60°から65°まで、1°刻みで変えた場合の最大主応力について解析を行ったものである。
根元側の山角度α2が、60°を越えて65°までは、ピッチPmが、1.248mm~1.246mmのもの、すなわち、ピッチ変化率aが0.16~0.32%の場合、最大主応力の値が、ピッチ差を設けない場合(1.25mm)より小さくなっている。特に、60°を越えて63°までの範囲で顕著である。
ピッチPmが、1.249mm(ピッチ変化率a:0.08%)では、最大主応力は、ピッチ差を設けない場合(1.25mm)と同等か、若干高くなっており、効果が認められない。
ピッチPmが、1.243mm(ピッチ変化率a:0.4%)、1.245mm(ピッチ変化率a:0.56%)では、60°を越えて62°までは、1.25mmの場合よりも、最大主応力が小さくなっているが、63°では1.25mmよりも高くなっている。
図5(B)は、図5(A)の山角度とピッチ変化率に対応して、基準ピッチの1.25に対して最大主応力が低下した場合を(○)、同等の場合を(△)、最大主応力が増大した場合を(×)を付した図であり、図中、斜線で示した○と△の範囲とすることが好適である。
すなわち、根元側の山角度とピッチ変化率aの組み合わせが、根元側の山角度が、根元側の山角度が60°より大きく65°以下(圧力側フランク面14の根元側の角度β2では30°より大きく32.5°以下)で、かつ、ピッチ変化率aが0.16%~0.32%の範囲と、根元側の山角度が61°以上で62°以下(圧力側フランク面14の根元側角度β2では30°以上で31°以下)で、かつ、ピッチ変化率aが0.08%~0.56%の範囲とを、足し合わせた範囲に入るように設定することが好適である。特に、ピッチ変化率aが0.16%~0.32%では、全ての角度範囲で主応力が低下しており、ピッチ変化率aを0.16%~0.32%の範囲に設定することが好適である。特に、0.24%の場合に最大主応力を最も低くできる。また、山角度が63°を超えると、あまり変化はない傾向となるので、山角度は、60°より大きく63°以下(圧力側フランク面14の根元側角度β2では、31°より大きく31.5°以下)が好適で、特に63°が好ましい。
最大主応力は、図4(A)に示す通り、第1谷部に作用する最大主応力であり、第1谷部の最大主応力を低下させることは、他の谷部の最大主応力との差が小さくなり、各ねじ山の接触面圧の均一化を図ることができる。
なお、一山あたりに許容されるピッチPmの変化量(Pi-Pm)は、図4(B)に示すように、おねじのねじ山とめねじのねじ山をセンター合わせとした場合の、フランク面の嵌合クリアランスを(b)、ピッチを(Pi、Pm)、ナット高さを(h)、嵌合ねじ山数を(n)とすると、次式で示される。
ピッチの許容変化量(Pi-Pm)≦フランク面の嵌合クリアランス(b)×2(頭部側と先端側)÷嵌合ねじ山数(n)
ここで、嵌合ねじ山数(n)は、ナット高さ(h)÷ピッチ(Pi)で計算される。
上記例では、最大のピッチ変化率0.56%に対応させると、(Pi-Pm)は、(1.25-1.243)で、0.007mmである。
一方、ナット高さ(h)は6.5mmとすると、嵌合ねじ山数(n)は5.2であり、嵌合クリアランス(b)×2は、根元側の干渉が若干あるものの5.2×0.007mmで、0.036mm(bは0.019mm)あればよい。
なお、上記各実施形態では、遊び側フランク面15についても、圧力側フランク面14と同様に、根元側の角度β4(=β2)を、山頂側の角度β3(=β1)より大きく設定しているが、圧力側フランク面14についてのみ、2段階の角度を設ける構成とし、遊び側フランク面15については、山頂側から根元側まで、一定の角度としておいてもよい。
この一定の角度については、β3であってもよいし、β4であってもよい。
また、上記実施形態では、基本形状としてメートルねじを例にとって説明したが、ユニファイねじやインチねじ等にも適用可能である。
本願発明は種々の用途に適用可能であるが、現在、自動車の軽量化にはアルミ、チタンが有望であり、これら縦弾性率の小さい金属材料やGFRP、CFRPのような樹脂材料の場合、締め付け荷重を大きくできず、本願発明のように、締め付け荷重を複数のねじ山に分散させる分散効果が高く、しかも弛み止め機能を有し、耐疲労強度の高いおねじは有効である。
Next, Embodiment 2 of the present invention will be described.
Since the basic configuration of the male screw and the screw fastening structure according to the second embodiment is the same as that of FIG. 1, the configuration will be described with reference to FIG. 1 and the differences from the first embodiment will be described.
Similarly to the first embodiment, the screw 10 of the second embodiment also has the pressure side flank of the thread 23 of the female screw 20 to which the male screw 10 is screwed into the angle β1 on the ridge side of the pressure side flank surface 14 of the thread 13. The basic configuration is that the angle β2 on the root side is set larger than the angle β1 on the mountaintop side, which is equivalent to the surface 24, and the angle β4 on the root side is larger than the angle β3 on the mountaintop side for the play side flank surface 15. It is set.
In the second embodiment, in addition to the first embodiment, the pitch Pm of the thread 13 of the male thread 10 is set to the pitch Pi of the thread 23 of the female thread 20 with respect to the thread 13 of the male thread 10 and the female thread 20. It is set small within the allowable range of the fitting clearance with the thread 23.
In this way, by providing a pitch difference between the pitch Pm of the thread 13 of the male thread 10 and the pitch Pi of the thread 23 of the female thread 20, the maximum principal stress applied to the first valley portion of the male thread 10 can be obtained. Along with the reduction, it is possible to make the contact surface pressure of each thread uniform. Assuming that the female thread 20 is the standard thread pitch (reference pitch), the pitch change rate a (%) (a = [(Pi-Pm) / Pi), which is the ratio of the pitch difference between the male thread 10 and the female thread to the pitch of the female thread 20. ] × 100) is in the range of 0.1% to 0.56%, preferably 0.16% to 0.32%.
The reference pitch is the thread pitch when the thread pitches of the male thread 10 and the female thread 20 are equal. For example, in the case of a JIS coarse thread, the nominal diameter M6 is 1.0 mm, and the pitch change rate a is 1. The rate of change with respect to 0 mm is 1.25 mm in the case of M8 and M10, and the pitch change rate a is the rate of change with respect to 1.25 mm.

In FIG. 5A, the pitch Pm of the screw 10 of M10 is 1.249 mm (pitch change rate a: 0.08%) and 1.248 mm (pitch change rate a:) with respect to the reference pitch of 1.25 mm. 0.16%), 1.247 mm (pitch change rate a: 0.24%), 1.246 mm (pitch change rate a: 0.32%), 1.245 mm (pitch change rate a: 0.4%) , 1.243 mm (pitch change rate a: 0.56%), and further analyzed the maximum principal stress when the peak angle α2 on the root side is changed from 60 ° to 65 ° in 1 ° increments. Was done.
When the peak angle α2 on the root side exceeds 60 ° and reaches 65 °, the pitch Pm is 1.248 mm to 1.246 mm, that is, when the pitch change rate a is 0.16 to 0.32%. The value of the maximum principal stress is smaller than that when the pitch difference is not provided (1.25 mm). In particular, it is remarkable in the range of more than 60 ° and up to 63 °.
When the pitch Pm is 1.249 mm (pitch change rate a: 0.08%), the maximum principal stress is equal to or slightly higher than that when no pitch difference is provided (1.25 mm), and the effect is recognized. do not have.
When the pitch Pm is 1.243 mm (pitch change rate a: 0.4%) and 1.245 mm (pitch change rate a: 0.56%), it is 1.25 mm from 60 ° to 62 °. The maximum principal stress is smaller than that of 1.25 mm, but it is higher than 1.25 mm at 63 °.
5 (B) shows the case where the maximum principal stress decreases with respect to 1.25 of the reference pitch corresponding to the peak angle and the pitch change rate of FIG. 5 (A) (◯), and the equivalent case (○). Δ), the case where the maximum principal stress is increased is shown in the figure with (×), and it is preferable that the range is in the range of ◯ and Δ shown by diagonal lines in the figure.
That is, the combination of the mountain angle on the root side and the pitch change rate a is 65 ° or less (the angle β2 on the root side of the pressure side flank surface 14 is 30). It is larger than ° and 32.5 ° or less), and the pitch change rate a is in the range of 0.16% to 0.32%, and the mountain angle on the root side is 61 ° or more and 62 ° or less (pressure side flank surface 14). It is preferable to set the root side angle β2 of 30 ° or more and 31 ° or less) and the pitch change rate a in the range of 0.08% to 0.56% so as to be within the summed range. Is. In particular, when the pitch change rate a is 0.16% to 0.32%, the principal stress is reduced in all the angle ranges, and the pitch change rate a is set in the range of 0.16% to 0.32%. Is preferable. In particular, the maximum principal stress can be minimized at 0.24%. Further, when the mountain angle exceeds 63 °, there is a tendency that there is not much change. Therefore, the mountain angle is larger than 60 ° and 63 ° or less (at the root side angle β2 of the pressure side flank surface 14, it is larger than 31 ° and 31. 5 ° or less) is preferable, and 63 ° is particularly preferable.
As shown in FIG. 4A, the maximum principal stress is the maximum principal stress acting on the first valley, and reducing the maximum principal stress in the first valley is the maximum principal stress in other valleys. The difference between the two is small, and the contact surface pressure of each thread can be made uniform.
The amount of change in pitch Pm (Pi-Pm) allowed per thread is the flank when the thread of the male thread and the thread of the female thread are centered, as shown in FIG. 4 (B). Assuming that the mating clearance of the surface is (b), the pitch is (Pi, Pm), the nut height is (h), and the number of mating threads is (n), it is expressed by the following equation.
Permissible change in pitch (Pi-Pm) ≤ Frank surface fitting clearance (b) x 2 (head side and tip side) ÷ number of fitting threads (n)
Here, the number of fitting threads (n) is calculated by the nut height (h) ÷ pitch (Pi).
In the above example, (Pi-Pm) is (1.25-1.243), which is 0.007 mm, corresponding to the maximum pitch change rate of 0.56%.
On the other hand, assuming that the nut height (h) is 6.5 mm, the number of fitting threads (n) is 5.2, and the fitting clearance (b) × 2 is 5. It may be 2 × 0.007 mm and 0.036 mm (b is 0.019 mm).
In each of the above embodiments, the angle β4 (= β2) on the root side of the play side flank surface 15 is set to be larger than the angle β3 (= β1) on the mountaintop side, as in the pressure side flank surface 14. However, only the pressure side flank surface 14 may be configured to have a two-step angle, and the play side flank surface 15 may be set to a constant angle from the mountaintop side to the root side.
For this constant angle, it may be β3 or β4.
Further, in the above embodiment, the metric screw has been described as an example as the basic shape, but it can also be applied to a unified screw, an inch screw, or the like.
Although the present invention can be applied to various applications, aluminum and titanium are currently promising for weight reduction of automobiles, and in the case of these metal materials having a small longitudinal elastic modulus and resin materials such as GFRP and CFRP, tightening is performed. A male screw that cannot increase the load, has a high dispersion effect of distributing the tightening load to a plurality of threads as in the present invention, has a slackening prevention function, and has a high fatigue resistance is effective.

10 おねじ
11 ねじ軸部、12 頭部
13 ねじ山
14 圧力側フランク面
15 遊び側フランク面
20 めねじ
20a 座面
22 ねじ穴
23 ねじ山
24 圧力側フランク面
26 山頂部
100 被締め付け部材
141 山頂側部分
142 根元側部分
M 中心線
d 有効径
β1 圧力側フランク面の山頂側部分の角度
β2 圧力側フランク面の根元側部分の角度
β3 遊び側フランク面の山頂側部分の角度
β4 遊び側フランク面の根元側部分の角度
10 Male thread 11 Thread shaft, 12 Head 13 Thread 14 Pressure side flank surface 15 Play side flank surface 20 Female thread 20a Seat surface 22 Thread hole 23 Thread thread 24 Pressure side flank surface 26 Crest 100 Top of tightened member 141 Crest Side part 142 Root side part M Center line d Effective diameter β1 Angle of the peak side part of the pressure side flank surface β2 Angle of the root side part of the pressure side flank surface β3 Angle of the mountaintop side part of the play side flank surface β4 Play side flank surface Angle of the root side of

Claims (8)

ねじ山の圧力側フランク面の山頂側の角度を、おねじが螺合するめねじのねじ山の圧力側フランク面と同等とし、根元側の角度を、山頂側の角度より大きく設定し
前記おねじのねじ山のピッチを、前記めねじのねじ山のピッチより、おねじのねじ山とめねじのねじ山との嵌合クリアランスの許容範囲内で、小さく設定したことを特徴とするおねじ。
Make the angle of the ridge side of the pressure side flank surface of the thread equal to the pressure side flank surface of the thread of the female thread to which the male thread is screwed, and set the angle of the root side to be larger than the angle of the ridge side .
The pitch of the male thread is set smaller than the pitch of the female thread within the allowable range of the fitting clearance between the male thread and the female thread. Male screw.
ねじ山の圧力側フランク面の山頂側の角度を30°、根元側の角度を30°を超え35°以下としたとした請求項1に記載のおねじ。 The screw according to claim 1, wherein the angle of the peak side of the flank surface on the pressure side of the thread is 30 °, and the angle of the root side is more than 30 ° and 35 ° or less. 前記おねじのねじ山の遊び側フランク面についても、圧力側フランク面と同じく、根元側の角度を山頂側の角度より大きく設定したことを特徴とする請求項1または2に記載のおねじ。 The screw according to claim 1 or 2, wherein the angle on the root side of the play side flank surface of the thread of the male screw is set to be larger than the angle on the mountain top side, as with the pressure side flank surface. おねじのねじ山が、めねじのねじ山に螺合して締め付けられるねじ締結構造であって、
前記おねじのねじ山の圧力側フランク面の山頂側の角度を、前記おねじが螺合する前記めねじのねじ山の圧力側フランク面と同等とし、根元側の角度を、山頂側の角度より大きく設定し、
前記めねじのねじ山の圧力側フランク面は、山頂側から根元側まで一定角度であり、前記おねじのねじ山の圧力側フランク面の根元側部分に、めねじ側の圧力側フランク面の山頂側角部が当接し、締め付け荷重によって前記山頂側角部を支点にしてめねじのねじ山が弾性変形してめねじのねじ山の圧力側フランク面が前記おねじのねじ山の圧力側フランク面に全面接触する構成となっていることを特徴とするねじ締結構造。
The thread of the male thread is a screw fastening structure that is screwed and tightened to the thread of the female thread.
The angle of the ridge side of the pressure side flank surface of the thread of the male thread is equal to the angle of the pressure side flank surface of the thread of the female thread to which the male thread is screwed, and the angle of the root side is the angle of the ridge side. Set larger and
The pressure-side flank surface of the female thread has a constant angle from the mountain top side to the root side, and the pressure-side flank surface on the female thread side is located at the root side of the pressure-side flank surface of the male thread. The corners on the mountaintop side come into contact with each other, and the tightening load causes the thread of the female thread to elastically deform with the corner on the mountaintop side as a fulcrum, and the flank surface on the pressure side of the thread of the female thread is the pressure side of the thread of the male thread. A screw fastening structure characterized by being in full contact with the flank surface.
前記おねじのねじ山の圧力側フランク面の山頂側の角度を30°、根元側の角度を30°を超え35°以下としたとした請求項に記載のねじ締結構造。 The screw fastening structure according to claim 4 , wherein the angle of the ridge side of the pressure side flank surface of the thread of the male screw is 30 °, and the angle of the root side is more than 30 ° and 35 ° or less. 前記おねじのねじ山の遊び側フランク面についても、圧力側フランク面と同じく、根元側の角度が山頂側の角度より大きく設定されている請求項又はに記載のねじ締結構造。 The screw fastening structure according to claim 4 or 5 , wherein the angle on the root side of the play side flank surface of the male thread is set to be larger than the angle on the mountain top side, as with the pressure side flank surface. おねじのピッチを、めねじのピッチより、おねじのねじ山とめねじのねじ山との嵌合クリアランスの許容範囲内で、小さく設定したことを特徴とする請求項乃至のいずれかの項に記載のねじ締結構造。 One of claims 4 to 6 , wherein the male thread pitch is set smaller than the female thread pitch within the allowable range of the fitting clearance between the male thread thread and the female thread thread. The screw fastening structure described in the section. 前記おねじのねじ山の圧力側フランク面の根元側の角度と、前記めねじのピッチに対する前記おねじとめねじのピッチ差の比率であるピッチ変化率が、前記ねじ山の根元側の角度が30°より大きく32.5°以下で、かつ、ピッチ変化率が0.16%~0.32%の範囲と、前記おねじのねじ山の根元側の角度が、30°以上31°以下で、かつ、ピッチ変化率が0.08%~0.56%の範囲とを、足し合わせた範囲に入るように設定されていることを特徴とする請求項に記載のねじ締結構造。 The pitch change rate, which is the ratio of the pitch difference between the male and female threads to the pitch of the female thread and the angle on the root side of the pressure-side flank surface of the thread of the male thread, is 30 for the angle on the root side of the thread. More than ° and 32.5 ° or less, the pitch change rate is in the range of 0.16% to 0.32%, and the angle of the root side of the thread of the male thread is 30 ° or more and 31 ° or less. The screw fastening structure according to claim 5 , wherein the pitch change rate is set to be within a range of 0.08% to 0.56%, which is the sum of the pitch change rates.
JP2018547195A 2016-10-28 2017-09-20 Male screw and screw fastening structure Active JP7042748B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016211495 2016-10-28
JP2016211495 2016-10-28
PCT/JP2017/033861 WO2018079137A1 (en) 2016-10-28 2017-09-20 Male thread and thread-fastening structure

Publications (2)

Publication Number Publication Date
JPWO2018079137A1 JPWO2018079137A1 (en) 2019-09-12
JP7042748B2 true JP7042748B2 (en) 2022-03-28

Family

ID=62023389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018547195A Active JP7042748B2 (en) 2016-10-28 2017-09-20 Male screw and screw fastening structure

Country Status (2)

Country Link
JP (1) JP7042748B2 (en)
WO (1) WO2018079137A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117366076A (en) * 2023-11-13 2024-01-09 中船海为高科技有限公司 Non-equidistant anti-loosening threaded connection pair

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3272798D1 (en) * 1982-02-18 1986-10-02 Conti Fasteners Ag Screw
JP3344747B2 (en) * 1993-01-22 2002-11-18 株式会社トープラ screw
JP2989129B2 (en) * 1995-10-09 1999-12-13 イワタボルト株式会社 Male screw
US7731466B2 (en) * 2007-11-02 2010-06-08 Gm Global Technology Operations, Inc. Thread profile modification for controlled stiffness
JP4936144B2 (en) * 2008-06-11 2012-05-23 日本ファスナー工業株式会社 bolt
JP5982331B2 (en) * 2013-07-02 2016-08-31 株式会社降矢技研 Loosening prevention screw

Also Published As

Publication number Publication date
WO2018079137A1 (en) 2018-05-03
JPWO2018079137A1 (en) 2019-09-12

Similar Documents

Publication Publication Date Title
JP5572873B2 (en) Fastening member and fastening structure
US7938609B2 (en) Tightening structure using high-strength self-forming screws
TWI546461B (en) Locking screw parts
JP4878407B2 (en) Fastening member and fastening structure
US11795990B2 (en) Anti-loosening screw pair and anti-loosening screw component
JP7042748B2 (en) Male screw and screw fastening structure
KR20210037238A (en) Bolts with loosening protection
CN113251054B (en) External screw member
JP2018076935A (en) Fastening member
JP5465093B2 (en) Loosening prevention screw
JP2014206234A (en) Fastening member
JP2007321858A (en) Screw fastening structure and screw component
US8371787B2 (en) Self-tapping screw
JP2020204343A (en) Screw fastener
CA2484612A1 (en) A method for design respective manufacture of threads in a threaded member, a threaded member manufactured according to the method, and a bolted joint including such a member
JP2012072837A (en) Fastening bolt and screw fastened body utilizing the same
CN115111254A (en) Special-shaped anti-loosening threaded structure
JP2018197574A (en) nut
JPS6143566B2 (en)
JP2013104538A (en) Screw-fastening structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220315

R150 Certificate of patent or registration of utility model

Ref document number: 7042748

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150