[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6939788B2 - 無線通信装置および無線通信方法 - Google Patents

無線通信装置および無線通信方法 Download PDF

Info

Publication number
JP6939788B2
JP6939788B2 JP2018527418A JP2018527418A JP6939788B2 JP 6939788 B2 JP6939788 B2 JP 6939788B2 JP 2018527418 A JP2018527418 A JP 2018527418A JP 2018527418 A JP2018527418 A JP 2018527418A JP 6939788 B2 JP6939788 B2 JP 6939788B2
Authority
JP
Japan
Prior art keywords
signal
information
wireless communication
transmission power
multiple access
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018527418A
Other languages
English (en)
Other versions
JPWO2018012111A1 (ja
Inventor
悠介 田中
悠介 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Sony Group Corp
Original Assignee
Sony Corp
Sony Group Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp, Sony Group Corp filed Critical Sony Corp
Publication of JPWO2018012111A1 publication Critical patent/JPWO2018012111A1/ja
Application granted granted Critical
Publication of JP6939788B2 publication Critical patent/JP6939788B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/08Constructional details, e.g. cabinet
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • H04W68/005Transmission of information for alerting of incoming communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/121Wireless traffic scheduling for groups of terminals or users
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/54Signalisation aspects of the TPC commands, e.g. frame structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Transmitters (AREA)

Description

本開示は、無線通信装置および無線通信方法に関する。
近年、IEEE(Institute of Electrical and Electronics Engineers)802.11に代表される無線LAN(Local Area Network)の普及が進んでいる。また、それに伴って無線LAN対応製品(以下、無線通信装置とも称する。)も増加している。これに対し、通信に利用可能な無線通信リソースには限りがある。そのため、無線通信装置間の通信の効率化が望まれる。
通信の効率化のための技術の一例として、多元接続通信技術がある。例えば、多元接続通信技術としては、OFDMA(Orthogonal Frequency Division Multiple Access)またはMIMO(Multi Input Multi Output)を利用したSDMA(Space Division Multiple Access)などがある。MIMOを利用したSDMAはマルチユーザMIMO(以下、MU(Multi User)−MIMOとも称する。)と呼ばれる。
ここで、多元接続通信では、複数の無線通信装置が同時に通信を行うため、通信の干渉が発生するおそれがある。そのため、通信の干渉を回避することが望まれる。
これに対し、特許文献1では、無線通信基地局装置へ接続する複数の無線通信端末のアップリンク(以下、UL(Up Link)とも称する。)通信品質情報に基づいて、MU−MIMO通信を実行する無線通信端末の組合せを決定するスケジューラを備えた無線通信基地局装置に係る技術が開示されている。また、特許文献2では、SU(Single User)−MIMO最適性能尺度を有する端末を選択し、MU−MIMO最適性能尺度を有する無線通信端末の集合を選択するスケジュール装置が開示されている。当該スケジュール装置は、SU−MIMO最適性能尺度とMU−MIMO最適性能尺度との比較により、SU−MIMOモードまたはMU−MIMOモードを選択する。
特開2013−90256号公報 特表2010−537597号公報
しかし、特許文献1、2で開示される技術に代表される従来技術では、受信特性が低下するおそれがある。例えば、通信品質または通信性能に影響を与える送信電力の精度は、概して個々の無線通信端末に応じて異なる。そのため、送信電力が想定よりも高い場合は受信信号が飽和するおそれがあり、送信電力が想定よりも低い場合は受信信号の強度が受信可能な強度を下回るおそれがある。すなわち、通信品質情報または通信性能尺度に基づいて決定された組合せの無線通信端末から受信される信号についての受信特性は、許容される受信特性よりも劣るおそれがある。その結果、通信が失敗し、通信効率が低下しかねない。
そこで、本開示では、複数の無線通信装置が同時に通信する場合において受信特性の低下を抑制することが可能な仕組みを提案する。
本開示によれば、送信電力の精度または正確性が把握される第1の情報が格納される第1の信号を受信する受信部と、前記第1の情報に基づいて特定される少なくとも1つの第1の無線通信装置へ同時通信が可能な多元接続の許可に係る第2の信号を送信する送信部と、を備える無線通信装置が提供される。
また、本開示によれば、送信電力の精度または正確性が把握される第1の情報が格納される第1の信号を送信する送信部と、前記第1の信号の送信後に同時通信が可能な多元接続の許可に係る第2の信号を受信する受信部と、前記第2の信号に基づいて第3の信号の送信を制御する制御部と、を備える無線通信装置が提供される。
本開示によれば、プロセッサを用いて、送信電力の精度または正確性が把握される第1の情報が格納される第1の信号を受信することと、前記第1の情報に基づいて特定される少なくとも1つの第1の無線通信装置へ同時通信が可能な多元接続の許可に係る第2の信号を送信することと、を含む無線通信方法が提供される。
また、本開示によれば、プロセッサを用いて、送信電力の精度または正確性が把握される第1の情報が格納される第1の信号を送信することと、前記第1の信号の送信後に同時通信が可能な多元接続の許可に係る第2の信号を受信することと、前記第2の信号に基づいて第3の信号の送信を制御することと、を含む無線通信方法が提供される。
以上説明したように本開示によれば、複数の無線通信装置が同時に通信する場合において受信特性の低下を抑制することが可能な仕組みが提供される。なお、上記の効果は必ずしも限定的なものではなく、上記の効果とともに、または上記の効果に代えて、本明細書に示されたいずれかの効果、または本明細書から把握され得る他の効果が奏されてもよい。
本開示の各実施形態に係る無線通信システムの構成例を示す図である。 本開示の各実施形態に係るSTAおよびAPの機能構成の例を概略的に示すブロック図である。 本実施形態に係る無線通信システムの処理の例を概念的に示すシーケンス図である。 本実施形態に係るAPの処理の全体の例を概念的に示すフローチャートである。 本実施形態に係るAPにおける多元接続通信グループの形成処理の例を概念的に示すフローチャートである。 本実施形態に係るSTAの処理の全体の例を概念的に示すフローチャートである。 本実施形態に係る無線通信システムの処理の例を概念的に示すシーケンス図である。 本実施形態に係るAPの処理の全体の例を概念的に示すフローチャートである。 本実施形態に係る無線通信システムの通信接続についての変化に基づくグループ再形成処理の例を概念的に示すシーケンス図である。 本実施形態に係る無線通信システムの送信電力精度情報についての変化に基づくグループ再形成処理の例を概念的に示すシーケンス図である。 本実施形態に係るAPの処理の全体の例を概念的に示すフローチャートである。 本実施形態に係るSTAの処理の全体の例を概念的に示すフローチャートである。 本実施形態に係る無線通信システムの差分情報の共有処理および送信電力精度情報の更新処理の例を概念的に示すシーケンス図である。 本実施形態に係るAPの処理の全体の例を概念的に示すフローチャートである。 本実施形態に係るSTAの処理の全体の例を概念的に示すフローチャートである。 スマートフォンの概略的な構成の一例を示すブロック図である。 カーナビゲーション装置の概略的な構成の一例を示すブロック図である。 無線アクセスポイントの概略的な構成の一例を示すブロック図である。
以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
また、本明細書及び図面において、実質的に同一の機能を有する複数の要素を、同一の符号の後に異なる番号を付して区別する場合もある。例えば、実質的に同一の機能を有する複数の要素を、必要に応じてSTA100AおよびSTA100Bなどのように区別する。ただし、実質的に同一の機能を有する要素を区別する必要が無い場合、同一符号のみを付する。例えば、STA100AおよびSTA100Bを特に区別する必要がない場合には、単にSTA100と称する。
また、説明の便宜上、第1〜第4の実施形態に係るSTA100を、STA100−1〜STA100−4のように、末尾に実施形態に対応する番号を付することにより区別する。なお、これはAP200についても同様である。
なお、説明は以下の順序で行うものとする。
1.はじめに
2.システムおよび装置の構成
3.第1の実施形態
3.1.装置の機能
3.2.処理の流れ
3.3.第1の実施形態のまとめ
4.第2の実施形態
4.1.装置の機能
4.2.処理の流れ
4.3.第2の実施形態のまとめ
5.第3の実施形態
5.1.装置の機能
5.2.処理の流れ
5.3.第3の実施形態のまとめ
6.第4の実施形態
6.1.装置の機能
6.2.処理の流れ
6.3.第4の実施形態のまとめ
7.応用例
8.むすび
<1.はじめに>
まず、本開示の各実施形態に係る無線通信装置に関連する技術について説明する。当該技術としては、上述した多元接続通信技術がある。多元接続通信技術には、AP(Access Point)から複数のSTA(Station)へ信号を同時に送信するダウンリンク(以下、DL(Down Link)とも称する。)多元接続通信、および複数のSTAからAPへ信号を同時に送信するアップリンク多元接続通信がある。ここで、ダウンリンク多元接続通信の1つであるダウンリンクMU−MIMO通信については、既に通信規格(IEEE802.11ac)において規定されている。他方で、アップリンク多元接続通信については、通信規格においてまだ検討中であり、規定されていない。これは、無線LAN通信は、ランダムアクセス方式の通信システムである一方、アップリンク多元接続通信は、特定の複数のSTAが同時に通信を行う、いわばコントロールアクセス方式の通信に近い性質を有しているためである。検討段階では、アップリンク多元接続通信を許可するSTAおよび通信期間などを指定するためのトリガフレームなどを用いて実現することが考えられている。
ここで、多元接続通信においては、同時に通信させるSTAのグルーピングが行われる。さらに、STAのグループは、受信特性が目標値を確保できるように選択されることが望ましい。例えば、APにおいて同一グループ内のSTAの各々から受信される信号の受信電力密度が異なる場合、APの備えるRF(Radio Frequency)回路、アナログ回路またはアナログデジタル変換器の非線形性または量子化により信号が歪む。その結果、信号干渉雑音電力比(SINR:Signal Interference Noise Ratio)などの受信特性が低下するおそれがある。
これに対し、事前に送信電力の性能情報を収集し、当該性能情報を用いて多元接続通信におけるグルーピングを実行することも考えられる。例えば、APは、事前にSTAの設定可能な送信電力の範囲を示す情報を収集し、収集された情報に基づいて、APにおける受信電力密度が所定の範囲に収まるような送信電力を設定可能なSTAを同一グループのメンバとして選択する。
しかし、送信電力の精度は概して、無線通信装置について個体差がある。例えば、STAの送信電力の制御精度が異なることにより、指定された送信電力と異なる送信電力で信号が送信されるおそれがある。そのため、上述のようにグルーピングが行われたとしても、受信電力密度にばらつきが生じ、受信特性が低下しかねない。
そこで、本開示では、STA100は、送信電力の精度または正確性(以下、まとめて精度とも称する。)が把握される第1の情報(以下、送信電力精度情報とも称する。)が格納される第1の信号(以下、送信電力精度通知信号とも称する。)を送信し、AP200は、受信される送信電力精度通知信号に格納される送信電力精度情報に基づいて多元接続通信におけるグルーピングを実行する。これにより、STA100の送信電力の精度にばらつきがあっても、AP200におけるSTA100から受信される信号の受信電力密度が所定の範囲に収まるSTA100のグループを形成することができる。従って、複数のSTA100とAP200とが同時に通信する場合において受信特性の低下を抑制することが可能となる。
<2.システムおよび装置の構成>
次に、本開示の各実施形態に係る無線通信システムおよび当該無線通信システムを実現するための無線通信装置の構成について説明する。まず、図1を参照して、当該無線通信システムの構成について説明する。図1は、本開示の各実施形態に係る無線通信システムの構成例を示す図である。
図1に示したように、無線通信システムは、無線通信装置としてAP200および複数のSTA100を備える。AP200およびSTA100は互いに通信が可能であり、通信接続を確立した後、通信する。さらに、STA100AとSTA100Bとで送信電力の精度が異なる。例えば、図1に示したようなSTA100A1〜100A5の送信電力の精度は、STA100B1〜100B5よりも高い。
続いて、図2を参照して、STA100およびAP200の機能構成および基本機能について説明する。図2は、本開示の各実施形態に係るSTA100およびAP200の機能構成の例を概略的に示すブロック図である。なお、STA100およびAP200の機能構成は実質的に同一であるため、ここではSTA100についてのみ説明する。
図2に示したように、STA100は、データ処理部110、無線通信部120および制御部130を備える。なお、図示しないが、STA100には、各機能に電力を供給する電源部が設けられる。当該電源部は、固定電源またはバッテリーなどで実現される。
(データ処理部)
データ処理部110は、データに対して送受信のための処理を行う。具体的には、データ処理部110は、通信上位層からのデータに基づいてフレーム(またはパケット)を生成し、生成されるフレームを後述する信号処理部121に提供する。例えば、データ処理部110は、データからフレームを生成し、生成されるフレームにメディアアクセス制御(MAC:Media Access Control)のためのMACヘッダの付加および誤り検出符号の付加などの処理を行う。また、データ処理部110は、受信されるフレームからデータを抽出し、抽出されるデータを通信上位層に提供する。例えば、データ処理部110は、受信されるフレームについて、MACヘッダの解析、符号誤りの検出および訂正、ならびにリオーダ処理などを行うことによりデータを取得する。
(無線通信部)
無線通信部120は、図2に示したように、信号処理部121、チャネル推定部122、無線インタフェース部123および増幅部124を備える。
信号処理部121は、フレームについて変調処理を行う。具体的には、信号処理部121は、データ処理部110から提供されるフレームについて、制御部130によって設定されるコーディングおよび変調方式などに従って、エンコード、インタリーブおよび変調を行うことによりシンボルストリームを生成する。また、信号処理部121は、空間処理により得られるシンボルストリームについて、復調およびデコードなどを行うことによりフレームを取得し、取得されるフレームをデータ処理部110または制御部130に提供する。
また、信号処理部121は、空間分割多重通信に係る処理を行う。具体的には、信号処理部121は、生成されるシンボルストリームについて空間分離に係る信号処理を行い、処理により得られるシンボルストリームの各々をそれぞれ無線インタフェース部123に提供する。また、信号処理部121は、無線インタフェース部123から得られる信号に係るシンボルストリームについて空間処理、例えばシンボルストリームの分離処理などを行う。
また、信号処理部121は、他の多重通信に係る処理を行ってもよい。例えば、信号処理部121は、周波数分割多重通信、直交周波数分割多重通信または符号分割多重通信に係る処理を行ってもよい。
チャネル推定部122は、チャネル利得を推定する。具体的には、チャネル推定部122は、無線インタフェース部123から得られるシンボルストリームに係る信号のうちの、プリアンブル部分またはトレーニング信号部分から複素チャネル利得情報を算出する。なお、算出される複素チャネル利得情報は、制御部130を介してまたは直接的に信号処理部121に提供され、変調処理および空間分離処理などに利用される。
無線インタフェース部123は、アンテナを介して送受信される信号の生成を行う。具体的には、無線インタフェース部123は、信号処理部121から提供されるシンボルストリームに係る信号を、アナログ信号に変換し、フィルタリングし、および周波数アップコンバートする。そして、無線インタフェース部123は、得られる信号を増幅部124に提供する。また、無線インタフェース部123は、増幅部124から得られる信号について、信号送信の場合と逆の処理、例えば周波数ダウンコンバートおよびデジタル信号変換などを行い、処理により得られる信号をチャネル推定部122および信号処理部121に提供する。
増幅部124は、信号の増幅を行う。具体的には、増幅部124は、無線インタフェース部123から提供されるアナログ信号を所定の電力まで増幅し、増幅により得られる信号を、アンテナに介して送信させる。また、増幅部124は、アンテナを介して受信される電波に係る信号を所定の電力まで増幅し、増幅により得られる信号を無線インタフェース部123に提供する。例えば、増幅部124はパワーアンプモジュールなどで実現される。なお、増幅部124の送信電波の増幅機能および受信電波の増幅機能のうちのいずれかまたは両方が無線インタフェース部123に内包されてもよい。
なお、図2では、STA100に2本のアンテナが備えられる場合の構成(無線インタフェース部123A、123Bおよび増幅部124A、124B)の例を説明したが、備えられるアンテナは3本以上であってもよく、1本であってもよい。
(制御部)
制御部130は、STA100の動作を全体的に制御する。具体的には、制御部130は、各機能間の情報の受け渡し、通信パラメタの設定、およびデータ処理部110におけるフレームのスケジューリングなどの処理を行う。特に、制御部130は、送信電力の制御、送信電力精度情報の通知、送信電力精度情報に基づく多元接続通信のグループの形成、グループの通知および通知されたグループに基づく通信などを制御する。
<3.第1の実施形態>
次に、本開示の第1の実施形態について説明する。第1の実施形態では、複数のSTA100−1が、送信電力精度情報に基づいて、多元接続通信を行うグループと一元接続通信を行うグループとに分けられる。
<3.1.装置の機能>
まず、本実施形態に係る無線通信装置としてのSTA100−1およびAP200−1の各機能について説明する。
(送信電力精度情報の通知)
STA100−1は、送信電力精度情報(第1の情報)をAP200−1に通知する。具体的には、制御部130は、送信電力精度情報の送信タイミングが到来すると、送信電力精度情報が格納される送信電力精度通知信号(第1の信号)をデータ処理部110に生成させる。そして、無線通信部120は、生成される送信電力精度通知信号を送信する。他方で、AP200−1は、送信電力精度情報を受け取る。具体的には、データ処理部210は、無線通信部220により受信された送信電力精度通知信号から送信電力精度情報を取得する。そして、取得された送信電力精度情報は、制御部230へ提供される。
送信電力精度情報としては、送信電力の設定値と実測値との誤差に係る情報(以下、誤差情報とも称する。)がある。例えば、誤差情報は、設定値と実測値との誤差の数値を示す情報であってもよく、誤差の数値に応じて分類される等級を示す情報であってもよい。なお、誤差情報は、STA100−1の製造段階またはテスト段階などで設定されてもよく、STA100−1のユーザまたはAP200−1からの指示に基づいて事後的に設定されまたは更新されてもよい。
なお、送信電力精度通知信号は、送信電力精度情報の通信のための専用のフレームであってもよく、送信電力精度情報が格納されるフィールドを有する他の目的のフレームであってもよい。また、送信電力精度通知信号は、所定の時間間隔で送信されてもよく、所定の条件が満たされた場合に送信されてもよく、AP200−1からの送信要求に基づいて送信されてもよい。また、送信電力精度通知信号は、多元接続通信方式または一元接続通信方式のいずれを利用して通信されてもよい。
(グループの形成)
AP200−1は、送信電力精度情報に基づいて多元接続通信を行うSTA100−1のグループ(以下、多元接続通信グループとも称する。)を決定する。具体的には、制御部230は、送信電力精度情報に基づいて少なくとも1つのSTA100−1を多元接続通信グループのメンバとして特定する。より具体的には、制御部230は、送信電力制御情報と閾値とに基づいて多元接続通信グループを決定する。例えば、制御部230は、送信電力精度情報が閾値以上であるSTA100−1を多元接続通信グループのメンバに決定する。詳細には、制御部230は、送信電力の精度に係る誤差の数値が閾値未満であるか、誤差の等級が閾値未満であるか、または誤差に関する評価値が閾値以上であるSTA100−1を多元接続通信グループのメンバに決定する。
また、AP200−1は、送信電力精度情報に基づいて一元接続通信を行うSTA100−1のグループ(以下、一元接続通信グループとも称する。)を決定する。具体的には、制御部230は、送信電力精度情報と閾値とに基づいて一元接続通信グループを決定する。例えば、制御部230は、送信電力精度情報が閾値未満であるSTA100−1を一元接続通信グループのメンバに決定する。詳細には、制御部230は、送信電力の精度に係る誤差の数値が閾値以上であるか、誤差の等級が閾値以上であるか、または誤差に関する評価値が閾値未満であるSTA100−1を一元接続通信グループのメンバに決定する。
なお、上記では、送信電力精度情報の閾値を用いてグループが形成される例を説明したが、複数のSTA100−1から通知される送信電力精度情報間の相対関係に基づいてグループが形成されてもよい。例えば、STA100−1のグループは、送信電力の精度に係る誤差の数値についてのランキングにおける上位グループと下位グループとに分けられてもよい。
(グループの通知)
AP200−1は、通信を介して、決定されたグループをSTA100−1へ通知する。具体的には、制御部230は、決定された多元接続通信グループのメンバ宛ての当該多元接続通信グループを通知するグループ通知信号(第2の信号)をデータ処理部210に生成させ、生成された信号は無線通信部220により送信される。例えば、制御部230は、多元接続通信グループのメンバとして決定されたSTA100−1宛ての多元接続O通信グループを通知するグループ通知フレームをデータ処理部210に生成させる。そして、生成されたグループ通知フレームが無線通信部220により送信される。
また、制御部230は、決定された一元接続通信グループを通知するグループ通知信号をデータ処理部210に生成させ、生成された信号は無線通信部220により送信される。例えば、制御部230は、一元接続通信グループのメンバとして決定されたSTA100−1宛ての一元接続通信グループを通知するグループ通知フレームをデータ処理部210に生成させる。そして、生成されたグループ通知フレームが無線通信部220により送信される。なお、制御部230は、一元接続通信グループとして決定されたSTA100−1にグループ通知フレームを送信しなくてもよい。
グループ通知信号には、グループ割当て情報が格納される。具体的には、グループ割当て情報は、割当てられたグループにおいてSTA100−1が識別される情報またはSTA100−1が属するグループを示す情報である。例えば、グループ通知フレームには、グループ内において一意であるSTA100−1の識別情報またはグループIDが格納される。なお、グループ通知信号は、後述する送信許可信号により実現されてもよい。例えば、送信許可信号にグループ割当て情報が格納される。
STA100−1は、AP200−1から通知されるグループを登録する。具体的には、データ処理部110は、無線通信部120により受信されるグループ通知フレームの宛先が自身のSTA100−1であるかを判定する。自身のSTA100−1が宛先であると判定されると、データ処理部110は、当該グループ通知フレームからグループ割当て情報を取得し、取得されるグループ割当て情報は、記憶部(図示せず。)に記憶させられる。
(送信許可の通知)
AP200−1は、通信を介して各グループへ送信許可を通知する。具体的には、制御部230は、グループ通知信号の送信後に、多元接続通信グループのメンバであるSTA100−1宛ての送信許可信号(第2の信号)をデータ処理部210に生成させ、生成される送信許可信号が無線通信部220により送信される。例えば、制御部230は、多元接続通信グループのメンバとして決定されたSTA100−1宛てのトリガフレームをデータ処理部210に生成させる。そして、生成されたトリガフレームが無線通信部220により送信される。なお、複数の多元接続通信グループが決定される場合には、多元接続通信グループの各々についてトリガフレームがそれぞれ送信される。
送信許可信号には、信号送信において用いられる通信パラメタ情報が格納される。例えば、通信パラメタ情報としては、送信期間、送信電力、MCS(Modulation and Coding Set)などの情報がある。なお、送信許可信号に格納される通信パラメタ情報は、複数の多元接続通信グループについて異なってもよく、一元接続通信グループのメンバであるSTA100−1が通信において用いる通信パラメタと異なってもよい。また、通信パラメタ情報は、上述したグループ通知信号に格納されてもよい。また、送信許可信号は、送信許可を示す情報および通信パラメタ情報が格納されるフィールドを有する他の目的の信号であってもよい。
(多元接続通信)
STA100−1は、グループの通知および送信許可の通知に基づいて信号(第3の信号)の送信を制御する。具体的には、制御部130は、グループ通知信号により通知される多元接続通信グループ宛ての送信許可信号の受信に応じて、送信許可信号に格納される通信パラメタに基づく信号の送信の制御を行う。例えば、データ処理部110は、トリガフレームが受信されると、トリガフレームの宛先である多元接続通信グループが登録されている自身のSTA100−1が属するグループであるかを判定する。トリガフレームの宛先が登録済みのグループであると判定されると、データ処理部110は、トリガフレームに格納される通信パラメタ情報を取得し、制御部130は、取得された通信パラメタ情報に基づいて、送信電力またはMCSなどの通信パラメタを設定する。そして、制御部130は、取得された通信パラメタ情報の示す送信期間が到来すると、データ処理部110にフレームを生成させ、生成されるフレームが無線通信部120により送信される。同一の多元接続通信グループに属する他のSTA100−1においても同様の処理が実行される。その結果、各STA100−1から送信されるフレームが周波数分割多重化、空間分割多重化または符号分割多重化され、多元接続通信が実現される。
AP200−1は、トリガフレームの送信後に複数のSTA100−1から送信され、多重化されたフレームを受信する。具体的には、無線通信部220は、トリガフレームの送信後に受信される多重化フレームから各フレームを分離し、分離されたフレームについてデータ処理部210により受信処理が行われる。そして、受信処理により得られるデータが通信上位層または制御部230などへ提供される。
(一元接続通信)
STA100−1は、グループの通知に基づいて信号の送信を制御する。具体的には、制御部130は、グループ通知信号により一元接続通信グループへの割当てが通知され、当該一元接続グループが登録されると、多元接続通信と異なる送信期間における信号の送信を制御する。例えば、制御部130は、トリガフレームの受信後に行われる多元接続通信の終了から所定の時間の経過後に一元接続通信を実行する。なお、一元接続通信は、多元接続通信の実行前すなわちトリガフレームの通信前に実行されてもよい。
<3.2.処理の流れ>
次に、図3を参照して、本実施形態に係る無線通信システムの処理の流れについて説明する。図3は、本実施形態に係る無線通信システムの処理の例を概念的に示すシーケンス図である。
STA100−1A1〜100−1A5およびSTA100−1B1〜100−1B5は、送信電力精度通知信号をAP200−1へ送信する(ステップS301)。送信電力精度通知信号を受信したAP200−1は、送信電力精度情報に基づいてグループを形成する(ステップS302)。次に、AP200−1は、多元接続通信グループ通知信号を多元接続通信グループのメンバであるSTA100−1A1〜100−1A5へ送信する(ステップS303)。また、AP200−1は、一元接続通信グループ通知信号を一元接続通信グループのメンバであるSTA100−1B1〜100−1B5へ送信する(ステップS304)。
次に、AP200−1は、送信許可信号を多元接続通信グループのメンバであるSTA100−1A1〜100−1A5へ送信する(ステップS305)。送信許可信号を受信したSTA100−1A1〜100−1A5は、信号をAP200−1へ送信する(ステップS306)。なお、STA100−1A1〜100−1A5から送信されるフレームは、周波数分割多重化、空間分割多重化または符号分割多重化される。多重化された信号を受信したAP200−1は、受信された信号の送信元であるSTA100−1A1〜100−1A5の各々へ送達確認信号を送信する(ステップS307)。
多元接続通信の終了後、一元接続通信グループのメンバであるSTA100−1B1〜100−1B5は、信号をAP200−1へ送信する(ステップS308)。多重化されてない信号を受信したAP200−1は、受信された信号の送信元であるSTA100−1B1〜100−1B5へそれぞれ送達確認信号を送信する(ステップS309)。
続いて、本実施形態に係るSTA100−1およびAP200−1の処理について個別に説明する。
(APの処理)
まず、図4を参照して、AP200−1の処理の全体について説明する。図4は、本実施形態に係るAP200−1の処理の全体の例を概念的に示すフローチャートである。
AP200−1は、送信電力精度通知信号が受信されたと判定されると(ステップS401/YES)、送信電力精度情報に基づいて多元接続通信グループを形成する(ステップS402)。具体的には、制御部230は、受信された送信電力精度通知フレームに格納される送信電力精度情報と閾値とに基づいて多元接続通信グループを形成する。なお、詳細については後述する。
また、AP200−1は、一元接続通信グループを形成すると判定されると(ステップS403/YES)、送信電力精度情報に基づいて一元接続通信グループを形成する(ステップS404)。具体的には、制御部230は、受信された送信電力精度通知フレームに格納される送信電力精度情報と閾値とに基づいて一元接続通信グループを形成する。なお、一元接続通信グループは形成されなくてもよい。
次に、AP200−1は、グループ通知信号を送信する(ステップS405)。具体的には、制御部230は、形成された多元接続通信グループを通知する多元接続通信グループ通知フレームをデータ処理部210に生成させ、生成される当該フレームが無線通信部220により送信される。また、制御部230は、形成された一元接続通信グループを通知する一元接続通信グループ通知フレームをデータ処理部210に生成させ、生成される当該フレームが無線通信部220により送信される。なお、一元接続通信グループが形成されない場合、一元接続通信グループ通知フレームは送信されない。
その後、AP200−1は、多元接続通信グループへ送信許可信号を送信する(ステップS406)。具体的には、制御部230は、多元接続通信グループ通知フレームの送信後に、多元接続通信グループのメンバであるSTA100−1宛ての通信パラメタ情報が格納されるトリガフレームをデータ処理部210に生成させる。そして、生成されたトリガフレームが無線通信部220により送信される。
なお、以降は、多元接続通信グループのメンバであるSTA100−1との多元接続通信が行われ、一元接続通信グループのメンバであるSTA100−1との一元接続通信が行われる。具体的には、無線通信部220は、STA100−1から同時に送信され多重化されるフレームを受信し、当該フレームの各々を分離する。そして、データ処理部210は、分離により得られるフレームの各々について受信処理を行い、受信処理により得られるデータを通信上位層または制御部230へ提供する。また、制御部230は、無線通信部220によりフレームが受信されると、受信されたフレームの送信元を宛先とするACK(Acknowledgement)フレームをデータ処理部210に生成させ、生成されるACKフレームを無線通信部220に送信させる。
さらに、図5を参照して、AP200−1における多元接続通信グループの形成処理について詳細に説明する。図5は、本実施形態に係るAP200−1における多元接続通信グループの形成処理の例を概念的に示すフローチャートである。
AP200−1は、送信電力精度情報が誤差の値である場合(ステップS501/YES)、誤差の値が閾値未満であるSTA100−1を多元接続通信グループに設定する(ステップS502)。
また、AP200−1は、送信電力精度情報が誤差の等級である場合(ステップS503/YES)、誤差の等級が相対的に低いSTA100−1を多元接続通信グループに設定する(ステップS504)。
また、AP200−1は、送信電力精度情報が誤差に対する評価値である場合(ステップS505/YES)、評価値が閾値以上であるSTA100−1を多元接続通信グループに設定する(ステップS506)。
(STAの処理)
続いて、図6を参照して、STA100−1の処理の全体について説明する。図6は、本実施形態に係るSTA100−1の処理の全体の例を概念的に示すフローチャートである。
STA100−1は、定期的に送信電力精度通知信号を送信する(ステップS601)。具体的には、制御部130は、定期的に送信電力精度情報が格納される送信電力精度通知フレームをデータ処理部110に生成させ、生成される当該フレームが無線通信部120により送信される。
また、STA100−1は、グループ通知信号が受信されると(ステップS602/YES)、グループ通知信号から情報を取得する(ステップS603)。具体的には、データ処理部110は、受信されたグループ通知フレームに格納されるグループ割当て情報を取得し、取得されたグループ割当て情報を記憶部に記憶させる。
グループ通知信号の受信後に、STA100−1は、送信許可信号が受信されると(ステップS604/YES)、送信許可信号から情報を取得する(ステップS605)。具体的には、データ処理部110は、無線通信部120により受信されたトリガフレームが自身のSTA100−1の属するグループを示す場合、当該トリガフレームから通信パラメタ情報を取得する。
そして、STA100−1は、取得された情報に基づいて信号を送信する(ステップS606)。具体的には、制御部130は、取得された通信パラメタ情報の示す送信期間および送信周波数に基づいて、AP200−1宛てのフレームをデータ処理部110に生成させ、生成されるフレームを無線通信部120に送信させる。これにより、STA100−1から送信されるフレームが多重化される。
なお、STA100−1は、一元接続通信グループに属する場合、一元接続通信を行う。具体的には、制御部130は、多元接続通信の終了後、キャリアンセンスなどの処理を行うことにより伝送路が空いていることが確認されると、データ処理部110にフレーム生成させ、生成されるフレームを無線通信部120に送信させる。
また、STA100−1は、送信した信号についての送達確認信号を受信する。具体的には、制御部130は、無線通信部120により多元接続通信または一元接続通信を用いて送信されたフレームついてのACKフレームが受信されると、多元接続通信または一元接続通信を用いたフレームの送信を完了させる。
<3.3.第1の実施形態のまとめ>
このように、本開示の第1の実施形態によれば、AP200−1は、送信電力の精度または正確性が把握される第1の情報が格納される第1の信号を受信し、第1の情報に基づいて特定される少なくとも1つの第1の無線通信装置へ同時通信が可能な多元接続の許可に係る第2の信号を送信する。また、STA100−1は、上記第1の信号を送信し、第1の信号の送信後に上記第2の信号を受信し、第2の信号に基づいて第3の信号の送信を制御する。
従来では、APは、多元接続通信を用いてSTAから送信される信号についてのAPにおける受信電力密度が所定の範囲に収まるような送信電力を設定可能なSTAを同一グループのメンバとして選択することが考えられた。しかし、送信電力の精度は概して、無線通信装置について個体差があるため、設定可能な送信電力に基づいて多元接続通信グループが形成されたとしても、受信電力密度にばらつきが生じるおそれがある。その結果、APにおける受信特性が低下しかねない。
これに対し、本実施形態によれば、送信電力精度情報を考慮して多元接続通信グループが形成されることにより、AP200−1がSTA100−1から受信する信号についての受信電力密度と想定される受信電力密度との乖離を抑制することができる。従って、受信信号の歪みなどが抑制されることにより、複数のSTA100−1が同時に通信する場合において受信特性の低下を抑制することが可能となる。
また、上記少なくとも1つの第1の無線通信装置は、上記第1の情報と第1の情報についての閾値とに基づいて特定される。このため、特定の値との比較によって多元接続通信グループが形成されることにより、形成される多元接続通信グループのメンバの送信電力に係る精度についてのレベルを制御することができる。従って、多元接続通信グループにおける許容される受信特性の低下の程度を制御することが可能となる。なお、閾値は、静的に設定されてもよく、動的に変更されてもよい。
また、AP200−1は、上記閾値以上である上記第1の情報が格納される上記第1の信号の第1の送信元へ上記第2の信号を送信する。このため、所定のレベル以上の精度を有するSTA100−1に多元接続通信を行わせることにより、多元接続通信グループについての許容される受信特性をより確実に確保することができる。
また、AP200−1は、上記閾値未満である上記第1の情報が格納される上記第1の信号の第1の送信元へ一元接続の許可を示す信号を送信する。このため、多元接続通信グループのメンバとして選ばれなかった旨をSTA100−1へ明示することができる。従って、STA100−1が第3の信号を待機し続けることを防止することが可能となる。また、AP200−1は、上記第1の送信元へ上記第2の信号を送信しなくてもよい。この場合、STA100−1が一元接続通信グループへの割当てを察することにより、通信量を低減することができる。従って、通信効率を向上させることが可能となる。
また、上記第2の信号は、上記同時通信が可能な多元接続の許可を示す送信許可信号を含み、STA100−1は、送信許可信号に格納される通信パラメタに基づいて上記第3の信号の送信を制御する。このため、第3の信号の送信許可の通知と共に、第3の信号についての多元接続通信グループが通知されることにより、通信される信号の増加を防止することができる。特に、送信許可信号として既存のトリガフレームが利用されることにより、既存の無線通信装置にAP200−1またはSTA100−1の構成を適用することが容易となる。
また、上記第2の信号は、上記同時通信が可能な多元接続が許可される上記第1の無線通信装置が属するグループを通知するグループ通知信号を含み、STA100−1は、グループ通知信号により通知されるグループ宛ての、上記同時通信が可能な多元接続の許可を示す送信許可信号の受信に応じて上記第3の信号の送信を制御する。このため、グループの通知および送信許可の通知のタイミングを分けることができる。従って、グループの通知により第3の信号の送信が開始されることを防止することができる。
また、上記同時通信が可能な多元接続は、空間分割多元接続を含む。このため、空間分割多元接続による通信効率の向上効果を高めることができる。特に、STA100−1側においてもMIMOが用いられる場合、通信ストリーム数が増加するため、送信電力の精度のばらつきによる受信電力密度の変動の幅が大きくなりやすい。そのため、本実施形態に係るAP200−1およびSTA100−1の機能は、有意義である。なお、上記同時通信が可能な多元接続は、周波数分割多元接続または符号分割多元接続であってもよい。
また、上記第1の情報は、送信電力の設定値と実測値との誤差に係る情報を含む。このため、多元接続通信を行うSTA100−1のグルーピングの正確性を高めることができる。従って、グルーピングされたSTA100−1から送信される信号についての受信電力密度のばらつきを抑制することができ、受信特性の低下の効果的な抑制が可能となる。
<4.第2の実施形態>
次に、本開示の第2の実施形態について説明する。第2の実施形態では、複数のSTA100−2が、送信電力精度情報に基づいて、複数の多元接続通信を行うグループに分けられる。
<4.1.装置の機能>
まず、本実施形態に係る無線通信装置としてのSTA100−2およびAP200−2の各機能について説明する。なお、第1の実施形態における機能と実質的に同一である機能については説明を省略する。
(グループの形成)
AP200−2は、送信電力精度情報に基づいて複数の多元接続通信を行うSTA100−2のグループを決定する。具体的には、制御部230は、送信電力精度情報が閾値以上であるSTA100−2を第1の多元接続通信グループのメンバに決定し、送信電力精度情報が閾値未満であるSTA100−2を第2の多元接続通信グループのメンバに決定する。例えば、制御部230は、送信電力の精度に係る誤差の数値が閾値未満であるか、誤差の等級が閾値未満であるか、または誤差に関する評価値が閾値以上であるSTA100−2を第1の多元接続通信グループのメンバに決定する。また、制御部230は、送信電力の精度に係る誤差の数値が閾値以上であるか、誤差の等級が閾値以上であるか、または誤差に関する評価値が閾値未満であるSTA100−2を第2の多元接続通信グループのメンバに決定する。
(グループの通知)
AP200−2は、決定された複数の多元接続通信グループのメンバ宛ての当該多元接続通信グループを通知するグループ通知信号を送信する。具体的には、制御部230は、第1の多元接続通信グループのメンバおよび第2の多元接続通信グループのメンバを通知するグループ通知フレームをデータ処理部210に生成させ、生成されるグループ通知フレームが無線通信部220により送信される。例えば、制御部230は、第1の多元接続通信グループのメンバとして決定されたSTA100−2および第2の多元接続通信グループのメンバとして決定されたSTA100−2宛ての多元接続通信グループを通知するグループ通知フレームをデータ処理部210に生成させる。そして、生成されたグループ通知フレームが無線通信部220により送信される。なお、複数の多元接続通信グループの通知は、それぞれ別個に行われてもよい。また、複数の多元接続通信グループは、3つ以上のグループであってもよい。
(送信許可の通知)
AP200−2は、複数の多元接続通信グループについてそれぞれ送信許可信号を送信する。具体的には、制御部230は、第1の多元接続通信グループについて第1の送信許可信号の送信を制御し、第2の多元接続通信グループについて第2の送信許可信号の送信を制御する。例えば、制御部230は、第1の多元接続通信グループのメンバ宛ての第1のトリガフレームをデータ処理部210に生成させ、生成される第1のトリガフレームが無線通信部220により送信される。その後、多元接続通信およびACKフレームの通信が完了すると、制御部230は、第2の多元接続通信グループのメンバ宛ての第2のトリガフレームをデータ処理部210に生成させ、生成される第2のトリガフレームが無線通信部220により送信される。
なお、第1の送信許可信号に格納される第1の通信パラメタ情報は、第2の送信許可信号に格納される第2の通信パラメタ情報と異なってもよい。具体的には、第1のトリガフレームに格納される通信についてのノイズ耐性に係る通信パラメタ情報と第2のトリガフレームに格納される当該通信パラメタ情報とが異なる。当該通信パラメタとしては、変調方式、符号化方式またはMCSがある。例えば、送信電力の精度が第1の多元接続通信グループについての送信電力の精度よりも低い第2の多元接続通信グループのメンバに送信される第2のトリガフレームには、第1のトリガフレームに格納されるMCS情報よりも通信の信頼性(冗長性など)が高いMCS情報が格納される。これは、第2の多元接続通信グループについての送信電力の精度が第1の多元接続通信グループについての精度よりも低いので、第2の多元接続通信グループのメンバから送信される信号についての受信特性が相対的に低下すると考えられるためである。
<4.2.処理の流れ>
次に、図7を参照して、本実施形態に係る無線通信システムの処理の流れについて説明する。図7は、本実施形態に係る無線通信システムの処理の例を概念的に示すシーケンス図である。
STA100−2A1〜100−2A5およびSTA100−2B1〜100−2B5は、送信電力精度通知信号をAP200−2へ送信する(ステップS311)。送信電力精度通知信号を受信したAP200−2は、送信電力精度情報に基づいて複数の多元接続通信グループを形成する(ステップS312)。次に、AP200−2は、多元接続通信グループ通知信号を第1の多元接続通信グループのメンバであるSTA100−2A1〜100−2A5および第2の多元接続通信グループのメンバであるSTA100−2B1〜100−2B5へ送信する(ステップS313)。
次に、AP200−2は、第1の多元接続通信グループのメンバであるSTA100−2A1〜100−2A5へ送信許可信号を送信する(ステップS314)。送信許可信号を受信したSTA100−2A1〜100−2A5は、信号をAP200−2へ送信する(ステップS315)。なお、STA100−2A1〜100−2A5から送信されるフレームは、周波数分割多重化、空間分割多重化または符号分割多重化される。多重化された信号を受信したAP200−2は、受信された信号の送信元であるSTA100−2A1〜100−2A5の各々へ送達確認信号を送信する(ステップS316)。
第1の多元接続通信の終了後、AP200−2は、第2の多元接続通信グループのメンバであるSTA100−2B1〜100−2B5へ送信許可信号を送信する(ステップS317)。送信許可信号を受信したSTA100−2B1〜100−2B5は、信号をAP200−2へ送信する(ステップS318)。多重化された信号を受信したAP200−2は、受信された信号の送信元であるSTA100−2B1〜100−2B5の各々へ送達確認信号を送信する(ステップS319)。
続いて、本実施形態に係るSTA100−2およびAP200−2の処理について個別に説明する。なお、第1の実施形態における処理と実質的に同一の処理については説明を省略する。
(APの処理)
まず、図8を参照して、AP200−2の処理の全体について説明する。図8は、本実施形態に係るAP200−2の処理の全体の例を概念的に示すフローチャートである。
AP200−2は、送信電力精度通知信号が受信されたと判定されると(ステップS411/YES)、送信電力精度情報に基づいて第1の多元接続通信グループを形成する(ステップS412)。具体的には、制御部230は、受信された送信電力精度通知フレームに格納される送信電力精度情報と閾値とに基づいて第1の多元接続通信グループを形成する。
また、AP200−2は、第2の多元接続通信グループを形成すると判定されると(ステップS413/YES)、送信電力精度情報に基づいて第2の多元接続通信グループを形成する(ステップS414)。具体的には、制御部230は、受信された送信電力精度通知フレームに格納される送信電力精度情報と閾値とに基づいて第2の多元接続通信グループを形成する。
次に、AP200−2は、第1および第2の多元接続通信グループで異なるノイズ耐性に係る通信パラメタを設定する(ステップS415)。具体的には、制御部230は、第2の多元接続通信グループについて、第1の多元接続通信グループについて設定されるMCSなどの第1の通信パラメタよりも信頼性が高い第2の通信パラメタを設定する。
次に、AP200−2は、グループ通知信号を送信する(ステップS416)。具体的には、制御部230は、形成された第1および第2の多元接続通信グループを通知する多元接続通信グループ通知フレームをデータ処理部210に生成させ、生成される当該フレームが無線通信部220により送信される。
その後、AP200−2は、多元接続通信グループの各々について送信許可信号を送信する(ステップS417)。具体的には、制御部230は、第1の多元接続通信グループのメンバ宛ての設定される第1の通信パラメタ情報が格納される第1のトリガフレームをデータ処理部210および無線通信部220に送信させる。その後、制御部230は、第2の多元接続通信グループのメンバ宛ての第2の通信パラメタ情報が格納される第2のトリガフレームをデータ処理部210および無線通信部220に送信させる。
<4.3.第2の実施形態のまとめ>
このように、本開示の第2の実施形態によれば、AP200−1は、閾値未満である第1の情報が格納される第1の信号の第2の送信元へ第2の信号を送信し、第2の送信元へ送信される第2の信号には、第1の送信元へ送信される第2の信号に格納される通信パラメタと異なる通信パラメタが格納される。このため、送信電力の精度が閾値よりも低いSTA100−2についても多元接続通信が行われることにより、通信効率を向上させることができる。他方で、送信電力の精度が閾値よりも低いSTA100−2から送信される信号についての受信特性は、送信電力の精度が閾値よりも高いSTA100−2から送信される信号についての受信特性に比べて低くなるおそれがある。そこで、送信電力の精度が異なるグループについて多元接続通信で用いられる通信パラメタを変えることにより、受信特性が相対的に低くなるおそれのあるグループについても信号の受信成功率を維持することができる。
また、上記通信パラメタは、通信についてのノイズ耐性に係る通信パラメタを含む。このため、受信特性が相対的に低くなるおそれのあるグループについて信号受信の失敗を効果的に抑制することができる。
<5.第3の実施形態>
次に、本開示の第3の実施形態について説明する。第3の実施形態では、状況の変化に応じて多元接続通信グループが再形成される。
<5.1.装置の機能>
まず、本実施形態に係る無線通信装置としてのSTA100−3およびAP200−3の各機能について説明する。なお、第1または第2の実施形態における機能と実質的に同一である機能については説明を省略する。
(通信接続についての変化の検出)
AP200−3は、STA100−3との通信接続についての変化を検出する。具体的には、制御部230は、STA100−3との通信接続の解除または通信接続の開始を検出する。例えば、制御部230は、STA100−3から受信される接続解除信号(第4の信号)または接続開始信号(第4の信号)に基づいて接続解除または接続開始を検出する。
STA100−3は、通信を介してAP200−3へ接続解除を通知する。具体的には、制御部130は、自身のSTA100−3とAP200−3との通信接続が解除される場合、通信を介して接続解除をAP200−3へ通知する。例えば、制御部130は、通信接続が正常に解除される場合、接続解除信号をデータ処理部110に生成させ、生成される接続解除信号が無線通信部120により送信される。なお、通信接続が意図せず切断された場合、接続解除信号は送信されなくてもよい。また、接続開始信号は、専用の信号であってもよく、ディスアソシエーションフレームまたはディオーセンティケーションフレームなど通信接続解除に係る既存の信号であってもよい。また、接続解除は、一時的であってもよい。例えば、接続解除信号は、パワーセービングによる一時的な接続解除に応じて送信されてよい。
また、STA100−3は、通信を介してAP200−3へ接続開始を通知する。具体的には、制御部130は、新たにAP200−3との通信接続が開始される場合、通信を介して接続開始をAP200−3へ通知する。例えば、制御部130は、接続開始信号をデータ処理部110に生成させ、生成される接続開始信号が無線通信部120により送信される。なお、接続開始信号は、専用の信号であってもよく、プローブリクエストフレーム、アソシエーションリクエストフレームまたはオーセンティケーションフレームなど通信接続開始に係る既存の信号であってもよい。また、接続開始は、一時的な接続解除からの復帰であってもよい。例えば、接続開始信号は、パワーセービングによる一時的な接続解除からの復帰に応じて送信されてよい。
(送信電力精度情報についての変化の検出)
AP200−3は、送信電力精度情報についての変化を検出する。具体的には、制御部230は、送信電力精度情報の変更通知または送信電力情報の通知に基づいて送信電力精度情報の変化を検出する。例えば、制御部230は、STA100−3から受信される送信電力精度情報の変更信号(第4の信号)に基づいて送信電力精度情報の変化を検出する。また、制御部230は、STA100−3から受信される送信電力情報が格納される信号(第4の信号)、当該信号についての受信電力密度および伝搬損失に基づいて送信電力精度情報の変化を検出する。
STA100−3は、送信電力精度情報についての変化をAP200−3へ通知する。具体的には、制御部130は、送信電力の精度が変化した場合、通信を介して変更後の送信電力精度情報をAP200−3へ通知する。例えば、制御部130は、通信上位層からの指示またはSTA100−3の状態がパワーセーブモードに遷移することにより送信電力の精度が変化した場合、送信電力精度情報を変更する。そして、制御部130は、変更後の送信電力精度情報が格納される変更信号をデータ処理部110に生成させ、生成される変更信号が無線通信部120により送信される。なお、送信電力の精度は、モードに応じて切り替えられてもよく、当該モードは、送信電力の精度専用のモードであってもよく、他の目的に用いられるモードであってもよい。
また、制御部130は、送信電力の精度が変化した場合、送信電力情報をAP200−3へ通知する。具体的には、制御部130は、送信電力の精度が変化すると、STA100−3において設定されている送信電力情報が格納される信号をデータ処理部110に生成させる。そして、制御部130は、生成された当該信号に格納されている送信電力情報の示す送信電力で当該信号を無線通信部120に送信させる。例えば、送信電力情報が格納される信号は、データフレームであってもよく、マネジメントフレームなどの他の目的の信号であってもよい。
(グループの再形成)
AP200−3は、通信接続についての変化の検出に基づいて多元接続通信グループを再形成する。具体的には、制御部230は、接続解除が検出されると、設定されている多元接続通信グループから接続が解除されるSTA100−3を外す。例えば、制御部230は、接続解除信号の送信元であるSTA100−3が多元接続通信グループのメンバである場合、当該STA100−3を多元接続通信グループから外す。なお、制御部230は、多元接続通信グループから接続が解除されるSTA100−3を外すことに伴い、既に通信接続されている他のSTA100−3を多元接続通信グループへ追加してもよい。
また、制御部230は、接続開始が検出されると、接続が開始されるSTA100−3の送信電力精度情報に基づいて設定されている多元接続通信グループへの追加を判定する。追加する旨が判定されると、制御部230は、接続が開始されるSTA100−3を多元接続通信グループへ追加する。例えば、制御部230は、接続開始信号の送信元であるSTA100−3の送信電力精度情報の示す誤差の値が閾値未満である場合、当該STA100−3を多元接続通信グループへ追加する。なお、制御部230は、多元接続通信グループへのメンバ追加に伴い、多元接続通信グループの既存のメンバのいずれかを外してもよい。
また、AP200−3は、送信電力精度情報についての変化の検出に基づいて多元接続通信グループを再形成する。具体的には、制御部230は、送信電力精度情報の変化が検出されると、変化後の送信電力精度情報に基づいて多元接続通信グループからの除外を判定する。例えば、制御部230は、送信電力精度情報の変更信号の送信元であるSTA100−3が多元接続通信グループのメンバである場合、変更後の送信電力精度情報に基づいて当該STA100−3を多元接続通信グループから外すかを判定する。送信電力精度情報の示す誤差の値が閾値以上であることなどから当該STA100−3を除外する旨が判定されると、制御部230は、当該STA100−3を多元接続通信グループから外す。なお、変更後の送信電力精度情報は、上述の変更信号に格納されてもよく、他の信号を用いて通知されてもよい。
また、制御部230は、送信電力精度情報の変化が検出されると、変化後の送信電力精度情報に基づいて多元接続通信グループへの追加を判定する。例えば、制御部230は、送信電力精度情報の変更信号の送信元であるSTA100−3が多元接続通信グループのメンバでない場合、変更後の送信電力精度情報に基づいて当該STA100−3を多元接続通信グループへ追加するかを判定する。送信電力精度情報の示す誤差の値が閾値未満であることなどから当該STA100−3を追加する旨が判定されると、制御部230は、当該STA100−3を多元接続通信グループへ追加する。
<5.2.処理の流れ>
次に、本実施形態に係る無線通信システムのグループ再形成処理の流れについて説明する。まず、図9を参照して、通信接続についての変化に基づくグループ再形成処理について説明する。図9は、本実施形態に係る無線通信システムの通信接続についての変化に基づくグループ再形成処理の例を概念的に示すシーケンス図である。なお、以下で説明する処理は、多元接続通信グループが一旦形成された後に行われる。
STA100−3A5は、接続解除信号を送信する(ステップS321)。接続解除信号を受信したAP200−3は、グループを再形成する(ステップS322)。そして、AP200−3は、再形成されたグループについてのグループ通知信号を接続が解除されたSTA100−3A5を除くグループのメンバへ送信する(ステップS323)。
また、STA100−3B5は、接続開始信号を送信する(ステップS324)。接続開始信号を受信したAP200−3は、グループを再形成する(ステップS325)。そして、AP200−3は、再形成されたグループについてのグループ通知信号を接続が開始されたSTA100−3B5を含むグループのメンバへ送信する(ステップS326)。
また、図10を参照して、送信電力精度情報についての変化に基づくグループ再形成処理について説明する。図10は、本実施形態に係る無線通信システムの送信電力精度情報についての変化に基づくグループ再形成処理の例を概念的に示すシーケンス図である。
STA100−3B1は、送信電力精度情報の変更信号を送信する(ステップS331)。当該変更信号を受信したAP200−3は、変更後の送信電力精度情報に基づいてグループを再形成する(ステップS332)。そして、AP200−3は、再形成されたグループについてのグループ通知信号をグループのメンバであるSTA100−3A1〜100−3B5へ送信する(ステップS333)。
また、STA100−3B5は、送信電力精度情報が変化すると、送信電力情報が格納されるデータ信号を送信する(ステップS334)。当該データ信号を受信したAP200−3は、データ信号に基づいて送信電力精度を算出する(ステップS335)。次に、AP200−3は、送信電力精度の差異に基づいてグループを再形成する(ステップS336)。そして、AP200−3は、再形成されたグループについてのグループ通知信号をグループのメンバであるSTA100−3A1〜100−3B5へ送信する(ステップS337)。
続いて、本実施形態に係るSTA100−3およびAP200−3の処理について個別に説明する。なお、第1または第2の実施形態における処理と実質的に同一の処理については説明を省略する。
(APの処理)
まず、図11を参照して、AP200−3の処理の全体について説明する。図11は、本実施形態に係るAP200−3の処理の全体の例を概念的に示すフローチャートである。
AP200−3は、接続解除が発生したと判定されると(ステップS421/YES)、多元接続通信グループを再形成する(ステップS425)。具体的には、制御部230は、接続解除信号が受信されると、接続解除信号の送信元であるSTA100−3を多元接続通信グループから外す。
また、AP200−3は、接続開始が発生したと判定されると(ステップS422/YES)、多元接続通信グループを再形成する(ステップS425)。具体的には、制御部230は、接続開始信号が受信されると、接続開始信号の送信元であるSTA100−3の送信電力精度情報に基づいて当該STA100−3について多元接続通信グループへの追加を行う。なお、送信電力精度情報は、接続開始信号に格納されてもよく、別の信号を用いて通知されてもよい。また、当該STA100−3が過去にAP200−3と接続したことがある場合、過去に通知された送信電力精度情報が用いられてもよい。
また、AP200−3は、送信電力精度情報の変更が通知されたと判定されると(ステップS423/YES)、多元接続通信グループを再形成する(ステップS425)。具体的には、制御部230は、送信電力精度情報の変更信号が受信されると、当該変更信号に格納される変更後の送信電力精度情報を登録する。そして、制御部230は、変更信号の送信元について、変更後の送信電力精度情報に基づいて多元接続通信グループへのメンバの追加または除外を行う。
また、AP200−3は、送信電力精度情報の変更を検出したと判定されると(ステップS424)、多元接続通信グループを再形成する(ステップS425)。具体的には、制御部230は、送信電力情報が格納されるデータ信号が受信されると、データ信号について、受信電力密度および伝搬損失から送信電力を推定する。次に、制御部230は、推定される送信電力とデータ信号に格納される送信電力情報の示す送信電力との差を算出する。そして、制御部230は、登録されている送信電力精度情報の示す誤差と算出された差との間に相違がある場合、当該算出された差を変更後の送信電力精度情報として登録すると共に、当該算出された差に基づいて多元接続通信グループへのメンバの追加または除外を行う。なお、登録されている送信電力精度情報は、過去に受信された信号に基づいて算出された情報であってもよい。
そして、AP200−3は、グループを通知すると判定されると(ステップS426/YES)、グループ通知信号を送信する(ステップS427)。なお、グループ通知信号に、通信パラメタ情報が格納されてもよい。また、当該通信パラメタ情報は、再形成後の多元接続通信グループに応じて更新されてもよい。
(STAの処理)
続いて、図12を参照して、STA100−3の処理の全体について説明する。図12は、本実施形態に係るSTA100−3の処理の全体の例を概念的に示すフローチャートである。
STA100−3は、AP200−3との通信接続を解除すると判定されると(ステップS621/YES)、接続解除信号をAP200−3へ送信する(ステップS622)。
また、STA100−3は、AP200−3との通信接続を開始すると判定されると(ステップS623/YES)、接続開始信号をAP200−3へ送信する(ステップS623)。次に、STA100−3は、送信電力精度情報を通知すると判定されると(ステップS625/YES)、送信電力精度通知信号をAP200−3へ送信する(ステップS626)。なお、送信電力精度情報が過去に通知済みである場合には、送信電力精度通知信号は送信されなくてもよい。
また、STA100−3は、送信電力精度情報が変更されたと判定され(ステップS629/YES)、送信電力精度情報の変更を通知すると判定されると(ステップS630/YES)、送信電力精度情報の変更信号を送信する(ステップS631)。他方で、送信電力精度情報の変更を通知しないと判定されると(ステップS630/NO)、STA100−3は、送信電力情報が格納されるデータ信号を送信する(ステップS632)。
その後、STA100−3は、グループ通知信号が受信されると(ステップS627/YES)、グループ通知信号から情報を取得する(ステップS628)。
<5.3.第3の実施形態のまとめ>
このように、本開示の第3の実施形態によれば、AP200−3は、STA100−3との通信接続についての変化に基づいて第2の信号の宛先を制御する。また、STA100−3は、AP200−3との通信接続の変化を通知する第4の信号を送信する。このため、形成された多元接続通信グループのメンバの増減が生じた場合に、多元接続通信グループが再形成されることにより、多元接続通信グループのメンバ数を適正化することができる。従って、通信の効率を向上させることが可能となる。
また、AP200−3は、送信電力精度情報についての変化に基づいて第2の信号の宛先を制御する。また、STA100−3は、送信電力精度情報の変更を通知する第4の信号を送信する。このため、送信電力の精度が変化したことに応じて多元接続通信グループが再形成されることにより、多元接続通信グループのメンバから送信される信号についての受信電力密度を適正化することができる。従って、送信電力の精度の変化による受信特性の低下を抑制することが可能となる。
<6.第4の実施形態>
次に、本開示の第4の実施形態について説明する。第4の実施形態では、送信電力精度情報が複数のAP200−4の間で共有され更新される。
<6.1.装置の機能>
まず、本実施形態に係る無線通信装置としてのSTA100−4およびAP200−4の各機能について説明する。なお、第1〜第3の実施形態における機能と実質的に同一である機能については説明を省略する。
(送信電力精度情報の差分の蓄積)
AP200−4は、通知される送信電力と算出される送信電力との差分を蓄積する。具体的には、制御部230は、STA100−4から受信されるデータ信号に格納される送信電力情報の示す送信電力と当該データ信号についての受信電力密度および伝搬損失から推定される送信電力との差分を算出する。そして、制御部230は、算出された差分に係る差分情報を記憶部に記憶させる。
(送信電力精度情報の差分の共有)
AP200−4は、蓄積された差分を他のAP200−4と共有する。具体的には、制御部230は、所定の量の差分情報が蓄積されるか、または定期的に、蓄積された差分情報が格納される差分通知信号をデータ処理部210に生成させる。そして、生成された差分通知信号が無線通信部220により送信される。また、制御部230は、他のAP200−4から差分通知信号が受信されると、当該差分通知信号に格納される差分情報を記憶部に記憶させる。なお、差分情報と共に、送信電力精度情報が共有されてもよい。
(送信電力精度情報の更新)
AP200−4は、蓄積された差分情報に基づいて送信電力精度情報を更新する。具体的には、制御部230は、所定の量の差分情報が蓄積されると、制御部230は、差分情報および送信電力精度情報について統計的処理を実行することにより、送信電力精度に係る統計値を取得する。そして、制御部230は、取得された統計値を送信電力精度情報としてグループ形成処理などに用いる。
<6.2.処理の流れ>
次に、図13を参照して、本実施形態に係る無線通信システムの差分情報の共有処理および送信電力精度情報の更新処理の流れについて説明する。図13は、本実施形態に係る無線通信システムの差分情報の共有処理および送信電力精度情報の更新処理の例を概念的に示すシーケンス図である。
STA100−4A1〜100−4B5は、送信電力精度通知信号をAP200−4Aへ送信する(ステップS341)。同様に、STA100−4A1〜100−4B5は、送信電力精度通知信号をAP200−4Bへ送信する(ステップS342)。次に、STA100−4A1〜100−4B5は、送信電力情報が格納されるデータ信号をAP200−4Aへ送信する(ステップS343)。同様に、STA100−4A1〜100−4B5は、送信電力情報が格納されるデータ信号をAP200−4Bへ送信する(ステップS344)。
AP200−4Aは、蓄積された差分情報が格納される差分通知信号をAP200−4Bへ送信する(ステップS345)。同様に、AP200−4Bは、蓄積された差分情報が格納される差分通知信号をAP200−4Aへ送信する(ステップS346)。そして、差分通知信号を受信したAP200−4Aは、共有された差分情報と蓄積された差分情報に基づいて更新される送信電力精度情報を用いてグループを形成する(ステップS347)。同様に、差分通知信号を受信したAP200−4Bは、共有された差分情報と蓄積された差分情報に基づいて更新される送信電力精度情報を用いてグループを形成する(ステップS348)。
続いて、本実施形態に係るSTA100−4およびAP200−4の処理について個別に説明する。なお、第1〜第3の実施形態における処理と実質的に同一の処理については説明を省略する。
(APの処理)
まず、図14を参照して、AP200−4の処理の全体について説明する。図14は、本実施形態に係るAP200−4の処理の全体の例を概念的に示すフローチャートである。
AP200−4は、送信電力精度通知信号が受信されたと判定され(ステップS441/YES)、送信電力情報が格納されるデータ信号が受信されたと判定されると(ステップS442/YES)、受信電力情報に基づいて推定される送信電力情報と受信された送信電力情報との差分情報を算出する(ステップS443)。具体的には、制御部230は、受信されたデータ信号についての受信電力密度および伝搬損失に基づいて推定される送信電力と、当該データ信号に格納される送信電力情報が示す送信電力と、の差分を算出する。そして、制御部230は、算出された差分に係る差分情報を記憶部に記憶させる。
次に、AP200−4は、算出された差分情報を交換すると判定されると(ステップS444/YES)、差分通知信号を交換する(ステップS445)。具体的には、制御部230は、所定の量の差分情報が蓄積されると、当該差分情報および受信された送信電力精度情報が格納される差分通知信号をデータ処理部210に生成させる。そして、生成された差分通知信号が無線通信部220により送信される。また、制御部230は、他のAP200−4から差分通知信号が受信されると、受信された差分通知信号に格納される差分情報および送信電力精度情報を取得する。
次に、AP200−4は、送信電力精度情報、算出された差分情報および交換により得られた差分情報に基づいてグループを形成する(ステップS446)。具体的には、制御部230は、記憶された差分情報および送信電力精度情報、ならびに受信された差分情報および送信電力精度情報について統計的処理を実行することにより統計値を取得する。そして、制御部230は、取得された統計値を送信電力精度情報として用いることにより、多元接続通信グループを形成する。なお、多元接続通信グループの再形成に当該統計値が用いられてもよい。
そして、AP200−4は、グループを通知すると判定されると(ステップS447/YES)、グループ通知信号を送信する(ステップS448)。
(STAの処理)
続いて、図15を参照して、STA100−4の処理の全体について説明する。図15は、本実施形態に係るSTA100−4の処理の全体の例を概念的に示すフローチャートである。
STA100−4は、送信電力精度通知信号を送信する(ステップS641)。また、STA100−4は、使用する送信電力を示す送信電力情報が格納されるデータ信号を送信する(ステップS642)。なお、送信電力精度情報がデータ信号に格納されてもよく、その場合、送信電力精度通知信号が送信されなくてもよい。
次に、STA100−4は、グループ通知信号が受信されると(ステップS643/YES)、グループ通知信号から情報を取得する(ステップS644)。
<6.3.第4の実施形態のまとめ>
このように、本開示の第4の実施形態によれば、AP200−4は、送信電力情報が格納される送信電力通知信号を受信し、送信電力通知信号に格納される送信電力情報と受信電力から推定される送信電力情報との差に係る差分情報が格納される差分通知信号を送信する。このため、実際に送信される信号から把握される送信電力の誤差を他のAP200−4と共有することができる。従って、AP200−4による信号の受信における精度の個体差を抑制することができ、より正確な送信電力の精度を把握することが可能となる。
また、AP200−4は、差分通知信号を受信し、受信された差分通知信号に格納される差分情報と推定された差分情報とに基づいて第2の信号の宛先を制御する。このため、送信電力精度情報よりも正確な送信電力の精度に基づいて多元接続通信グループが形成されることにより、受信特性の低下をより効果的に抑制することができる。
<7.応用例>
本開示に係る技術は、様々な製品へ応用可能である。例えば、STA100は、スマートフォン、タブレットPC(Personal Computer)、ノートPC、携帯型ゲーム端末若しくはデジタルカメラなどのモバイル端末、テレビジョン受像機、プリンタ、デジタルスキャナ若しくはネットワークストレージなどの固定端末、又はカーナビゲーション装置などの車載端末として実現されてもよい。また、STA100は、スマートメータ、自動販売機、遠隔監視装置又はPOS(Point Of Sale)端末などの、M2M(Machine To Machine)通信を行う端末(MTC(Machine Type Communication)端末ともいう)として実現されてもよい。さらに、STA100は、これら端末に搭載される無線通信モジュール(例えば、1つのダイで構成される集積回路モジュール)であってもよい。
一方、例えば、AP200は、ルータ機能を有し又はルータ機能を有しない無線LANアクセスポイント(無線基地局ともいう)として実現されてもよい。また、AP200は、モバイル無線LANルータとして実現されてもよい。さらに、AP200は、これら装置に搭載される無線通信モジュール(例えば、1つのダイで構成される集積回路モジュール)であってもよい。
[7−1.第1の応用例]
図16は、本開示に係る技術が適用され得るスマートフォン900の概略的な構成の一例を示すブロック図である。スマートフォン900は、プロセッサ901、メモリ902、ストレージ903、外部接続インタフェース904、カメラ906、センサ907、マイクロフォン908、入力デバイス909、表示デバイス910、スピーカ911、無線通信インタフェース913、アンテナスイッチ914、アンテナ915、バス917、バッテリー918及び補助コントローラ919を備える。
プロセッサ901は、例えばCPU(Central Processing Unit)又はSoC(System on Chip)であってよく、スマートフォン900のアプリケーションレイヤ及びその他のレイヤの機能を制御する。メモリ902は、RAM(Random Access Memory)及びROM(Read Only Memory)を含み、プロセッサ901により実行されるプログラム及びデータを記憶する。ストレージ903は、半導体メモリ又はハードディスクなどの記憶媒体を含み得る。外部接続インタフェース904は、メモリーカード又はUSB(Universal Serial Bus)デバイスなどの外付けデバイスをスマートフォン900へ接続するためのインタフェースである。
カメラ906は、例えば、CCD(Charge Coupled Device)又はCMOS(Complementary Metal Oxide Semiconductor)などの撮像素子を有し、撮像画像を生成する。センサ907は、例えば、測位センサ、ジャイロセンサ、地磁気センサ及び加速度センサなどのセンサ群を含み得る。マイクロフォン908は、スマートフォン900へ入力される音声を音声信号へ変換する。入力デバイス909は、例えば、表示デバイス910の画面上へのタッチを検出するタッチセンサ、キーパッド、キーボード、ボタン又はスイッチなどを含み、ユーザからの操作又は情報入力を受け付ける。表示デバイス910は、液晶ディスプレイ(LCD)又は有機発光ダイオード(OLED)ディスプレイなどの画面を有し、スマートフォン900の出力画像を表示する。スピーカ911は、スマートフォン900から出力される音声信号を音声に変換する。
無線通信インタフェース913は、IEEE802.11a、11b、11g、11n、11ac及び11adなどの無線LAN標準のうちの1つ以上をサポートし、無線通信を実行する。無線通信インタフェース913は、インフラストラクチャーモードにおいては、他の装置と無線LANアクセスポイントを介して通信し得る。また、無線通信インタフェース913は、アドホックモード又はWi−Fi Direct(登録商標)等のダイレクト通信モードにおいては、他の装置と直接的に通信し得る。なお、Wi−Fi Directでは、アドホックモードとは異なり2つの端末の一方がアクセスポイントとして動作するが、通信はそれら端末間で直接的に行われる。無線通信インタフェース913は、典型的には、ベースバンドプロセッサ、RF(Radio Frequency)回路及びパワーアンプなどを含み得る。無線通信インタフェース913は、通信制御プログラムを記憶するメモリ、当該プログラムを実行するプロセッサ及び関連する回路を集積したワンチップのモジュールであってもよい。無線通信インタフェース913は、無線LAN方式に加えて、近距離無線通信方式、近接無線通信方式又はセルラ通信方式などの他の種類の無線通信方式をサポートしてもよい。アンテナスイッチ914は、無線通信インタフェース913に含まれる複数の回路(例えば、異なる無線通信方式のための回路)の間でアンテナ915の接続先を切り替える。アンテナ915は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、無線通信インタフェース913による無線信号の送信及び受信のために使用される。
なお、図16の例に限定されず、スマートフォン900は、複数のアンテナ(例えば、無線LAN用のアンテナ及び近接無線通信方式用のアンテナ、など)を備えてもよい。その場合に、アンテナスイッチ914は、スマートフォン900の構成から省略されてもよい。
バス917は、プロセッサ901、メモリ902、ストレージ903、外部接続インタフェース904、カメラ906、センサ907、マイクロフォン908、入力デバイス909、表示デバイス910、スピーカ911、無線通信インタフェース913及び補助コントローラ919を互いに接続する。バッテリー918は、図中に破線で部分的に示した給電ラインを介して、図16に示したスマートフォン900の各ブロックへ電力を供給する。補助コントローラ919は、例えば、スリープモードにおいて、スマートフォン900の必要最低限の機能を動作させる。
図16に示したスマートフォン900において、図2を用いて説明したデータ処理部110、無線通信部120および制御部130は、無線通信インタフェース913において実装されてもよい。また、これら機能の少なくとも一部は、プロセッサ901又は補助コントローラ919において実装されてもよい。例えば、制御部130がデータ処理部110および無線通信部120を用いて、送信電力精度情報が格納される第1の信号を送信し、その後に受信される多元接続許可に係る第2の信号を受信する。そして、制御部130は、第2の信号に基づいて第3の信号の送信を制御する。それにより、多重化される第3の信号を受信する、スマートフォン900と通信するAP200における受信特性の低下を抑制することができる。
なお、スマートフォン900は、プロセッサ901がアプリケーションレベルでアクセスポイント機能を実行することにより、無線アクセスポイント(ソフトウェアAP)として動作してもよい。また、無線通信インタフェース913が無線アクセスポイント機能を有していてもよい。
[7−2.第2の応用例]
図17は、本開示に係る技術が適用され得るカーナビゲーション装置920の概略的な構成の一例を示すブロック図である。カーナビゲーション装置920は、プロセッサ921、メモリ922、GPS(Global Positioning System)モジュール924、センサ925、データインタフェース926、コンテンツプレーヤ927、記憶媒体インタフェース928、入力デバイス929、表示デバイス930、スピーカ931、無線通信インタフェース933、アンテナスイッチ934、アンテナ935及びバッテリー938を備える。
プロセッサ921は、例えばCPU又はSoCであってよく、カーナビゲーション装置920のナビゲーション機能及びその他の機能を制御する。メモリ922は、RAM及びROMを含み、プロセッサ921により実行されるプログラム及びデータを記憶する。
GPSモジュール924は、GPS衛星から受信されるGPS信号を用いて、カーナビゲーション装置920の位置(例えば、緯度、経度及び高度)を測定する。センサ925は、例えば、ジャイロセンサ、地磁気センサ及び気圧センサなどのセンサ群を含み得る。データインタフェース926は、例えば、図示しない端子を介して車載ネットワーク941に接続され、車速データなどの車両側で生成されるデータを取得する。
コンテンツプレーヤ927は、記憶媒体インタフェース928に挿入される記憶媒体(例えば、CD又はDVD)に記憶されているコンテンツを再生する。入力デバイス929は、例えば、表示デバイス930の画面上へのタッチを検出するタッチセンサ、ボタン又はスイッチなどを含み、ユーザからの操作又は情報入力を受け付ける。表示デバイス930は、LCD又はOLEDディスプレイなどの画面を有し、ナビゲーション機能又は再生されるコンテンツの画像を表示する。スピーカ931は、ナビゲーション機能又は再生されるコンテンツの音声を出力する。
無線通信インタフェース933は、IEEE802.11a、11b、11g、11n、11ac及び11adなどの無線LAN標準のうちの1つ以上をサポートし、無線通信を実行する。無線通信インタフェース933は、インフラストラクチャーモードにおいては、他の装置と無線LANアクセスポイントを介して通信し得る。また、無線通信インタフェース933は、アドホックモード又はWi−Fi Direct等のダイレクト通信モードにおいては、他の装置と直接的に通信し得る。無線通信インタフェース933は、典型的には、ベースバンドプロセッサ、RF回路及びパワーアンプなどを含み得る。無線通信インタフェース933は、通信制御プログラムを記憶するメモリ、当該プログラムを実行するプロセッサ及び関連する回路を集積したワンチップのモジュールであってもよい。無線通信インタフェース933は、無線LAN方式に加えて、近距離無線通信方式、近接無線通信方式又はセルラ通信方式などの他の種類の無線通信方式をサポートしてもよい。アンテナスイッチ934は、無線通信インタフェース933に含まれる複数の回路の間でアンテナ935の接続先を切り替える。アンテナ935は、単一の又は複数のアンテナ素子を有し、無線通信インタフェース933による無線信号の送信及び受信のために使用される。
なお、図17の例に限定されず、カーナビゲーション装置920は、複数のアンテナを備えてもよい。その場合に、アンテナスイッチ934は、カーナビゲーション装置920の構成から省略されてもよい。
バッテリー938は、図中に破線で部分的に示した給電ラインを介して、図17に示したカーナビゲーション装置920の各ブロックへ電力を供給する。また、バッテリー938は、車両側から給電される電力を蓄積する。
図17に示したカーナビゲーション装置920において、図2を用いて説明したデータ処理部110、無線通信部120および制御部130は、無線通信インタフェース933において実装されてもよい。また、これら機能の少なくとも一部は、プロセッサ921において実装されてもよい。例えば、制御部130がデータ処理部110および無線通信部120を用いて、送信電力精度情報が格納される第1の信号を送信し、その後に受信される多元接続許可に係る第2の信号を受信する。そして、制御部130は、第2の信号に基づいて第3の信号の送信を制御する。それにより、多重化される第3の信号を受信する、カーナビゲーション装置920と通信するAP200における受信特性の低下を抑制することができる。
また、無線通信インタフェース933は、上述したAP200として動作し、車両に乗るユーザが有する端末に無線接続を提供してもよい。その際、例えば、制御部230は、無線通信部220およびデータ処理部210を介して受信される第1の信号に格納される送信電力精度情報に基づいて多元接続通信グループを形成する。そして、制御部230は、データ処理部210および無線通信部220を用いて、形成される多元接続通信グループのメンバへ多元接続許可に係る第2の信号を送信させる。それにより、ユーザが有する端末から送信され多重化される信号についての受信特性の低下を抑制することができる。
また、本開示に係る技術は、上述したカーナビゲーション装置920の1つ以上のブロックと、車載ネットワーク941と、車両側モジュール942とを含む車載システム(又は車両)940として実現されてもよい。車両側モジュール942は、車速、エンジン回転数又は故障情報などの車両側データを生成し、生成したデータを車載ネットワーク941へ出力する。
[7−3.第3の応用例]
図18は、本開示に係る技術が適用され得る無線アクセスポイント950の概略的な構成の一例を示すブロック図である。無線アクセスポイント950は、コントローラ951、メモリ952、入力デバイス954、表示デバイス955、ネットワークインタフェース957、無線通信インタフェース963、アンテナスイッチ964及びアンテナ965を備える。
コントローラ951は、例えばCPU又はDSP(Digital Signal Processor)であってよく、無線アクセスポイント950のIP(Internet Protocol)レイヤ及びより上位のレイヤの様々な機能(例えば、アクセス制限、ルーティング、暗号化、ファイアウォール及びログ管理など)を動作させる。メモリ952は、RAM及びROMを含み、コントローラ951により実行されるプログラム、及び様々な制御データ(例えば、端末リスト、ルーティングテーブル、暗号鍵、セキュリティ設定及びログなど)を記憶する。
入力デバイス954は、例えば、ボタン又はスイッチなどを含み、ユーザからの操作を受け付ける。表示デバイス955は、LEDランプなどを含み、無線アクセスポイント950の動作ステータスを表示する。
ネットワークインタフェース957は、無線アクセスポイント950が有線通信ネットワーク958に接続するための有線通信インタフェースである。ネットワークインタフェース957は、複数の接続端子を有してもよい。有線通信ネットワーク958は、イーサネット(登録商標)などのLANであってもよく、又はWAN(Wide Area Network)であってもよい。
無線通信インタフェース963は、IEEE802.11a、11b、11g、11n、11ac及び11adなどの無線LAN標準のうちの1つ以上をサポートし、近傍の端末へアクセスポイントとして無線接続を提供する。無線通信インタフェース963は、典型的には、ベースバンドプロセッサ、RF回路及びパワーアンプなどを含み得る。無線通信インタフェース963は、通信制御プログラムを記憶するメモリ、当該プログラムを実行するプロセッサ及び関連する回路を集積したワンチップのモジュールであってもよい。アンテナスイッチ964は、無線通信インタフェース963に含まれる複数の回路の間でアンテナ965の接続先を切り替える。アンテナ965は、単一の又は複数のアンテナ素子を有し、無線通信インタフェース963による無線信号の送信及び受信のために使用される。
図18に示した無線アクセスポイント950において、図2を用いて説明したデータ処理部210、無線通信部220および制御部230は、無線通信インタフェース963において実装されてもよい。また、これら機能の少なくとも一部は、コントローラ951において実装されてもよい。例えば、制御部230は、無線通信部220およびデータ処理部210を介して受信される第1の信号に格納される送信電力精度情報に基づいて多元接続通信グループを形成する。そして、制御部230は、データ処理部210および無線通信部220を用いて、形成される多元接続通信グループのメンバへ多元接続許可に係る第2の信号を送信させる。それにより、無線アクセスポイント950と接続される端末から送信され多重化される信号についての受信特性の低下を抑制することができる。
<8.むすび>
以上、本開示の第1の実施形態によれば、送信電力精度情報を考慮して多元接続通信グループが形成されることにより、AP200−1がSTA100−1から受信する信号についての受信電力密度と想定される受信電力密度との乖離を抑制することができる。従って、受信信号の歪みなどが抑制されることにより、複数のSTA100−1が同時に通信する場合において受信特性の低下を抑制することが可能となる。
また、本開示の第2の実施形態によれば、送信電力の精度が閾値よりも低いSTA100−2についても多元接続通信が行われることにより、通信効率を向上させることができる。他方で、送信電力の精度が閾値よりも低いSTA100−2から送信される信号についての受信特性は、送信電力の精度が閾値よりも高いSTA100−2から送信される信号についての受信特性に比べて低くなるおそれがある。そこで、送信電力の精度が異なるグループについて多元接続通信で用いられる通信パラメタを変えることにより、受信特性が相対的に低くなるおそれのあるグループについても信号の受信成功率を維持することができる。
また、本開示の第3の実施形態によれば、形成された多元接続通信グループのメンバの増減が生じた場合に、多元接続通信グループが再形成されることにより、多元接続通信グループのメンバ数を適正化することができる。従って、通信の効率を向上させることが可能となる。
また、本開示の第4の実施形態によれば、実際に送信される信号から把握される送信電力の誤差を他のAP200−4と共有することができる。従って、AP200−4による信号の受信における精度の個体差を抑制することができ、より正確な送信電力の精度を把握することが可能となる。
以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。
例えば、上記実施形態では、AP200とSTA100とが多元接続通信を行うとしたが、本技術はかかる例に限定されない。例えば、複数のSTA100とのダイレクトリンク持つSTA100と当該複数のSTA100とが多元接続通信を行ってもよい。なお、この場合、上述のDL通信が「1機から複数機への同時通信」と、上述のUL通信が「複数機から1機への同時通信」と読み替えられ得る。
また、上記実施形態では、STA100が送信電力の精度が相対的に高いグループと低いグループに分けられる例を説明したが、後者のグループのメンバとして決定されるSTA100の一部が前者のグループに入れられてもよい。この場合、前者のグループと後者のグループとの間の送信電力の精度の差、ひいては受信特性の差が開きすぎることを抑制できる。
また、上記実施形態では、AP200間で送信電力の差分情報が共有される例を説明したが、当該差分情報は、AP200とSTA100との間で共有されてもよい。その場合、STA100においても差分情報を算出する処理が行われる。
また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。
また、上記の実施形態のフローチャートに示されたステップは、記載された順序に沿って時系列的に行われる処理はもちろん、必ずしも時系列的に処理されなくとも、並列的にまたは個別的に実行される処理をも含む。また時系列的に処理されるステップでも、場合によっては適宜順序を変更することが可能であることは言うまでもない。
また、STA100およびAP200に内蔵されるハードウェアに上述したSTA100およびAP200の各機能構成と同等の機能を発揮させるためのコンピュータプログラムも作成可能である。また、当該コンピュータプログラムが記憶された記憶媒体も提供される。
なお、以下のような構成も本開示の技術的範囲に属する。
(1)
送信電力の精度または正確性が把握される第1の情報が格納される第1の信号を受信する受信部と、
前記第1の情報に基づいて特定される少なくとも1つの第1の無線通信装置へ同時通信が可能な多元接続の許可に係る第2の信号を送信する送信部と、
を備える無線通信装置。
(2)
前記少なくとも1つの第1の無線通信装置は、前記第1の情報と前記第1の情報についての閾値とに基づいて特定される、
前記(1)に記載の無線通信装置。
(3)
前記送信部は、前記閾値以上である前記第1の情報が格納される前記第1の信号の第1の送信元へ前記第2の信号を送信する、
前記(2)に記載の無線通信装置。
(4)
前記送信部は、前記閾値未満である前記第1の情報が格納される前記第1の信号の第2の送信元へ前記第2の信号を送信し、
前記第2の送信元へ送信される前記第2の信号には、前記第1の送信元へ送信される前記第2の信号に格納される通信パラメタと異なる通信パラメタが格納される、
前記(3)に記載の無線通信装置。
(5)
前記通信パラメタは、通信についてのノイズ耐性に係る通信パラメタを含む、
前記(4)に記載の無線通信装置。
(6)
前記送信部は、前記閾値未満である前記第1の情報が格納される前記第1の信号の第1の送信元へ前記第2の信号を送信せず、または一元接続の許可を示す信号を送信する、
前記(2)または(3)に記載の無線通信装置。
(7)
前記第2の信号は、前記同時通信が可能な多元接続の許可を示す送信許可信号を含む、
前記(1)〜(6)のいずれか1項に記載の無線通信装置。
(8)
前記第2の信号は、前記同時通信が可能な多元接続が許可される前記第1の無線通信装置が属するグループを通知するグループ通知信号を含む、
前記(1)〜(7)のいずれか1項に記載の無線通信装置。
(9)
前記同時通信が可能な多元接続は、周波数分割多元接続、空間分割多元接続または符号分割多元接続を含む、
前記(1)〜(8)のいずれか1項に記載の無線通信装置。
(10)
前記第1の情報は、送信電力の設定値と実測値との誤差に係る情報を含む、
前記(1)〜(9)のいずれか1項に記載の無線通信装置。
(11)
前記送信部は、前記第1の無線通信装置との通信接続についての変化に基づいて前記第2の信号の宛先を制御する、
前記(1)〜(10)のいずれか1項に記載の無線通信装置。
(12)
前記送信部は、前記第1の情報の変化に基づいて前記第2の信号の宛先を制御する、
前記(1)〜(11)のいずれか1項に記載の無線通信装置。
(13)
前記受信部は、送信電力情報が格納される送信電力通知信号を受信し、
前記送信部は、前記送信電力通知信号に格納される前記送信電力情報と受信電力から推定される送信電力情報との差に係る差分情報が格納される差分通知信号を送信する、
前記(1)〜(12)のいずれか1項に記載の無線通信装置。
(14)
前記受信部は、さらに前記差分通知信号を受信し、
前記送信部は、受信された前記差分通知信号に格納される前記差分情報と推定された前記差分情報とに基づいて前記第2の信号の宛先を制御する、
前記(13)に記載の無線通信装置。
(15)
送信電力の精度または正確性が把握される第1の情報が格納される第1の信号を送信する送信部と、
前記第1の信号の送信後に同時通信が可能な多元接続の許可に係る第2の信号を受信する受信部と、
前記第2の信号に基づいて第3の信号の送信を制御する制御部と、
を備える無線通信装置。
(16)
前記第2の信号は、前記同時通信が可能な多元接続の許可を示す送信許可信号を含み、
前記制御部は、前記送信許可信号に格納される通信パラメタに基づいて前記第3の信号の送信を制御する、
前記(15)に記載の無線通信装置。
(17)
前記第2の信号は、前記同時通信が可能な多元接続が許可される第1の無線通信装置が属するグループを通知するグループ通知信号を含み、
前記制御部は、前記グループ通知信号により通知されるグループ宛ての、前記同時通信が可能な多元接続の許可を示す送信許可信号の受信に応じて前記第3の信号の送信を制御する、
前記(15)または(16)に記載の無線通信装置。
(18)
前記送信部は、前記第2の信号の送信元との通信接続の変化または第1の情報の変更を通知する第4の信号を送信する、
前記(15)〜(17)のいずれか1項に記載の無線通信装置。
(19)
プロセッサを用いて、
送信電力の精度または正確性が把握される第1の情報が格納される第1の信号を受信することと、
前記第1の情報に基づいて特定される少なくとも1つの第1の無線通信装置へ同時通信が可能な多元接続の許可に係る第2の信号を送信することと、
を含む無線通信方法。
(20)
プロセッサを用いて、
送信電力の精度または正確性が把握される第1の情報が格納される第1の信号を送信することと、
前記第1の信号の送信後に同時通信が可能な多元接続の許可に係る第2の信号を受信することと、
前記第2の信号に基づいて第3の信号の送信を制御することと、
を含む無線通信方法。
100 STA
200 AP
110、210 データ処理部
120、220 無線通信部
130、230 制御部

Claims (20)

  1. 送信電力の設定値と実測値との誤差に係る情報を含む第1の情報が格納される第1の信号を受信する受信部と、
    前記第1の情報に基づいて特定される少なくとも1つの第1の無線通信装置へ同時通信が可能な多元接続の許可に係る第2の信号を送信する送信部と、
    を備える無線通信装置。
  2. 前記少なくとも1つの第1の無線通信装置は、前記第1の情報と前記第1の情報についての閾値とに基づいて特定される、
    請求項1に記載の無線通信装置。
  3. 前記送信部は、前記閾値以上である前記第1の情報が格納される前記第1の信号の第1の送信元へ前記第2の信号を送信する、
    請求項2に記載の無線通信装置。
  4. 前記送信部は、前記閾値未満である前記第1の情報が格納される前記第1の信号の第2の送信元へ前記第2の信号を送信し、
    前記第2の送信元へ送信される前記第2の信号には、前記第1の送信元へ送信される前記第2の信号に格納される通信パラメタと異なる通信パラメタが格納される、
    請求項3に記載の無線通信装置。
  5. 前記通信パラメタは、通信についてのノイズ耐性に係る通信パラメタを含む、
    請求項4に記載の無線通信装置。
  6. 前記送信部は、前記閾値未満である前記第1の情報が格納される前記第1の信号の第1の送信元へ前記第2の信号を送信せず、または一元接続の許可を示す信号を送信する、
    請求項2または3に記載の無線通信装置。
  7. 前記第2の信号は、前記同時通信が可能な多元接続の許可を示す送信許可信号を含む、
    請求項1〜6のいずれか1項に記載の無線通信装置。
  8. 前記第2の信号は、前記同時通信が可能な多元接続が許可される前記第1の無線通信装置が属するグループを通知するグループ通知信号を含む、
    請求項1〜7のいずれか1項に記載の無線通信装置。
  9. 前記同時通信が可能な多元接続は、周波数分割多元接続、空間分割多元接続または符号分割多元接続を含む、
    請求項1〜8のいずれか1項に記載の無線通信装置。
  10. 前記第1の情報は、送信電力の設定値と実測値との誤差に係る情報を含む、
    請求項1〜9のいずれか1項に記載の無線通信装置。
  11. 前記送信部は、前記第1の無線通信装置との通信接続についての変化に基づいて前記第2の信号の宛先を制御する、
    請求項1〜10のいずれか1項に記載の無線通信装置。
  12. 前記送信部は、前記第1の情報の変化に基づいて前記第2の信号の宛先を制御する、
    請求項1〜11のいずれか1項に記載の無線通信装置。
  13. 前記受信部は、送信電力情報が格納される送信電力通知信号を受信し、
    前記送信部は、前記送信電力通知信号に格納される前記送信電力情報と受信電力から推定される送信電力情報との差に係る差分情報が格納される差分通知信号を送信する、
    請求項1〜12のいずれか1項に記載の無線通信装置。
  14. 前記受信部は、さらに前記差分通知信号を受信し、
    前記送信部は、受信された前記差分通知信号に格納される前記差分情報と推定された前記差分情報とに基づいて前記第2の信号の宛先を制御する、
    請求項13に記載の無線通信装置。
  15. 送信電力の設定値と実測値との誤差に係る情報を含む第1の情報が格納される第1の信号を送信する送信部と、
    前記第1の信号の送信後に同時通信が可能な多元接続の許可に係る第2の信号を受信する受信部と、
    前記第2の信号に基づいて第3の信号の送信を制御する制御部と、
    を備える無線通信装置。
  16. 前記第2の信号は、前記同時通信が可能な多元接続の許可を示す送信許可信号を含み、
    前記制御部は、前記送信許可信号に格納される通信パラメタに基づいて前記第3の信号の送信を制御する、
    請求項15に記載の無線通信装置。
  17. 前記第2の信号は、前記同時通信が可能な多元接続が許可される第1の無線通信装置が属するグループを通知するグループ通知信号を含み、
    前記制御部は、前記グループ通知信号により通知されるグループ宛ての、前記同時通信が可能な多元接続の許可を示す送信許可信号の受信に応じて前記第3の信号の送信を制御する、
    請求項15または16に記載の無線通信装置。
  18. 前記送信部は、前記第2の信号の送信元との通信接続の変化または第1の情報の変更を通知する第4の信号を送信する、
    請求項15〜17のいずれか1項に記載の無線通信装置。
  19. プロセッサを用いて、
    送信電力の設定値と実測値との誤差に係る情報を含む第1の情報が格納される第1の信号を受信することと、
    前記第1の情報に基づいて特定される少なくとも1つの第1の無線通信装置へ同時通信が可能な多元接続の許可に係る第2の信号を送信することと、
    を含む無線通信方法。
  20. プロセッサを用いて、
    送信電力の設定値と実測値との誤差に係る情報を含む第1の情報が格納される第1の信号を送信することと、
    前記第1の信号の送信後に同時通信が可能な多元接続の許可に係る第2の信号を受信することと、
    前記第2の信号に基づいて第3の信号の送信を制御することと、
    を含む無線通信方法。
JP2018527418A 2016-07-13 2017-05-22 無線通信装置および無線通信方法 Active JP6939788B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016138936 2016-07-13
JP2016138936 2016-07-13
PCT/JP2017/019038 WO2018012111A1 (ja) 2016-07-13 2017-05-22 無線通信装置および無線通信方法

Publications (2)

Publication Number Publication Date
JPWO2018012111A1 JPWO2018012111A1 (ja) 2019-04-25
JP6939788B2 true JP6939788B2 (ja) 2021-09-22

Family

ID=60952472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018527418A Active JP6939788B2 (ja) 2016-07-13 2017-05-22 無線通信装置および無線通信方法

Country Status (7)

Country Link
US (1) US11121747B2 (ja)
EP (2) EP3487084B1 (ja)
JP (1) JP6939788B2 (ja)
CN (1) CN109417408B (ja)
AU (1) AU2017294718B2 (ja)
BR (1) BR112019000140A2 (ja)
WO (1) WO2018012111A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200127176A (ko) * 2018-03-05 2020-11-10 소니 주식회사 무선 통신 장치, 전력 분배 제어 방법 및 프로그램
JP7208763B2 (ja) * 2018-10-29 2023-01-19 キヤノン株式会社 通信装置、通信装置の制御方法、およびプログラム
US12101753B2 (en) * 2019-12-04 2024-09-24 Telefonaktiebolaget Lm Ericsson (Publ) MU-MIMO scheduling

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3270015B2 (ja) * 1997-11-19 2002-04-02 沖電気工業株式会社 送信電力制御装置
JP3712160B2 (ja) 1998-04-17 2005-11-02 松下電器産業株式会社 無線装置、無線装置における送信電力制御方法および記録媒体
JP3381689B2 (ja) * 1999-11-30 2003-03-04 日本電気株式会社 非線形歪み補償回路及びそれを用いた送信装置並びに移動通信機
JP2001186082A (ja) * 1999-12-24 2001-07-06 Matsushita Electric Ind Co Ltd Cdma移動通信システム及び方法
JP4679686B2 (ja) * 2000-02-07 2011-04-27 パナソニック株式会社 無線通信装置及び送信電力制御方法
JP3463656B2 (ja) * 2000-07-12 2003-11-05 日本電気株式会社 送信電力増幅装置及びその方法
US7164919B2 (en) * 2002-07-01 2007-01-16 Qualcomm Incorporated Scheduling of data transmission for terminals with variable scheduling delays
WO2005122616A1 (ja) 2004-06-10 2005-12-22 Matsushita Electric Industrial Co., Ltd. 通信端末装置、基地局装置及び無線通信システム
US8929300B2 (en) * 2006-08-18 2015-01-06 Panasonic Intellectual Property Corporation Of America Radio communication base station device and control channel arranging method
US8699429B2 (en) * 2007-08-31 2014-04-15 Fujitsu Limited Wireless communication system and wireless communication method
WO2009026770A1 (en) 2007-08-31 2009-03-05 Fujitsu Limited Feedback apparatus, feedback method, scheduling apparatus, and scheduling method
KR101740366B1 (ko) 2010-06-28 2017-05-29 삼성전자주식회사 이동 통신 시스템에서 역방향 최대 전송 전력을 보고하는 방법 및 장치
WO2012070627A1 (ja) * 2010-11-26 2012-05-31 日本電気株式会社 送信電力制御回路及び送信装置、送信電力制御方法、プログラム
JP5592839B2 (ja) * 2011-06-13 2014-09-17 日本電信電話株式会社 無線通信システム及び無線通信方法
JP5736298B2 (ja) 2011-10-21 2015-06-17 株式会社日立製作所 無線基地局装置及び干渉制御方法
JP6050028B2 (ja) * 2012-05-25 2016-12-21 シャープ株式会社 端末、基地局、通信方法及び集積回路
CN203614091U (zh) * 2013-05-20 2014-05-28 北京华脉世纪石油科技有限公司 高集成度测井地面系统
CN106716780B (zh) * 2015-05-19 2021-01-01 松下知识产权经营株式会社 非接触供电设备、非接触受电设备以及具备它们的非接触电力传送系统
US11032780B2 (en) * 2015-09-03 2021-06-08 Qualcomm Incorporated Power control in wireless networks

Also Published As

Publication number Publication date
EP3890201A1 (en) 2021-10-06
AU2017294718B2 (en) 2019-12-12
AU2017294718A1 (en) 2019-01-24
CN109417408B (zh) 2021-10-26
EP3487084A1 (en) 2019-05-22
CN109417408A (zh) 2019-03-01
US20190123790A1 (en) 2019-04-25
US11121747B2 (en) 2021-09-14
JPWO2018012111A1 (ja) 2019-04-25
BR112019000140A2 (pt) 2019-04-16
EP3890201B1 (en) 2022-11-30
WO2018012111A1 (ja) 2018-01-18
EP3487084B1 (en) 2021-03-31
EP3487084A4 (en) 2019-08-21

Similar Documents

Publication Publication Date Title
US10321407B2 (en) Communication control device, communication control method, and information processing device with mode switching control
JP7318766B2 (ja) 通信装置および通信方法
AU2016290377B2 (en) Communication device and communication method
AU2016319274B2 (en) Wireless communication device, wireless communication method and wireless communication system
JP6939788B2 (ja) 無線通信装置および無線通信方法
US10708961B2 (en) Communication device and communication method
US10462753B2 (en) Communication device, communication method and program
JP6771386B2 (ja) 通信装置および通信方法
JP6954278B2 (ja) 無線通信装置
US11012854B2 (en) Communication device and communication method
JP6981413B2 (ja) 無線通信装置および無線通信方法
CN108353274B (zh) 通信装置和通信方法
CN113315602B (zh) 通信装置和通信方法
CN108141859B (zh) 信息处理设备和通信系统

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190208

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20190214

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190515

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200515

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210816

R151 Written notification of patent or utility model registration

Ref document number: 6939788

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151