[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7040624B2 - 画像データの特徴データを判別する方法、装置、システム及びプログラム、並びに記憶媒体 - Google Patents

画像データの特徴データを判別する方法、装置、システム及びプログラム、並びに記憶媒体 Download PDF

Info

Publication number
JP7040624B2
JP7040624B2 JP2020543479A JP2020543479A JP7040624B2 JP 7040624 B2 JP7040624 B2 JP 7040624B2 JP 2020543479 A JP2020543479 A JP 2020543479A JP 2020543479 A JP2020543479 A JP 2020543479A JP 7040624 B2 JP7040624 B2 JP 7040624B2
Authority
JP
Japan
Prior art keywords
feature
image data
data
discriminating
label
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020543479A
Other languages
English (en)
Other versions
JP2021516385A (ja
Inventor
真嗣 栗田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp filed Critical Omron Corp
Publication of JP2021516385A publication Critical patent/JP2021516385A/ja
Application granted granted Critical
Publication of JP7040624B2 publication Critical patent/JP7040624B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/44Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
    • G06V10/443Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components by matching or filtering
    • G06V10/449Biologically inspired filters, e.g. difference of Gaussians [DoG] or Gabor filters
    • G06V10/451Biologically inspired filters, e.g. difference of Gaussians [DoG] or Gabor filters with interaction between the filter responses, e.g. cortical complex cells
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/241Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
    • G06F18/2413Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on distances to training or reference patterns
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/25Fusion techniques
    • G06F18/253Fusion techniques of extracted features
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/764Arrangements for image or video recognition or understanding using pattern recognition or machine learning using classification, e.g. of video objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/77Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
    • G06V10/80Fusion, i.e. combining data from various sources at the sensor level, preprocessing level, feature extraction level or classification level
    • G06V10/806Fusion, i.e. combining data from various sources at the sensor level, preprocessing level, feature extraction level or classification level of extracted features
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/82Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Multimedia (AREA)
  • Artificial Intelligence (AREA)
  • Data Mining & Analysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computing Systems (AREA)
  • Databases & Information Systems (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Image Analysis (AREA)

Description

本開示は、画像認識の分野に関し、特に、画像データの特徴データを判別する方法、装置、システム及びプログラム、並びに記憶媒体に関する。
現在、画像認識には様々な方法が用いられることができるが、その1つにAIを利用した方法がある。現在、人工知能(AI)技術は、画像認識を含む様々な分野で広く利用されている。中でも人工知能技術は画像認識に応用されて、人間に取って代わり大量の画像情報を処理している。人にとって、画像刺激は感覚器官に影響を与える。画像認識において、人は感覚に入る情報だけでなく、メモリに記憶されている情報も必要とする。現在の情報と記憶された情報を比較するプロセスによってのみ、画像認識を実現することができる。人工知能技術は、人間の認識能力に基づいて出力し、異なるモードの様々なターゲット及び対象を認識するために、画像を処理、分析、理解することができる。人工知能技術は、人間の代わりに大量の画像情報を自動的に処理し、認識に関する人間の生理学的欠点の問題を解決し、人間の脳を部分的に置き換えて機能させることができる。更に、AIは画像データから、人々が気付いていない、又は生理学的に認識できない特徴を抽出することができる。
但し、画像認識にAIを使用する場合、AIが認識した特徴は、人間が認識した特徴と一致しない場合がある。従って、画像の特徴を判別するためにAIを使用する場合、出力が人間にとって曖昧になることがある。
上記の問題に関して、有効な解決策はまだ提案されていない。
本開示の実施形態において提供されるのは、画像データの特徴データを判別する方法、装置、システム及びプログラム、並びに記憶媒体であり、これによって、少なくとも、AIが認識した特徴は人間が認識した特徴と一致しない場合があるという技術的課題を解決する。
本開示の実施形態の一態様によれば、画像データの特徴データを判別する方法であって、画像データの特徴を取得し、前記特徴は、第1特徴及び第2特徴を含み、前記第1特徴は、第1モデルを使用して画像データから抽出され、前記第1モデルは機械学習方式で訓練され、前記第2特徴は、第2モデルを使用して画像データから抽出され、前記第2モデルは予め設定されたデータ処理アルゴリズムに基づいて構築されることと、前記第1特徴及び前記第2特徴に基づいて特徴データを判別することと、を含む方法が提供される。
このように、それぞれ訓練された人工知能機械と従来の画像特徴抽出アルゴリズムを格納するコンピュータによって画像データの特徴を取得すること、及びこれらの異なる方法で抽出された特徴間の違いを比較することにより、人工知能機械の訓練効果を学習することができる。
また、前記方法において、画像データの特徴を取得することは、前記画像データから前記第1特徴を抽出し、且つ前記画像データの前記第1特徴が配置されている特徴領域から前記第2特徴を抽出することと、前記画像データから前記第2特徴を抽出し、且つ前記画像データの前記第2特徴が配置されている特徴領域から前記第1特徴を抽出することと、前記画像データ全体に対して前記第1特徴及び前記第2特徴を抽出することと、のうち1つを含む。
このように、ユーザは、認識精度の要求に基づいて、第2特徴を抽出する領域を自由に選択することができる。
第1特徴と第2特徴を直列又は並列に抽出することにより、例えばAIベースの画像認識によって判別された特徴は、人間が認識した特徴とより一致することができる。
また、前記方法において、前記第1特徴及び前記第2特徴に基づいて特徴データを判別することは、前記第1特徴と前記第2特徴との比較結果に基づいて、前記特徴データとして前記第1特徴又は前記第2特徴にラベルを割り当てることを含む。
第1特徴又は第2特徴をラベルに割り当てることにより、異なるアプローチに基づいて判別された特徴が同じであるかどうかをより明確に示すことを補助することができる。
また、前記方法において、前記第1特徴及び前記第2特徴に基づいて特徴データを判別することは、前記第1特徴が前記第2特徴と異なる場合、それぞれ第1特徴データと第2特徴データとして、前記第1特徴と前記第2特徴にそれぞれ第1ラベルと第2ラベルを割り当てることと、前記第1特徴が前記第2特徴と同じ場合、第3特徴データとして、前記第1特徴又は前記第2特徴に第3ラベルを割り当てることと、を含む。
第1特徴又は第2特徴の比較結果に基づいて異なるラベルを割り当てることにより、異なるアプローチに基づいて判別された特徴が同じであるかどうかをより明確に示すこと、及び比較結果に基づいて特徴データを出力することを補助することができる。
また、前記方法において、前記特徴データは、前記画像データの色特徴、テクスチャ特徴、形状特徴、又は空間関係特徴を特徴付ける。
AIベースと従来の画像認識技術を組み合わせることにより、画像データの色、テクスチャ、形状、又は空間関係の特徴を特徴付ける特徴データを、より効率的かつ迅速に判別することができる。
本開示の実施形態の別の態様によれば、画像データの特徴データを判別する装置であって、画像データの特徴を取得し、前記特徴は、第1特徴と第2特徴を含み、前記第1特徴は第1モデルを使用して画像データから抽出され、前記第1モデルは機械学習方式で訓練され、前記第2特徴は、第2モデルを使用して画像データから抽出され、前記第2モデルは、予め設定されたデータ処理アルゴリズムに基づいて構築される取得部と、前記第1特徴及び前記第2特徴に基づいて前記特徴データを判別する判別部と、を含む装置が更に提供される。
また、前記装置において、前記取得部は、前記画像データから前記第1特徴を抽出し、且つ前記画像データの前記第1特徴が配置されている特徴領域から前記第2特徴を抽出することと、前記画像データから前記第2特徴を抽出し、且つ前記画像データの前記第2特徴が配置されている特徴領域から前記第1特徴を抽出することと、前記画像データ全体に対して前記第1特徴及び前記第2特徴を抽出することと、のうち1つによって前記画像データの特徴を取得する。
また、前記装置において、前記判別部は、前記第1特徴と前記第2特徴との比較結果に基づいて、前記特徴データとして、前記第1特徴又は前記第2特徴にラベルを割り当てる。
また、前記装置において、前記第1特徴が前記第2特徴と異なる場合、前記判別部は、それぞれ第1特徴データと第2特徴データとして、前記第1特徴と前記第2特徴にそれぞれ第1ラベルと第2ラベルを割り当て、前記第1特徴が前記第2特徴と同じ場合、前記判別部は、第3特徴データとして、前記第1特徴又は前記第2特徴に第3ラベルを割り当てる。
また、前記装置において、前記特徴データは、前記画像データの色特徴、テクスチャ特徴、形状特徴、又は空間関係特徴を特徴付ける。
本開示の実施形態の別の態様によれば、前記方法を実行する処理手段と、前記特徴データを出力する出力手段と、を含む、画像データの特徴データを判別するシステムが更に提供される。
本開示の実施形態の別の態様によれば、実行されると、前記方法を実行する、画像データの特徴データを判別するプログラムが更に提供される。
本開示の実施形態の別の態様によれば、実行されると、前記方法を実行するプログラムが記憶されている記憶媒体が更に提供される。
本開示の実施形態では、例示的な目的はAIが認識した特徴は人間が認識した特徴と一致しない場合があるという技術的課題を解決する。
ここで説明される図面は、本開示の更なる理解を提供し、本願の一部を構成するために使用される。本開示の概略的な実施形態及びその説明は、本開示を説明するために使用されるものであって、本開示に対する不適切な制限を構成するものではない。
本開示の実施態様による画像データの特徴データを判別するシステムのハードウェア構成である。 本開示の第1実施形態による画像データの特徴データを判別するオプションの方法の概略図である。 本開示の第2実施形態による、画像データの特徴データを判別するオプションの方法の概略図である。 本開示の第3実施形態による、画像データの特徴データを判別するオプションの方法の概略図である。 本開示の第1実施形態による、画像データの特徴データを判別するためのオプションの装置の概略図である。 本開示の第2実施形態による、画像データの特徴データを判別するためのオプションの装置の概略図である。そして 本開示の第3実施形態による、画像データの特徴データを判別するためのオプションの装置の概略図である。
順を追って当業者に本開示の解決策をよりよく理解させるために、本開示の実施形態における技術的解決策について、本開示の実施形態における添付の図面を参照して以下に明確かつ完全に説明する。当然ながら、説明する実施形態は、本開示の実施形態の一部にすぎず、実施形態の全てではない。創造的な努力なしに本開示の実施形態に基づいて当業者によって得られる他の全ての実施形態は、本開示の保護範囲内に含まれるものとする。
本開示の説明及び特許請求の範囲並びに前述の図面における「第1」、「第2」等の用語は、類似対象を区別するために使用され、必ずしも特定順序又は時系列順序を説明するために使用されるものではないことに留意されたい。使用されるデータは、必要に応じて交換可能であり、ここで記載される本開示の実施形態は、ここで例示又は記載される以外の順序で実装されることができることを理解されたい。更に、「含む」及び「有する」という用語、及びそれらの任意のバリエーションは、非排他的な包含をカバーし、例えば、ステップ又は手段の列記を含むプロセス、方法、システム、製品、又はデバイスは、必ずしも列記されたステップ又は手段に限定されず、明示的に列記されていないか、これらのプロセス、方法、製品又はデバイスに固有である他のステップ又は手段を含むことができる。
本開示の一実施形態によれば、画像データの特徴データを判別する方法が提供される。留意すべきこととして、添付の図面のフローチャートに示されているステップは、一組のコンピュータ実行可能命令等のコンピュータシステムで実行されることができ、論理的順序はフローチャートに示されているが、場合によっては、図示又は説明されるステップは、それとは異なる順序で実行されてもよい。
本開示の画像データの特徴データを判別する方法の一実施形態では、画像データの特徴は、様々な手法、例えば、それぞれ訓練された人工知能機械及び従来の画像特徴抽出アルゴリズムを記憶するコンピュータを用いて画像データの特徴を取得することによって抽出される。これらの様々なアプローチで抽出された特徴の違いを比較することにより、人工知能機械の訓練効果を知ることができ、訓練プロセスを適切に向上させながら、単一のアプローチで特徴を抽出する精度を向上させることができる。様々なアプローチで抽出された画像データの特徴は、所定の規則に従って分類されることができる。例えば、異なるタイプの特徴は、異なるラベルを割り当てられることができ、それにより、分類された特徴データは、画像分析及び統計、人工知能機械の訓練等の目的に使用されることができる。なお、ここでいう画像は、いわゆる2次元画像に限定するものではなく、距離情報やサーモグラフィー等を含む3次元画像を含む。
先ず、本開示の実施態様による画像データの特徴データを判別するシステム100のハードウェア構成を説明する。
図1は、本開示の実施態様による画像データの特徴データを判別するシステム100のハードウェア構成のモード図である。図1に示すように、例えば、画像データの特徴データを判別するシステム100は、一般的なコンピュータアーキテクチャの一般的なコンピュータによって実装されることができる。画像データの特徴データを判別するシステム100は、プロセッサ110、メインメモリ112、メモリ114、入力インタフェース116、ディスプレイインタフェース118及び通信インタフェース120を含むことができる。これらのパーツは、例えば、内部バス122を介して相互に通信することができる。
プロセッサ110は、メモリ114に記憶されたプログラムをメインメモリ112上で展開して実行することにより、以下に説明する機能や処理を実現する。メインメモリ112は、不揮発性のメモリとして構成することができ、プロセッサ110のプログラム実行に必要なワーキングメモリとしての役割を果たす。
入力インタフェース116は、マウスやキーボード等の入力装置と接続されることができ、操作者が入力手段を操作することによって入力される指示を受け取る。
ディスプレイインタフェース118はディスプレイと接続されることができ、プロセッサ110のプログラム実行により生成された様々な処理結果をディスプレイに出力することができる。
通信インタフェース120は、ネットワーク200を介してプログラマブルロジックコントローラ(PLC)やデータベース装置等と通信するように構成されている。
メモリ114は、機能を実現するために画像データの特徴データを判別するシステム100としてコンピュータを判別することができるプログラム、例えば、画像データの特徴データを判別するプログラム及びオペレーティングシステム(OS)を記憶することができる。
メモリ114に記憶された画像データの特徴データを判別するプログラムは、デジタルバーサタイルディスク(DVD)等の光学記録媒体又はユニバーサルシリアルバス(USB)メモリ等の半導体記録媒体を介して識別システム100にインストールされることができる。又は、画像データの特徴データを判別するプログラムは、ネットワーク上のサーバ装置等からダウンロードしてもよい。
実施態様による画像データの特徴データを判別するプログラムは、他のプログラムと組み合わせて提供されてもよい。このような条件下では、画像データの特徴データを判別するプログラムは、そのような組み合わせの他のプログラムに含まれるモジュールを含まないが、他のプログラムと連携して処理を行う。従って、実施態様による画像データの特徴データを判別するプログラムは、他のプログラムと組み合わせた形態であってもよい。
図2は、本開示の第1実施形態による画像データの特徴データを判別するオプションの方法の概略図である。図に示すように、この方法には次のステップが含まれる。
ステップS102では、画像データが取得される。例えば、カメラ等によりリアルタイムに撮像された画像データが取得される。更に、画像データは、受信されることもでき、例えば、その画像データはネットワークを介して送信されるものである。場合によっては、後で認識及び分析するために大量の画像データを収集するために、事前に複数の画像が収集又は送信される必要がある。
ステップS104では、画像データの第1特徴が取得される。具体的には、第1特徴は、ステップS102で取得された画像データから第1モデルを介して取得され、第1モデルは、機械学習方式で訓練された人工神経ネットワークモデル等の人工知能ベースのモデルを含む。通常、人工神経ネットワークモデルの構築と使用は、関連付けられた2つのフェーズ、即ち、学習フェーズと実装フェーズを含む。前者は、サンプルの特徴を選択し、分類規則を見つけるものである。後者は、分類規則に従って未知のサンプルセットを分類及び認識するものである。
画像認識プロセスでは、画像認識メカニズムは冗長な入力情報を除外し、重要な情報を抽出する必要がある。第1特徴は、画像データの色特徴、テクスチャ特徴、形状特徴、又は空間関係特徴であることができる。このうち、カラー特徴は、画像又は画像領域に対応するシーンの表面特性を表すグローバル特徴である。一般的なカラー特徴は、ピクセルポイントベースの特徴であり、画像又は画像領域に属する全てのピクセルが独自の貢献を有する。テクスチャ特徴は、画像又は画像領域に対応するシーンの表面特性も記述するグローバル特徴でもある。空間関係機能とは、画像からセグメント化された複数の対象間の相互空間位置又は相対方向関係を指し、その関係は、接続/隣接関係、オーバーラップ/重ね合わせ関係、及び包含/受信関係に分類することもできる。一般に、空間位置情報は、相対空間位置情報と絶対空間位置情報の2つのカテゴリに分類することができる。
ステップS106では、画像データの第2特徴が取得される。具体的には、第2特徴は、ステップS102で取得された画像データから第2モデルを介して取得される。第2モデルは、ゼロクロッシングベースのアルゴリズムなどのエッジ検出アルゴリズム等の予め設定されたデータ処理アルゴリズムに基づいて構築される。第1特徴と同様に、第2特徴は、画像データの形状特徴、エッジ特徴、グレー特徴、色特徴、テクスチャ特徴、空間関係特徴等であることができる。このうち、エッジ検出は、局所的な画像の輝度が最も大きく変化する部分を検出するために使用され、局所的な画像の大きな変化を検出するための最も基本的な操作である。また、グレー特徴は、グローバル特徴ではなくローカル特徴であり、各ピクセルのグレー値の差によって表される特徴であることができる。従って、エッジ特徴は、グレー特徴の例と見なすことができる。
ステップS102で取得された画像データは、画像データの第1機能がステップS104で取得される前、又は第2機能がステップS106で取得される前に強化され得る。例えば、画像データの抽出及び認識をより容易にするために、画像データを前処理することによって、いくつかの不要な又は邪魔な情報を取り除くことが可能である。例えば、ステップS102で取得された画像データは、空間領域強化処理及び周波数領域画像強化処理によって強化されることができる。
ステップS108では、ステップS104で取得された第1特徴がステップS106で取得された第2特徴と比較され、それらが同じであるかどうかが判別される。なお、本明細書において「同じ」とは、完全に同一の場合だけでなく、両者の差が所定の閾値未満である場合も含む。上記の比較を行うための閾値又は閾値範囲は、第1特徴及び第2特徴によって特徴付けられる画像データの特徴に従って選択されることができる。例えば、第1特徴と第2特徴が画像データの形状特徴を特徴付ける場合、第1閾値が選択されることができ、第1特徴と第2特徴の差が第1閾値以下であれば、S104で取得された第1特徴とステップS106で取得された第2特徴は同じであると判別される。例えば、第1特徴及び第2特徴が画像データのグレー特徴を特徴付ける場合、第2閾値が選択されることができ、第1特徴と第2特徴との間の差が第2閾値以下であれば、ステップS104で取得された第1特徴とステップS106で取得された第2特徴は同じであると判別される。また、第1特徴と第2特徴の数学的形態が異なる場合は、正規化処理を行って第1特徴と第2特徴を同じ形態に変換して更なる比較を行うことができる。
ステップS108で第1特徴と第2特徴が異なると判別された場合、処理はステップS112に進み、第1特徴と第2特徴にそれぞれ第1ラベルと第2ラベルが割り当てられ、第1特徴と第2特徴は、それぞれ第1特徴データと第2特徴データとされる。次に、処理はステップS114に進み、第1ラベルと第2ラベルが出力され、第1特徴データ及び/又は第2特徴データが特徴データとして出力され、処理が終了する。
ステップS108で第1特徴と第2特徴が同じであると判別された場合、処理はステップS110に進み、第1特徴又は第2特徴に第3ラベルが割り当てられ、第1特徴又は第2特徴が第3特徴データとされる。次に処理はステップS114に進み、第3ラベルが出力され、第3特徴データが特徴データとして出力され、処理が終了する。
ここで、例えば、第1特徴と第2特徴に割り当てられたラベルは、0、1、2のいずれかの値をとる。第1特徴にラベル0が割り当てられ、第2特徴にラベル1が割り当てられる場合、第1特徴と第2特徴が異なることを示す。第1特徴又は第2特徴にラベル2が割り当てられる場合、第1特徴と第2特徴が同じであることを示す。従って、ラベルに値0、1、2を割り当てることにより、第1モデルで取得された第1特徴と第2モデルで取得された第2特徴が同じ確率を有すると判別することが可能であり、それによって認識の精度を更に向上させる。
また、ステップS104で取得された第1特徴とステップS106で取得された第2特徴は、所定の規則に従って、処理、例えば分類されることができる。例えば、統計モデルに従って、取得された特徴が特定の分布規則を満たすかどうかを判別することが可能である。具体的には、特徴抽出フェーズで取得された特徴は、全ての特徴を含む特徴空間にあると定義される。異なる特徴又は異なるタイプの対象は、空間内のポイントに対応する。分類フェーズでは、統計的判別の原理を使用して、特徴空間を分割し、異なる特徴を有する対象を認識する目的を達成する。統計モード認識の基本原理は、類似性を有するサンプルがモード空間で互いに接近し、「グループ」を形成することである。その分析方法は、測定された特徴ベクトルXi=(xi1、xi2、...、xid)T(i=1,2、...、N)に従って与えられたモードをCカテゴリに分類し、モード間の距離の関数による分類を判別する。ここで、Tは転置を表し、Nはサンプルポイントの数であり、そして、dはサンプル特徴の数である。次に、異なるカテゴリの特徴に異なるラベルを割り当てることができ、それによって、分類された特徴データは、画像分析及び統計、人工知能機械の訓練等に使用されることができる。
上記ステップにより、AI判別方法と従来の画像認識アルゴリズムの判別結果の判別方法を組み合わせることで、出力とする判別結果を向上させる例示的な目的が達成され、それにより、AIが認識した特徴が、人間が認識する特徴とより一致するという技術効果を達成する。
エッジ検出アルゴリズム等の従来の画像認識アルゴリズムの判別結果が人間の目で認識された結果と類似する理由は、これら従来の画像認識アルゴリズムによって演算された形状特徴、エッジ特徴、グレー特徴、及び色特徴等が人間の目で認識される特徴と類似することにある。
ここで、AI判別方法は、顔検出、製品外観検査、欠陥検査、スパム検出等に使用することができる。例えば、この方法は、特徴データを判別するために、携帯電話、スマートフォン、又は他の類似モバイルデバイス上に提供されるコンポーネントに適用することができる。走行車両の場合において、特徴データを判別するコンポーネントが移動物体の認識に使用される時、モバイルデバイスは、車両に取り付けることができるデバイスであり、車両の近く(例えば、前部)に出現する移動体(例えば、歩行者、動物、乗り物)又は静止物体(例えば、静止障害物、標識、信号機)を取得する。
また、AIが認識した特徴と人間が認識した特徴とが一致しないと判別される時、画像中の対象のどの特徴について、判別方法の認識精度が低いかを判別することができ、AIシステムを後で訓練することができる。例えば、特定の特徴を有する画像を訓練データとして追加して、AIシステムに特定の特徴に対する強化訓練を実行させ、特定の特徴の認識精度を向上させることができる。
なお、この方法では、ステップS104とステップS106の順番を逆にしてもよく、又はステップS104とステップS106を同時に行ってもよい。また、上記処理は、必要に応じてステップS108で終了し、ステップS110、S112、S114を省略してもよい。また、必要に応じて、ステップS108において第1特徴と第2特徴が同じであると判別された場合に行われる分岐演算のみを行うこともでき、即ちステップS112を省略してもよい。ここで、ステップS114で出力された特徴データは、ステップS102で取得された画像データの色特徴、テクスチャ特徴、形状特徴、又は空間関係(例えば、隣接性、接続性、領域及び境界、距離計量)特徴を特徴付ける。上記の方法で取得した画像データの色特徴、テクスチャ特徴、形状特徴、空間関係特徴は、損傷検査や疾病診断に利用することができる。例えば、上記の方法で内視鏡画像を認識し、出力された特徴データを用いて、被検者が癌であるか否かを検出することができる。
図3は、本開示の第2実施形態による画像データの特徴データを判別するオプションの方法の概略図である。第1実施形態と異なる部分はステップS204とS206であり、異なる部分のみを以下に説明する。
ステップS204では、画像データの第1特徴が抽出される。具体的には、第1特徴は、第1モデルによってステップS202で取得した画像データから抽出され、第1モデルは、機械学習方式で訓練され、例えば、それは、人工知能ベースのモデルである。
ステップS206では、第2特徴が抽出される。具体的には、第2特徴は、ステップS204で抽出された第1特徴が配置されている特徴領域から第2モデルを介して抽出され、第2モデルは、予め設定されたデータ処理アルゴリズムに基づいて構築され、例えば、それは、エッジ検出ベースのモデルである。
本開示による第2実施形態では、第1特徴と第2特徴が同じである場合にそれらを抽出するだけでよい場合に特に有用である。
なお、この方法では、上記の処理を必要に応じてステップS208で終了し、ステップS210、S212、S214を省略してもよい。また、必要に応じて、ステップS208において第1特徴と第2特徴とが同じであると判別された場合に行われる分岐演算のみを行うこともでき、即ちステップS212を省略してもよい。ここで、ステップS214で出力される特徴データは、ステップS202で取得された画像データの色特徴、テクスチャ特徴、形状特徴、又は空間関係特徴を特徴付ける。上記の方法で取得した画像データの色特徴、テクスチャ特徴、形状特徴、空間関係特徴は、損傷検査や疾病診断に利用することができる。例えば、上記の方法で内視鏡画像を認識し、出力された特徴データを用いて、被検者が癌であるか否かを検出することができる。
図4は、本開示の第3実施形態による画像データの特徴データを判別するオプションの方法の概略図である。第1実施形態と異なる部分はステップS304及びS306であり、以下では異なる部分のみを説明する。
ステップS304では、画像データの第2特徴が抽出される。具体的には、第2モデルによってステップS202で取得された画像データから第2特徴が抽出され、第2モデルは、予め設定されたデータ処理アルゴリズムに基づいて構築され、例えば、それは、エッジ検出ベースのモデルである。
ステップS306では、第1特徴が抽出される。具体的には、ステップS304で抽出された第2特徴が配置されている特徴領域から第1モデルを介して第1特徴が抽出され、第1モデルは機械学習方式で訓練され、例えば、それは、人工知能ベースのモデルである。
なお、この方法では、必要に応じて、上記処理をステップS308で終了させ、ステップS310、S312、S314を省略してもよい。また、ステップS308において第1特徴と第2特徴とが同じであると判別された場合に行われる分岐演算のみを行うこともでき、即ちステップS312を省略してもよい。ここで、ステップS314で出力される特徴データは、ステップS302で取得された画像データの色特徴、テクスチャ特徴、形状特徴、又は空間関係特徴を特徴付ける。
上述した一連の処理は、ハードウェアにより実行することもできるし、ソフトウェアにより実行することもできる。一連の処理をソフトウェアにより実行する場合には、そのソフトウェアを実行可能なコンピュータとして構成することが好ましい。コンピュータの例は、専用のハードウェアに組み込まれたコンピュータ及びそれにインストールされた様々なプログラムにより任意の機能を実行可能な汎用コンピュータを含む。
上記構成を有するコンピュータにおいて、例えば、CPUは、入出力インタフェースとバスを介して記憶手段に記憶されたプログラムをRAMにロードすることにより、上記各装置のハードウェア構成の一部又は全部と同等の機能を実装し、そのプログラムを実行することができる。言い換えれば、上述した一連の処理の少なくとも一部が実行される。RAMは、CPUが各種処理を実行する上で必要なデータ等も適宜記憶する。
図5は、本開示の第1実施形態による画像データの特徴データを判別するためのオプションの装置の概略図である。この装置は、取得部40、第1認識部42、第2認識部44及び判別部46を含む。次に、各部について詳細に説明する。
取得部40、第1認識部42、第2認識部44及び判別部46は、上記プロセッサ110により実現されることができ、その分割又は組み合わせは限定しない。更に、これらのセクションの機能の一部又は全部は、専用回路(例えば、特定用途向け集積回路(ASIC)又はフィールドプログラマブルゲートアレイ(FPGA))を介して実現することもできる。また、ネットワークに接続された外部装置が一部の処理を担うこともできる。
取得部40は、画像データを取得するように構成されたカメラであることができる。第1認識部42は取得部40に接続される。第1認識部42は、取得部40によって取得された画像データを受け取り、画像データの第1特徴を取得する。具体的には、第1認識部42では、取得部40によって取得された画像データから、機械学習で訓練された第1モデル、例えば、人工知能ベースのモデルを通じて第1特徴が取得される。第2認識部44は取得部40に接続される。第2認識部44は、取得部40によって取得された画像データを受け取り、画像データの第2特徴を取得する。具体的には、第2認識部44では、第2特徴は、予め設定されたデータ処理アルゴリズムに基づいて構築された第2モデル、例えば、エッジ検出ベースのモデルを介して取得部40によって取得された画像データから取得される。判別部46は、判別及びラベリング部46‐1と出力部46‐2とを含む。判別及びラベリング部46‐1は、第1認識部42によって取得された第1特徴と第2認識部44によって取得された第2特徴を比較して、それらが同じかどうかを判別するように構成される。また、判別及びラベリング部46‐1は、更に、第1特徴と第2特徴が異なると判別された場合、第1特徴と第2特徴にそれぞれ第1ラベルと第2ラベルを割り当て、それぞれ第1特徴及び第2特徴を第1特徴データ及び第2特徴データとし、並びに第1特徴及び第2特徴が同じであると判別された場合、第1特徴又は第2特徴に第3ラベルを割り当て、第1特徴又は第2特徴を第3特徴データとするように構成される。出力部46‐2は、判別及びラベリング部46‐1が第1特徴と第2特徴が異なると判別した場合に、第1ラベルと第2ラベルを出力し、第1特徴データ及び/又は第2特徴データを特徴データとして出力し、判別及びラベリング部46‐1が第1特徴と第2特徴が同じであると判別した場合、第3ラベルを出力し、第3特徴データを特徴データとして出力するように構成される。ここで、出力部46‐2はディスプレイであることができる。
上記ステップにより、AI判別方法と人間の判別結果に近い判別方法を組み合わせることで、出力とする判別結果を向上させるという例示的な目的を達成し、それによって、AIが認識する特徴と人間が認識する特徴をより一致させる技術効果を達成する。
なお、第1認識部42と第2認識部44で行われる処理は、並列的又は直列的に実行されることができる。第1認識部42と第2認識部44で行われる処理が直列的に実行される場合、両者の時系列は任意でよい。また、上記装置において、必要に応じて、判別部46内の出力部46‐2を省略してもよい。ここで、出力部46‐2によって出力された特徴データは、取得部40によって取得された画像データの色特徴、テクスチャ特徴、形状特徴、又は空間関係特徴を特徴付ける。上記の方法で取得した画像データの色特徴、テクスチャ特徴、形状特徴、空間関係特徴は、損傷検査や疾病診断に利用することができる。例えば、上記の方法で内視鏡画像を認識し、出力された特徴データを用いて、被検者が癌であるか否かを検出することができる。
図6は、本開示の第2実施形態による画像データの特徴データを判別するためのオプションの装置の概略図である。第1実施形態と異なる部分は第1認識部52と第2認識部54であり、以下では異なる部分のみ説明する。
第1認識部52は取得部50に接続される。第1認識部52は、取得部50によって取得された画像データを受け取り、画像データの第1特徴を抽出する。具体的には、第1認識部52では、取得部50によって取得された画像データから、機械学習で訓練された第1モデル、例えば、人工知能ベースのモデルを通じて第1特徴が抽出される。第2認識部54は第1認識部52に接続され、第2認識部54は第2特徴を抽出する。具体的には、第2特徴は、第1認識部52で抽出された第1特徴が配置されている特徴領域から抽出され、第2モデルは、予め設定されたデータ処理アルゴリズムに基づいて構築され、例えば、それは、エッジ検出ベースのモデルである。
図7は、本開示の第2実施形態による画像データの特徴データを判別するためのオプションの装置の概略図である。装置の第1実施形態と異なる部分は第2認識部62及び第1認識部64であり、異なる部分のみを以下に説明する。
第2認識部62は取得部60に接続される。第2認識部62は、取得部60によって取得された画像データを受け取り、画像データの第2特徴を抽出する。具体的には、第2認識部62では、第2特徴は、予め設定されたデータ処理アルゴリズムに基づいて構築された第2モデル、例えばエッジ検出ベースのモデルを介して取得部60によって取得された画像データから抽出される。第1認識部64は第2認識部62に接続され、第1認識部64は第1特徴を抽出する。具体的には、第1特徴は、第2認識部62により抽出された第2特徴が配置される特徴領域から、機械学習で訓練された第1モデル、例えば人工知能ベースのモデルを通じて抽出される。本開示の上記の実施形態のシリアル番号は、単に説明を目的としたものであり、実施形態の優劣を表すものではない。
本開示の前述の実施形態では、各実施形態の説明は、各自の要点を有している。一実施形態において詳細に説明されていない部分については、他の実施形態における関連する説明を参照することができる。
本願で提供されるいくつかの実施形態では、開示された技術的内容は他の方式で実装されてもよいことが理解されるべきである。上述の装置実装方式は、単なる例示である。例えば、手段の分割は、論理機能的分割であってもよく、実際の実装では他の分割であってもよい。例えば、複数の手段又はコンポーネントを組み合わせるか、別のシステムに統合するか、或いは一部の特徴を省略するか又は実行しないようにすることができる。更に、図示又は説明された相互結合又は直接結合又は通信接続は、いくつかのインタフェース、手段又はモジュールを介した間接結合又は通信接続であることができ、電気的又は他の形式であり得る。
個別のコンポーネントとして説明されている手段は、物理的に分離されていてもいなくてもよい。手段として表記されるコンポーネントは、物理的な手段であってもなくてもよい。即ち、1つの場所に配置されていてもよく、複数の手段に分散されていてもよい。一部又は全部の手段は、実施形態の解決策の目的を達成するための実際の必要に応じて選択されることができる。
また、本開示の実施形態における各機能部は、1つの処理手段に統合されてもよく、各手段が個別であってもよく、2つ以上の手段が1つの手段に統合されてもよい。上述の統合手段は、ハードウェアの形で、又はソフトウェア機能手段の形で実装されることができる。
統合手段がソフトウェア機能手段の形で実装され、独立した製品として販売又は使用される場合、統合手段は、コンピュータ可読記憶媒体に記憶されることができる。この理解に基づいて、本開示の技術的解決策は、本質的に、又は先行技術に寄与する部分、又は技術的解決策の全部又は一部が、本開示の実施形態による方法のステップの全部又は一部をコンピュータデバイス(パーソナルコンピュータ、サーバ又はネットワークデバイス等)に実行させるいくつかの命令を含む記憶媒体に記憶されたソフトウェア製品の形で実装され得る。上記の記憶媒体は、USBフラッシュドライブ、読み取り専用メモリ(ROM)、ランダムアクセスメモリ(RAM)、リムーバブルハードディスク、磁気ディスク、又は光ディスク等のプログラムコードを記憶することができる様々な媒体を含む。
上記は、本開示の好ましい実施形態にすぎず、当業者は、本開示の原理から逸脱することなく、改善及び修正を行うことができることに留意されたい。これらの改善及び修正は、本開示の保護の範囲内であると見なされるべきである。
100:画像データの特徴データを判別するシステム
110:プロセッサ
112:メインメモリ
114:メモリ
116:入力インターフェース
118:ディスプレイインターフェイス
120:通信インターフェース
40:取得部
42:第1認識部
44:第2認識部
46:判別部
46-1:判別及びラベリング部
46-2:出力部
50:取得部
52:第1認識部
54:第2認識部
56:判別部
56-1:判別及びラベリング部
56-2:出力部
60:取得部
62:第2認識部
64:第1認識部
66:判別部
66-1:判別及びラベリング部
66-2:出力部

Claims (13)

  1. 画像データの特徴データを判別する方法であって、
    前記画像データの特徴を取得し、前記特徴は、第1特徴及び第2特徴を含み、前記第1特徴は、第1モデルを使用して画像データから抽出され、前記第1モデルは機械学習方式で訓練され、前記第2特徴は、第2モデルを使用して画像データから抽出され、前記第2モデルは予め設定されたデータ処理アルゴリズムに基づいて構築されることと、
    前記第1特徴及び前記第2特徴に基づいて特徴データを判別することと、
    を含み、
    前記第1特徴及び前記第2特徴に基づいて前記特徴データを判別することは、
    前記第1特徴と前記第2特徴との比較結果に基づいて、前記特徴データとして前記特徴にラベルを割り当てることを含む方法。
  2. 前記画像データの特徴を取得することは、
    前記画像データから前記第1特徴を抽出し、且つ前記画像データの前記第1特徴が配置されている特徴領域から前記第2特徴を抽出することと、
    前記画像データから前記第2特徴を抽出し、且つ前記画像データの前記第2特徴が配置されている特徴領域から前記第1特徴を抽出することと、
    前記画像データ全体に対して前記第1特徴及び前記第2特徴を抽出することと、
    のうち1つを含む請求項1に記載の画像データの特徴データを判別する方法。
  3. 前記第1特徴及び前記第2特徴に基づいて前記特徴データを判別することは、
    前記第1特徴が前記第2特徴と異なる場合と同じ場合とで、前記特徴データとして前記特徴に異なる前記ラベルを割り当てることを含む請求項1又は2に記載の画像データの特徴データを判別する方法。
  4. 前記第1特徴及び前記第2特徴に基づいて前記特徴データを判別することは、
    前記第1特徴が前記第2特徴と異なる場合、それぞれ第1特徴データと第2特徴データとして、前記第1特徴と前記第2特徴にそれぞれ第1ラベルと第2ラベルを割り当てることと、
    前記第1特徴が前記第2特徴と同じ場合、第3特徴データとして、前記第1特徴又は前記第2特徴に第3ラベルを割り当てることと、
    を含む請求項1又は2に記載の画像データの特徴データを判別する方法。
  5. 前記特徴データは、前記画像データの輝度特徴、色特徴、テクスチャ特徴、形状特徴、又は空間関係特徴を特徴付ける請求項1又は2に記載の画像データの特徴データを判別する方法。
  6. 画像データの特徴データを判別する装置であって、
    前記画像データの特徴を取得し、前記特徴は、第1特徴と第2特徴を含み、前記第1特徴は第1モデルを使用して画像データから抽出され、前記第1モデルは機械学習方式で訓練され、前記第2特徴は、第2モデルを使用して画像データから抽出され、前記第2モデルは、予め設定されたデータ処理アルゴリズムに基づいて構築される取得部と、
    前記第1特徴及び前記第2特徴に基づいて前記特徴データを判別する判別部と、
    を含み、
    前記判別部は、
    前記第1特徴と前記第2特徴との比較結果に基づいて、前記特徴データとして前記特徴にラベルを割り当てる装置。
  7. 前記取得部は、
    前記画像データから前記第1特徴を抽出し、且つ前記画像データの前記第1特徴が配置されている特徴領域から前記第2特徴を抽出することと、
    前記画像データから前記第2特徴を抽出し、且つ前記画像データの前記第2特徴が配置されている特徴領域から前記第1特徴を抽出することと、
    前記画像データ全体に対して前記第1特徴及び前記第2特徴を抽出することと、
    のうち1つによって前記画像データの特徴を取得する請求項6に記載の画像データの特徴データを判別する装置。
  8. 前記判別部は、
    前記第1特徴が前記第2特徴と異なる場合と同じ場合とで、前記特徴データとして前記特徴に異なる前記ラベルを割り当てる請求項6又は7に記載の画像データの特徴データを判別する装置。
  9. 前記判別部は、
    前記第1特徴が前記第2特徴と異なる場合、それぞれ第1特徴データと第2特徴データとして、前記第1特徴と前記第2特徴にそれぞれ第1ラベルと第2ラベルを割り当て、
    前記第1特徴が前記第2特徴と同じ場合、第3特徴データとして、前記第1特徴又は前
    記第2特徴に第3ラベルを割り当てる請求項6又は7に記載の画像データの特徴データを判別する装置。
  10. 前記特徴データは、前記画像データの色特徴、テクスチャ特徴、形状特徴、又は空間関係特徴を特徴付ける請求項6又は7に記載の画像データの特徴データを判別する装置。
  11. 請求項1~5の何れか一項に記載の方法を実行する処理手段と、
    前記特徴データを出力する出力手段と、
    を含む、画像データの特徴データを判別するシステム。
  12. 実行されると、請求項1~5の何れか一項に記載の方法を実行することを特徴とする、画像データの特徴データを判別するプログラム。
  13. 実行されると、請求項1~5の何れか一項に記載の方法を実行するプログラムが記憶されている記憶媒体。
JP2020543479A 2018-03-05 2018-03-05 画像データの特徴データを判別する方法、装置、システム及びプログラム、並びに記憶媒体 Active JP7040624B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB2018/051390 WO2019171118A1 (en) 2018-03-05 2018-03-05 Method, apparatus, system and program for determining feature data of image data, and storage medium

Publications (2)

Publication Number Publication Date
JP2021516385A JP2021516385A (ja) 2021-07-01
JP7040624B2 true JP7040624B2 (ja) 2022-03-23

Family

ID=62104330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020543479A Active JP7040624B2 (ja) 2018-03-05 2018-03-05 画像データの特徴データを判別する方法、装置、システム及びプログラム、並びに記憶媒体

Country Status (5)

Country Link
US (1) US11461996B2 (ja)
EP (1) EP3762865A1 (ja)
JP (1) JP7040624B2 (ja)
CN (1) CN111684461B (ja)
WO (1) WO2019171118A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111684461B (zh) * 2018-03-05 2023-10-20 欧姆龙株式会社 确定图像数据的特征数据的方法、装置、系统及存储介质
WO2020070876A1 (ja) * 2018-10-05 2020-04-09 日本電気株式会社 教師データ拡張装置、教師データ拡張方法およびプログラム
CN111476773A (zh) * 2020-04-07 2020-07-31 重庆医科大学附属儿童医院 一种耳廓畸形分析识别方法、系统、介质和电子终端
US11335108B2 (en) * 2020-08-10 2022-05-17 Marlabs Incorporated System and method to recognise characters from an image

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002140714A (ja) 2000-10-31 2002-05-17 Konica Corp 特徴量正誤判定方法および画像処理装置
JP2005115525A (ja) 2003-10-06 2005-04-28 Fuji Photo Film Co Ltd 識別処理に用いる特徴量の種類と識別条件を決定する装置、プログラムならびにプログラムを記録した記録媒体、および特定内容のデータを選別する装置
JP2009169518A (ja) 2008-01-11 2009-07-30 Kddi Corp 領域識別装置およびコンテンツ識別装置
US20170193655A1 (en) 2015-12-30 2017-07-06 Case Western Reserve University Radiomic features on diagnostic magnetic resonance enterography

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4696856B2 (ja) * 2005-11-02 2011-06-08 オムロン株式会社 画像処理装置、画像処理方法、そのプログラム、およびそのプログラムを記録したコンピュータ読取り可能な記録媒体
JP4093273B2 (ja) * 2006-03-13 2008-06-04 オムロン株式会社 特徴点検出装置、特徴点検出方法および特徴点検出プログラム
US8027521B1 (en) * 2008-03-25 2011-09-27 Videomining Corporation Method and system for robust human gender recognition using facial feature localization
US9760799B2 (en) * 2010-03-10 2017-09-12 Tandent Vision Science, Inc. Pipeline for generating an intrinsic image
KR101630286B1 (ko) * 2010-08-09 2016-06-15 한화테크윈 주식회사 전경 및 배경 분리 장치 및 방법
JP5831420B2 (ja) * 2012-09-28 2015-12-09 オムロン株式会社 画像処理装置および画像処理方法
KR101491461B1 (ko) * 2013-08-02 2015-02-23 포항공과대학교 산학협력단 공분산 기술자를 이용하는 물체 인식 방법 및 장치
CN104281843A (zh) * 2014-10-20 2015-01-14 上海电机学院 基于自适应特征和分类模型选择的图像识别方法及系统
WO2017027475A1 (en) * 2015-08-07 2017-02-16 Jianming Liang Methods, systems, and media for simultaneously monitoring colonoscopic video quality and detecting polyps in colonoscopy
CN106446754A (zh) * 2015-08-11 2017-02-22 阿里巴巴集团控股有限公司 图像识别方法、度量学习方法、图像来源识别方法及装置
US9684967B2 (en) * 2015-10-23 2017-06-20 International Business Machines Corporation Imaging segmentation using multi-scale machine learning approach
EP3255586A1 (en) * 2016-06-06 2017-12-13 Fujitsu Limited Method, program, and apparatus for comparing data graphs
US9984471B2 (en) * 2016-07-26 2018-05-29 Intuit Inc. Label and field identification without optical character recognition (OCR)
US10169647B2 (en) * 2016-07-27 2019-01-01 International Business Machines Corporation Inferring body position in a scan
US10395362B2 (en) * 2017-04-07 2019-08-27 Kla-Tencor Corp. Contour based defect detection
CN107463960A (zh) * 2017-08-07 2017-12-12 石林星 一种图像识别方法及装置
KR102425578B1 (ko) * 2017-08-08 2022-07-26 삼성전자주식회사 객체를 인식하는 방법 및 장치
CN111684461B (zh) * 2018-03-05 2023-10-20 欧姆龙株式会社 确定图像数据的特征数据的方法、装置、系统及存储介质
US10229346B1 (en) * 2018-09-04 2019-03-12 StradVision, Inc. Learning method, learning device for detecting object using edge image and testing method, testing device using the same
US11689526B2 (en) * 2019-11-19 2023-06-27 Paypal, Inc. Ensemble method for face recognition deep learning models
US10997752B1 (en) * 2020-03-09 2021-05-04 Adobe Inc. Utilizing a colorization neural network to generate colorized images based on interactive color edges
US11886953B2 (en) * 2020-04-13 2024-01-30 Position Imaging, Inc. Computer vision system and method of label detection, reading, and registration of labels on objects

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002140714A (ja) 2000-10-31 2002-05-17 Konica Corp 特徴量正誤判定方法および画像処理装置
JP2005115525A (ja) 2003-10-06 2005-04-28 Fuji Photo Film Co Ltd 識別処理に用いる特徴量の種類と識別条件を決定する装置、プログラムならびにプログラムを記録した記録媒体、および特定内容のデータを選別する装置
JP2009169518A (ja) 2008-01-11 2009-07-30 Kddi Corp 領域識別装置およびコンテンツ識別装置
US20170193655A1 (en) 2015-12-30 2017-07-06 Case Western Reserve University Radiomic features on diagnostic magnetic resonance enterography

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
福井 類, 前田 啓輔, 渡邉 匡彦, 下坂 正倫, 佐藤 知正,スマートデバイスによる物品探索システムのための画像弁別性の数値モデル化,人工知能学会全国大会(第27回)論文集,日本,人工知能学会,2013年06月07日,4D1-2in,pp. 1-4
高橋 和馬, 道満 恵介, 川西 康友, 平山 高嗣, 井出 一郎, 出口 大輔, 村瀬 洋,料理写真の魅力度推定に用いる特徴量の検討による精度向上,電子情報通信学会技術研究報告,日本,電子情報通信学会,2016年10月16日,Vol. 16, No. 245, MVE2016-12 (2016-10),pp. 41-46

Also Published As

Publication number Publication date
WO2019171118A1 (en) 2019-09-12
US20210049398A1 (en) 2021-02-18
CN111684461A (zh) 2020-09-18
US11461996B2 (en) 2022-10-04
EP3762865A1 (en) 2021-01-13
CN111684461B (zh) 2023-10-20
JP2021516385A (ja) 2021-07-01

Similar Documents

Publication Publication Date Title
Ai et al. Automatic pixel-level pavement crack detection using information of multi-scale neighborhoods
JP7040624B2 (ja) 画像データの特徴データを判別する方法、装置、システム及びプログラム、並びに記憶媒体
US20180204057A1 (en) Object detection method and object detection apparatus
JP6552613B2 (ja) 画像処理装置、画像処理装置の作動方法、及び画像処理プログラム
JP5315411B2 (ja) 有糸分裂像検出装置および計数システム、および有糸分裂像を検出して計数する方法
Han et al. A novel computer vision-based approach to automatic detection and severity assessment of crop diseases
WO2020062088A1 (zh) 图像识别方法和设备、存储介质和处理器
Do et al. Early melanoma diagnosis with mobile imaging
Alharbi et al. Automatic counting of wheat spikes from wheat growth images
Holzer et al. Learning to efficiently detect repeatable interest points in depth data
Zitnick et al. The role of image understanding in contour detection
Yoshinaga et al. Object detection based on spatiotemporal background models
Fathi et al. General rotation-invariant local binary patterns operator with application to blood vessel detection in retinal images
Meher et al. Efficient method of moving shadow detection and vehicle classification
Demirkus et al. Hierarchical temporal graphical model for head pose estimation and subsequent attribute classification in real-world videos
Karadağ et al. Segmentation fusion for building detection using domain-specific information
Li et al. Sublingual vein extraction algorithm based on hyperspectral tongue imaging technology
US20180047158A1 (en) Chest radiograph (cxr) image analysis
Joshi et al. Plant leaf disease detection using computer vision techniques and machine learning
Guo et al. A multi-stage approach to curve extraction
Xu et al. Seabird image identification in natural scenes using Grabcut and combined features
Amaral et al. Weakly supervised fire and smoke segmentation in forest images with CAM and CRF
Chang et al. Single-shot person re-identification based on improved random-walk pedestrian segmentation
Zhang et al. Integral channel features for particle filter based object tracking
KR101032581B1 (ko) 유해영상 자동 판별 방법

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201104

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220221

R150 Certificate of patent or registration of utility model

Ref document number: 7040624

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150