JP7040331B2 - Manufacturing method of series-stacked all-solid-state battery - Google Patents
Manufacturing method of series-stacked all-solid-state battery Download PDFInfo
- Publication number
- JP7040331B2 JP7040331B2 JP2018135606A JP2018135606A JP7040331B2 JP 7040331 B2 JP7040331 B2 JP 7040331B2 JP 2018135606 A JP2018135606 A JP 2018135606A JP 2018135606 A JP2018135606 A JP 2018135606A JP 7040331 B2 JP7040331 B2 JP 7040331B2
- Authority
- JP
- Japan
- Prior art keywords
- battery
- exterior body
- active material
- layer
- negative electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Secondary Cells (AREA)
- Sealing Battery Cases Or Jackets (AREA)
- Primary Cells (AREA)
- Connection Of Batteries Or Terminals (AREA)
Description
本開示は、直列積層型全固体電池の製造方法に関する。 The present disclosure relates to a method for manufacturing a series laminated all-solid-state battery.
近年、パソコン、ビデオカメラ、携帯電話等の情報関連機器や通信機器等の急速な普及に伴い、その電源として利用される積層型電池の開発が重要視されている。また、自動車産業界等においても、電気自動車用あるいはハイブリッド自動車用の高出力かつ高容量の積層型全固体電池の開発が進められている。 In recent years, with the rapid spread of information-related devices such as personal computers, video cameras, and mobile phones, and communication devices, the development of stacked batteries used as a power source thereof has been regarded as important. Further, in the automobile industry and the like, the development of high-output and high-capacity laminated all-solid-state batteries for electric vehicles or hybrid vehicles is being promoted.
例えば、特許文献1では、充放電部を収容する筐体に位置決め凸部を有し、充放電部の構成要素に位置決め凸部を挿入可能な孔を有し、位置決め凸部に沿って充放電部の構成要素を積層する積層工程を含む全固体電池の製造方法が開示されている。 For example, in Patent Document 1, the housing accommodating the charging / discharging portion has a positioning convex portion, the component of the charging / discharging portion has a hole into which the positioning convex portion can be inserted, and the charging / discharging portion is charged / discharged along the positioning convex portion. A method for manufacturing an all-solid-state battery including a laminating step of laminating component components is disclosed.
また、特許文献2では、クリップ機構を有する支持構造体で保持された電極体を受け台に乗せ、双極型電極の面方向に対して垂直な方向から各電極を積層して、そしてクリップ機構を解消する工程を含む双極型電池の製造方法が開示されている。 Further, in Patent Document 2, an electrode body held by a support structure having a clip mechanism is placed on a pedestal, and each electrode is laminated from a direction perpendicular to the plane direction of the bipolar electrode, and the clip mechanism is formed. A method for manufacturing a bipolar battery including a step of eliminating the problem is disclosed.
なお、特許文献3では、位置決め用ガイドを利用して、単位電池を積層してなる燃料電池スタックが開示されている。 In addition, Patent Document 3 discloses a fuel cell stack in which unit batteries are stacked by using a positioning guide.
電解液を固体電解質層に替えて、電池を全固体化した積層型全固体電池は、電池内に可燃性の有機溶媒を使用しておらず、よって安全装置の簡素化が図れ、製造コストや生産性に優れるため、注目されている。 The laminated all-solid-state battery, in which the electrolyte is replaced with a solid electrolyte layer and the battery is completely solidified, does not use a flammable organic solvent in the battery, which simplifies the safety device and reduces the manufacturing cost. It is attracting attention because of its excellent productivity.
このような積層型全固体電池を製造する際には、通常、正極集電体層、正極活物質層、固体電解質層、負極活物質層、及び負極集電体層を積層して、単位電池を形成する。そして、単位電池を直列に又は並列に積層して、電池積層体を形成する。その後、電池積層体を電極端子に接続させ、外装体等に収容させることによって全固体電池を製造する。 When manufacturing such a laminated all-solid-state battery, usually, a positive electrode current collector layer, a positive electrode active material layer, a solid electrolyte layer, a negative electrode active material layer, and a negative electrode current collector layer are laminated to form a unit battery. To form. Then, the unit batteries are stacked in series or in parallel to form a battery laminate. After that, an all-solid-state battery is manufactured by connecting the battery laminate to the electrode terminals and accommodating the battery laminate in an exterior body or the like.
しかしながら、電池積層体を外装体の開口部から収容させる際に、電池積層体に含まれる正極集電体層、正極活物質層、固体電解質層、負極活物質層、又は負極集電体層の端部からの材料が脱落してしまう可能性がある。特に、外装体内において、電池積層体を、その面方向に対して垂直な方向に移動させる距離が長くなればなるほど、外装体の内壁と電池積層体の端部との接触によって、電池積層体の端部からの材料が脱落しやすくなる。このように材料が脱落すると、この脱落した材料が他の層の端部に付着することによって、短絡が生じる恐れがある。 However, when the battery laminate is accommodated from the opening of the exterior body, the positive electrode current collector layer, the positive electrode active material layer, the solid electrolyte layer, the negative electrode active material layer, or the negative electrode current collector layer contained in the battery laminate is used. Material may fall off from the edges. In particular, as the distance for moving the battery laminate in the direction perpendicular to the plane direction becomes longer in the exterior body, the contact between the inner wall of the exterior body and the end portion of the battery laminate causes the battery laminate to come into contact with each other. The material from the edges is likely to fall off. When the material is shed in this way, the shed material may adhere to the ends of the other layers, resulting in a short circuit.
そこで、本開示は、上記事情を鑑みてなされたものであり、電池積層体を外装体内に収容する際に、電池積層体の端部からの材料の脱落を抑制できる直列積層型全固体電池の製造方法を提供することを目的とする。 Therefore, the present disclosure has been made in view of the above circumstances, and is a series-stacked all-solid-state battery capable of suppressing the material from falling off from the end portion of the battery laminate when the battery laminate is housed in the exterior body. The purpose is to provide a manufacturing method.
本開示の本発明者は、下記の工程を含む直列積層型全固体電池の製造方法により、上記課題を解決できることを見出した:
(a)電池積層体を収容するための収容部を有する外装体を準備すること、ここで、前記電池積層体の積層方向において、前記外装体が、両端に貫孔部を有し、かつ分割された形状を有する少なくとも2つの部分外装体からなり、かつ、前記電池積層体は、単位電池を2以上直列に積層してなり、かつ前記単位電池は、正極集電体層、正極活物質層、固体電解質層、負極活物質層、及び負極集電体層をこの順に積層することによって構成されており;
(b)前記単位電池又は前記単位電池を構成する1又は複数の層を順に、1つの前記部分外装体の収容部に対して、前記積層方向と垂直な方向±60°の方向以内から挿入すること;
(c)全ての前記部分外装体を結合させて、前記外装体を形成し、それによって前記外装体内に前記電池積層体を収容すること;
(d)前記外装体の両端の前記貫孔部を通して、前記電池積層体の積層方向の両端面に電極端子を接続すること。
The present inventor of the present disclosure has found that the above-mentioned problems can be solved by a method for manufacturing a series-stacked all-solid-state battery including the following steps:
(A) Preparing an exterior body having an accommodating portion for accommodating the battery laminate, wherein the exterior body has through holes at both ends and is divided in the stacking direction of the battery laminate. The battery laminate is composed of two or more unit batteries stacked in series, and the unit battery includes a positive electrode current collector layer and a positive electrode active material layer. , A solid electrolyte layer, a negative electrode active material layer, and a negative electrode current collector layer are laminated in this order;
(B) The unit battery or one or a plurality of layers constituting the unit battery are inserted into the accommodating portion of one partial exterior body in order from within ± 60 ° in a direction perpendicular to the stacking direction. matter;
(C) All the partial exterior bodies are combined to form the exterior body, whereby the battery laminate is housed in the exterior body;
(D) The electrode terminals are connected to both end faces in the stacking direction of the battery laminate through the through holes at both ends of the exterior body.
本開示の直列積層型全固体電池の製造方法によれば、電池積層体を外装体内に収容する際に、電池積層体の端部からの材料の脱落を抑制することができる。 According to the method for manufacturing a series-stacked all-solid-state battery of the present disclosure, it is possible to prevent the material from falling off from the end portion of the battery laminate when the battery laminate is housed in the exterior body.
以下、図面を参照しながら、本開示を実施するための形態について、詳細に説明する。なお、説明の便宜上、各図において、同一又は相当する部分には同一の参照符号を付し、重複説明は省略する。実施の形態の各構成要素は、全てが必須のものであるとは限らず、一部の構成要素を省略可能な場合もある。ただし、以下の図に示される形態は本開示の例示であり、本開示を限定するものではない。 Hereinafter, embodiments for carrying out the present disclosure will be described in detail with reference to the drawings. For convenience of explanation, the same reference numerals are given to the same or corresponding parts in each figure, and duplicate explanations will be omitted. Not all of the components of the embodiment are essential, and some components may be omitted. However, the form shown in the figure below is an example of the present disclosure and does not limit the present disclosure.
《直列積層型全固体電池の製造方法》
本開示の直列積層型全固体電池の製造方法は、下記工程を含む:
(a)電池積層体を収容するための収容部を有する外装体を準備すること、ここで、電池積層体の積層方向において、外装体が、両端に貫孔部を有し、かつ分割された形状を有する少なくとも2つの部分外装体からなり、かつ、電池積層体は、単位電池を2以上直列に積層してなり、かつ単位電池は、正極集電体層、正極活物質層、固体電解質層、負極活物質層、及び負極集電体層をこの順に積層することによって構成されており;
(b)単位電池又は単位電池を構成する1又は複数の層を順に、1つの部分外装体の収容部に対して、積層方向と垂直な方向±60°の方向以内から挿入すること;
(c)全ての部分外装体を結合させて、外装体を形成し、それによって外装体内に電池積層体を収容すること;
(d)外装体の両端の貫孔部を通して、電池積層体の積層方向の両端面に電極端子を接続すること。
<< Manufacturing method of series-stacked all-solid-state battery >>
The method for manufacturing a series laminated all-solid-state battery of the present disclosure includes the following steps:
(A) Preparing an exterior body having an accommodating portion for accommodating the battery laminate, wherein the exterior body has through holes at both ends and is divided in the stacking direction of the battery laminate. The battery laminate is composed of at least two partial exterior bodies having a shape, and two or more unit batteries are laminated in series, and the unit battery is a positive electrode current collector layer, a positive electrode active material layer, and a solid electrolyte layer. , The negative electrode active material layer, and the negative electrode current collector layer are laminated in this order;
(B) Insert the unit battery or one or more layers constituting the unit battery in order with respect to the accommodating portion of one partial exterior body from within ± 60 ° in the direction perpendicular to the stacking direction;
(C) All the partial exterior bodies are combined to form an exterior body, whereby the battery laminate is housed in the exterior body;
(D) Connect the electrode terminals to both end faces of the battery laminate in the stacking direction through the through holes at both ends of the exterior body.
本開示において、「直列積層型全固体電池」とは、2以上の単位電池が直列に積層されている電池積層体を有する全固体電池であり、電池積層体の積層方向の両側の端面に位置する集電体層から充放電することができる全固体電池である。直列積層型全固体電池の例として、バイポーラ型の全固体電池が挙げられるが、これだけには限定されない。 In the present disclosure, the "series laminated all-solid-state battery" is an all-solid-state battery having a battery laminate in which two or more unit batteries are laminated in series, and is located at both end faces in the stacking direction of the battery laminate. It is an all-solid-state battery that can be charged and discharged from the current collector layer. Examples of series-stacked all-solid-state batteries include, but are not limited to, bipolar all-solid-state batteries.
また、「電池積層体の積層方向」とは、電池積層体を構成する単位電池又はその単位電池を構成する各層が積層されている方向、すなわち単位電池又はその単位電池を構成する各層の面方向に垂直な軸方向を指す。なお、外装体が電池積層体を収容する前の場合では、外装体が収容しようとする電池積層体の積層方向を指す。 The "stacking direction of the battery laminate" is the direction in which the unit batteries constituting the battery laminate or the layers constituting the unit battery are laminated, that is, the plane direction of the unit battery or each layer constituting the unit battery. Points in the axial direction perpendicular to. In the case where the exterior body has not yet accommodated the battery laminate, it refers to the stacking direction of the battery laminate to be accommodated by the exterior body.
〈工程(a)〉
工程(a)では、電池積層体を収容するための収容部を有する外装体を準備する。
<Step (a)>
In the step (a), an exterior body having an accommodating portion for accommodating the battery laminate is prepared.
ここで、電池積層体の積層方向において、外装体が、両端に貫孔部を有し、かつ分割された形状を有する少なくとも2つの部分外装体からなり、かつ、電池積層体は、単位電池を2以上直列に積層してなり、かつ単位電池は、正極集電体層、正極活物質層、固体電解質層、負極活物質層、及び負極集電体層をこの順に積層することによって構成されている。 Here, in the stacking direction of the battery laminate, the exterior body is composed of at least two partial exterior bodies having through holes at both ends and having a divided shape, and the battery laminate is a unit battery. Two or more are laminated in series, and the unit battery is configured by laminating a positive electrode current collector layer, a positive electrode active material layer, a solid electrolyte layer, a negative electrode active material layer, and a negative electrode current collector layer in this order. There is.
例えば、図1(a)は、電池積層体10を収容するための収容部11aを有する外装体11が準備されている態様を示す概略断面図である。ここで、電池積層体10の積層方向において、外装体11は、両端に貫孔部11b及び11cを有する。また、外装体11は、分割された形状を有する2つの部分外装体11x及び11yからなる。なお、電池積層体10の詳細は、図1(b)の右図に示されているため、ここでは、説明を省略する。
For example, FIG. 1A is a schematic cross-sectional view showing an embodiment in which an
外装体の形状は、特に限定されず、収容する電池積層体の形状に合わせて適宜設定することができる。例えば、電池積層体が円柱型である場合では、外装体はその電池積層体を収容できる大きさの円柱型であってもよい。 The shape of the exterior body is not particularly limited, and can be appropriately set according to the shape of the battery laminate to be accommodated. For example, when the battery laminate is a cylinder, the exterior body may be a cylinder having a size capable of accommodating the battery laminate.
外装体における収容部とは、電池積層体を収容するための空間である。このため、分割された形状を有する全ての部分外装体を結合させてから電池積層体を収容できれば、分割された形状を有する任意の1つの部分外装体には、収容部を有していてもよく、有さなくてもよい。 The accommodating portion in the exterior body is a space for accommodating the battery laminate. Therefore, if the battery laminate can be accommodated after all the partial exterior bodies having the divided shapes are combined, even if any one partial exterior body having the divided shape has the accommodating portion. Well, it doesn't have to be.
外装体を構成する部分外装体の数は、2つ以上であれば特に限定されず、すなわち、外装体は、電池積層体の積層方向において、2つ、3つ、又は4つ等に分割された形状を有する部分外装体からなってもよいが、操作性の観点から、2つに分割された形状を有する部分外装体からなることが好ましい。また、それぞれの部分外装体の形状(又は大きさ)は特に限定されず、同じであってもよく、異なっていてもよい。 The number of partial exterior bodies constituting the exterior body is not particularly limited as long as it is two or more, that is, the exterior body is divided into two, three, four, or the like in the stacking direction of the battery laminate. Although it may consist of a partial exterior body having a different shape, it is preferably composed of a partial exterior body having a shape divided into two from the viewpoint of operability. Further, the shape (or size) of each partial exterior body is not particularly limited, and may be the same or different.
また、電池積層体の積層方向において、外装体は、両端に貫孔部を有している。貫孔部は、後述する電池積層体の積層方向の両端面に電極端子を接続するための開口部である。例えば、図1(a)に示されているように、電池積層体の積層方向において、外装体11は、両端に貫孔部11b及び11cを有している。後述する工程(d)では、この貫孔部11b及びを通して、電池積層体10の積層方向の両端面に電極端子31及び30を接続することができる。
Further, in the stacking direction of the battery laminate, the exterior body has through holes at both ends. The through-hole portion is an opening for connecting the electrode terminals to both end faces in the stacking direction of the battery laminate, which will be described later. For example, as shown in FIG. 1A, the
外装体の両端における貫孔部の大きさは、互いに同じであってもよく、異なっていてもよい。それぞれの大きさの上限として外装体の内面の面方向面積と同じであってもよく、またそれぞれの大きさの下限として電極端子を接続できる程度であってもよい。 The sizes of the through holes at both ends of the exterior body may be the same or different from each other. The upper limit of each size may be the same as the area in the surface direction of the inner surface of the exterior body, and the lower limit of each size may be such that the electrode terminals can be connected.
外装体の貫孔部の大きさは、例えば、その電池積層体の端面の面積の100%以下、95%以下、90%以下、85%以下、80%以下、75%以下、70%以下、65%以下、60%以下、55%以下、50%以下、40%以下、又は30%以下であってもよい。 The size of the through-hole portion of the exterior body is, for example, 100% or less, 95% or less, 90% or less, 85% or less, 80% or less, 75% or less, 70% or less of the area of the end face of the battery laminate. It may be 65% or less, 60% or less, 55% or less, 50% or less, 40% or less, or 30% or less.
なお、後述する外装体内にて電池積層体をプレスする場合では、外装体の貫孔部を通して、電池積層体をプレスすることができる。また、電池積層体をプレスする工程を含む場合の操作性の観点から、電池積層体がプレス手段と接触する側の外装体の貫孔部の大きさは、その電池積層体のプレス手段と接触する側の端面の大きさと同じであることが好ましい。 When the battery laminate is pressed inside the exterior, which will be described later, the battery laminate can be pressed through the through hole portion of the exterior. Further, from the viewpoint of operability when the step of pressing the battery laminate is included, the size of the through hole portion of the exterior body on the side where the battery laminate comes into contact with the pressing means is in contact with the pressing means of the battery laminate. It is preferable that the size of the end face on the side to be used is the same.
外装体を構成する材料は、特に限定されず、例えば金属又は繊維強化プラスチックであってもよい。金属としては、例えば、アルミニウム、アルミニウム合金、ステンレス等適当な剛性を有する材料が用いられるが、これらに限定されない。繊維強化プラスチックとしては、例えば、炭素繊維強化プラスチック、ボロン繊維強化プラスチック、アラミド繊維強化プラスチック、ポリエチレン繊維強化プラスチック、ザイロン強化プラスチック等が用いられるが、これらに限定されない。 The material constituting the exterior body is not particularly limited, and may be, for example, metal or fiber reinforced plastic. As the metal, for example, a material having appropriate rigidity such as aluminum, an aluminum alloy, and stainless steel is used, but the metal is not limited thereto. Examples of the fiber reinforced plastic include, but are not limited to, carbon fiber reinforced plastic, boron fiber reinforced plastic, aramid fiber reinforced plastic, polyethylene fiber reinforced plastic, and Zylon reinforced plastic.
外装体は、その内壁に、絶縁層を更に有していてもよい。絶縁層として、特に限定されず、例えば絶縁性フィルム層又は絶縁性樹脂層であってもよい。特に外装体として金属を用いる場合、外装体の内壁に絶縁層を更に有している態様は、外装体と集電体層との短絡を防止できるから好ましい。なお、絶縁層の代わりに、電池積層体の各層の端部に対して絶縁処理を行うことで、短絡を防止することも可能である。 The exterior body may further have an insulating layer on its inner wall. The insulating layer is not particularly limited, and may be, for example, an insulating film layer or an insulating resin layer. In particular, when a metal is used as the exterior body, a mode in which the inner wall of the exterior body further has an insulating layer is preferable because a short circuit between the exterior body and the current collector layer can be prevented. It is also possible to prevent a short circuit by performing an insulating treatment on the end of each layer of the battery laminate instead of the insulating layer.
〈工程(b)〉
工程(b)では、単位電池又は単位電池を構成する1又は複数の層を順に、1つの部分外装体の収容部に対して、積層方向と垂直な方向±60°の方向以内から挿入する。
<Step (b)>
In the step (b), the unit battery or one or a plurality of layers constituting the unit battery are sequentially inserted into the accommodating portion of one partial exterior body from within ± 60 ° in the direction perpendicular to the stacking direction.
工程(b)のように、単位電池又は単位電池を構成する1又は複数の層を順に、1つの部分外装体の収容部に対して、積層方向と垂直な方向±60°の方向以内から挿入することによって、部分外装体は、直接的に単位電池又は単位電池を構成する1又は複数の層のガイドとなり、単位電池(又は電池積層体)を構成する各層の位置合わせを容易にすることができて、各層の位置ずれを防止することができる。 As in step (b), the unit battery or one or more layers constituting the unit battery are inserted in order from within ± 60 ° in the direction perpendicular to the stacking direction with respect to the accommodating portion of one partial exterior body. By doing so, the partial exterior body can directly serve as a guide for the unit battery or one or a plurality of layers constituting the unit battery, and facilitate the alignment of each layer constituting the unit battery (or the battery laminate). This makes it possible to prevent misalignment of each layer.
また、単位電池又は単位電池を構成する1又は複数の層を順に、1つの部分外装体の収容部に対して、積層方向と垂直な方向±45°の方向以内、±30°の方向以内、±15°の方向以内、±0°(すなわち、積層方向と垂直な方向)から挿入してもよく、好ましくは、積層方向と垂直な方向±0°(すなわち、積層方向と垂直な方向)から挿入する。 Further, the unit battery or one or a plurality of layers constituting the unit battery are sequentially arranged within a direction of ± 45 ° perpendicular to the stacking direction and within a direction of ± 30 ° with respect to the accommodating portion of one partial exterior body. It may be inserted from within ± 15 ° and from ± 0 ° (that is, in the direction perpendicular to the stacking direction), preferably from ± 0 ° in the direction perpendicular to the stacking direction (that is, in the direction perpendicular to the stacking direction). insert.
例えば、図1(b)は、工程(b)の一形態を示す概略断面図である。図1(b)の左図に示されているようには、単位電池6cを構成する層:正極/負極集電体層5c、正極活物質層4c、5c、4c、…を順に部分外装体11xの収容部に対して、電池積層体10の積層方向に対して垂直な方向から挿入している。これによって、図1(b)の右図に示されているように、単位電池6a、6b、及び6cを直列に積層してなる電池積層体10を部分外装体11xの収容部に挿入している。
For example, FIG. 1B is a schematic cross-sectional view showing one form of step (b). As shown in the left figure of FIG. 1 (b), the layers constituting the
また、単位電池を構成する活物質層及び固体電解質層は、それぞれの構成材料を圧粉成形(プレス成形)することによって、形成することができる。 Further, the active material layer and the solid electrolyte layer constituting the unit battery can be formed by powder forming (press forming) each constituent material.
例えば、正極活物質、並びに必要に応じて用いる固体電解質、導電助剤、及びバインダー等の全固体電池の正極活物質層に用いられる添加剤を含む構成材料を、圧粉成形することによって、正極活物質層を形成することができる。また、負極活物質、並びに必要に応じて用いる固体電解質、導電助剤、及びバインダー等の全固体電池の負極活物質層に用いられる添加剤を含む構成材料を、圧粉成形することによって、負極活物質層を形成することができる。また、固体電解質、並びに必要に応じて用いる導電助剤及びバインダー等の全固体電池の固体電解質層に用いられる添加剤を含む構成材料を、圧粉成形することによって、固体電解質層を形成することができる。
〈工程(c)〉
工程(c)では、全ての部分外装体を結合させて、外装体を形成し、それによって外装体内に電池積層体を収容する。
For example, a positive electrode is formed by compacting a constituent material containing a positive electrode active material and an additive used for the positive electrode active material layer of an all-solid-state battery such as a solid electrolyte, a conductive auxiliary agent, and a binder, which are used as needed. An active material layer can be formed. Further, a negative electrode is formed by powder molding a constituent material containing a negative electrode active material and an additive used for the negative electrode active material layer of an all-solid-state battery such as a solid electrolyte, a conductive auxiliary agent, and a binder, which are used as needed. An active material layer can be formed. Further, a solid electrolyte layer is formed by powder molding a constituent material containing a solid electrolyte and additives used for the solid electrolyte layer of an all-solid-state battery such as a conductive auxiliary agent and a binder used as needed. Can be done.
<Step (c)>
In the step (c), all the partial exterior bodies are combined to form the exterior body, whereby the battery laminate is housed in the exterior body.
例えば、図1(c)は、工程(c)の一形態を示す概略断面図である。図1(c)に示されているように、部分外装体11xの収容部に配置された電池積層体10を収容するために、部分外装体11xと他方の部分外装体11yとを結合させて、外装体11を形成し、それによって、外装体11内に電池積層体10を収容している。
For example, FIG. 1 (c) is a schematic cross-sectional view showing one form of step (c). As shown in FIG. 1 (c), in order to accommodate the
〈工程(d)〉
工程(d)では、外装体の両端の貫孔部を通して、電池積層体の積層方向の両端面に電極端子を接続する。
<Step (d)>
In the step (d), the electrode terminals are connected to both end faces in the stacking direction of the battery laminate through the through holes at both ends of the exterior body.
電極端子を接続することによって、電池積層体で発生した電力を外部に取り出すことができる。 By connecting the electrode terminals, the electric power generated by the battery laminate can be taken out to the outside.
例えば、図1(d)では、外装体の両端の貫孔部11c及び11bを通して、電池積層体10の積層方向の両端面に電極端子30及び31を接続している形態を示している。
For example, FIG. 1D shows a form in which the
また、電極端子としては、集電体層としての機能も有するものを用いることができる。この場合、電池積層体の積層方向の端面に位置するのは、集電体層ではなく、正極活物質層又は負極活物質層であり、これらの活物質層に、集電体層としての機能も有する電極端子を接続するようにしてもよい。 Further, as the electrode terminal, one having a function as a current collector layer can be used. In this case, it is not the current collector layer but the positive electrode active material layer or the negative electrode active material layer that is located at the end face in the stacking direction of the battery laminate, and these active material layers function as the current collector layer. You may connect the electrode terminal which also has.
また、工程(d)の前、途中、又は後に、プレス工程をさらに含むことが好ましい。プレス工程は、電池積層体の積層方向に電池積層体をプレスする工程である。 Further, it is preferable to further include a pressing step before, during, or after the step (d). The pressing step is a step of pressing the battery laminate in the stacking direction of the battery laminate.
例えば、図2は、このプレス工程が工程(d)の途中に含まれる一形態を示す概略図である。図2(a)に示されているように、電池積層体20の積層方向の下側の端面に電極端子32を接続している。その後、図2(b)に示されているように、電池積層体20の積層方向に沿って、かつ電極端子32が接続されている端面に向けて、電池積層体20をプレスしている。そして、図2(c)に示されているように、電池積層体20の積層方向の上側の端面に電極端子33を接続している。このように、プレス工程を工程(d)の途中で行うことによって、電池積層体20を積層方向に拘束することができる。なお、外装体21は、その内壁に絶縁層22を有している。
For example, FIG. 2 is a schematic view showing one form in which this pressing process is included in the middle of the process (d). As shown in FIG. 2A, the
このように、本開示の方法によって、製造時における材料の脱落を抑制できる直列積層型全固体電池を製造することができる。 As described above, according to the method of the present disclosure, it is possible to manufacture a series-stacked all-solid-state battery capable of suppressing the material from falling off during manufacturing.
《直列積層型全固体電池》 << Series-stacked all-solid-state battery >>
上述した方法によって製造される本開示の全固体電池は、単位電池を2以上直列に積層してなる電池積層体を有する。 The all-solid-state battery of the present disclosure manufactured by the above-mentioned method has a battery laminate in which two or more unit batteries are laminated in series.
ここで、単位電池は、正極集電体層、正極活物質層、固体電解質層、負極活物質層、及び負極集電体層をこの順に積層することによって構成されている。 Here, the unit battery is configured by laminating a positive electrode current collector layer, a positive electrode active material layer, a solid electrolyte layer, a negative electrode active material layer, and a negative electrode current collector layer in this order.
例えば、図1(b)の右図に示されている電池積層体10は、3つの単位電池6a、6b及び6cを直列に積層してなる。また、単位電池6aは、正極/負極集電体層1a、負極活物質層2a、固体電解質層3a、正極活物質層4a、及び正極/負極集電体層5aをこの順に積層することによって構成されている。単位電池6bは、正極/負極集電体層1b、負極活物質層2b、固体電解質層3b、正極活物質層4b、及び正極/負極集電体層5bをこの順に積層することによって構成されている。単位電池6cは、正極/負極集電体層1c、負極活物質層2c、固体電解質層3c、正極活物質層4c、及び正極/負極集電体層5cをこの順に積層することによって構成されている。
For example, the
2以上の単位電池を直列に積層する際に、積層方向に隣接する2つの単位電池は、正極及び負極集電体層の両方として用いられる正極/負極集電体層を共有してもよい。 When two or more unit batteries are stacked in series, the two unit batteries adjacent to each other in the stacking direction may share a positive electrode / negative electrode current collector layer used as both a positive electrode and a negative electrode current collector layer.
すなわち、電池積層体は、積層方向において、負極集電体層(又は正極/負極集電体層)、負極活物質層、固体電解質層、正極活物質層、正極/負極集電体層、負極活物質層、固体電解質層、正極活物質層、正極集電体層(又は正極/負極集電体層)を、この順で積層して電池積層体を形成することができる。この場合において、「正極/負極集電体層」は、正極及び負極集電体層の両方として用いられるため、本開示でいう「正極集電体層」又は「負極集電体層」のいずれにも当てはまる。 That is, in the stacking direction, the battery laminate has a negative electrode current collector layer (or positive electrode / negative electrode current collector layer), a negative electrode active material layer, a solid electrolyte layer, a positive electrode active material layer, a positive electrode / negative electrode current collector layer, and a negative electrode. The active material layer, the solid electrolyte layer, the positive electrode active material layer, and the positive electrode current collector layer (or the positive electrode / negative electrode current collector layer) can be laminated in this order to form a battery laminate. In this case, since the "positive electrode / negative electrode current collector layer" is used as both the positive electrode and the negative electrode current collector layer, either the "positive electrode current collector layer" or the "negative electrode current collector layer" referred to in the present disclosure. Also applies.
例えば、図1(b)の右図に示されているように、単位電池6aと単位電池6bは、正極/負極集電体層5a(1b)を共有しており、単位電池6bと単位電池6cは、正極/負極集電体層5b(1c)を共有している。
For example, as shown in the right figure of FIG. 1 (b), the
なお、各々の単位電池の間にこのような正極/負極集電体を共有しなくてもよく、その場合、隣接する活物質層に合わせて正極集電体層及び負極集電体層を設け、これらが互いに電気的に接触するようにすることができる(図示せず)。 It is not necessary to share such a positive electrode / negative electrode current collector between the unit batteries, and in that case, a positive electrode current collector layer and a negative electrode current collector layer are provided in accordance with the adjacent active material layer. , These can be brought into electrical contact with each other (not shown).
本開示において、電池積層体が、積層方向に拘束されていることができる。これによって、充放電の際に、全固体電池積層体の各層の内部及び各層の間における、イオン及び電子の伝導性を改良して、電池反応をより促進することができる。 In the present disclosure, the battery laminate can be constrained in the stacking direction. Thereby, during charging / discharging, the conductivity of ions and electrons can be improved inside each layer of the all-solid-state battery laminate and between each layer, and the battery reaction can be further promoted.
また、電池積層体の形状は、特に限定されず、例えば、コイン型、ラミネート型、円柱型及び角型等であってもよい。 The shape of the battery laminate is not particularly limited, and may be, for example, a coin type, a laminated type, a cylindrical type, a square type, or the like.
単位電池を構成する各層の構成材料の具体例は、以下のように説明する。なお、本開示を容易に理解するために、全固体リチウムイオン二次電池に用いられる単位電池を例として説明するが、本開示の全固体電池は、リチウムイオン二次電池に限定されず、幅広く適用できる。 Specific examples of the constituent materials of each layer constituting the unit battery will be described as follows. In order to easily understand the present disclosure, a unit battery used for the all-solid-state lithium-ion secondary battery will be described as an example, but the all-solid-state battery of the present disclosure is not limited to the lithium-ion secondary battery and is widely used. Applicable.
(正極集電体層)
正極集電体層に用いられる導電性材料は、特に限定されず、全固体電池に使用できるものを適宜採用されうる。例えば、正極集電体層に用いられる導電性材料は、SUS、アルミニウム、銅、ニッケル、鉄、チタン、又はカーボン等であってよいが、これらに限定されない。
(Positive current collector layer)
The conductive material used for the positive electrode current collector layer is not particularly limited, and any material that can be used for an all-solid-state battery can be appropriately adopted. For example, the conductive material used for the positive electrode current collector layer may be, but is not limited to, SUS, aluminum, copper, nickel, iron, titanium, carbon, or the like.
正極集電体層の形状として、特に限定されず、例えば、箔状、板状、メッシュ状等を挙げることができる。これらの中で、箔状が好ましい。 The shape of the positive electrode current collector layer is not particularly limited, and examples thereof include a foil shape, a plate shape, and a mesh shape. Of these, foil-like is preferable.
(正極活物質層)
正極活物質層は、少なくとも正極活物質を含み、好ましくは後述する固体電解質をさらに含む。そのほか、使用用途や使用目的等に合わせて、例えば、導電助剤又はバインダー等の全固体電池の正極活物質層に用いられる添加剤を含むことができる。
(Positive electrode active material layer)
The positive electrode active material layer contains at least a positive electrode active material, and preferably further contains a solid electrolyte described later. In addition, an additive used for the positive electrode active material layer of an all-solid-state battery such as a conductive auxiliary agent or a binder can be included according to the intended use and purpose of use.
正極活物質の材料として、特に限定されない。例えば、正極活物質は、コバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)、マンガン酸リチウム(LiMn2O4)、LiCo1/3Ni1/3Mn1/3O2、Li1+xMn2-x-yMyO4(Mは、Al、Mg、Co、Fe、Ni、及びZnから選ばれる1種以上の金属元素)で表される組成の異種元素置換Li-Mnスピネル等であってよいが、これらに限定されない。 The material of the positive electrode active material is not particularly limited. For example, the positive electrode active material is lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMn 2 O 4 ), LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , Li 1 + x. Different element substitution Li-Mn spinel having a composition represented by Mn 2- xy My O 4 (M is one or more metal elements selected from Al, Mg, Co, Fe, Ni, and Zn) and the like. However, it is not limited to these.
導電助剤としては、特に限定されない。例えば、導電助剤は、VGCF(気相成長法炭素繊維、Vapor Grown Carbon Fiber)及びカーボンナノ繊維等の炭素材並びに金属材等であってよいが、これらに限定されない。 The conductive auxiliary agent is not particularly limited. For example, the conductive auxiliary agent may be, but is not limited to, a carbon material such as VGCF (vapor grown carbon fiber) and carbon nanofibers, and a metal material.
バインダーとしては、特に限定されない。例えば、バインダーは、ポリフッ化ビニリデン(PVdF)、カルボキシメチルセルロース(CMC)、ブタジエンゴム(BR)若しくはスチレンブタジエンゴム(SBR)等の材料、又はこれらの組合せであってよいが、これらに限定されない。 The binder is not particularly limited. For example, the binder may be, but is not limited to, a material such as polyvinylidene fluoride (PVdF), carboxymethyl cellulose (CMC), butadiene rubber (BR) or styrene butadiene rubber (SBR), or a combination thereof.
(固体電解質層)
固体電解質層は、少なくとも固体電解質を含む。固体電解質として、特に限定されず、全固体電池の固体電解質として利用可能な材料を用いることができる。例えば、固体電解質は、硫化物固体電解質、酸化物固体電解質、又はポリマー電解質等であってよいが、これらに限定されない。
(Solid electrolyte layer)
The solid electrolyte layer contains at least a solid electrolyte. The solid electrolyte is not particularly limited, and a material that can be used as a solid electrolyte for an all-solid-state battery can be used. For example, the solid electrolyte may be, but is not limited to, a sulfide solid electrolyte, an oxide solid electrolyte, a polymer electrolyte, or the like.
硫化物固体電解質の例として、硫化物系非晶質固体電解質、硫化物系結晶質固体電解質、又はアルジロダイト型固体電解質等が挙げられるが、これらに限定されない。具体的な硫化物固体電解質の例として、Li2S-P2S5系(Li7P3S11、Li3PS4、Li8P2S9等)、Li2S-SiS2、LiI-Li2S-SiS2、LiI-Li2S-P2S5、LiI-LiBr-Li2S-P2S5、Li2S-P2S5-GeS2(Li13GeP3S16、Li10GeP2S12等)、LiI-Li2S-P2O5、LiI-Li3PO4-P2S5、Li7-xPS6-xClx等;又はこれらの組み合わせを挙げることができるが、これらに限定されない。 Examples of the sulfide solid electrolyte include, but are not limited to, a sulfide-based amorphous solid electrolyte, a sulfide-based crystalline solid electrolyte, and an argylodite-type solid electrolyte. As specific examples of sulfide solid electrolytes, Li 2 SP 2 S 5 series (Li 7 P 3 S 11 , Li 3 PS 4 , Li 8 P 2 S 9 , etc.), Li 2 S-SiS 2 , Li I -Li 2 S-SiS 2 , LiI-Li 2 SP 2 S 5 , LiI-LiBr-Li 2 SP 2 S 5 , Li 2 SP 2 S 5 -GeS 2 (Li 13 GeP 3 S 16 ) , Li 10 GeP 2 S 12 , etc.), LiI-Li 2 SP 2 O 5 , LiI-Li 3 PO 4 -P 2 S 5 , Li 7-x PS 6-x Cl x , etc .; or a combination thereof. It can be mentioned, but is not limited to these.
酸化物固体電解質の例として、Li7La3Zr2O12、Li7-xLa3Zr1-xNbxO12、Li7-3xLa3Zr2AlxO12、Li3xLa2/3-xTiO3、Li1+xAlxTi2-x(PO4)3、Li1+xAlxGe2-x(PO4)3、Li3PO4、又はLi3+xPO4-xNx(LiPON)等が挙げられるが、これらに限定されない。 Examples of solid oxide electrolytes are Li 7 La 3 Zr 2 O 12, Li 7-x La 3 Zr 1-x Nb x O 12, Li 7-3 x La 3 Zr 2 Al x O 12 , Li 3 x La 2 / 3-x TiO 3 , Li 1 + x Al x Ti 2-x (PO 4 ) 3 , Li 1 + x Al x Ge 2-x (PO 4 ) 3 , Li 3 PO 4 or Li 3 + x PO 4-x N x (LiPON ), Etc., but are not limited to these.
(ポリマー電解質)
ポリマー電解質としては、ポリエチレンオキシド(PEO)、ポリプロピレンオキシド(PPO)、及びこれらの共重合体等が挙げられるが、これらに限定されない。
(Polymer electrolyte)
Examples of the polymer electrolyte include, but are not limited to, polyethylene oxide (PEO), polypropylene oxide (PPO), and copolymers thereof.
固体電解質は、ガラスであっても、結晶化ガラス(ガラスセラミック)であってもよい。また、固体電解質層は、上述した固体電解質以外に、必要に応じてバインダー等を含んでもよい。具体例として、上述の「正極活物質層」で列挙された「バインダー」と同様であり、ここでは説明を省略する。 The solid electrolyte may be glass or crystallized glass (glass ceramic). Further, the solid electrolyte layer may contain a binder or the like, if necessary, in addition to the above-mentioned solid electrolyte. As a specific example, it is the same as the "binder" listed in the above-mentioned "positive electrode active material layer", and the description thereof is omitted here.
(負極活物質層)
負極活物質層は、少なくとも負極活物質を含み、好ましくは上述した固体電解質をさらに含む。そのほか、使用用途や使用目的等に合わせて、例えば、導電助剤又はバインダー等の全固体電池の負極活物質層に用いられる添加剤を含むことができる。
(Negative electrode active material layer)
The negative electrode active material layer contains at least the negative electrode active material, and preferably further contains the above-mentioned solid electrolyte. In addition, an additive used for the negative electrode active material layer of an all-solid-state battery such as a conductive auxiliary agent or a binder can be included according to the intended use and purpose of use.
負極活物質の材料として、特に限定されず、リチウムイオン等の金属イオンを吸蔵及び放出可能であることが好ましい。例えば、負極活物質は、合金系負極活物質又は炭素材料等であってよいが、これらに限定されない。 The material of the negative electrode active material is not particularly limited, and it is preferable that metal ions such as lithium ions can be occluded and released. For example, the negative electrode active material may be an alloy-based negative electrode active material, a carbon material, or the like, but is not limited thereto.
合金系負極活物質として、特に限定されず、例えば、Si合金系負極活物質、又はSn合金系負極活物質等が挙げられる。Si合金系負極活物質には、ケイ素、ケイ素酸化物、ケイ素炭化物、ケイ素窒化物、又はこれらの固溶体等がある。また、Si合金系負極活物質には、ケイ素以外の元素、例えば、Fe、Co、Sb、Bi、Pb、Ni、Cu、Zn、Ge、In、Sn、Ti等を含むことができる。Sn合金系負極活物質には、スズ、スズ酸化物、スズ窒化物、又はこれらの固溶体等がある。また、Sn合金系負極活物質には、スズ以外の元素、例えば、Fe、Co、Sb、Bi、Pb、Ni、Cu、Zn、Ge、In、Ti、Si等を含むことができる。これらの中で、Si合金系負極活物質が好ましい。 The alloy-based negative electrode active material is not particularly limited, and examples thereof include a Si alloy-based negative electrode active material and a Sn alloy-based negative electrode active material. Examples of the Si alloy-based negative electrode active material include silicon, silicon oxide, silicon carbide, silicon nitride, and a solid solution thereof. Further, the Si alloy-based negative electrode active material may contain elements other than silicon, for example, Fe, Co, Sb, Bi, Pb, Ni, Cu, Zn, Ge, In, Sn, Ti and the like. Sn alloy-based negative electrode active materials include tin, tin oxide, tin nitride, and solid solutions thereof. Further, the Sn alloy-based negative electrode active material may contain elements other than tin, for example, Fe, Co, Sb, Bi, Pb, Ni, Cu, Zn, Ge, In, Ti, Si and the like. Among these, a Si alloy-based negative electrode active material is preferable.
炭素材料として、特に限定されず、例えば、ハードカーボン、ソフトカーボン、又はグラファイト等が挙げられる。 The carbon material is not particularly limited, and examples thereof include hard carbon, soft carbon, graphite, and the like.
負極活物質層に用いられる固体電解質、導電助剤、バインダー等その他の添加剤については、上述した「正極活物質層」及び「固体電解質層」の項目で説明したものを適宜採用することができる。 As the solid electrolyte, the conductive auxiliary agent, the binder and other additives used for the negative electrode active material layer, those described in the above-mentioned "Positive electrode active material layer" and "Solid electrolyte layer" can be appropriately adopted. ..
(負極集電体層)
負極集電体層に用いられる導電性材料は、特に限定されず、全固体電池に使用できるものを適宜採用されうる。例えば、負極集電体層に用いられる導電性材料は、SUS、アルミニウム、銅、ニッケル、鉄、チタン、又はカーボン等であってよいが、これらに限定されない。
(Negative electrode current collector layer)
The conductive material used for the negative electrode current collector layer is not particularly limited, and any material that can be used for an all-solid-state battery can be appropriately adopted. For example, the conductive material used for the negative electrode current collector layer may be, but is not limited to, SUS, aluminum, copper, nickel, iron, titanium, carbon, or the like.
負極集電体層の形状として、特に限定されず、例えば、箔状、板状、メッシュ状等を挙げることができる。これらの中で、箔状が好ましい。 The shape of the negative electrode current collector layer is not particularly limited, and examples thereof include a foil shape, a plate shape, and a mesh shape. Of these, foil-like is preferable.
なお、負極活物質層の大きさは、正極活物質層の大きさと同じであってもよく、異なっていてもよいが、充電時に正極活物質層から放出された金属イオンを負極活物質層に確実かつスムーズに移動できる観点から、負極活物質層の大きさは、正極活物質層の大きさよりも大きさく設定されることが好ましい。 The size of the negative electrode active material layer may be the same as or different from the size of the positive electrode active material layer, but the metal ions released from the positive electrode active material layer during charging are used as the negative electrode active material layer. From the viewpoint of reliable and smooth movement, the size of the negative electrode active material layer is preferably set to be larger than the size of the positive electrode active material layer.
また、正極集電体層、負極集電体層又は正極/負極集電体層の大きさは、固体電解質層の大きさと同じように設定されてもよい(図示せず)。 Further, the size of the positive electrode current collector layer, the negative electrode current collector layer, or the positive electrode / negative electrode current collector layer may be set to be the same as the size of the solid electrolyte layer (not shown).
1a、5a、1b、5b、1c、5c 正極/負極集電体層
2a、2b、2c、2d、2e 負極活物質層
3a、3b、3c、3d、3e 固体電解質層
4a、4b、4c、4d、4e 正極活物質層
6a、6b、6c 単位電池
10、20 電池積層体
11、21 外装体
11a 外装体の収容部
11x、11y 部分外装体
11b、11c 貫孔部
22 絶縁層
30、31、32、33 電極端子
1a, 5a, 1b, 5b, 1c, 5c Positive electrode / negative electrode
Claims (1)
(a)電池積層体を収容するための収容部を有する外装体を準備すること、ここで、前記電池積層体の積層方向において、前記外装体が、両端において貫孔部を有し、かつ分割された形状を有する少なくとも2つの部分外装体からなり、かつ、前記電池積層体は、単位電池を2以上直列に積層してなり、かつ前記単位電池は、正極集電体層、正極活物質層、固体電解質層、負極活物質層、及び負極集電体層をこの順に積層することによって構成されており;
(b)前記単位電池又は前記単位電池を構成する1又は複数の層を順に、分割されたままの状態の前記少なくとも2つの部分外装体のうちの1つの前記部分外装体の収容部に対して、前記積層方向と垂直な方向±60°の方向以内から挿入すること;
(c)全ての前記部分外装体を結合させて、前記外装体を形成し、それによって前記外装体内に前記電池積層体を収容すること;
(d)前記外装体の両端の前記貫孔部を通して、前記電池積層体の積層方向の両端面に電極端子を接続すること。 Manufacturing method of series laminated all-solid-state battery including the following steps:
(A) Preparing an exterior body having an accommodating portion for accommodating the battery laminate, wherein the exterior body has through holes at both ends and is divided in the stacking direction of the battery laminate. The battery laminate is composed of two or more unit batteries stacked in series, and the unit battery includes a positive electrode current collector layer and a positive electrode active material layer. , A solid electrolyte layer, a negative electrode active material layer, and a negative electrode current collector layer are laminated in this order;
(B) With respect to the accommodating portion of one of the at least two partial exterior bodies in a state in which the unit battery or one or a plurality of layers constituting the unit battery are sequentially divided. , Insert from within ± 60 ° in the direction perpendicular to the stacking direction;
(C) All the partial exterior bodies are combined to form the exterior body, whereby the battery laminate is housed in the exterior body;
(D) The electrode terminals are connected to both end faces in the stacking direction of the battery laminate through the through holes at both ends of the exterior body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018135606A JP7040331B2 (en) | 2018-07-19 | 2018-07-19 | Manufacturing method of series-stacked all-solid-state battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018135606A JP7040331B2 (en) | 2018-07-19 | 2018-07-19 | Manufacturing method of series-stacked all-solid-state battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020013711A JP2020013711A (en) | 2020-01-23 |
JP7040331B2 true JP7040331B2 (en) | 2022-03-23 |
Family
ID=69170695
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018135606A Active JP7040331B2 (en) | 2018-07-19 | 2018-07-19 | Manufacturing method of series-stacked all-solid-state battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7040331B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7481138B2 (en) * | 2020-03-19 | 2024-05-10 | 本田技研工業株式会社 | Solid-state battery cells |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004134210A (en) | 2002-10-10 | 2004-04-30 | Nissan Motor Co Ltd | Lamination type battery, battery pack, and vehicle |
JP2007066806A (en) | 2005-09-01 | 2007-03-15 | Nissan Motor Co Ltd | Bipolar battery |
JP2008135606A (en) | 2006-11-29 | 2008-06-12 | Renesas Technology Corp | Semiconductor device |
JP2014072181A (en) | 2012-10-02 | 2014-04-21 | Toyota Central R&D Labs Inc | Stacked cell and battery pack |
JP2016058142A (en) | 2014-09-05 | 2016-04-21 | 出光興産株式会社 | Manufacturing method of lithium ion battery |
-
2018
- 2018-07-19 JP JP2018135606A patent/JP7040331B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004134210A (en) | 2002-10-10 | 2004-04-30 | Nissan Motor Co Ltd | Lamination type battery, battery pack, and vehicle |
JP2007066806A (en) | 2005-09-01 | 2007-03-15 | Nissan Motor Co Ltd | Bipolar battery |
JP2008135606A (en) | 2006-11-29 | 2008-06-12 | Renesas Technology Corp | Semiconductor device |
JP2014072181A (en) | 2012-10-02 | 2014-04-21 | Toyota Central R&D Labs Inc | Stacked cell and battery pack |
JP2016058142A (en) | 2014-09-05 | 2016-04-21 | 出光興産株式会社 | Manufacturing method of lithium ion battery |
Also Published As
Publication number | Publication date |
---|---|
JP2020013711A (en) | 2020-01-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20170133719A1 (en) | Electrode for secondary battery, secondary battery and cable-type secondary battery comprising the same | |
US20170271707A1 (en) | Non-aqueous electrolyte battery, non-aqueous electrolyte battery pack, and vehicle | |
CN110943248A (en) | Lithium secondary battery | |
JP2019192610A (en) | All-solid battery | |
JP2020013729A (en) | Manufacturing method of series-stacked all-solid-state battery | |
CN111799440B (en) | Nonaqueous electrolyte secondary battery | |
CN111527627B (en) | Method for manufacturing negative electrode and negative electrode obtained thereby | |
KR100624971B1 (en) | Electrode Plate of Secondary Battery and Method of fabricating the same | |
JP2014120404A (en) | Secondary battery | |
JP2013093216A (en) | Battery | |
CN114597346B (en) | Thick electrode for electrochemical cells | |
KR20180043183A (en) | Lithium secondary battery | |
JP2015018670A (en) | Bipolar battery | |
JP7040331B2 (en) | Manufacturing method of series-stacked all-solid-state battery | |
KR20160062898A (en) | Battery Cell Comprising Electrode Assemblies of Different Size and Method for Preparing the Same | |
JP5604806B2 (en) | Metal secondary battery | |
JP7067455B2 (en) | Manufacturing method of series-stacked all-solid-state battery | |
CN110858666B (en) | Method for manufacturing laminated battery | |
CN111435729B (en) | Lithium ion secondary battery | |
JP2013033687A (en) | Storage battery module | |
KR102164576B1 (en) | Method Preparing Electrode Assembly And Electrode Assembly Prepared Using the Same | |
JP2020107389A (en) | Method for manufacturing all-solid battery | |
JP2015090791A (en) | Bipolar battery | |
CN113994500B (en) | Bipolar lithium secondary battery | |
US20220367848A1 (en) | Double-sided electrodes and electrochemical cells including the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200923 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210629 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20210630 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210825 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20211109 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20211208 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220208 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220221 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 7040331 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |