[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6923007B2 - Power storage device - Google Patents

Power storage device Download PDF

Info

Publication number
JP6923007B2
JP6923007B2 JP2019568549A JP2019568549A JP6923007B2 JP 6923007 B2 JP6923007 B2 JP 6923007B2 JP 2019568549 A JP2019568549 A JP 2019568549A JP 2019568549 A JP2019568549 A JP 2019568549A JP 6923007 B2 JP6923007 B2 JP 6923007B2
Authority
JP
Japan
Prior art keywords
current collector
along
power storage
collector plate
storage device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019568549A
Other languages
Japanese (ja)
Other versions
JPWO2019150596A1 (en
Inventor
泰有 秋山
泰有 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Publication of JPWO2019150596A1 publication Critical patent/JPWO2019150596A1/en
Application granted granted Critical
Publication of JP6923007B2 publication Critical patent/JP6923007B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/10Multiple hybrid or EDL capacitors, e.g. arrays or modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/262Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks
    • H01M50/264Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks for cells or batteries, e.g. straps, tie rods or peripheral frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/271Lids or covers for the racks or secondary casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • H01M50/293Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs characterised by the material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Battery Mounting, Suspending (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)

Description

本発明は、蓄電装置に関する。 The present invention relates to a power storage device.

蓄電装置の一種として、全固体電池が挙げられる。下記特許文献1には、複数の積層電池が正極集電箔および負極集電箔を介して積み重ねられている態様が開示されている。これらの積層電池は、互いに並列接続され、且つ、モールド樹脂によって封止されている。 An all-solid-state battery is mentioned as a kind of power storage device. The following Patent Document 1 discloses an embodiment in which a plurality of laminated batteries are stacked via a positive electrode current collector foil and a negative electrode current collector foil. These laminated batteries are connected in parallel with each other and sealed with a mold resin.

特開2014−116156号公報Japanese Unexamined Patent Publication No. 2014-116156

上記特許文献1にて、各正極集電箔(各負極集電箔)は、モールド樹脂によって封止される前に、正極端子(負極端子)に溶接される。この溶接を実施するためには、各正極集電箔(各負極集電箔)と正極端子(負極端子)とを載置するための治具を準備する工程、当該治具を所定位置に配置する工程、及び溶接後に当該治具を取り出す工程等が必要になる。積層電池等の蓄電装置の製造にあたっては、上述したような工程を削除又は簡略化し、生産性を向上することが望まれている。 In Patent Document 1, each positive electrode current collector foil (each negative electrode current collector foil) is welded to a positive electrode terminal (negative electrode terminal) before being sealed with a mold resin. In order to carry out this welding, a process of preparing a jig for mounting each positive electrode current collecting foil (each negative electrode current collecting foil) and a positive electrode terminal (negative electrode terminal), the jig is arranged at a predetermined position. A step of performing the jig and a step of taking out the jig after welding are required. In the manufacture of power storage devices such as laminated batteries, it is desired to eliminate or simplify the above-mentioned steps to improve productivity.

本発明の一側面の目的は、生産性の向上が可能である蓄電装置を提供することである。 An object of one aspect of the present invention is to provide a power storage device capable of improving productivity.

本発明の一側面に係る蓄電装置は、第1方向に沿って積層される複数の第1電極を含む第1電極積層体、及び、複数の第1電極を保持する保持部材を有する第1蓄電セルと、第1方向に沿って第1蓄電セルに隣接する第1集電板と、第1集電板を介して第1蓄電セルに電気的に接続される接続部材と、第1集電板と接続部材とを接合する第1溶接部と、を備え、第1集電板は、第1電極積層体に接触する第1本体部と、第1方向に交差する第2方向に沿って第1本体部の縁から突出する第1突出部とを有し、第1溶接部は、保持部材と第1突出部と接続部材とが順に重なり、且つ、保持部材と第1突出部とが互いに接触する第1領域上に設けられる。 The current collector according to one aspect of the present invention has a first electrode laminated body including a plurality of first electrodes laminated along a first direction, and a first storage member having a holding member for holding the plurality of first electrodes. A cell, a first current collector plate adjacent to the first current collector cell along the first direction, a connecting member electrically connected to the first current collector cell via the first current collector plate, and a first current collector. A first welded portion for joining the plate and the connecting member is provided, and the first current collector plate is provided along a second direction intersecting with the first main body portion in contact with the first electrode laminate in the first direction. It has a first protruding portion that protrudes from the edge of the first main body portion, and in the first welded portion, the holding member, the first protruding portion, and the connecting member are sequentially overlapped, and the holding member and the first protruding portion are formed. It is provided on a first region that comes into contact with each other.

この蓄電装置によれば、第1溶接部は、保持部材と第1突出部と接続部材とが順に重なり、且つ、保持部材と第1突出部とが互いに接触する第1領域上に設けられる。このため、第1蓄電セルに含まれ、第1電極積層体の複数の第1電極を保持する保持部材を台座として利用し、第1溶接部を形成することができる。これにより、第1溶接部を形成するための治具の準備工程、及び当該治具の取り出し工程等を省略できるので、生産性の向上が可能になる。 According to this power storage device, the first welded portion is provided on a first region in which the holding member, the first protruding portion, and the connecting member are sequentially overlapped, and the holding member and the first protruding portion are in contact with each other. Therefore, the holding member included in the first storage cell and holding the plurality of first electrodes of the first electrode laminate can be used as a pedestal to form the first welded portion. As a result, the preparation step of the jig for forming the first welded portion, the taking-out step of the jig, and the like can be omitted, so that the productivity can be improved.

第1突出部は、第2方向に沿って延在する第1基端部、第1方向に沿って延在すると共に第2方向において第1蓄電セルよりも外側に位置する第1先端部、及び、第1基端部と第1先端部とをつなぐ第1屈曲部を有し、保持部材は、第2方向において第1電極積層体と第1先端部との間に位置し、第1先端部に接触する外周面を有し、第1溶接部は、第1先端部に設けられてもよい。この場合、第1蓄電セルを含む複数の蓄電セルが第1方向に沿って隙間なく配列されているときであっても、第1溶接部を容易に設けることができる。 The first protruding portion is a first base end portion extending along the second direction, and a first tip portion extending along the first direction and located outside the first storage cell in the second direction. It also has a first bent portion that connects the first base end portion and the first tip portion, and the holding member is located between the first electrode laminate and the first tip portion in the second direction, and is the first. It has an outer peripheral surface that comes into contact with the tip portion, and the first welded portion may be provided on the first tip portion. In this case, even when a plurality of storage cells including the first storage cell are arranged without gaps along the first direction, the first welded portion can be easily provided.

第1基端部は、第1方向に交差する保持部材の側面に密着してもよい。この場合、第1基端部が保持部材によって支持されるので、振動等に起因した第1突出部の破損を抑制できる。 The first base end portion may be in close contact with the side surface of the holding member intersecting in the first direction. In this case, since the first base end portion is supported by the holding member, damage to the first protruding portion due to vibration or the like can be suppressed.

複数の第1電極のそれぞれは、バイポーラ電極であってもよい。この場合、第1蓄電セルの内部抵抗を低減できる。 Each of the plurality of first electrodes may be a bipolar electrode. In this case, the internal resistance of the first storage cell can be reduced.

上記蓄電装置は、第1蓄電セルを含む複数の蓄電セルと、第1集電板を含む複数の集電板を有するセルスタックとをさらに備え、セルスタック内では、複数の蓄電セルと複数の集電板とが第1方向に沿って交互に配列されてもよい。この場合、セルスタック内における集電板の枚数を低減できるので、蓄電装置の軽量化が実現できる。 The power storage device further includes a plurality of power storage cells including a first power storage cell and a cell stack having a plurality of current collector plates including a first current collector plate, and the cell stack includes a plurality of power storage cells and a plurality of power storage cells. The current collector plates may be arranged alternately along the first direction. In this case, since the number of current collector plates in the cell stack can be reduced, the weight of the power storage device can be reduced.

保持部材は、第1電極積層体の外周面上に設けられてもよい。この場合、第1電極積層体の外周面を保持部材によって保護できる。 The holding member may be provided on the outer peripheral surface of the first electrode laminate. In this case, the outer peripheral surface of the first electrode laminate can be protected by the holding member.

保持部材は、第1電極積層体の外周面の全てを封止してもよい。この場合、第1電極積層体内の電解質が流動性を示すときであっても、当該電解質を介した短絡の発生等を保持部材によって良好に抑制できる。 The holding member may seal the entire outer peripheral surface of the first electrode laminate. In this case, even when the electrolyte in the first electrode laminate exhibits fluidity, the occurrence of a short circuit via the electrolyte can be satisfactorily suppressed by the holding member.

保持部材は、薄肉部と、薄肉部よりも厚い厚肉部とを有し、厚肉部は、少なくとも第1領域に重なると共に第1突出部と接触してもよい。この場合、蓄電装置の軽量化が実現できる。 The holding member has a thin-walled portion and a thick-walled portion thicker than the thin-walled portion, and the thick-walled portion may overlap at least the first region and come into contact with the first protruding portion. In this case, the weight of the power storage device can be reduced.

薄肉部は、複数の第1電極を保持する保持部であり、厚肉部は、保持部の一部に密着する耐熱部を有してもよい。この場合、第1溶接部の形成時、保持部材において第1溶接部に重なる部分が損傷することを防止できる。 The thin-walled portion is a holding portion that holds a plurality of first electrodes, and the thick-walled portion may have a heat-resistant portion that is in close contact with a part of the holding portion. In this case, when the first welded portion is formed, it is possible to prevent the portion of the holding member that overlaps the first welded portion from being damaged.

上記蓄電装置は、第1方向に沿って積層される複数の第2電極を含む第2電極積層体を有し、第1蓄電セルと共に第1方向に沿って配列される第2蓄電セルと、第1方向に沿って第2蓄電セルに隣接する第2集電板と、第2集電板と接続部材とを接合する第2溶接部と、第1方向に沿って第1蓄電セル及び第2蓄電セルに対して拘束力を付加する拘束部材と、第2蓄電セル及び拘束部材の間に配置される絶縁緩衝部材と、をさらに備え、第2集電板は、第2電極積層体に接触する第2本体部と、第1方向に沿って第2本体部の縁から突出する第2突出部とを有し、第2本体部は、第2電極積層体と絶縁緩衝部材との間に配置され、第2溶接部は、絶縁緩衝部材と第2突出部と接続部材とが順に重なり、且つ、絶縁緩衝部材と第2突出部とが互いに接触する第2領域上に設けられてもよい。この場合、絶縁緩衝部材を第2溶接部の形成時における台座として利用することができる。これにより、第2溶接部を形成するための治具の準備工程、及び当該治具の取り出し工程等を省略できる。 The current collector has a second electrode laminate including a plurality of second electrodes laminated along the first direction, and includes a second storage cell arranged along with the first storage cell along the first direction. A second current collector plate adjacent to the second current collector cell along the first direction, a second welded portion for joining the second current collector plate and the connecting member, and the first current collector cell and the first storage cell along the first direction. A restraining member that applies a binding force to the two storage cells and an insulating buffer member arranged between the second storage cell and the restraining member are further provided, and the second current collector plate is formed on the second electrode laminate. It has a second main body portion that comes into contact with the second main body portion and a second protruding portion that protrudes from the edge of the second main body portion along the first direction, and the second main body portion is between the second electrode laminate and the insulating buffer member. The second welded portion is provided on a second region in which the insulating buffer member, the second protruding portion, and the connecting member are sequentially overlapped with each other, and the insulating buffer member and the second protruding portion are in contact with each other. good. In this case, the insulating buffer member can be used as a pedestal when forming the second welded portion. As a result, the process of preparing the jig for forming the second welded portion, the process of taking out the jig, and the like can be omitted.

第2突出部は、第2方向に沿って延在する第2基端部、第2蓄電セルから離れるように第1方向に沿って延在する第2先端部、及び、第2基端部と第2先端部とをつなぐ第2屈曲部とを有し、絶縁緩衝部材は、第2方向に交差すると共に第2本体部に接触する主面と、主面の縁から第1方向に沿って延在すると共に第2先端部に接触する外周面とを有し、第2溶接部は、第2先端部に設けられてもよい。この場合、第2蓄電セルと、第2集電板と、絶縁緩衝部材とが、第1方向に沿って順に隙間なく配列されているときであっても、第2溶接部を容易に設けることができる。 The second protruding portion includes a second base end portion extending along the second direction, a second tip portion extending along the first direction away from the second storage cell, and a second base end portion. It has a second bent portion that connects the second tip portion and the second bent portion, and the insulating buffer member intersects in the second direction and comes into contact with the second main body portion along the main surface and the edge of the main surface along the first direction. It has an outer peripheral surface that extends and comes into contact with the second tip portion, and the second welded portion may be provided at the second tip portion. In this case, even when the second storage cell, the second current collector plate, and the insulating buffer member are arranged in order along the first direction without a gap, the second welded portion can be easily provided. Can be done.

第2基端部は、絶縁緩衝部材の主面に密着してもよい。この場合、第2基端部が絶縁緩衝部材によって支持されるので、振動等に起因した第2突出部の破損を抑制できる。 The second base end portion may be in close contact with the main surface of the insulating buffer member. In this case, since the second base end portion is supported by the insulating buffer member, damage to the second protruding portion due to vibration or the like can be suppressed.

本発明の他の一側面に係る蓄電装置は、水平方向における第1方向に沿って配列される複数の蓄電セルを有するセルスタックと、複数の蓄電セルを第1方向に沿って挟持する一対の拘束部材と、複数の蓄電セルを収容する電池パックと、を備え、複数の蓄電セルのそれぞれは、水平方向に交差する第2方向に沿って立設し、第1方向に沿って積層される複数のバイポーラ電極と、複数のバイポーラ電極を保持する保持部材とを有し、複数の蓄電セルのそれぞれにおいて、水平方向において第1方向に交差する第3方向に沿った寸法は、第1方向に沿った寸法と、第2方向に沿った寸法とのいずれよりも長く、セルスタックにおいて第2方向に交差する面の面積は、セルスタックに含まれる他の面のいずれよりも大きい。 The power storage device according to another aspect of the present invention includes a cell stack having a plurality of power storage cells arranged along the first direction in the horizontal direction, and a pair of storage cells sandwiching the plurality of power storage cells along the first direction. A restraining member and a battery pack accommodating a plurality of storage cells are provided, and each of the plurality of storage cells is erected along a second direction intersecting in the horizontal direction and stacked along the first direction. It has a plurality of bipolar electrodes and a holding member for holding the plurality of bipolar electrodes, and in each of the plurality of storage cells, the dimensions along the third direction intersecting the first direction in the horizontal direction are set to the first direction. It is longer than either the along dimension and the dimension along the second direction, and the area of the surface intersecting the second direction in the cell stack is larger than any of the other surfaces contained in the cell stack.

この蓄電装置によれば、一対の拘束部材に挟持される複数の蓄電セルのそれぞれは、水平方向に交差する第2方向に沿って立設している。このため、複数の蓄電セルを、縦置きとした状態にて一対の拘束部材にて挟持させることができる。これにより、蓄電セル同士を拘束しやすくなるので、生産性の向上が可能になる。加えて、拘束部材の小型化を実現できるので、蓄電装置の小型化が可能になる。さらには、複数の蓄電セルのそれぞれにおいて、水平方向における第3方向に沿った寸法は、第1方向に沿った寸法と、第2方向に沿った寸法とのいずれよりも長い。また、セルスタックにおいて第2方向に交差する面の面積は、セルスタックに含まれる他の面のいずれよりも大きい。これらによって、電池パックの高さを抑えつつ、蓄電装置の容量を確保することができる。 According to this power storage device, each of the plurality of power storage cells sandwiched between the pair of restraint members is erected along a second direction intersecting in the horizontal direction. Therefore, a plurality of power storage cells can be sandwiched between a pair of restraining members in a vertically placed state. As a result, the storage cells are easily restrained from each other, so that the productivity can be improved. In addition, since the restraint member can be miniaturized, the power storage device can be miniaturized. Further, in each of the plurality of storage cells, the dimension along the third direction in the horizontal direction is longer than both the dimension along the first direction and the dimension along the second direction. Further, the area of the surfaces intersecting in the second direction in the cell stack is larger than any of the other surfaces included in the cell stack. As a result, the capacity of the power storage device can be secured while suppressing the height of the battery pack.

複数の蓄電セルのそれぞれは、電池パックの底面上に配置されてもよい。この場合、電池パック内に複数の蓄電セルを安定して配置できる。 Each of the plurality of storage cells may be arranged on the bottom surface of the battery pack. In this case, a plurality of storage cells can be stably arranged in the battery pack.

保持部材において、バイポーラ電極と電池パックの底面との間に位置する部分の厚さが最も大きくてもよい。この場合、蓄電装置と、電池パックの底面もしくは当該底面に溜まった液体等との短絡発生を抑制できる。 The thickness of the portion of the holding member located between the bipolar electrode and the bottom surface of the battery pack may be the largest. In this case, it is possible to suppress the occurrence of a short circuit between the power storage device and the bottom surface of the battery pack or the liquid collected on the bottom surface.

セルスタックは、正極集電板及び負極集電板を有し、正極集電板は、複数の蓄電セルに含まれる第1蓄電セルの正極端子に接触する正極本体部、及び第2方向に沿って正極本体部の縁から突出する正極突出部を有し、負極集電板は、第1蓄電セルの負極端子に接触する負極本体部、及び第2方向に沿って負極本体部の縁から突出する負極突出部を有し、正極突出部と負極突出部とは、第3方向において互いに離間してもよい。この場合、正極突出部と負極突出部との両方が第2方向において第1蓄電セルの一方側に位置するとしても、正極突出部と負極突出部とが短絡することを防止できる。 The cell stack has a positive electrode current collecting plate and a negative electrode current collecting plate, and the positive electrode current collecting plate is a positive electrode main body portion that contacts the positive electrode terminals of the first storage cell included in the plurality of storage cells, and along the second direction. The negative electrode current collector plate has a positive electrode protruding portion protruding from the edge of the positive electrode main body portion, and the negative electrode current collecting plate protrudes from the negative electrode main body portion in contact with the negative electrode terminal of the first storage cell and from the edge of the negative electrode main body portion along the second direction. The positive electrode protruding portion and the negative electrode protruding portion may be separated from each other in the third direction. In this case, even if both the positive electrode protruding portion and the negative electrode protruding portion are located on one side of the first storage cell in the second direction, it is possible to prevent the positive electrode protruding portion and the negative electrode protruding portion from being short-circuited.

正極突出部の第3方向に沿った寸法と、負極突出部の第3方向に沿った寸法とのそれぞれは、第1蓄電セルの第3方向に沿った寸法の半分未満であってもよい。この場合、正極突出部と負極突出部との両方が短絡することをより確実に防止できる。 The dimension of the positive electrode protrusion along the third direction and the dimension of the negative electrode protrusion along the third direction may be less than half of the dimension of the first storage cell along the third direction. In this case, it is possible to more reliably prevent both the positive electrode protruding portion and the negative electrode protruding portion from being short-circuited.

上記蓄電装置は、第2方向において正極突出部に溶接される第1接続部材と、第2方向において負極突出部に溶接される第2接続部材と、をさらに備え、第1接続部材と第2接続部材とのそれぞれは、第1蓄電セルの第2方向における一方側に位置してもよい。この場合、第1接続部材の正極突出部への溶接と、第2接続部材の負極突出部への溶接とを一工程にて実施することができるので、より生産性を向上できる。 The power storage device further includes a first connecting member welded to the positive electrode protruding portion in the second direction and a second connecting member welded to the negative electrode protruding portion in the second direction, and the first connecting member and the second Each of the connecting members may be located on one side of the first storage cell in the second direction. In this case, the welding of the first connecting member to the positive electrode protruding portion and the welding of the second connecting member to the negative electrode protruding portion can be performed in one step, so that the productivity can be further improved.

正極本体部の縁は、第2方向に交差すると共に正極突出部につながる第1縁部、及び第2方向において第1縁部の反対側に位置する第2縁部を有し、負極本体部の縁は、第2方向に交差すると共に負極突出部につながる第3縁部、及び第2方向において第3縁部の反対側に位置する第4縁部を有し、第2縁部及び第4縁部のそれぞれは、保持部材の外周面よりも内側に位置してもよい。この場合、第2縁部を介して正極本体部が短絡しにくくなると共に、第4縁部を介して負極本体部が短絡しにくくなる。 The edge of the positive electrode body portion has a first edge portion that intersects in the second direction and is connected to the positive electrode protruding portion, and a second edge portion that is located on the opposite side of the first edge portion in the second direction, and has a negative electrode body portion. Has a third edge that intersects in the second direction and connects to the negative electrode protrusion, and a fourth edge that is located on the opposite side of the third edge in the second direction, the second edge and the second. Each of the four edges may be located inside the outer peripheral surface of the holding member. In this case, the positive electrode main body portion is less likely to be short-circuited via the second edge portion, and the negative electrode main body portion is less likely to be short-circuited via the fourth edge portion.

正極本体部と負極本体部とのそれぞれは、第1方向において第1蓄電セルと重なり、且つ、保持部材とは重なっていなくてもよい。この場合、第1方向に沿って拘束部材から第1蓄電セルの電極積層体に付加される荷重は、正極本体部及び負極本体部から保持部材へ分散することなく良好に付加される。 Each of the positive electrode main body and the negative electrode main body may overlap with the first storage cell in the first direction and may not overlap with the holding member. In this case, the load applied from the restraint member to the electrode laminate of the first storage cell along the first direction is satisfactorily applied without being dispersed from the positive electrode main body and the negative electrode main body to the holding member.

一対の拘束部材のそれぞれは、複数の蓄電セルに対して第1方向に沿って荷重を付加する主部と、電池パックの底面側に位置する主部の一端から第1方向に沿って延在する延在部と、を有し、延在部は、電池パックの底面に固定されてもよい。この場合、電池パックにおける一対の拘束部材の位置決めが可能になるので、電池パック内に複数の蓄電セルを安定して配置できる。 Each of the pair of restraint members extends along the first direction from one end of the main portion that applies a load to a plurality of storage cells along the first direction and the main portion located on the bottom surface side of the battery pack. The extending portion may be fixed to the bottom surface of the battery pack. In this case, since the pair of restraint members in the battery pack can be positioned, a plurality of storage cells can be stably arranged in the battery pack.

上記蓄電装置は、複数の蓄電セルの第2方向における移動を規制するカバー部材をさらに備え、カバー部材と、一対の拘束部材の少なくとも一方とは、一体化されてもよい。 The power storage device further includes a cover member that regulates the movement of the plurality of power storage cells in the second direction, and the cover member and at least one of the pair of restraint members may be integrated.

第2方向において、複数の蓄電セルは、カバー部材と、電池パックの底面との間に位置してもよい。この場合、カバー部材の形状が複数の蓄電セルを囲う形状としなくとも、当該蓄電セルの位置を電池パック内にて良好に定められる。 In the second direction, the plurality of storage cells may be located between the cover member and the bottom surface of the battery pack. In this case, even if the shape of the cover member does not surround the plurality of power storage cells, the position of the power storage cells can be satisfactorily determined in the battery pack.

本発明の一側面によれば、生産性の向上が可能である蓄電装置を提供できる。 According to one aspect of the present invention, it is possible to provide a power storage device capable of improving productivity.

図1は、第1実施形態に係る蓄電装置を示す概略斜視図である。FIG. 1 is a schematic perspective view showing a power storage device according to the first embodiment. 図2(a)は、蓄電セル及び当該蓄電セルに接触する集電板の概略斜視図であり、図2(b)は、蓄電セル及び当該蓄電セルに接触する集電板の概略側面図である。FIG. 2A is a schematic perspective view of the power storage cell and the current collector plate in contact with the power storage cell, and FIG. 2B is a schematic side view of the power storage cell and the current collector plate in contact with the power storage cell. be. 図3は、蓄電セルの概略断面図である。FIG. 3 is a schematic cross-sectional view of the power storage cell. 図4は、図3に示された破線で囲われた領域の拡大図である。FIG. 4 is an enlarged view of the area surrounded by the broken line shown in FIG. 図5(a)は、図1のVa−Va線に沿った概略断面図であり、図5(b)は、図5(a)にて示される接続部材の概略平面図である。5 (a) is a schematic cross-sectional view taken along the line Va-Va of FIG. 1, and FIG. 5 (b) is a schematic plan view of the connecting member shown in FIG. 5 (a). 図6(a)は、図1のVIa−VIa線に沿った概略断面図であり、図6(b)は、図6(a)にて示される接続部材の概略平面図である。6 (a) is a schematic cross-sectional view taken along the line VIa-VIa of FIG. 1, and FIG. 6 (b) is a schematic plan view of the connecting member shown in FIG. 6 (a). 図7は、第1実施形態に係る蓄電装置の使用例を示す模式断面図である。FIG. 7 is a schematic cross-sectional view showing a usage example of the power storage device according to the first embodiment. 図8は、図7に示される蓄電装置の要部概略断面図である。FIG. 8 is a schematic cross-sectional view of a main part of the power storage device shown in FIG. 図9(a)は、第1実施形態の第1変形例の蓄電装置を示す要部概略断面図であり、図9(b)は、第1実施形態の第2変形例の蓄電装置を示す要部概略断面図である。FIG. 9A is a schematic cross-sectional view of a main part showing the power storage device of the first modification of the first embodiment, and FIG. 9B shows the power storage device of the second modification of the first embodiment. It is a schematic cross-sectional view of a main part. 図10(a)は、第1蓄電セル及び当該第1蓄電セルに接触する集電板の概略斜視図であり、図10(b)は、第1蓄電セル及び当該第1蓄電セルに接触する集電板の概略側面図である。FIG. 10A is a schematic perspective view of the first storage cell and the current collector plate in contact with the first storage cell, and FIG. 10B is a schematic perspective view of the first storage cell and the first storage cell in contact with the first storage cell. It is a schematic side view of a current collector plate. 図11(a)は、第2蓄電セル及び当該第2蓄電セルに接触する集電板の概略斜視図であり、図11(b)は、第2蓄電セル及び当該第2蓄電セルに接触する集電板の概略側面図である。FIG. 11A is a schematic perspective view of the second storage cell and the current collector plate in contact with the second storage cell, and FIG. 11B is a schematic perspective view of the second storage cell and the second storage cell in contact with the second storage cell. It is a schematic side view of a current collector plate. 図12は、第2実施形態の蓄電装置を示す要部概略断面図である。FIG. 12 is a schematic cross-sectional view of a main part showing the power storage device of the second embodiment. 図13は、第3実施形態の蓄電装置を示す要部概略断面図である。FIG. 13 is a schematic cross-sectional view of a main part showing the power storage device of the third embodiment.

以下、添付図面を参照しながら本発明の実施形態を詳細に説明する。図面の説明において、同一又は同等の要素には同一符号を用い、重複する説明を省略する。なお、図面の寸法比率は、説明のものと必ずしも一致していない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the description of the drawings, the same reference numerals are used for the same or equivalent elements, and duplicate description is omitted. The dimensional ratios in the drawings do not always match those described.

(第1実施形態)
図1は、第1実施形態に係る蓄電装置を示す概略斜視図である。図1に示される蓄電装置1は、例えばフォークリフト、ハイブリッド自動車、電気自動車等の各種車両のバッテリとして用いられる蓄電モジュールである。蓄電装置1は、セルスタック2と、セルスタック2に電気的に接続される接続部材3,4と、セルスタック2を拘束する一対の拘束部材5,6と、セルスタック2と拘束部材5との間に配置される絶縁緩衝部材7と、セルスタック2と拘束部材6との間に配置される絶縁緩衝部材8と、セルスタック2の一部を覆うカバー部材9とを備える。以下では、拘束部材5,6がセルスタック2を拘束する方向を図1に示される方向X(第1方向)とし、水平方向において方向Xと交差もしくは直交する方向を方向Y(第3方向)とし、方向X及び方向Yと交差もしくは直交する方向(すなわち、水平方向に対して交差もしくは直交する方向)を方向Z(第2方向)とする。なお、蓄電装置1は、セルスタック2等が載置される基台を備えてもよいし、セルスタック2等が収容されるケース(電池パック)を備えてもよい。
(First Embodiment)
FIG. 1 is a schematic perspective view showing a power storage device according to the first embodiment. The power storage device 1 shown in FIG. 1 is a power storage module used as a battery for various vehicles such as forklifts, hybrid vehicles, and electric vehicles. The power storage device 1 includes a cell stack 2, connecting members 3 and 4 electrically connected to the cell stack 2, a pair of restraint members 5 and 6 for restraining the cell stack 2, and a cell stack 2 and a restraint member 5. An insulating buffer member 7 arranged between the cells, an insulating buffer member 8 arranged between the cell stack 2 and the restraint member 6, and a cover member 9 covering a part of the cell stack 2 are provided. In the following, the direction in which the restraint members 5 and 6 restrain the cell stack 2 is the direction X (first direction) shown in FIG. 1, and the direction intersecting or orthogonal to the direction X in the horizontal direction is the direction Y (third direction). The direction that intersects or is orthogonal to the direction X and the direction Y (that is, the direction that intersects or is orthogonal to the horizontal direction) is defined as the direction Z (second direction). The power storage device 1 may be provided with a base on which the cell stack 2 or the like is placed, or may be provided with a case (battery pack) in which the cell stack 2 or the like is housed.

セルスタック2は、方向Xに沿って縦置きに配列される複数の蓄電セル11を有する。すなわち、セルスタック2は、複数の蓄電セル11の集合体である。セルスタック2は、例えば略直方体形状を呈する。セルスタック2において方向Zに交差する面の面積は、セルスタック2に含まれる他の面のいずれよりも大きい。セルスタック2に含まれる他の面は、セルスタック2において方向Xに交差する面と、セルスタック2において方向Yに交差する面とを含む。セルスタック2において方向Zに交差する面の面積は、例えば、セルスタック2の方向X,Yに沿った各寸法の積に相当する。同様に、セルスタック2において方向Xに交差する面の面積は、例えば、セルスタック2の方向Y,Zに沿った各寸法の積に相当する。セルスタック2は、例えば89個以上111個以下の蓄電セル11を含む。第1実施形態では、セルスタック2は、100個の蓄電セルを含む。蓄電セル11の構成の詳細については、後述する。また、セルスタック2は、図1では示されていないが、複数の集電板も有する。集電板の詳細についても、後述する。 The cell stack 2 has a plurality of storage cells 11 arranged vertically along the direction X. That is, the cell stack 2 is an aggregate of a plurality of storage cells 11. The cell stack 2 exhibits, for example, a substantially rectangular parallelepiped shape. The area of the faces intersecting the direction Z in the cell stack 2 is larger than any of the other faces included in the cell stack 2. Other surfaces included in the cell stack 2 include a surface that intersects the direction X in the cell stack 2 and a surface that intersects the direction Y in the cell stack 2. The area of the surface intersecting the direction Z in the cell stack 2 corresponds to, for example, the product of the dimensions along the directions X and Y of the cell stack 2. Similarly, the area of the surface intersecting the direction X in the cell stack 2 corresponds to, for example, the product of the dimensions along the directions Y and Z of the cell stack 2. The cell stack 2 includes, for example, 89 or more and 111 or less storage cells 11. In the first embodiment, the cell stack 2 includes 100 storage cells. Details of the configuration of the power storage cell 11 will be described later. The cell stack 2 also has a plurality of current collector plates, although not shown in FIG. The details of the current collector plate will also be described later.

接続部材(第1接続部材)3は、蓄電装置1の正極として機能する導電部材(バスバー)であり、略平板形状を呈している。接続部材3は、方向Yにおけるセルスタック2の一端側であって、方向Zにおけるセルスタック2(蓄電セル11)の一方側に設けられている。接続部材3は、例えば金属板又は合金板である。金属板は、例えば銅板、アルミニウム板、チタン板、もしくはニッケル板である。合金板は、例えばステンレス鋼板(SUS301、SUS304等)、もしくは上記金属の合金板である。接続部材3は、方向Xに沿って延在すると共に方向Zにおいてセルスタック2及び絶縁緩衝部材7に重なる主板部3aと、主板部3aにおける拘束部材5側の一端から方向Xに沿って突出する突出板部3bとを有する。接続部材3の主板部3aは、セルスタック2内に含まれる複数の蓄電セル11の各正極端子に電気的に接続されている。接続部材3の突出板部3bは、主板部3aに連続して設けられている。方向Xに沿った突出板部3bの端は、拘束部材5よりも外側に位置する。接続部材3は、拘束部材5,6と離間している。 The connecting member (first connecting member) 3 is a conductive member (bus bar) that functions as a positive electrode of the power storage device 1, and has a substantially flat plate shape. The connecting member 3 is provided on one end side of the cell stack 2 in the direction Y and on one side of the cell stack 2 (storage cell 11) in the direction Z. The connecting member 3 is, for example, a metal plate or an alloy plate. The metal plate is, for example, a copper plate, an aluminum plate, a titanium plate, or a nickel plate. The alloy plate is, for example, a stainless steel plate (SUS301, SUS304, etc.) or an alloy plate of the above metal. The connecting member 3 extends along the direction X and protrudes along the direction X from the main plate portion 3a that overlaps the cell stack 2 and the insulating buffer member 7 in the direction Z and one end of the main plate portion 3a on the restraining member 5 side. It has a protruding plate portion 3b. The main plate portion 3a of the connecting member 3 is electrically connected to each positive electrode terminal of a plurality of storage cells 11 included in the cell stack 2. The protruding plate portion 3b of the connecting member 3 is continuously provided on the main plate portion 3a. The end of the protruding plate portion 3b along the direction X is located outside the restraining member 5. The connecting member 3 is separated from the restraining members 5 and 6.

接続部材(第2接続部材)4は、蓄電装置1の負極として機能する導電部材(バスバー)であり、略平板形状を呈している。接続部材4は、方向Yにおけるセルスタック2の他端側であって、方向Zにおけるセルスタック2(蓄電セル11)の一方側に設けられている。接続部材4は、接続部材3と同様に、例えば金属板又は合金板である。接続部材4は、接続部材3と同一の金属板又は合金板であってもよいし、異なる金属板又は合金板であってもよい。接続部材4は、方向Xに沿って延在すると共に方向Zにおいてセルスタック2及び絶縁緩衝部材8に重なる主板部4aと、主板部4aにおける拘束部材6側の一端から方向Xに沿って突出する突出板部4bとを有する。突出板部4bは、方向Xにおいて接続部材3の突出板部3bと反対側に設けられている。接続部材4の主板部4aは、セルスタック2内に含まれる複数の蓄電セル11の各負極端子に電気的に接続されている。接続部材4の突出板部4bは、主板部4aに連続して設けられている。方向Xに沿った突出板部4bの端は、拘束部材6よりも外側に位置する。接続部材4は、接続部材3と同様に拘束部材5,6と離間している。 The connecting member (second connecting member) 4 is a conductive member (bus bar) that functions as a negative electrode of the power storage device 1, and has a substantially flat plate shape. The connecting member 4 is provided on the other end side of the cell stack 2 in the direction Y, and is provided on one side of the cell stack 2 (storage cell 11) in the direction Z. Like the connecting member 3, the connecting member 4 is, for example, a metal plate or an alloy plate. The connecting member 4 may be the same metal plate or alloy plate as the connecting member 3, or may be a different metal plate or alloy plate. The connecting member 4 extends along the direction X and protrudes along the direction X from the main plate portion 4a that overlaps the cell stack 2 and the insulating buffer member 8 in the direction Z and one end of the main plate portion 4a on the restraining member 6 side. It has a protruding plate portion 4b. The protruding plate portion 4b is provided on the side opposite to the protruding plate portion 3b of the connecting member 3 in the direction X. The main plate portion 4a of the connecting member 4 is electrically connected to each negative electrode terminal of a plurality of storage cells 11 included in the cell stack 2. The protruding plate portion 4b of the connecting member 4 is continuously provided on the main plate portion 4a. The end of the protruding plate portion 4b along the direction X is located outside the restraining member 6. The connecting member 4 is separated from the restraining members 5 and 6 in the same manner as the connecting member 3.

拘束部材5,6のそれぞれは、セルスタック2に対して方向Xに沿った拘束力(拘束荷重)を付加する部材であり、略L字板形状を呈するエンドプレートである。拘束部材5は、方向Xにおけるセルスタック2の一端側に配置されており、セルスタック2に対して拘束荷重を付加する主部5aと、方向Zにおける主部5aの一端から方向Xに沿って延在する延在部5bとを有する。方向Xから見た主部5aの面積は、セルスタック2において方向Xに交差する面(セルスタック2において上記一端に位置する面)の面積以上である。第1実施形態では、セルスタック2において方向Xに交差する面は、方向Xにおいて主部5aに対して完全に重なっている。このため、主部5aは、セルスタック2において方向Xに交差する面の全体に対して拘束荷重を付加する。延在部5bは、セルスタック2から離れるように延在している。拘束部材6は、方向Xにおけるセルスタック2の他端側に配置されており、セルスタック2に対して拘束荷重を付加する主部6aと、方向Zにおける主部6aの一端から方向Xに沿って延在する延在部6bとを有する。方向Xから見た主部6aの面積は、主部5aと同様に、セルスタック2において方向Xに交差する面の面積以上である。第1実施形態では、セルスタック2において方向Xに交差する面は、方向Xにおいて主部6aに対して完全に重なっており、主部6aは、セルスタック2において方向Xに交差する面の全体に対して拘束荷重を付加する。延在部6bは、拘束部材5の延在部5bと同様に、セルスタック2から離れるように延在している。拘束部材5,6のそれぞれは、例えば金属製又は合金製の板材である。拘束部材5,6は、例えば締結部材(例えば、ボルト及びナット)等を用いた連結部材を介して互いに連結されてもよい。この場合、拘束部材5,6のそれぞれには、方向Xに沿って延在するボルト等の連結部材が挿通される貫通孔等が設けられてもよい。もしくは、拘束部材5,6のそれぞれは、図示しない基台又はケース(電池パック)等に固定されてもよい。この場合、拘束部材5,6のそれぞれには、これらを基台等に固定するための部材が挿通される貫通孔等が設けられてもよい。 Each of the restraint members 5 and 6 is a member that applies a restraint force (restraint load) along the direction X to the cell stack 2, and is an end plate having a substantially L-shaped plate shape. The restraint member 5 is arranged on one end side of the cell stack 2 in the direction X, and is arranged along the direction X from one end of the main portion 5a that applies a restraint load to the cell stack 2 and the main portion 5a in the direction Z. It has an extending portion 5b and an extending portion 5b. The area of the main portion 5a viewed from the direction X is equal to or larger than the area of the surface intersecting the direction X in the cell stack 2 (the surface located at one end of the cell stack 2). In the first embodiment, the surfaces intersecting the direction X in the cell stack 2 completely overlap the main portion 5a in the direction X. Therefore, the main portion 5a applies a restraining load to the entire surface intersecting the direction X in the cell stack 2. The extending portion 5b extends away from the cell stack 2. The restraint member 6 is arranged on the other end side of the cell stack 2 in the direction X, and is arranged along the direction X from one end of the main portion 6a that applies a restraint load to the cell stack 2 and the main portion 6a in the direction Z. It has an extending portion 6b that extends. The area of the main portion 6a viewed from the direction X is equal to or larger than the area of the surface intersecting the direction X in the cell stack 2, similarly to the main portion 5a. In the first embodiment, the surfaces intersecting the direction X in the cell stack 2 completely overlap the main portion 6a in the direction X, and the main portion 6a is the entire surface intersecting the direction X in the cell stack 2. A restraining load is applied to the load. The extending portion 6b extends away from the cell stack 2 in the same manner as the extending portion 5b of the restraining member 5. Each of the restraint members 5 and 6 is, for example, a plate material made of metal or alloy. The restraining members 5 and 6 may be connected to each other via a connecting member using, for example, a fastening member (for example, a bolt and a nut). In this case, each of the restraint members 5 and 6 may be provided with a through hole or the like through which a connecting member such as a bolt extending along the direction X is inserted. Alternatively, each of the restraint members 5 and 6 may be fixed to a base or a case (battery pack) (not shown) or the like. In this case, each of the restraint members 5 and 6 may be provided with a through hole or the like through which a member for fixing them to a base or the like is inserted.

絶縁緩衝部材7,8のそれぞれは、蓄電セル11の膨張を吸収するための絶縁部材であり、略直方体形状を呈している。絶縁緩衝部材7は、方向Xにおいてセルスタック2と拘束部材5との間に配置されている。絶縁緩衝部材8は、方向Xにおいてセルスタック2と拘束部材6との間に配置されている。絶縁緩衝部材7,8のそれぞれにおいて接続部材3,4に対向する端面は、セルスタック2において接続部材3,4に対向する端面に対して揃ってもよい。すなわち、上記端面同士は、面一になっていてもよい。絶縁緩衝部材7,8のそれぞれは、例えばポリプロピレン(PP)、ポリフェニレンサルファイド(PPS)、ナイロン66(PA66)を含む。絶縁緩衝部材7,8の少なくとも一つは、弾性を示してもよい。絶縁緩衝部材7,8の方向Xに沿った長さ(すなわち、厚さ)は、例えば1mm以上10mm以下である。第1実施形態では、絶縁緩衝部材7,8の厚さは、5mmである。 Each of the insulating buffer members 7 and 8 is an insulating member for absorbing the expansion of the power storage cell 11, and has a substantially rectangular parallelepiped shape. The insulating buffer member 7 is arranged between the cell stack 2 and the restraint member 5 in the direction X. The insulating buffer member 8 is arranged between the cell stack 2 and the restraint member 6 in the direction X. The end faces of the insulating buffer members 7 and 8 facing the connecting members 3 and 4 may be aligned with each other of the cell stack 2 with respect to the end faces facing the connecting members 3 and 4. That is, the end faces may be flush with each other. Each of the insulating buffer members 7 and 8 contains, for example, polypropylene (PP), polyphenylene sulfide (PPS), and nylon 66 (PA66). At least one of the insulating buffer members 7 and 8 may exhibit elasticity. The length (that is, the thickness) of the insulating buffer members 7 and 8 along the direction X is, for example, 1 mm or more and 10 mm or less. In the first embodiment, the thickness of the insulating buffer members 7 and 8 is 5 mm.

カバー部材9は、蓄電セル11の方向Zにおける移動を規制するための部材であり、略逆U字板形状を呈している。カバー部材9は、方向Yにおいて接続部材3,4の間に設けられており、且つ、接続部材3,4と離間している。カバー部材9は、方向Xに沿って延在するカバー部9aと、方向Xにおけるカバー部9aの一端から方向Zに沿って延在する第1取付部9bと、方向Xにおけるカバー部9aの他端から方向Zに沿って延在する第2取付部9cとを有する。第1取付部9bは、締結部材E等を介して拘束部材5に固定されている。第2取付部9cは、第1取付部9bと同様に、締結部材等を介して拘束部材6に固定されている。このため第1実施形態では、カバー部材9は、拘束部材5,6を連結するための連結部材として機能する。カバー部材9は、例えば金属板又は合金板である。なお、カバー部材9と、拘束部材5,6の少なくとも一方とは、一体化されてもよい。この場合、締結部材Eの数を低減できる。 The cover member 9 is a member for restricting the movement of the power storage cell 11 in the direction Z, and has a substantially inverted U-shaped plate shape. The cover member 9 is provided between the connecting members 3 and 4 in the direction Y, and is separated from the connecting members 3 and 4. The cover member 9 includes a cover portion 9a extending along the direction X, a first mounting portion 9b extending along the direction Z from one end of the cover portion 9a in the direction X, and a cover portion 9a in the direction X. It has a second mounting portion 9c extending from the end along the direction Z. The first mounting portion 9b is fixed to the restraining member 5 via a fastening member E or the like. The second mounting portion 9c is fixed to the restraining member 6 via a fastening member or the like, similarly to the first mounting portion 9b. Therefore, in the first embodiment, the cover member 9 functions as a connecting member for connecting the restraining members 5 and 6. The cover member 9 is, for example, a metal plate or an alloy plate. The cover member 9 and at least one of the restraint members 5 and 6 may be integrated. In this case, the number of fastening members E can be reduced.

次に、図2〜図4を参照しながら、セルスタック2に含まれる蓄電セル11と集電板との詳細について説明する。まず、蓄電セル11の構成の詳細について説明する。図2(a)は、蓄電セル及び当該蓄電セルに接触する集電板の概略斜視図であり、図2(b)は、蓄電セル及び当該蓄電セルに接触する集電板の概略側面図である。図3は、蓄電セルの概略断面図である。図4は、図3に示された破線で囲われた領域の拡大図である。 Next, the details of the storage cell 11 and the current collector plate included in the cell stack 2 will be described with reference to FIGS. 2 to 4. First, the details of the configuration of the power storage cell 11 will be described. FIG. 2A is a schematic perspective view of the power storage cell and the current collector plate in contact with the power storage cell, and FIG. 2B is a schematic side view of the power storage cell and the current collector plate in contact with the power storage cell. be. FIG. 3 is a schematic cross-sectional view of the power storage cell. FIG. 4 is an enlarged view of the area surrounded by the broken line shown in FIG.

図2(a),(b)に示されるように、蓄電セル11は、略直方体形状を呈する単電池であり、方向Zに沿って立設している。蓄電セル11においては、方向Xに沿った辺が最も短く、方向Yに沿った辺が最も長くなっている。換言すると、蓄電セル11においては、方向Yに沿った寸法D1は、方向Zに沿った寸法D2と、方向Xに沿った寸法(厚さ)D3とのいずれよりも長い。蓄電セル11は、例えばニッケル水素二次電池、リチウムイオン二次電池等の二次電池である。蓄電セル11は、電気二重層キャパシタでもよい。蓄電セル11は、全固体電池でもよい。第1実施形態では、蓄電セル11は、バイポーラ型のリチウムイオン二次電池である。蓄電セル11は、方向Xにおいて正極集電板12と負極集電板13とによって挟まれており、正極集電板12を介して接続部材3に電気的に接続されると共に、負極集電板13を介して接続部材4に電気的に接続される。蓄電セル11は、方向Xに交差する一対の主面14a,14b及び主面14a,14bをつなぐ外周面14cを有する電極積層体14と、少なくとも電極積層体14の外周面14c上に設けられる保持部材15とを備える。 As shown in FIGS. 2A and 2B, the power storage cell 11 is a cell cell having a substantially rectangular parallelepiped shape, and is erected along the direction Z. In the storage cell 11, the side along the direction X is the shortest, and the side along the direction Y is the longest. In other words, in the power storage cell 11, the dimension D1 along the direction Y is longer than both the dimension D2 along the direction Z and the dimension (thickness) D3 along the direction X. The storage cell 11 is a secondary battery such as a nickel hydrogen secondary battery or a lithium ion secondary battery. The storage cell 11 may be an electric double layer capacitor. The power storage cell 11 may be an all-solid-state battery. In the first embodiment, the storage cell 11 is a bipolar lithium ion secondary battery. The power storage cell 11 is sandwiched between the positive electrode current collector plate 12 and the negative electrode current collector plate 13 in the direction X, is electrically connected to the connecting member 3 via the positive electrode current collector plate 12, and is also a negative electrode current collector plate. It is electrically connected to the connecting member 4 via 13. The storage cell 11 has an electrode laminate 14 having a pair of main surfaces 14a and 14b intersecting in the direction X and an outer peripheral surface 14c connecting the main surfaces 14a and 14b, and a holding provided on at least the outer peripheral surface 14c of the electrode laminate 14. It includes a member 15.

図3及び図4に示されるように、電極積層体14は、複数のバイポーラ電極16(複数の第1電極)と、複数のセパレータ17とを有する。複数のバイポーラ電極16と、複数のセパレータ17とは、方向Xに沿って交互に配置されている。 As shown in FIGS. 3 and 4, the electrode laminate 14 has a plurality of bipolar electrodes 16 (a plurality of first electrodes) and a plurality of separators 17. The plurality of bipolar electrodes 16 and the plurality of separators 17 are alternately arranged along the direction X.

複数のバイポーラ電極16のそれぞれは、集電体21と、正極層22と、負極層23とを備える。集電体21は、方向Xに交差する一対の主面21a,21bを有する。集電体21の主面21a上には正極層22が設けられ、集電体21の主面21b上には負極層23が設けられる。このため、集電体21は、方向Xに沿って正極層22と負極層23とによって挟まれている。 Each of the plurality of bipolar electrodes 16 includes a current collector 21, a positive electrode layer 22, and a negative electrode layer 23. The current collector 21 has a pair of main surfaces 21a and 21b that intersect in the direction X. A positive electrode layer 22 is provided on the main surface 21a of the current collector 21, and a negative electrode layer 23 is provided on the main surface 21b of the current collector 21. Therefore, the current collector 21 is sandwiched between the positive electrode layer 22 and the negative electrode layer 23 along the direction X.

集電体21は、シート状の導電部材であり、略矩形状を呈している。集電体21は、例えば金属箔又は合金箔である。金属箔は、例えば銅箔、アルミニウム箔、チタン箔、もしくはニッケル箔である。集電体21が金属箔である場合、機械的強度を確保する観点から、当該金属箔はアルミニウム箔であってもよい。合金箔は、例えばステンレス鋼箔(SUS301、SUS304等)、もしくは上記金属の合金箔である。集電体21が合金箔である場合、もしくは集電体21がアルミニウム箔以外の金属箔である場合、集電体21の表面にはアルミニウムが被覆されていてもよい。集電体21の厚さは、例えば5μm以上20μm以下である。第1実施形態では、集電体21の厚さは10μmである。 The current collector 21 is a sheet-shaped conductive member and has a substantially rectangular shape. The current collector 21 is, for example, a metal foil or an alloy foil. The metal foil is, for example, copper foil, aluminum foil, titanium foil, or nickel foil. When the current collector 21 is a metal foil, the metal foil may be an aluminum foil from the viewpoint of ensuring mechanical strength. The alloy foil is, for example, a stainless steel foil (SUS301, SUS304, etc.) or an alloy foil of the above metal. When the current collector 21 is an alloy foil, or when the current collector 21 is a metal foil other than the aluminum foil, the surface of the current collector 21 may be coated with aluminum. The thickness of the current collector 21 is, for example, 5 μm or more and 20 μm or less. In the first embodiment, the thickness of the current collector 21 is 10 μm.

正極層22は、正極活物質と電解質とを含む層状部材であり、略矩形状を呈している。第1実施形態の正極活物質は、例えば複合酸化物、金属リチウム、及び硫黄等である。複合酸化物の組成には、例えばマンガン、チタン、ニッケル、コバルト、及びアルミニウムの少なくとも1つと、リチウムとが含まれる。電解質は、例えば液体電解質、固体電解質、固体高分子電解質、もしくはゲル状電解質である。固体電解質は、ジルコニア、もしくはβアルミナを含む。固体高分子電解質は、例えばポリエチレンオキシド(PEO)、ポリプロピレンオキシド(PPO)等のアルキレンオキシド系高分子化合物、もしくはこれらの共重合体を含む。加えて、正極層22が固体高分子電解質を含む場合、正極層22は、例えばイオン伝導性を高めるための支持塩、電子伝導性を高めるための導電助剤、粘度調整溶媒、重合開始剤の少なくともいずれかを含む。支持塩は、アルキレンオキシド系高分子化合物に容易に溶解可能な観点から、例えばリチウム塩である。リチウム塩は、例えばLiBF、LiPF、LiN(SOCF、LiN(SO、もしくはこれらの混合物である。導電助剤は、例えばアセチレンブラック、カーボンブラック、グラファイト等である。粘度調整溶媒は、例えばN−メチル−2−ピロリドン(NMP)等である。重合開始剤は、例えばアゾビスイソブチロニトリル(AIBN)等である。ゲル状電解質は、流動性を完全にもしくはほぼ完全に示さない。例えば、20℃におけるゲル状電解質の粘度は、0.1Pa・S以上である。The positive electrode layer 22 is a layered member containing a positive electrode active material and an electrolyte, and has a substantially rectangular shape. The positive electrode active material of the first embodiment is, for example, a composite oxide, metallic lithium, sulfur and the like. The composition of the composite oxide includes, for example, at least one of manganese, titanium, nickel, cobalt, and aluminum, and lithium. The electrolyte is, for example, a liquid electrolyte, a solid electrolyte, a solid polymer electrolyte, or a gel electrolyte. The solid electrolyte contains zirconia or β-alumina. The solid polymer electrolyte contains, for example, an alkylene oxide-based polymer compound such as polyethylene oxide (PEO) and polypropylene oxide (PPO), or a copolymer thereof. In addition, when the positive electrode layer 22 contains a solid polymer electrolyte, the positive electrode layer 22 may contain, for example, a supporting salt for increasing ionic conductivity, a conductive auxiliary agent for increasing electron conductivity, a viscosity adjusting solvent, and a polymerization initiator. Includes at least one. The supporting salt is, for example, a lithium salt from the viewpoint of being easily soluble in an alkylene oxide-based polymer compound. Lithium salts are, for example, LiBF 4 , LiPF 6 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , or a mixture thereof. The conductive auxiliary agent is, for example, acetylene black, carbon black, graphite or the like. The viscosity adjusting solvent is, for example, N-methyl-2-pyrrolidone (NMP) or the like. The polymerization initiator is, for example, azobisisobutyronitrile (AIBN) or the like. Gel-like electrolytes do not show complete or almost complete fluidity. For example, the viscosity of the gel electrolyte at 20 ° C. is 0.1 Pa · S or more.

負極層23は、負極活物質と電解質とを含む層状部材であり、略矩形状を呈している。第1実施形態の負極活物質は、例えば黒鉛、高配向性グラファイト、メソカーボンマイクロビーズ、ハードカーボン、ソフトカーボン等のカーボン、リチウム、ナトリウム等のアルカリ金属、金属化合物、リチウムと合金化が可能な元素(例えばシリコン、スズ等)及びその化合物、ホウ素添加炭素などである。負極層23の電解質としては、正極層22に含まれる電解質と同様のものが用いられる。 The negative electrode layer 23 is a layered member containing a negative electrode active material and an electrolyte, and has a substantially rectangular shape. The negative electrode active material of the first embodiment can be alloyed with, for example, graphite, highly oriented graphite, mesocarbon microbeads, carbon such as hard carbon and soft carbon, alkali metals such as lithium and sodium, metal compounds, and lithium. Elements (eg, silicon, tin, etc.) and their compounds, boron-added carbon, and the like. As the electrolyte of the negative electrode layer 23, the same electrolyte as that contained in the positive electrode layer 22 is used.

セパレータ17は、隣り合うバイポーラ電極16同士を隔てる層状部材であり、略矩形状を呈している。セパレータ17は、正極層22及び負極層23に含まれる電解質によって構成されている。あるいは、セパレータ17は、電解質が充填可能な多孔質膜であってもよい。セパレータ17が固体電解質によって構成される場合、セパレータ17は、略矩形板形状を呈してもよい。セパレータ17の厚さは、例えば1μm以上10μm以下である。第1実施形態では、セパレータ17の厚さは5μmである。 The separator 17 is a layered member that separates adjacent bipolar electrodes 16 from each other, and has a substantially rectangular shape. The separator 17 is composed of the electrolyte contained in the positive electrode layer 22 and the negative electrode layer 23. Alternatively, the separator 17 may be a porous membrane that can be filled with an electrolyte. When the separator 17 is composed of a solid electrolyte, the separator 17 may have a substantially rectangular plate shape. The thickness of the separator 17 is, for example, 1 μm or more and 10 μm or less. In the first embodiment, the thickness of the separator 17 is 5 μm.

方向Xにおける電極積層体14の両端には、集電体21が設けられている。方向Xにおいて電極積層体14の一端(図3における紙面右側)に配置される集電体21の主面21b上には、負極層が配置されていない。このため、当該集電体21は、電極積層体14(蓄電セル11)における正極端子に相当し、主面21bは、電極積層体14の主面14aに相当する。方向Xにおいて電極積層体14の他端(図3における紙面左側)に配置される集電体21の主面21a上には、正極層が配置されていない。このため、当該集電体21は、電極積層体14(蓄電セル11)における負極端子に相当し、主面21aは、電極積層体14の主面14bに相当する。 Current collectors 21 are provided at both ends of the electrode laminate 14 in the direction X. The negative electrode layer is not arranged on the main surface 21b of the current collector 21 arranged at one end of the electrode laminated body 14 (on the right side of the paper surface in FIG. 3) in the direction X. Therefore, the current collector 21 corresponds to the positive electrode terminal in the electrode laminate 14 (storage cell 11), and the main surface 21b corresponds to the main surface 14a of the electrode laminate 14. The positive electrode layer is not arranged on the main surface 21a of the current collector 21 arranged at the other end of the electrode laminated body 14 (the left side of the paper surface in FIG. 3) in the direction X. Therefore, the current collector 21 corresponds to the negative electrode terminal in the electrode laminate 14 (storage cell 11), and the main surface 21a corresponds to the main surface 14b of the electrode laminate 14.

保持部材15は、電極積層体14に含まれる複数のバイポーラ電極16、複数のセパレータ17、正極端子、及び負極端子を保持する部材であり、絶縁性を示す。第1実施形態では、保持部材15は、電極積層体14の外周面14cを封止するように略矩形枠形状を呈する封止部材、及び、電極積層体14内のバイポーラ電極16同士の短絡を防止する短絡防止部材としても機能し得る。保持部材15は、電極積層体14の外周面14cと接触する内周面15aと、内周面15aの反対側に位置する外周面15bと、方向Xに交差する側面15cとを有する。側面15cは、電極積層体14の主面14a,14bに対して略平行に設けられる。第1実施形態では、方向Xにおける一端(図3における紙面右側)に位置する側面15cは、主面14aと面一になっており、方向Xにおける他端(図3における紙面右側)に位置する側面15cは、主面14bと面一になっている。保持部材15は、例えば耐熱性を示す樹脂部材を含む。耐熱性を示す樹脂部材は、例えばポリイミド、PP、PPS、PA66等である。保持部材15の厚さT1は、例えば1mm以上10mm以下である。この場合、熱等による保持部材15の破損防止と、蓄電セル11の重量低減とを両立可能である。保持部材15の厚さは、方向Yもしくは方向Zに沿った内周面15aと外周面15bとの距離に相当する。第1実施形態では、保持部材15の厚さT1は略一定であり、約5mmである。このため、電極積層体14の方向Yに沿った寸法は、寸法D1−(厚さT1×2)に相当し、電極積層体14の方向Zに沿った寸法は、寸法D2−(厚さT1×2)に相当する。 The holding member 15 is a member that holds a plurality of bipolar electrodes 16, a plurality of separators 17, a positive electrode terminal, and a negative electrode terminal included in the electrode laminate 14, and exhibits insulating properties. In the first embodiment, the holding member 15 has a sealing member having a substantially rectangular frame shape so as to seal the outer peripheral surface 14c of the electrode laminate 14, and a short circuit between the bipolar electrodes 16 in the electrode laminate 14. It can also function as a short-circuit prevention member to prevent. The holding member 15 has an inner peripheral surface 15a that contacts the outer peripheral surface 14c of the electrode laminate 14, an outer peripheral surface 15b that is located on the opposite side of the inner peripheral surface 15a, and a side surface 15c that intersects the direction X. The side surface 15c is provided substantially parallel to the main surfaces 14a and 14b of the electrode laminate 14. In the first embodiment, the side surface 15c located at one end in the direction X (right side of the paper surface in FIG. 3) is flush with the main surface 14a and is located at the other end in the direction X (right side of the paper surface in FIG. 3). The side surface 15c is flush with the main surface 14b. The holding member 15 includes, for example, a resin member exhibiting heat resistance. The resin member exhibiting heat resistance is, for example, polyimide, PP, PPS, PA66 or the like. The thickness T1 of the holding member 15 is, for example, 1 mm or more and 10 mm or less. In this case, it is possible to prevent damage to the holding member 15 due to heat or the like and reduce the weight of the power storage cell 11. The thickness of the holding member 15 corresponds to the distance between the inner peripheral surface 15a and the outer peripheral surface 15b along the direction Y or the direction Z. In the first embodiment, the thickness T1 of the holding member 15 is substantially constant, about 5 mm. Therefore, the dimension along the direction Y of the electrode laminate 14 corresponds to the dimension D1- (thickness T1 × 2), and the dimension along the direction Z of the electrode laminate 14 is the dimension D2- (thickness T1). Corresponds to × 2).

次に、図2(a),(b)に戻って正極集電板12及び負極集電板13の構成について説明する。なお、図2(a),(b)に示される正極集電板12及び負極集電板13は、セルスタック2に配置する前の状態である。正極集電板12及び負極集電板13のそれぞれに対しては、セルスタック2に配置される前に、屈曲加工等が施される。屈曲加工等が実施された正極集電板12及び負極集電板13についての詳細は、後述する。第1実施形態では、正極集電板12と負極集電板13とは、互いに同一寸法及び同一形状を有する。正極集電板12と負極集電板13とは、互いに同一部材であってもよい。このため以下では、正極集電板12の寸法のみを説明し、負極集電板13の寸法については省略する。 Next, returning to FIGS. 2A and 2B, the configurations of the positive electrode current collector plate 12 and the negative electrode current collector plate 13 will be described. The positive electrode current collector plate 12 and the negative electrode current collector plate 13 shown in FIGS. 2A and 2B are in a state before being arranged in the cell stack 2. Each of the positive electrode current collector plate 12 and the negative electrode current collector plate 13 is subjected to bending or the like before being arranged in the cell stack 2. Details of the positive electrode current collector plate 12 and the negative electrode current collector plate 13 that have been bent or the like will be described later. In the first embodiment, the positive electrode current collector plate 12 and the negative electrode current collector plate 13 have the same dimensions and the same shape. The positive electrode current collector plate 12 and the negative electrode current collector plate 13 may be the same member. Therefore, in the following, only the dimensions of the positive electrode current collector plate 12 will be described, and the dimensions of the negative electrode current collector plate 13 will be omitted.

正極集電板12は、電極積層体14に接触する導電部材であり、板形状を呈している。正極集電板12は、例えば金属板又は合金板を加工して得られる導電部材である。正極集電板12は、方向Xに沿って蓄電セル11に隣接している。正極集電板12は、正極端子として機能する集電体21に接触する本体部(正極本体部)12aと、方向Zに沿って本体部12aの縁12bの一部から突出する突出部(正極突出部)12cとを有する。本体部12aは、方向Xにおいてバイポーラ電極16及びセパレータ17に重なる部分であり、略矩形状を呈している。第1実施形態では、正極集電板12が2つの蓄電セル11によって方向Xに沿って挟持される場合、本体部12aの一方面は一方の蓄電セル11に接触し、本体部12aの他方面は他方の蓄電セル11に接触する。このとき、正極集電板12は、各蓄電セル11の正極端子に接触しており、負極端子として機能する集電体21には接触していない。 The positive electrode current collector plate 12 is a conductive member that comes into contact with the electrode laminate 14, and has a plate shape. The positive electrode current collector plate 12 is a conductive member obtained by processing, for example, a metal plate or an alloy plate. The positive electrode current collector plate 12 is adjacent to the storage cell 11 along the direction X. The positive electrode current collector plate 12 has a main body portion (positive electrode main body portion) 12a that contacts the current collector 21 that functions as a positive electrode terminal, and a protruding portion (positive electrode main body portion) that protrudes from a part of the edge 12b of the main body portion 12a along the direction Z. It has a protruding portion) 12c. The main body portion 12a is a portion that overlaps the bipolar electrode 16 and the separator 17 in the direction X, and has a substantially rectangular shape. In the first embodiment, when the positive electrode current collector plate 12 is sandwiched by the two storage cells 11 along the direction X, one surface of the main body 12a comes into contact with one storage cell 11 and the other surface of the main body 12a. Contact the other storage cell 11. At this time, the positive electrode current collector plate 12 is in contact with the positive electrode terminal of each storage cell 11, and is not in contact with the current collector 21 functioning as the negative electrode terminal.

第1実施形態における本体部12aの縁12bは、方向Xから見て、縁12bは、保持部材15の内周面15aよりも内側に位置する。すなわち、縁12bは、方向Xから見て保持部材15に重ならない。このため、本体部12aは、方向Xから見て蓄電セル11の外周よりも内側に位置している。具体的には、本体部12aは、方向Xから見て保持部材15によって画成される領域よりも内側に位置している。したがって、本体部12aは方向Xにおいて蓄電セル11と重なり、且つ、保持部材15とは重なっていない。 The edge 12b of the main body 12a in the first embodiment is located inside the inner peripheral surface 15a of the holding member 15 when viewed from the direction X. That is, the edge 12b does not overlap the holding member 15 when viewed from the direction X. Therefore, the main body portion 12a is located inside the outer circumference of the storage cell 11 when viewed from the direction X. Specifically, the main body portion 12a is located inside the region defined by the holding member 15 when viewed from the direction X. Therefore, the main body 12a overlaps the power storage cell 11 in the direction X, and does not overlap the holding member 15.

方向Yに沿った本体部12aの長さを寸法D11とし、方向Zに沿った本体部12aの長さを寸法D12としたとき、寸法D11は寸法D1未満であり、寸法D12は寸法D2未満である。第1実施形態では、本体部12aは保持部材15とは離間している。換言すると、第1実施形態では、寸法D11は、方向Yに沿った電極積層体14の寸法(寸法D1−(厚さT1×2))に相当する(すなわち、D11=D1−T1×2)。また、寸法D12は、方向Zに沿った電極積層体14の寸法(寸法D2−(厚さT1×2))に相当する(すなわち、D12=D2−T1×2)。もしくは、寸法D11は、方向Yに沿った電極積層体14の寸法(寸法D1−(厚さT1×2))未満(すなわち、D11<D1−T1×2)であり、寸法D12は、方向Zに沿った電極積層体14の寸法(寸法D2−(厚さT1×2))未満(すなわち、D12<D2−T1×2)である。これらの場合、拘束部材5,6から本体部12aに伝達される方向Xに沿った拘束荷重が、本体部12aから保持部材15へ分散することを防止できる。これにより、上記拘束荷重が電極積層体14へ良好に伝達できる。なお、寸法D11,D12のそれぞれの下限値は、例えば本体部12aが正極層22及び負極層23の全体に上記拘束荷重を印加できる値である。 When the length of the main body 12a along the direction Y is the dimension D11 and the length of the main body 12a along the direction Z is the dimension D12, the dimension D11 is less than the dimension D1 and the dimension D12 is less than the dimension D2. be. In the first embodiment, the main body 12a is separated from the holding member 15. In other words, in the first embodiment, the dimension D11 corresponds to the dimension of the electrode laminate 14 along the direction Y (dimension D1- (thickness T1 × 2)) (that is, D11 = D1-T1 × 2). .. Further, the dimension D12 corresponds to the dimension (dimension D2- (thickness T1 × 2)) of the electrode laminate 14 along the direction Z (that is, D12 = D2-T1 × 2). Alternatively, the dimension D11 is less than the dimension (dimension D1- (thickness T1 × 2)) of the electrode laminate 14 along the direction Y (that is, D11 <D1-T1 × 2), and the dimension D12 is the direction Z. It is less than the dimension (dimension D2- (thickness T1 × 2)) of the electrode laminate 14 along with (that is, D12 <D2-T1 × 2). In these cases, it is possible to prevent the restraint load transmitted from the restraint members 5 and 6 to the main body portion 12a along the direction X from being dispersed from the main body portion 12a to the holding member 15. As a result, the restraint load can be satisfactorily transmitted to the electrode laminate 14. The lower limit of each of the dimensions D11 and D12 is, for example, a value at which the main body 12a can apply the restraining load to the entire positive electrode layer 22 and the negative electrode layer 23.

突出部12cの方向Zに沿った寸法(突出量)は、保持部材15の厚さT1よりも大きい。また、突出部12cの方向Zに沿った寸法は、厚さT1と、蓄電セル11の寸法D3の半分との合計未満である。後述する図5(a)、図10等に示されるように、突出部12cが屈曲されることによって、正極集電板12を蓄電セル11に掛止できる。これにより、セルスタック2を組み立てるとき、各正極集電板12を容易に位置決めできる。突出部12cの方向Yに沿った寸法は、蓄電セル11の寸法D1の半分未満である。第1実施形態では、方向Yにおいて、突出部12cの寸法は、電極積層体14の方向Yに沿った寸法の半分未満である。 The dimension (protrusion amount) of the protrusion 12c along the direction Z is larger than the thickness T1 of the holding member 15. Further, the dimension of the protruding portion 12c along the direction Z is less than the sum of the thickness T1 and half of the dimension D3 of the storage cell 11. As shown in FIGS. 5 (a) and 10 to be described later, the positive electrode current collector plate 12 can be hooked on the power storage cell 11 by bending the protruding portion 12c. Thereby, when assembling the cell stack 2, each positive electrode current collector plate 12 can be easily positioned. The dimension of the protrusion 12c along the direction Y is less than half of the dimension D1 of the storage cell 11. In the first embodiment, in the direction Y, the dimension of the protrusion 12c is less than half of the dimension of the electrode laminate 14 along the direction Y.

負極集電板13は、電極積層体14に接触する導電部材であり、板形状を呈している。負極集電板13は、例えば金属板又は合金板を加工して得られる導電部材である。負極集電板13は、正極集電板12と同様に方向Xに沿って蓄電セル11に隣接している。負極集電板13は、負極端子として機能する集電体21に接触する本体部(負極本体部)13aと、方向Zに沿って本体部13aの縁13bの一部から突出する突出部(負極突出部)13cとを有する。本体部13aは、方向Xにおいてバイポーラ電極16及びセパレータ17に重なる部分であり、略矩形状を呈している。第1実施形態では、負極集電板13が2つの蓄電セル11によって方向Xに沿って挟持される場合、本体部13aの一方面は一方の蓄電セル11に接触し、本体部13aの他方面は他方の蓄電セル11に接触する。このとき、負極集電板13は、各蓄電セル11の負極端子に接触しており、正極端子には接触していない。上述したように第1実施形態では、正極集電板12は、各蓄電セル11の正極端子にそれぞれ接触する。このため第1実施形態では、セルスタック2内の複数の蓄電セル11は、正極集電板12及び負極集電板13を介して並列接続されている。また第1実施形態では、本体部13aの縁13bは、保持部材15の内周面15aよりも内側に位置する。このため、本体部13aは、方向Xから見て蓄電セル11の外周よりも内側に位置しているので、方向Xにおいて蓄電セル11と重なっており、且つ、保持部材15とは重なっていない。換言すると、本体部13aは、方向Xから見て保持部材15によって画成される領域よりも内側に位置している。 The negative electrode current collector plate 13 is a conductive member that comes into contact with the electrode laminate 14, and has a plate shape. The negative electrode current collector plate 13 is a conductive member obtained by processing, for example, a metal plate or an alloy plate. The negative electrode current collector plate 13 is adjacent to the power storage cell 11 along the direction X like the positive electrode current collector plate 12. The negative electrode current collector plate 13 has a main body portion (negative electrode main body portion) 13a that contacts the current collector 21 that functions as a negative electrode terminal, and a protruding portion (negative electrode) that protrudes from a part of the edge 13b of the main body portion 13a along the direction Z. It has a protruding portion) 13c. The main body 13a is a portion that overlaps the bipolar electrode 16 and the separator 17 in the direction X, and has a substantially rectangular shape. In the first embodiment, when the negative electrode current collector plate 13 is sandwiched by two storage cells 11 along the direction X, one surface of the main body 13a comes into contact with one storage cell 11 and the other surface of the main body 13a. Contact the other storage cell 11. At this time, the negative electrode current collector plate 13 is in contact with the negative electrode terminals of each storage cell 11, and is not in contact with the positive electrode terminals. As described above, in the first embodiment, the positive electrode current collector plate 12 comes into contact with the positive electrode terminals of each storage cell 11. Therefore, in the first embodiment, the plurality of storage cells 11 in the cell stack 2 are connected in parallel via the positive electrode current collector plate 12 and the negative electrode current collector plate 13. Further, in the first embodiment, the edge 13b of the main body portion 13a is located inside the inner peripheral surface 15a of the holding member 15. Therefore, since the main body 13a is located inside the outer periphery of the power storage cell 11 when viewed from the direction X, it overlaps with the power storage cell 11 in the direction X and does not overlap with the holding member 15. In other words, the main body 13a is located inside the region defined by the holding member 15 when viewed from the direction X.

負極集電板13の突出部13cは、方向Zにおいて正極集電板12の突出部12cが突出する方向に沿って突出している。この突出部13cは、方向Xにおいて突出部12cと重なっておらず、方向Yにおいて突出部12cと距離を置いて設けられている。すなわち方向Xから見て、突出部12c,13cは、方向Yにおいて互いに離間している。第1実施形態では、突出部12cは蓄電セル11の方向Yにおける一端側(図2(a)においては紙面左側)に設けられ、突出部13cは蓄電セル11の方向Yにおける他端側(図2(a)においては紙面右側)に設けられる。突出部12c,13cの突出量は、少なくとも保持部材15の厚さよりも大きくなっている。 The protruding portion 13c of the negative electrode current collector plate 13 projects along the direction in which the protruding portion 12c of the positive electrode current collector plate 12 protrudes in the direction Z. The protruding portion 13c does not overlap the protruding portion 12c in the direction X, and is provided at a distance from the protruding portion 12c in the direction Y. That is, when viewed from the direction X, the protruding portions 12c and 13c are separated from each other in the direction Y. In the first embodiment, the protruding portion 12c is provided on one end side in the direction Y of the storage cell 11 (on the left side of the paper surface in FIG. 2A), and the protruding portion 13c is provided on the other end side in the direction Y of the storage cell 11 (FIG. 2). In 2 (a), it is provided on the right side of the paper surface). The amount of protrusion of the protruding portions 12c and 13c is at least larger than the thickness of the holding member 15.

図5(a)は、図1のVa−Va線に沿った概略断面図であり、図5(b)は図5(a)にて示される接続部材3の概略平面図である。図5(a)に示されるように、セルスタック2内では、複数の蓄電セル11と複数の集電板とが方向Xに沿って交互に配列されている。より具体的には、蓄電セル11、正極集電板12、蓄電セル11、負極集電板13の順に配置されたグループが方向Xに沿って連続して並ぶことによって、セルスタック2が構成されている。各蓄電セル11及び各集電板には、拘束部材5によって方向Xに沿った拘束力が、絶縁緩衝部材7を介して付加されている。 5 (a) is a schematic cross-sectional view taken along the line Va-Va of FIG. 1, and FIG. 5 (b) is a schematic plan view of the connecting member 3 shown in FIG. 5 (a). As shown in FIG. 5A, in the cell stack 2, a plurality of storage cells 11 and a plurality of current collector plates are alternately arranged along the direction X. More specifically, the cell stack 2 is formed by arranging the groups arranged in the order of the power storage cell 11, the positive electrode current collector plate 12, the power storage cell 11, and the negative electrode current collector plate 13 continuously along the direction X. ing. A binding force along the direction X is applied to each storage cell 11 and each current collecting plate by the restraining member 5 via the insulating buffer member 7.

図5(a)に示される、方向Xにおいて最も外側に位置する蓄電セル11に接触する正極集電板12は、当該蓄電セル11と絶縁緩衝部材7との間に配置されており、且つ、当該正極集電板12の本体部12aは、絶縁緩衝部材7の主面7aと接触している。以下では、図5(a)に示される、方向Xにおいて最も外側に位置する正極集電板12を最外正極集電板12A(第2集電板)と呼称する。なお、絶縁緩衝部材7は、方向Xに交差すると共に本体部12aに接触する主面7aと、主面7aの縁から方向Xに沿って延在する外周面7bとを有する。 The positive electrode current collector plate 12 in contact with the storage cell 11 located on the outermost side in the direction X shown in FIG. 5A is arranged between the power storage cell 11 and the insulating buffer member 7 and is arranged. The main body 12a of the positive electrode current collector plate 12 is in contact with the main surface 7a of the insulating buffer member 7. Hereinafter, the positive electrode current collector plate 12 located on the outermost side in the direction X shown in FIG. 5A is referred to as the outermost positive electrode current collector plate 12A (second current collector plate). The insulating buffer member 7 has a main surface 7a that intersects the direction X and contacts the main body portion 12a, and an outer peripheral surface 7b that extends from the edge of the main surface 7a along the direction X.

セルスタック2内の各正極集電板12の突出部12cには、屈曲加工が施されている。最外正極集電板12Aを除く正極集電板12の突出部12c(第1突出部)は、保持部材15の側面15cと外周面15bに沿うように折り曲げられている。これらの正極集電板12の突出部12cは、方向Zに沿って延在する基端部12d(第1基端部)、方向Xに沿って延在すると共に方向Zにおいて蓄電セル11よりも外側に位置する先端部12e(第1先端部)、及び、基端部12dと先端部12eとをつなぐ屈曲部12f(第1屈曲部)を有する。また、最外正極集電板12Aの突出部12c(第1もしくは第2突出部)は、絶縁緩衝部材7の主面7aと外周面7bとに沿うように折り曲げられている。この最外正極集電板12Aの突出部12cは、他の正極集電板12と同様に、方向Zに沿って延在する基端部12d(第2基端部)、方向Xに沿って延在すると共に方向Zにおいて絶縁緩衝部材7よりも外側に位置する先端部12e(第2先端部)、及び、基端部12dと先端部12eとをつなぐ屈曲部12f(第2屈曲部)を有する。 The protruding portion 12c of each positive electrode current collector plate 12 in the cell stack 2 is bent. The protruding portion 12c (first protruding portion) of the positive electrode current collecting plate 12 excluding the outermost positive electrode current collecting plate 12A is bent along the side surface 15c and the outer peripheral surface 15b of the holding member 15. The protruding portion 12c of these positive electrode current collector plates 12 extends along the direction Z, the base end portion 12d (first base end portion), extends along the direction X, and is larger than the storage cell 11 in the direction Z. It has a tip portion 12e (first tip portion) located on the outside, and a bent portion 12f (first bent portion) connecting the base end portion 12d and the tip portion 12e. Further, the protruding portion 12c (first or second protruding portion) of the outermost positive electrode current collector plate 12A is bent along the main surface 7a and the outer peripheral surface 7b of the insulating buffer member 7. The protruding portion 12c of the outermost positive electrode current collector plate 12A, like the other positive electrode current collector plates 12, has a base end portion 12d (second base end portion) extending along the direction Z and a direction X. A tip portion 12e (second tip portion) that extends and is located outside the insulating buffer member 7 in the direction Z, and a bent portion 12f (second bent portion) that connects the base end portion 12d and the tip portion 12e. Have.

突出部12cの基端部12dは、方向Xにおいて電極積層体14とは重ならず、且つ、保持部材15の側面15cに沿って設けられている。第1実施形態では、各基端部12dの全体は、対応する保持部材15の側面15cに密着している。加えて、最外正極集電板12Aの基端部12dの全体は、絶縁緩衝部材7の主面7aに密着している。各屈曲部12fは、方向Yから見て略直角になるように折り曲げられている。 The base end portion 12d of the projecting portion 12c does not overlap with the electrode laminate 14 in the direction X, and is provided along the side surface 15c of the holding member 15. In the first embodiment, the entire base end portion 12d is in close contact with the side surface 15c of the corresponding holding member 15. In addition, the entire base end portion 12d of the outermost positive electrode current collector plate 12A is in close contact with the main surface 7a of the insulating buffer member 7. Each bent portion 12f is bent so as to be substantially at a right angle when viewed from the direction Y.

最外正極集電板12Aを除く正極集電板12(第1集電板)における突出部12cの先端部12eは、方向Zにおいて電極積層体14及び接続部材3と重なり、且つ、保持部材15の外周面15bに沿って延在している。第1実施形態では、当該先端部12eの全体は、保持部材15の外周面15bと、接続部材3との両方に密着している。これらの先端部12eと、対応する保持部材15と、接続部材3とが方向Zに沿って重なり、且つ、保持部材15と当該先端部12eとが互いに接触する第1領域R1上には、溶接部W1(第1溶接部)が設けられる。溶接部W1は、正極集電板12と接続部材3とを接合する部分であり、先端部12eと接続部材3とが接触している箇所に設けられる。溶接部W1は、例えばレーザ溶接等によって形成される。溶接部W1が形成されるとき、保持部材15が溶接工程における台座としても機能する。先端部12eの方向Xに沿った長さは、保持部材15の方向Xに沿った長さの10%以上90%以下である。この場合、先端部12eに溶接部W1を形成する領域を確保できる。第1実施形態では、先端部12eの方向Xに沿った長さは、保持部材15の方向Xに沿った長さの40%である。上述したように先端部12eは保持部材15の外周面15bに沿って延在していることから、先端部12eと接続部材3との接合は、保持部材15の外側にて実施される。 The tip portion 12e of the protruding portion 12c of the positive electrode current collector plate 12 (first current collector plate) excluding the outermost positive electrode current collector plate 12A overlaps with the electrode laminate 14 and the connecting member 3 in the direction Z, and is a holding member 15. Extends along the outer peripheral surface 15b of the. In the first embodiment, the entire tip portion 12e is in close contact with both the outer peripheral surface 15b of the holding member 15 and the connecting member 3. Welding is performed on the first region R1 in which the tip portion 12e, the corresponding holding member 15, and the connecting member 3 overlap along the direction Z, and the holding member 15 and the tip portion 12e are in contact with each other. A portion W1 (first welded portion) is provided. The welded portion W1 is a portion for joining the positive electrode current collector plate 12 and the connecting member 3, and is provided at a portion where the tip portion 12e and the connecting member 3 are in contact with each other. The welded portion W1 is formed by, for example, laser welding. When the welded portion W1 is formed, the holding member 15 also functions as a pedestal in the welding process. The length of the tip portion 12e along the direction X is 10% or more and 90% or less of the length of the holding member 15 along the direction X. In this case, a region for forming the welded portion W1 can be secured at the tip portion 12e. In the first embodiment, the length of the tip portion 12e along the direction X is 40% of the length of the holding member 15 along the direction X. Since the tip portion 12e extends along the outer peripheral surface 15b of the holding member 15 as described above, the joining between the tip portion 12e and the connecting member 3 is performed outside the holding member 15.

最外正極集電板12Aにおける突出部12cの先端部12eは、蓄電セル11から離れるように方向Xに沿って延在している。このため、当該先端部12eは、方向Zにおいて絶縁緩衝部材7と重なり、且つ、絶縁緩衝部材7の外周面7bに沿って延在している。第1実施形態では、当該先端部12eの全体は、絶縁緩衝部材7の外周面7bと、接続部材3との両方に密着している。この先端部12eと、絶縁緩衝部材7と、接続部材3とが方向Zに沿って重なり、且つ、絶縁緩衝部材7と当該先端部12eとが互いに接触する第2領域R2上には、溶接部W2(第2溶接部)が設けられる。溶接部W2は、最外正極集電板12Aと接続部材3とを接合する部分である。溶接部W2は、溶接部W1と同様に、例えばレーザ溶接等によって形成される。溶接部W2が形成されるとき、絶縁緩衝部材7が溶接工程における台座としても機能する。最外正極集電板12Aの先端部12eの方向Xに沿った長さは、絶縁緩衝部材7の厚さの10%以上90%以下である。この場合、当該先端部12eに溶接部W2を形成するための領域を確保できる。なお、絶縁緩衝部材7の厚さは、方向Xに沿った絶縁緩衝部材7の長さに相当する。第1実施形態では、最外正極集電板12Aの先端部12eの方向Xに沿った長さは、絶縁緩衝部材7の厚さの80%である。 The tip portion 12e of the protruding portion 12c of the outermost positive electrode current collector plate 12A extends along the direction X so as to be away from the storage cell 11. Therefore, the tip portion 12e overlaps with the insulating buffer member 7 in the direction Z and extends along the outer peripheral surface 7b of the insulating buffer member 7. In the first embodiment, the entire tip portion 12e is in close contact with both the outer peripheral surface 7b of the insulating buffer member 7 and the connecting member 3. A welded portion is formed on a second region R2 in which the tip portion 12e, the insulating buffer member 7, and the connecting member 3 overlap along the direction Z, and the insulating buffer member 7 and the tip portion 12e are in contact with each other. W2 (second welded portion) is provided. The welded portion W2 is a portion that joins the outermost positive electrode current collector plate 12A and the connecting member 3. Like the welded portion W1, the welded portion W2 is formed by, for example, laser welding. When the welded portion W2 is formed, the insulating buffer member 7 also functions as a pedestal in the welding process. The length of the outermost positive electrode current collector plate 12A along the direction X of the tip portion 12e is 10% or more and 90% or less of the thickness of the insulating buffer member 7. In this case, a region for forming the welded portion W2 can be secured at the tip portion 12e. The thickness of the insulating buffer member 7 corresponds to the length of the insulating buffer member 7 along the direction X. In the first embodiment, the length of the tip portion 12e of the outermost positive electrode current collector plate 12A along the direction X is 80% of the thickness of the insulating buffer member 7.

最外正極集電板12Aを除く正極集電板12の先端部12eと、最外正極集電板12Aの先端部12eとは、互いに同一方向に沿って延在している。具体的には、上記先端部12eは、方向Xの一方側に向かって延在している。 The tip portion 12e of the positive electrode current collector plate 12 excluding the outermost positive electrode current collector plate 12A and the tip portion 12e of the outermost positive electrode current collector plate 12A extend along the same direction. Specifically, the tip portion 12e extends toward one side of the direction X.

図6(a)は、図1のVIa−VIa線に沿った概略断面図であり、図6(b)は図6(a)にて示される接続部材4の概略平面図である。図6(a)に示される、方向Xにおいて最も外側に位置する蓄電セル11に接触する負極集電板13は、蓄電セル11と絶縁緩衝部材8との間に配置されており、且つ、当該負極集電板13の本体部13aは、絶縁緩衝部材8の主面8aと接触している。以下では、図6(a)に示される、方向Xにおいて最も外側に位置する負極集電板13を最外負極集電板13Aとも呼称する。 6 (a) is a schematic cross-sectional view taken along the line VIa-VIa of FIG. 1, and FIG. 6 (b) is a schematic plan view of the connecting member 4 shown in FIG. 6 (a). The negative electrode current collector plate 13 in contact with the storage cell 11 located on the outermost side in the direction X shown in FIG. 6A is arranged between the storage cell 11 and the insulating buffer member 8 and is said to be the same. The main body 13a of the negative electrode current collector plate 13 is in contact with the main surface 8a of the insulating buffer member 8. Hereinafter, the negative electrode current collector plate 13 located on the outermost side in the direction X shown in FIG. 6A is also referred to as the outermost negative electrode current collector plate 13A.

セルスタック2内の各負極集電板13の突出部13cには、屈曲加工が施されている。最外負極集電板13Aを除く負極集電板13の突出部13cは、保持部材15の側面15cと外周面15bに沿うように折り曲げられている。また、最外負極集電板13Aの突出部13cは、絶縁緩衝部材8の主面8a及び外周面8bに沿うように折り曲げられている。最外負極集電板13Aを含む各負極集電板13の突出部13cは、方向Zに沿って延在する基端部13d、方向Xに沿って延在すると共に方向Zにおいて蓄電セル11よりも外側に位置する先端部13e、及び、基端部13dと先端部13eとをつなぐ屈曲部13fを有する。 The protruding portion 13c of each negative electrode current collector plate 13 in the cell stack 2 is bent. The protruding portion 13c of the negative electrode current collector plate 13 excluding the outermost negative electrode current collector plate 13A is bent along the side surface 15c and the outer peripheral surface 15b of the holding member 15. Further, the protruding portion 13c of the outermost negative electrode current collector plate 13A is bent along the main surface 8a and the outer peripheral surface 8b of the insulating buffer member 8. The protruding portion 13c of each negative electrode current collector plate 13 including the outermost negative electrode current collector plate 13A extends from the base end portion 13d extending along the direction Z, extending along the direction X, and from the storage cell 11 in the direction Z. Also has a tip portion 13e located on the outside and a bent portion 13f connecting the base end portion 13d and the tip portion 13e.

突出部13cの基端部13dは、方向Xにおいて電極積層体14とは重ならず、且つ、保持部材15の側面15cに沿って設けられている。第1実施形態では、各基端部13dの全体は、対応する保持部材15の側面15cに密着している。加えて、最外負極集電板13Aの基端部13dの全体は、絶縁緩衝部材8の主面8aに密着している。各屈曲部13fは、方向Yから見て略直角になるように折り曲げられている。 The base end portion 13d of the protruding portion 13c does not overlap with the electrode laminate 14 in the direction X, and is provided along the side surface 15c of the holding member 15. In the first embodiment, the entire base end portion 13d is in close contact with the side surface 15c of the corresponding holding member 15. In addition, the entire base end portion 13d of the outermost negative electrode current collector plate 13A is in close contact with the main surface 8a of the insulating buffer member 8. Each bent portion 13f is bent so as to be substantially at a right angle when viewed from the direction Y.

最外負極集電板13Aを除く負極集電板13における突出部13cの先端部13eは、方向Zにおいて電極積層体14及び接続部材4と重なり、且つ、保持部材15の外周面15bに沿って延在している。第1実施形態では、当該先端部13eの全体は、保持部材15の外周面15bと、接続部材4との両方に密着している。これらの先端部13eと、対応する保持部材15と、接続部材4とが方向Zに沿って重なり、且つ、保持部材15と当該先端部13eとが互いに接触する第3領域R3上には、溶接部W3が設けられる。溶接部W3は、負極集電板13と接続部材4とを接合する部分であり、先端部13eと接続部材4とが接触している箇所に設けられる。溶接部W3は、例えばレーザ溶接等によって形成される。溶接部W3が形成されるとき、保持部材15が溶接工程における台座としても機能する。先端部13eの方向Xに沿った長さは、保持部材15の方向Xに沿った長さの10%以上90%以下である。この場合、先端部13eに溶接部W3を形成する領域を確保できる。第1実施形態では、先端部13eの方向Xに沿った長さは、保持部材15の方向Xに沿った長さの40%である。上述したように先端部13eは保持部材15の外周面15bに沿って延在していることから、先端部13eと接続部材4との接合もまた、保持部材15の外側にて実施される。 The tip portion 13e of the protruding portion 13c of the negative electrode current collector plate 13 excluding the outermost negative electrode current collector plate 13A overlaps the electrode laminate 14 and the connecting member 4 in the direction Z, and is along the outer peripheral surface 15b of the holding member 15. It is postponed. In the first embodiment, the entire tip portion 13e is in close contact with both the outer peripheral surface 15b of the holding member 15 and the connecting member 4. These tip portions 13e, the corresponding holding member 15, and the connecting member 4 overlap along the direction Z, and the holding member 15 and the tip portion 13e are welded on the third region R3 where they are in contact with each other. Part W3 is provided. The welded portion W3 is a portion for joining the negative electrode current collector plate 13 and the connecting member 4, and is provided at a portion where the tip portion 13e and the connecting member 4 are in contact with each other. The welded portion W3 is formed by, for example, laser welding. When the welded portion W3 is formed, the holding member 15 also functions as a pedestal in the welding process. The length of the tip portion 13e along the direction X is 10% or more and 90% or less of the length of the holding member 15 along the direction X. In this case, a region for forming the welded portion W3 can be secured at the tip portion 13e. In the first embodiment, the length of the tip portion 13e along the direction X is 40% of the length of the holding member 15 along the direction X. Since the tip portion 13e extends along the outer peripheral surface 15b of the holding member 15 as described above, the joining between the tip portion 13e and the connecting member 4 is also carried out outside the holding member 15.

最外負極集電板13Aにおける突出部13cの先端部13eは、蓄電セル11から離れるように方向Xに沿って延在している。このため、当該先端部13eは、方向Zにおいて絶縁緩衝部材8と重なり、且つ、絶縁緩衝部材8の外周面8bに沿って延在している。第1実施形態では、当該先端部13eの全体は、絶縁緩衝部材8の外周面8bと、接続部材4との両方に密着している。この先端部13eと、絶縁緩衝部材8と、接続部材4とが方向Zに沿って重なり、且つ、絶縁緩衝部材8と当該先端部13eとが互いに接触する第4領域R4上には、溶接部W4が設けられる。溶接部W4は、最外負極集電板13Aと接続部材4とを接合する部分である。溶接部W4は、溶接部W3と同様に、例えばレーザ溶接等によって形成される。溶接部W4が形成されるとき、絶縁緩衝部材8が溶接工程における台座としても機能する。最外負極集電板13Aの先端部13eの方向Xに沿った長さは、絶縁緩衝部材8の方向Xに沿った厚さの10%以上90%以下である。この場合、当該先端部13eに溶接部W4を形成するための領域を確保できる。第1実施形態では、最外負極集電板13Aの先端部13eの方向Xに沿った長さは、絶縁緩衝部材8の厚さの80%である。 The tip portion 13e of the protruding portion 13c of the outermost negative electrode current collector plate 13A extends along the direction X so as to be away from the storage cell 11. Therefore, the tip portion 13e overlaps with the insulating buffer member 8 in the direction Z and extends along the outer peripheral surface 8b of the insulating buffer member 8. In the first embodiment, the entire tip portion 13e is in close contact with both the outer peripheral surface 8b of the insulating buffer member 8 and the connecting member 4. A welded portion is formed on a fourth region R4 in which the tip portion 13e, the insulating buffer member 8, and the connecting member 4 overlap along the direction Z, and the insulating buffer member 8 and the tip portion 13e are in contact with each other. W4 is provided. The welded portion W4 is a portion that joins the outermost negative electrode current collector plate 13A and the connecting member 4. Like the welded portion W3, the welded portion W4 is formed by, for example, laser welding. When the welded portion W4 is formed, the insulating buffer member 8 also functions as a pedestal in the welding process. The length of the tip portion 13e of the outermost negative electrode current collector plate 13A along the direction X is 10% or more and 90% or less of the thickness of the insulating buffer member 8 along the direction X. In this case, a region for forming the welded portion W4 can be secured at the tip portion 13e. In the first embodiment, the length of the tip portion 13e of the outermost negative electrode current collector plate 13A along the direction X is 80% of the thickness of the insulating buffer member 8.

最外負極集電板13Aを除く負極集電板13の先端部13eと、最外負極集電板13Aの先端部13eとは、互いに同一方向に沿って延在している。具体的には、上記先端部13eは、方向Xの他方側に向かって延在している。このため、各正極集電板12の先端部12eの延在方向と、各負極集電板13の先端部13eの延在方向とは、互いに反対になっている。 The tip portion 13e of the negative electrode current collector plate 13 excluding the outermost negative electrode current collector plate 13A and the tip portion 13e of the outermost negative electrode current collector plate 13A extend along the same direction. Specifically, the tip portion 13e extends toward the other side in the direction X. Therefore, the extending direction of the tip portion 12e of each positive electrode current collector plate 12 and the extending direction of the tip portion 13e of each negative electrode current collector plate 13 are opposite to each other.

図7は、第1実施形態に係る蓄電装置の使用例を示す模式断面図である。図7に示されるように、蓄電装置1は、例えば電池パック60に収容された状態にて自動車等の車両100内に載置される。電池パック60は、複数の蓄電セル11を含むセルスタック2を収容する容器であり、車両100に固定されている。第1実施形態では、蓄電装置1は、車両100において前部座席101及び後部座席102等が設けられた乗車室110の下部に載置される。すなわち、蓄電装置1は、乗車室110の床下に収容される。図7に示される使用例では、方向Xは車両100の前後方向に相当し、方向Yは車両100の幅方向に相当し、方向Zは車両100の高さ方向に相当する。なお、蓄電装置1は、乗車室110の下部に載置されているが、これに限らず、車両100内であればよい。 FIG. 7 is a schematic cross-sectional view showing a usage example of the power storage device according to the first embodiment. As shown in FIG. 7, the power storage device 1 is placed in a vehicle 100 such as an automobile in a state of being housed in, for example, a battery pack 60. The battery pack 60 is a container for accommodating the cell stack 2 including a plurality of storage cells 11, and is fixed to the vehicle 100. In the first embodiment, the power storage device 1 is mounted on the lower part of the passenger compartment 110 provided with the front seat 101, the rear seat 102, and the like in the vehicle 100. That is, the power storage device 1 is housed under the floor of the passenger compartment 110. In the usage example shown in FIG. 7, the direction X corresponds to the front-rear direction of the vehicle 100, the direction Y corresponds to the width direction of the vehicle 100, and the direction Z corresponds to the height direction of the vehicle 100. The power storage device 1 is mounted in the lower part of the passenger compartment 110, but is not limited to this, and may be in the vehicle 100.

図8は、図7に示される蓄電装置の要部概略断面図である。図8に示されるように、蓄電装置1のセルスタック2は、電池パック60に収容されており、且つ、電池パック60の底面61上に配置されている。このため、セルスタック2に含まれる各蓄電セル11は、電池パック60の底面61上に配置されている。第1実施形態では、各蓄電セル11の保持部材15は、底面61に接触している。拘束部材5の延在部5bは、方向Zにおいて底面61側に位置する主部5aの一端から方向Xに沿って延在している。具体的には、各延在部5bは、方向Xにおいてセルスタック2から離れるように延在している。延在部5bは、例えば締結部材もしくは接着剤等によって底面61に固定されている。なお、第1実施形態では、拘束部材5は、電池パック60の側面62に対して離間しているがこれに限られない。 FIG. 8 is a schematic cross-sectional view of a main part of the power storage device shown in FIG. As shown in FIG. 8, the cell stack 2 of the power storage device 1 is housed in the battery pack 60 and is arranged on the bottom surface 61 of the battery pack 60. Therefore, each storage cell 11 included in the cell stack 2 is arranged on the bottom surface 61 of the battery pack 60. In the first embodiment, the holding member 15 of each storage cell 11 is in contact with the bottom surface 61. The extending portion 5b of the restraining member 5 extends along the direction X from one end of the main portion 5a located on the bottom surface 61 side in the direction Z. Specifically, each extending portion 5b extends away from the cell stack 2 in the direction X. The extending portion 5b is fixed to the bottom surface 61 by, for example, a fastening member or an adhesive. In the first embodiment, the restraint member 5 is separated from the side surface 62 of the battery pack 60, but the present invention is not limited to this.

突出部12cは、方向Zにおいて電池パック60の底面61から離れるように延在している。同様に、突出部13cは、方向Zにおいて電池パック60の底面61から離れるように延在している(不図示)。このため、接続部材3,4は、方向Zにおいて蓄電セル11を挟んで底面61とは反対側に位置している。換言すると、方向Zにおいて、セルスタック2は、接続部材3(接続部材4)と底面61との間に位置する。ここで図1に示されるように、カバー部材9のカバー部9aは、接続部材3,4の間に位置している。このため、セルスタック2に含まれる各蓄電セル11はカバー部材9のカバー部9aと底面61との間に位置する。 The protrusion 12c extends away from the bottom surface 61 of the battery pack 60 in direction Z. Similarly, the protrusion 13c extends away from the bottom surface 61 of the battery pack 60 in direction Z (not shown). Therefore, the connecting members 3 and 4 are located on the side opposite to the bottom surface 61 with the power storage cell 11 in the direction Z. In other words, in direction Z, the cell stack 2 is located between the connecting member 3 (connecting member 4) and the bottom surface 61. Here, as shown in FIG. 1, the cover portion 9a of the cover member 9 is located between the connecting members 3 and 4. Therefore, each storage cell 11 included in the cell stack 2 is located between the cover portion 9a of the cover member 9 and the bottom surface 61.

以上に説明した第1実施形態に係る蓄電装置1によれば、正極集電板12と接続部材3とを接合する溶接部W1は、保持部材15と正極集電板12の突出部12cと接続部材3とが順に重なり、且つ、保持部材15と突出部12cとが互いに接触する第1領域R1上に設けられる。このため、蓄電セル11に含まれ、複数のバイポーラ電極16を保持する保持部材15を台座として利用し、溶接部W1を形成することができる。これにより、溶接部W1を形成するための治具の準備工程、及び当該治具の取り出し工程等を省略できる。加えて、複数のバイポーラ電極16を保持する保持部材15を、溶接部W1を形成するための台座として兼用することによって、蓄電装置1の部品点数を増加させることなく生産性の向上が可能になる。 According to the power storage device 1 according to the first embodiment described above, the welded portion W1 for joining the positive electrode current collector plate 12 and the connecting member 3 is connected to the holding member 15 and the protruding portion 12c of the positive electrode current collector plate 12. The members 3 are sequentially overlapped with each other, and the holding member 15 and the projecting portion 12c are provided on the first region R1 in contact with each other. Therefore, the holding member 15 included in the power storage cell 11 and holding the plurality of bipolar electrodes 16 can be used as a pedestal to form the welded portion W1. As a result, the process of preparing the jig for forming the welded portion W1 and the process of taking out the jig can be omitted. In addition, by using the holding member 15 that holds the plurality of bipolar electrodes 16 as a pedestal for forming the welded portion W1, it is possible to improve the productivity without increasing the number of parts of the power storage device 1. ..

また、負極集電板13と接続部材4とを接合する溶接部W3は、保持部材15と負極集電板13の突出部13cと接続部材4とが順に重なり、且つ、保持部材15と突出部13cとが互いに接触する第3領域R3上に設けられる。このため、溶接部W1と同様に、溶接部W3を形成するための治具の準備工程、及び当該治具の取り出し工程等も省略できる。加えて、保持部材15を、溶接部W3を形成するための台座として兼用することによって、さらなる生産性の向上が可能になる。 Further, in the welded portion W3 for joining the negative electrode current collector plate 13 and the connecting member 4, the holding member 15, the protruding portion 13c of the negative electrode current collecting plate 13 and the connecting member 4 are sequentially overlapped with each other, and the holding member 15 and the protruding portion are overlapped with each other. It is provided on the third region R3 where the 13c and the 13c are in contact with each other. Therefore, similarly to the welded portion W1, the step of preparing the jig for forming the welded portion W3, the step of taking out the jig, and the like can be omitted. In addition, by using the holding member 15 as a pedestal for forming the welded portion W3, further improvement in productivity becomes possible.

正極集電板12の突出部12cは、方向Zに沿って延在する基端部12d、方向Xに沿って延在すると共に方向Zにおいて蓄電セル11よりも外側に位置する先端部12e、及び、基端部12dと先端部12eとをつなぐ屈曲部12fを有し、保持部材15は、方向Zにおいて電極積層体14と先端部12eとの間に位置し、先端部12eに接触する外周面15bを有し、溶接部W1は、先端部12eに設けられる。このため、複数の蓄電セル11が方向Xに沿って隙間なく配列されているときであっても、溶接部W1を容易に設けることができる。加えて、負極集電板13の突出部13cもまた基端部13d及び先端部13eを備えており、保持部材15は、方向Zにおいて電極積層体14と先端部13eとの間に位置し、先端部13eに接触する外周面15bを有し、溶接部W3は、先端部13eに設けられる。これにより、複数の蓄電セル11が方向Xに沿って隙間なく配列されているときであっても、溶接部W3も容易に設けることができる。 The protruding portion 12c of the positive electrode current collector plate 12 includes a base end portion 12d extending along the direction Z, a tip portion 12e extending along the direction X and located outside the storage cell 11 in the direction Z, and a tip portion 12e. The holding member 15 has a bent portion 12f that connects the base end portion 12d and the tip end portion 12e, and the holding member 15 is located between the electrode laminate 14 and the tip end portion 12e in the direction Z, and is an outer peripheral surface that contacts the tip end portion 12e. It has 15b, and the welded portion W1 is provided at the tip portion 12e. Therefore, even when a plurality of storage cells 11 are arranged without gaps along the direction X, the welded portion W1 can be easily provided. In addition, the protruding portion 13c of the negative electrode current collector plate 13 also includes a base end portion 13d and a tip portion 13e, and the holding member 15 is located between the electrode laminate 14 and the tip portion 13e in the direction Z. It has an outer peripheral surface 15b that contacts the tip portion 13e, and the welded portion W3 is provided on the tip portion 13e. As a result, the welded portion W3 can be easily provided even when the plurality of storage cells 11 are arranged without gaps along the direction X.

基端部12dは、方向Xに交差する保持部材15の側面15cに密着している。このため、基端部12dが保持部材15によって支持されるので、振動等に起因した突出部12cの破損を抑制できる。加えて、負極集電板13の基端部13dもまた、方向Xに交差する保持部材15の側面15cに密着している。このため、基端部13dが保持部材15によって支持されるので、振動等に起因した突出部13cの破損を抑制できる。 The base end portion 12d is in close contact with the side surface 15c of the holding member 15 that intersects the direction X. Therefore, since the base end portion 12d is supported by the holding member 15, damage to the protruding portion 12c due to vibration or the like can be suppressed. In addition, the base end portion 13d of the negative electrode current collector plate 13 is also in close contact with the side surface 15c of the holding member 15 intersecting the direction X. Therefore, since the base end portion 13d is supported by the holding member 15, damage to the protruding portion 13c due to vibration or the like can be suppressed.

電極積層体14には、複数のバイポーラ電極16が含まれている。このため、蓄電セル11の内部抵抗を低減できる。 The electrode laminate 14 includes a plurality of bipolar electrodes 16. Therefore, the internal resistance of the storage cell 11 can be reduced.

蓄電装置1は、複数の蓄電セル11と、正極集電板12及び負極集電板13を含む複数の集電板を有するセルスタック2とを備え、セルスタック2内では、複数の蓄電セル11と複数の集電板とが方向Xに沿って交互に配列されている。このため、セルスタック2内における集電板の枚数を低減できるので、蓄電装置1の軽量化が実現できる。 The power storage device 1 includes a plurality of power storage cells 11 and a cell stack 2 having a plurality of current collector plates including a positive electrode current collector plate 12 and a negative electrode current collector plate 13. In the cell stack 2, a plurality of power storage cells 11 And a plurality of current collector plates are alternately arranged along the direction X. Therefore, since the number of current collector plates in the cell stack 2 can be reduced, the weight of the power storage device 1 can be reduced.

保持部材15は、電極積層体14の外周面14c上に設けられている。このため、電極積層体14の外周面14cを保持部材15によって保護できる。 The holding member 15 is provided on the outer peripheral surface 14c of the electrode laminate 14. Therefore, the outer peripheral surface 14c of the electrode laminate 14 can be protected by the holding member 15.

蓄電装置1は、方向Xにおいて最も外側に位置する蓄電セル11に隣接する最外正極集電板12Aと、最外正極集電板12Aと接続部材3とを接合する溶接部W2と、方向Xに沿って上記蓄電セル11に対して拘束力を付加する拘束部材5,6と、上記蓄電セル11及び拘束部材5の間に配置される絶縁緩衝部材7とを備える。加えて、正極集電板12と同様に本体部12a及び突出部12cを有する最外正極集電板12Aは、上記蓄電セル11と絶縁緩衝部材7との間に配置され、溶接部W2は、絶縁緩衝部材7と突出部12cと接続部材3とが順に重なり、且つ、絶縁緩衝部材7と突出部12cとが互いに接触する第2領域R2上に設けられる。このため、絶縁緩衝部材7を溶接部W2の形成時における台座として利用することができる。これにより、溶接部W2を形成するための治具の準備工程、及び当該治具の取り出し工程等を省略できる。さらには、最外正極集電板12Aを含む各正極集電板12における突出部12cを、同じ方向に向かって折り曲げることができる。 The power storage device 1 includes a welded portion W2 that joins the outermost positive electrode current collector plate 12A adjacent to the power storage cell 11 located on the outermost side in the direction X, the outermost positive electrode current collector plate 12A, and the connecting member 3, and the direction X. The restraining members 5 and 6 for applying a binding force to the storage cell 11 and an insulating buffer member 7 arranged between the storage cell 11 and the restraining member 5 are provided along the above. In addition, the outermost positive electrode current collector plate 12A having the main body portion 12a and the protruding portion 12c like the positive electrode current collector plate 12 is arranged between the storage cell 11 and the insulating buffer member 7, and the welded portion W2 is formed. The insulating buffer member 7, the protruding portion 12c, and the connecting member 3 are sequentially overlapped with each other, and the insulating buffer member 7 and the protruding portion 12c are provided on the second region R2 in contact with each other. Therefore, the insulating buffer member 7 can be used as a pedestal when the welded portion W2 is formed. As a result, the process of preparing the jig for forming the welded portion W2, the process of taking out the jig, and the like can be omitted. Further, the protruding portion 12c of each positive electrode current collector plate 12 including the outermost positive electrode current collector plate 12A can be bent in the same direction.

また、溶接部W4は、絶縁緩衝部材8と、最外負極集電板13Aの突出部13cと、接続部材4とが順に重なり、且つ、絶縁緩衝部材8と当該突出部13cとが互いに接触する第4領域R4上に設けられるので、絶縁緩衝部材8を溶接部W4の形成時における台座として利用することができる。これにより、溶接部W4を形成するための治具の準備工程、及び当該治具の取り出し工程等もまた省略できる。 Further, in the welded portion W4, the insulating buffer member 8, the protruding portion 13c of the outermost negative electrode current collector plate 13A, and the connecting member 4 are sequentially overlapped with each other, and the insulating buffer member 8 and the protruding portion 13c are in contact with each other. Since it is provided on the fourth region R4, the insulating buffer member 8 can be used as a pedestal when the welded portion W4 is formed. As a result, the process of preparing the jig for forming the welded portion W4, the process of taking out the jig, and the like can also be omitted.

最外正極集電板12Aの突出部12cは、方向Yに沿って延在する基端部12d、蓄電セル11から離れるように方向Xに沿って延在する先端部12e、及び、基端部12dと先端部12eとをつなぐ屈曲部12fとを有し、絶縁緩衝部材7は、方向Xに交差すると共に本体部12aに接触する主面7aと、主面7aの縁から方向Xに沿って延在する外周面7bとを有し、溶接部W2は、最外正極集電板12Aにおける突出部12cの先端部12eに設けられる。このため、方向Xにおいて最も外側に位置する蓄電セル11と、最外正極集電板12Aと、絶縁緩衝部材7とが、方向Xに沿って順に隙間なく配列されているときであっても、溶接部W2を容易に設けることができる。加えて、最外負極集電板13Aの突出部13cもまた基端部13d及び先端部13eを備えており、溶接部W4は、最外負極集電板13Aの先端部13eに設けられる。これにより、溶接部W4も、溶接部W2と同様に容易に設けることができる。 The protrusion 12c of the outermost positive electrode current collector plate 12A includes a base end portion 12d extending along the direction Y, a tip end portion 12e extending along the direction X so as to be away from the storage cell 11, and a base end portion. The insulating buffer member 7 has a bent portion 12f connecting the 12d and the tip portion 12e, and the insulating buffer member 7 has a main surface 7a that intersects the direction X and contacts the main body portion 12a, and the main surface 7a along the direction X from the edge. It has an extending outer peripheral surface 7b, and the welded portion W2 is provided at the tip end portion 12e of the protruding portion 12c of the outermost positive electrode current collector plate 12A. Therefore, even when the storage cell 11, the outermost positive electrode current collector plate 12A, and the insulating buffer member 7 located on the outermost side in the direction X are arranged in order along the direction X without a gap. The welded portion W2 can be easily provided. In addition, the protruding portion 13c of the outermost negative electrode current collector plate 13A also includes a base end portion 13d and a tip portion 13e, and the welded portion W4 is provided at the tip portion 13e of the outermost negative electrode current collector plate 13A. As a result, the welded portion W4 can be easily provided as well as the welded portion W2.

最外正極集電板12Aにおける突出部12cの基端部12dは、絶縁緩衝部材7の主面7aに密着している。このため、当該基端部12dが絶縁緩衝部材7によって支持されるので、振動等に起因した最外正極集電板12Aの突出部12cの破損を抑制できる。加えて、最外負極集電板13Aの基端部13dもまた、絶縁緩衝部材8の主面8aに密着している。このため、当該基端部13dが絶縁緩衝部材8によって支持されるので、振動等に起因した最外負極集電板13Aの突出部13cの破損を抑制できる。 The base end portion 12d of the protruding portion 12c of the outermost positive electrode current collector plate 12A is in close contact with the main surface 7a of the insulating buffer member 7. Therefore, since the base end portion 12d is supported by the insulating buffer member 7, damage to the protruding portion 12c of the outermost positive electrode current collector plate 12A due to vibration or the like can be suppressed. In addition, the base end portion 13d of the outermost negative electrode current collector plate 13A is also in close contact with the main surface 8a of the insulating buffer member 8. Therefore, since the base end portion 13d is supported by the insulating buffer member 8, damage to the protruding portion 13c of the outermost negative electrode current collector plate 13A due to vibration or the like can be suppressed.

また、蓄電装置1は、セルスタック2を収容する電池パック60を備え、複数の蓄電セル11のそれぞれは、方向Zに沿って立設し、複数の蓄電セル11のそれぞれにおいて、方向Zに沿った寸法D1は、方向Xに沿った寸法D3と、方向Zに沿った寸法D3とのいずれよりも長く、セルスタック2において方向Zに交差する面の面積は、セルスタック2に含まれる他の面のいずれよりも大きい。このため、複数の蓄電セル11を、縦置きとした状態にて拘束部材5,6にて挟持させることができる。これにより、蓄電セル11同士を拘束しやすくなるので、生産性のさらなる向上が可能になる。加えて、拘束部材5,6の小型化を実現できるので、蓄電装置1の小型化が可能になる。さらには、電池パック60の高さを抑えつつ、蓄電装置1の容量を確保することができる。また、拘束部材5,6による拘束力は、セルスタック2において方向Xに交差する面の全体に対して付加される。ここで、セルスタック2において方向Xに交差する面の面積は、セルスタック2において方向Zに交差する面の面積よりも小さい。したがって、セルスタック2に対して単位面積あたりに付加される拘束力が同じである場合、拘束部材5,6によって付加される拘束力は、セルスタック2において方向Zに交差する面の全体が拘束部材によって挟持されるときに付加される拘束力よりも小さくできる。 Further, the power storage device 1 includes a battery pack 60 for accommodating the cell stack 2, each of the plurality of power storage cells 11 is erected along the direction Z, and each of the plurality of power storage cells 11 is erected along the direction Z. The dimension D1 is longer than both the dimension D3 along the direction X and the dimension D3 along the direction Z, and the area of the surface intersecting the direction Z in the cell stack 2 is included in the other cell stack 2. Larger than any of the faces. Therefore, the plurality of power storage cells 11 can be sandwiched between the restraint members 5 and 6 in a vertically placed state. As a result, the storage cells 11 are easily restrained from each other, so that the productivity can be further improved. In addition, since the restraint members 5 and 6 can be miniaturized, the power storage device 1 can be miniaturized. Further, the capacity of the power storage device 1 can be secured while suppressing the height of the battery pack 60. Further, the restraining force by the restraining members 5 and 6 is applied to the entire surface intersecting the direction X in the cell stack 2. Here, the area of the surface intersecting the direction X in the cell stack 2 is smaller than the area of the surface intersecting the direction Z in the cell stack 2. Therefore, when the binding force applied per unit area to the cell stack 2 is the same, the binding force applied by the restraint members 5 and 6 is constrained by the entire surface intersecting the direction Z in the cell stack 2. It can be less than the binding force applied when pinched by the member.

複数の蓄電セル11のそれぞれは、電池パック60の底面61上に配置されている。このため、電池パック60内に複数の蓄電セル11を安定して配置できる。 Each of the plurality of storage cells 11 is arranged on the bottom surface 61 of the battery pack 60. Therefore, a plurality of storage cells 11 can be stably arranged in the battery pack 60.

蓄電装置1において、突出部12c、13cは、互いに離間している。このため、突出部12c,13cの両方が方向Zにおいて蓄電セル11の一方側に位置するとしても、突出部12c,13cが短絡することを防止できる。ここで、突出部12cの方向Yに沿った寸法と、突出部13cの方向Yに沿った寸法とのそれぞれは、蓄電セル11の寸法D1の半分未満である。このため、突出部12c,13cが短絡することをより確実に防止できる。 In the power storage device 1, the protrusions 12c and 13c are separated from each other. Therefore, even if both the protruding portions 12c and 13c are located on one side of the storage cell 11 in the direction Z, it is possible to prevent the protruding portions 12c and 13c from being short-circuited. Here, each of the dimension along the direction Y of the protruding portion 12c and the dimension along the direction Y of the protruding portion 13c is less than half of the dimension D1 of the power storage cell 11. Therefore, it is possible to more reliably prevent the protruding portions 12c and 13c from being short-circuited.

接続部材3,4のそれぞれは、蓄電セル11の方向Zにおける一方側に位置している。このため、接続部材3の突出部12cへの溶接と、接続部材4の突出部13cへの溶接とを一工程にて実施することができるので、より生産性を向上できる。 Each of the connecting members 3 and 4 is located on one side in the direction Z of the storage cell 11. Therefore, the welding of the connecting member 3 to the protruding portion 12c and the welding of the connecting member 4 to the protruding portion 13c can be performed in one step, so that the productivity can be further improved.

本体部12a,13aのそれぞれは、方向Xにおいて蓄電セル11と重なり、且つ、保持部材15とは重なっていない。このため、方向Xに沿って拘束部材5,6から蓄電セル11の電極積層体14に付加される荷重は、本体部12a,13aから保持部材15へ分散することなく良好に付加される。 Each of the main bodies 12a and 13a overlaps the storage cell 11 in the direction X and does not overlap the holding member 15. Therefore, the load applied from the restraint members 5 and 6 to the electrode laminate 14 of the storage cell 11 along the direction X is satisfactorily applied from the main body portions 12a and 13a to the holding member 15 without being dispersed.

拘束部材5,6のそれぞれは、複数の蓄電セル11に対して方向Xに沿って荷重を付加する主部5aと、電池パック60の底面61側に位置する主部5aの一端から方向Xに沿って延在する延在部5bと、を有し、延在部5bは、電池パック60の底面61に固定されている。このため、電池パック60における拘束部材5,6の位置決めが可能になるので、電池パック60内に複数の蓄電セル11を安定して配置できる。 Each of the restraint members 5 and 6 has a main portion 5a that applies a load to the plurality of storage cells 11 along the direction X, and one end of the main portion 5a located on the bottom surface 61 side of the battery pack 60 in the direction X. It has an extending portion 5b extending along the line, and the extending portion 5b is fixed to the bottom surface 61 of the battery pack 60. Therefore, since the restraint members 5 and 6 in the battery pack 60 can be positioned, a plurality of storage cells 11 can be stably arranged in the battery pack 60.

蓄電装置1は、複数の蓄電セル11の方向Zにおける移動を規制するカバー部材9を備え、カバー部材9と、拘束部材5,6の少なくとも一方とは、一体化されてもよい。この場合、カバー部材9を拘束部材5,6のいずれかへ締結するための締結部材Eの数を低減できる。 The power storage device 1 includes a cover member 9 that regulates the movement of the plurality of power storage cells 11 in the direction Z, and the cover member 9 and at least one of the restraint members 5 and 6 may be integrated. In this case, the number of fastening members E for fastening the cover member 9 to any of the restraint members 5 and 6 can be reduced.

方向Zにおいて、複数の蓄電セル11は、カバー部材9と、電池パック60の底面61との間に位置してもよい。この場合、カバー部材9の形状が複数の蓄電セル11を囲う形状としなくとも、当該蓄電セル11の位置を電池パック60内にて良好に定められる。 In the direction Z, the plurality of storage cells 11 may be located between the cover member 9 and the bottom surface 61 of the battery pack 60. In this case, even if the shape of the cover member 9 does not surround the plurality of power storage cells 11, the position of the power storage cells 11 is satisfactorily determined in the battery pack 60.

次に、図9(a),(b)を参照しながら、第1実施形態の変形例について説明する。図9(a)は、第1実施形態の第1変形例の蓄電装置を示す要部概略断面図であり、図9(b)は、第1実施形態の第2変形例の蓄電装置を示す要部概略断面図である。 Next, a modified example of the first embodiment will be described with reference to FIGS. 9A and 9B. FIG. 9A is a schematic cross-sectional view of a main part showing the power storage device of the first modification of the first embodiment, and FIG. 9B shows the power storage device of the second modification of the first embodiment. It is a schematic cross-sectional view of a main part.

図9(a)に示されるように、上記第1変形例における蓄電セル11Aの保持部材15Aは、薄肉部31と、薄肉部31よりも厚い厚肉部32とを有する。薄肉部31は、電極積層体14の外周面14cに接触して複数のバイポーラ電極16を保持する保持部である。薄肉部31は、外周面14cを封止するように略矩形枠形状を呈する封止部材、及び、電極積層体14内のバイポーラ電極16同士の短絡を防止する短絡防止部材としても機能し得る。薄肉部31は、例えば種々の樹脂材料を含む。樹脂部材は、例えばポリイミド、PP、PPS、PA66等である。薄肉部31の厚さは、例えば1mm以上5mm以下である。この場合、複数のバイポーラ電極16を良好に保持できる。薄肉部31の厚さは、方向Yもしくは方向Zに沿った内周面15aから厚肉部32までの距離に相当する。 As shown in FIG. 9A, the holding member 15A of the power storage cell 11A in the first modification has a thin-walled portion 31 and a thick-walled portion 32 thicker than the thin-walled portion 31. The thin-walled portion 31 is a holding portion that contacts the outer peripheral surface 14c of the electrode laminate 14 and holds a plurality of bipolar electrodes 16. The thin-walled portion 31 can also function as a sealing member having a substantially rectangular frame shape so as to seal the outer peripheral surface 14c, and a short-circuit prevention member for preventing short-circuiting between the bipolar electrodes 16 in the electrode laminate 14. The thin-walled portion 31 contains, for example, various resin materials. The resin member is, for example, polyimide, PP, PPS, PA66 or the like. The thickness of the thin portion 31 is, for example, 1 mm or more and 5 mm or less. In this case, the plurality of bipolar electrodes 16 can be held satisfactorily. The thickness of the thin portion 31 corresponds to the distance from the inner peripheral surface 15a along the direction Y or the direction Z to the thick portion 32.

厚肉部32は、溶接部W1に対する台座として機能する部分である。厚肉部32は、少なくとも第1領域R1(図5(a),(b)を参照)及び第3領域R3(図6(a),(b)を参照)に重なって設けられている。すなわち、厚肉部32は、方向Zにおいて薄肉部31と接続部材3との間、及び、薄肉部31と接続部材4との間に少なくとも設けられている。図9(a)においては、厚肉部32は、方向Zにおいて薄肉部31と接続部材3との間にのみ設けられている態様が開示されている。厚肉部32は、保持部である薄肉部31の一部に密着する耐熱部33を有する。耐熱部33の外周面は、正極集電板12の先端部12eに接触する。耐熱部33は、例えば耐熱性を示す樹脂材料である。耐熱部33の厚さは、例えば1mm以上5mm以下である。この場合、溶接部W1の形成時に発生する熱に起因した薄肉部31及び電極積層体14の破損等が、耐熱部33によって抑制される。なお、図示はしないが、耐熱部33は負極集電板13の先端部13eにも接触しているので、溶接部W3の形成時に発生する熱に起因した薄肉部31及び電極積層体14の破損等も、耐熱部33によって抑制される。 The thick portion 32 is a portion that functions as a pedestal for the welded portion W1. The thick portion 32 is provided so as to overlap at least the first region R1 (see FIGS. 5 (a) and 5 (b)) and the third region R3 (see FIGS. 6 (a) and 6 (b)). That is, the thick portion 32 is provided at least between the thin portion 31 and the connecting member 3 and between the thin portion 31 and the connecting member 4 in the direction Z. FIG. 9A discloses an embodiment in which the thick portion 32 is provided only between the thin portion 31 and the connecting member 3 in the direction Z. The thick portion 32 has a heat-resistant portion 33 that is in close contact with a part of the thin portion 31 that is a holding portion. The outer peripheral surface of the heat-resistant portion 33 comes into contact with the tip portion 12e of the positive electrode current collector plate 12. The heat-resistant portion 33 is, for example, a resin material exhibiting heat resistance. The thickness of the heat-resistant portion 33 is, for example, 1 mm or more and 5 mm or less. In this case, the heat-resistant portion 33 suppresses damage to the thin-walled portion 31 and the electrode laminate 14 due to heat generated when the welded portion W1 is formed. Although not shown, the heat-resistant portion 33 is also in contact with the tip portion 13e of the negative electrode current collector plate 13, so that the thin-walled portion 31 and the electrode laminate 14 are damaged due to the heat generated during the formation of the welded portion W3. Etc. are also suppressed by the heat-resistant portion 33.

以上に説明した第1変形例によれば、第1実施形態の蓄電装置1によって奏される作用効果に加えて、蓄電装置1の軽量化が実現できる。さらには、溶接部W1の形成時、保持部材15Aにおいて溶接部W1に重なる部分が損傷することを防止できる。これにより、溶接部W1の形成に起因した蓄電装置1の初期不良の発生等を良好に抑制できる。 According to the first modification described above, in addition to the effects exerted by the power storage device 1 of the first embodiment, the weight reduction of the power storage device 1 can be realized. Further, when the welded portion W1 is formed, it is possible to prevent the portion of the holding member 15A that overlaps the welded portion W1 from being damaged. As a result, it is possible to satisfactorily suppress the occurrence of initial defects of the power storage device 1 due to the formation of the welded portion W1.

上記第1変形例では、薄肉部31と厚肉部32とは、互いに別の樹脂材料によって形成されているが、これに限られない。薄肉部31と厚肉部32とは、互いに同一の耐熱性を示す樹脂材料から構成されてもよい。この場合、薄肉部31と厚肉部32とは、互いに一体化しており、且つ、同時に形成される。この場合、保持部材15Aにおいて厚く設けられた部分が厚肉部32に相当し、保持部材15Aにおいて厚肉部32以外の部分が薄肉部31に相当する。 In the first modification, the thin-walled portion 31 and the thick-walled portion 32 are formed of different resin materials, but the present invention is not limited to this. The thin-walled portion 31 and the thick-walled portion 32 may be made of a resin material exhibiting the same heat resistance as each other. In this case, the thin-walled portion 31 and the thick-walled portion 32 are integrated with each other and are formed at the same time. In this case, the thick portion of the holding member 15A corresponds to the thick portion 32, and the portion of the holding member 15A other than the thick portion 32 corresponds to the thin portion 31.

また、図9(a)では、厚肉部32は、方向Zにおいて薄肉部31と接続部材3との間にのみ設けられるが、これに限られない。例えば、厚肉部32は、方向Zにおける電極積層体14の一方上(図9(a)においては電極積層体14よりも紙面上側)、及び、方向Zに沿った電極積層体14の他方上に(図9(a)においては電極積層体14よりも紙面下側)設けられてもよい。この場合、方向Zに沿った電極積層体14の一方上における保持部材15Aの厚さと、方向Zに沿った電極積層体14の他方上における保持部材15Aの厚さが同一になる。 Further, in FIG. 9A, the thick portion 32 is provided only between the thin portion 31 and the connecting member 3 in the direction Z, but is not limited to this. For example, the thick portion 32 is on one side of the electrode laminate 14 in the direction Z (upper side of the paper surface than the electrode laminate 14 in FIG. 9A) and on the other side of the electrode laminate 14 along the direction Z. (In FIG. 9A, the lower side of the paper surface than the electrode laminate 14) may be provided. In this case, the thickness of the holding member 15A on one side of the electrode laminate 14 along the direction Z and the thickness of the holding member 15A on the other side of the electrode laminate 14 along the direction Z are the same.

図9(b)に示されるように、保持部材15Bにおける厚肉部32Aの耐熱部33Aは、耐熱性を示す矩形板状部材であってもよい。耐熱部33Aは、例えば方向Zにおいて薄肉部31と接続部材3との間に設けられる。この耐熱部33Aは、薄肉部31の一部のみに重なっており、例えば耐熱性を示す無機材料を含む。耐熱性を示す無機材料としては、例えばアルミナ等のセラミックスが挙げられる。このような耐熱部33Aを有する保持部材15Bを用いた場合であっても、上記第1変形例と同様の作用効果が奏される。 As shown in FIG. 9B, the heat-resistant portion 33A of the thick portion 32A of the holding member 15B may be a rectangular plate-shaped member exhibiting heat resistance. The heat-resistant portion 33A is provided between the thin-walled portion 31 and the connecting member 3 in the direction Z, for example. The heat-resistant portion 33A overlaps only a part of the thin-walled portion 31, and includes, for example, an inorganic material exhibiting heat resistance. Examples of the inorganic material exhibiting heat resistance include ceramics such as alumina. Even when the holding member 15B having such a heat-resistant portion 33A is used, the same action and effect as those of the first modification can be obtained.

(第2実施形態)
以下では、第2実施形態に係る蓄電装置について説明する。第2実施形態の説明において第1実施形態と重複する記載は省略し、第1実施形態と異なる部分を記載する。つまり、技術的に可能な範囲において、第2実施形態に第1実施形態の記載を適宜用いてもよい。
(Second Embodiment)
Hereinafter, the power storage device according to the second embodiment will be described. In the description of the second embodiment, the description overlapping with the first embodiment will be omitted, and the part different from the first embodiment will be described. That is, the description of the first embodiment may be appropriately used for the second embodiment to the extent technically possible.

第2実施形態のセルスタックは、2種類の正極集電板と2種類の負極集電板とを備える。以下では、図10及び図11を用いて、2種類の正極集電板と2種類の負極集電板とについて説明する。また以下では、1種類目の正極集電板及び負極集電板が隣接した蓄電セルを第1蓄電セル41aとし、2種類目の正極集電板及び負極集電板が隣接した蓄電セルを第2蓄電セル41bとする。 The cell stack of the second embodiment includes two types of positive electrode current collector plates and two types of negative electrode current collector plates. In the following, two types of positive electrode current collector plates and two types of negative electrode current collector plates will be described with reference to FIGS. 10 and 11. Further, in the following, the storage cell in which the first type positive electrode current collector plate and the negative electrode current collector plate are adjacent to each other is referred to as the first storage cell 41a, and the storage cell in which the second type positive electrode current collector plate and the negative electrode current collector plate are adjacent to each other is referred to as the first storage cell. 2 The storage cell 41b.

図10(a)は、第1蓄電セル及び当該第1蓄電セルに接触する集電板の概略斜視図であり、図10(b)は、第1蓄電セル及び当該第1蓄電セルに接触する集電板の概略側面図である。図10(a),(b)に示されるように、第1蓄電セル41aに接触する正極集電板42の突出部44は、第1蓄電セル41aにおける保持部材15の側面15c及び外周面15bに沿うように折り曲げられている。このため、突出部44は、基端部44a、上記外周面15bに接触する先端部44b、及び、屈曲部44cを有する。第2実施形態では、先端部44bの全体が上記外周面15bに接している。第1蓄電セル41aに接触する負極集電板43の突出部45もまた、上記側面15c及び上記外周面15bに沿うように折り曲げられている。このため、突出部45は、基端部45a、上記外周面15bに接触する先端部45b、及び、屈曲部45cを有する。第2実施形態では、先端部45bの全体が上記外周面15bに接している。 FIG. 10A is a schematic perspective view of the first storage cell and the current collector plate in contact with the first storage cell, and FIG. 10B is a schematic perspective view of the first storage cell and the first storage cell in contact with the first storage cell. It is a schematic side view of a current collector plate. As shown in FIGS. 10A and 10B, the protruding portion 44 of the positive electrode current collector plate 42 in contact with the first storage cell 41a is the side surface 15c and the outer peripheral surface 15b of the holding member 15 in the first storage cell 41a. It is bent along. Therefore, the protruding portion 44 has a base end portion 44a, a tip portion 44b in contact with the outer peripheral surface 15b, and a bent portion 44c. In the second embodiment, the entire tip portion 44b is in contact with the outer peripheral surface 15b. The protruding portion 45 of the negative electrode current collector plate 43 that contacts the first storage cell 41a is also bent along the side surface 15c and the outer peripheral surface 15b. Therefore, the protruding portion 45 has a base end portion 45a, a tip portion 45b in contact with the outer peripheral surface 15b, and a bent portion 45c. In the second embodiment, the entire tip portion 45b is in contact with the outer peripheral surface 15b.

図11(a)は、第2蓄電セル及び当該第2蓄電セルに接触する集電板の概略斜視図であり、図11(b)は、第2蓄電セル及び当該第2蓄電セルに接触する集電板の概略側面図である。図11(a),(b)に示されるように、第2蓄電セル41bに接触する正極集電板46の突出部48は、その先端が第2蓄電セル41bの電極積層体14から離れるように折り曲げられている。このため、突出部48は、基端部48a、電極積層体14から離れるように方向Xに沿って延在する先端部48b、及び屈曲部48cを有する。先端部48bは、方向Zにおいて上記電極積層体14と重なっておらず、且つ、第2蓄電セル41bにおける保持部材15の外周面15bにも接していない。屈曲部48cは、方向Zにおいて屈曲部45cよりも電極積層体14から離れた位置に設けられる。例えば、屈曲部48cは、方向Zにおいて屈曲部45cよりも正極集電板46の厚さ分、電極積層体14から離れた位置に設けられる。 FIG. 11A is a schematic perspective view of the second storage cell and the current collector plate in contact with the second storage cell, and FIG. 11B is a schematic perspective view of the second storage cell and the second storage cell in contact with the second storage cell. It is a schematic side view of a current collector plate. As shown in FIGS. 11A and 11B, the tip of the protruding portion 48 of the positive electrode current collector plate 46 in contact with the second storage cell 41b is separated from the electrode laminate 14 of the second storage cell 41b. It is folded into. Therefore, the protruding portion 48 has a base end portion 48a, a tip portion 48b extending along the direction X so as to be separated from the electrode laminate 14, and a bent portion 48c. The tip portion 48b does not overlap the electrode laminate 14 in the direction Z, and does not contact the outer peripheral surface 15b of the holding member 15 in the second storage cell 41b. The bent portion 48c is provided at a position farther from the electrode laminate 14 than the bent portion 45c in the direction Z. For example, the bent portion 48c is provided at a position separated from the electrode laminate 14 by the thickness of the positive electrode current collector plate 46 with respect to the bent portion 45c in the direction Z.

負極集電板47の突出部49もまた、その先端が第2蓄電セル41bにおける電極積層体14から離れるように折り曲げられている。このため、突出部49は、基端部49a、電極積層体14から離れるように方向Xに沿って延在する先端部49b、及び屈曲部49cを有する。先端部49bは、方向Zにおいて上記電極積層体14と重なっておらず、且つ、第2蓄電セル41bにおける保持部材15の外周面15bにも接していない。屈曲部49cは、方向Zにおいて、屈曲部45cよりも電極積層体14から離れた位置に設けられる。例えば、屈曲部49cは、方向Zにおいて屈曲部45cよりも負極集電板47の厚さ分、電極積層体14から離れた位置に設けられる。 The protruding portion 49 of the negative electrode current collector plate 47 is also bent so that its tip is separated from the electrode laminate 14 in the second storage cell 41b. Therefore, the protruding portion 49 has a base end portion 49a, a tip portion 49b extending along the direction X so as to be separated from the electrode laminate 14, and a bent portion 49c. The tip portion 49b does not overlap with the electrode laminate 14 in the direction Z, and does not touch the outer peripheral surface 15b of the holding member 15 in the second storage cell 41b. The bent portion 49c is provided at a position farther from the electrode laminate 14 than the bent portion 45c in the direction Z. For example, the bent portion 49c is provided at a position separated from the electrode laminate 14 by the thickness of the negative electrode current collector plate 47 with respect to the bent portion 45c in the direction Z.

図12は、第2実施形態の蓄電装置を示す要部概略断面図である。図12に示される蓄電装置1Aでは、第1蓄電セル41aと第2蓄電セル41bとは、方向Xに沿って交互に配列されている。また、第2実施形態では、第1蓄電セル41aと第2蓄電セル41bとは互いに並列接続されている。このため、正極集電板42,46が互いに接触すると共に、負極集電板43,47が互いに接触している。また、第1蓄電セル41aにおける正極集電板42の突出部45が、第2蓄電セル41bにおける正極集電板46の突出部48に覆われている。図示はしないが、負極集電板43の突出部45は、負極集電板47の突出部49に覆われている。第2実施形態では、溶接部W1Aは、接続部材3と、突出部44,48とを接合している。具体的には、溶接部W1Aは、接続部材3と、突出部44の先端部44bと、突出部48の先端部48bとを接合している。 FIG. 12 is a schematic cross-sectional view of a main part showing the power storage device of the second embodiment. In the power storage device 1A shown in FIG. 12, the first power storage cells 41a and the second power storage cells 41b are alternately arranged along the direction X. Further, in the second embodiment, the first storage cell 41a and the second storage cell 41b are connected to each other in parallel. Therefore, the positive electrode current collector plates 42 and 46 are in contact with each other, and the negative electrode current collector plates 43 and 47 are in contact with each other. Further, the protruding portion 45 of the positive electrode current collecting plate 42 in the first storage cell 41a is covered with the protruding portion 48 of the positive electrode current collecting plate 46 in the second storage cell 41b. Although not shown, the protruding portion 45 of the negative electrode current collecting plate 43 is covered with the protruding portion 49 of the negative electrode current collecting plate 47. In the second embodiment, the welded portion W1A joins the connecting member 3 and the protruding portions 44 and 48. Specifically, the welded portion W1A joins the connecting member 3, the tip portion 44b of the protrusion 44, and the tip 48b of the protrusion 48.

以上に説明した第2実施形態に係る蓄電装置1Aにおいても、上記第1実施形態と同様の作用効果が奏される。 The power storage device 1A according to the second embodiment described above also has the same effects as those of the first embodiment.

(第3実施形態)
以下では、第3実施形態に係る蓄電装置について説明する。第3実施形態の説明において第1実施形態及び第2実施形態と重複する記載は省略し、第1実施形態及び第2実施形態と異なる部分を記載する。つまり、技術的に可能な範囲において、第3実施形態に第1実施形態及び第2実施形態の記載を適宜用いてもよい。
(Third Embodiment)
Hereinafter, the power storage device according to the third embodiment will be described. In the description of the third embodiment, the description overlapping with the first embodiment and the second embodiment will be omitted, and the parts different from the first embodiment and the second embodiment will be described. That is, the description of the first embodiment and the second embodiment may be appropriately used for the third embodiment to the extent technically possible.

図13は、第3実施形態の蓄電装置を示す要部概略断面図である。図13に示される蓄電装置1Bに含まれる正極集電板52と負極集電板53とは、互いに略L字板形状を呈する導電部材である。正極集電板52は、蓄電セル11の電極積層体14に接触する本体部54と、方向Zに沿って本体部54の一端から突出する突出部55とを有し、負極集電板53は、蓄電セル11の電極積層体14に接触する本体部56と、方向Zに沿って本体部56の一端から突出する突出部57とを有する。突出部55,57は、方向Zにおいて互いに反対側に向かって突出している。このため、突出部55は、方向Zにおける一方側(図13においては紙面上側)に向かって突出し、突出部57は、方向Zにおける他方側(図13においては紙面下側)に向かって突出している。 FIG. 13 is a schematic cross-sectional view of a main part showing the power storage device of the third embodiment. The positive electrode current collector plate 52 and the negative electrode current collector plate 53 included in the power storage device 1B shown in FIG. 13 are conductive members having a substantially L-shaped plate shape with each other. The positive electrode current collector plate 52 has a main body portion 54 in contact with the electrode laminate 14 of the power storage cell 11 and a protruding portion 55 projecting from one end of the main body portion 54 along the direction Z, and the negative electrode current collector plate 53 has a negative electrode current collector plate 53. It has a main body 56 that comes into contact with the electrode laminate 14 of the power storage cell 11, and a protruding portion 57 that protrudes from one end of the main body 56 along the direction Z. The projecting portions 55 and 57 project toward opposite sides in the direction Z. Therefore, the protruding portion 55 protrudes toward one side in the direction Z (upper side of the paper surface in FIG. 13), and the protruding portion 57 protrudes toward the other side in the direction Z (lower side of the paper surface in FIG. 13). There is.

蓄電装置1Bには、略矩形板形状を呈する接続部材3A,4Aが含まれており、接続部材3A,4Aは、方向Zにおいて各蓄電セル11を挟持している。接続部材3Aは、各蓄電セル11よりも方向Zにおける一方側(図13においては紙面上側)に位置しており、接続部材4Aは、各蓄電セル11よりも方向Zにおける他方側(図13においては紙面下側)に位置している。接続部材3Aは、溶接部W1を介して正極集電板52における突出部55の先端部55bに接合されており、接続部材4Aは、溶接部W3を介して負極集電板53における突出部57の先端部57bに接合されている。 The power storage device 1B includes connection members 3A and 4A having a substantially rectangular plate shape, and the connection members 3A and 4A sandwich the power storage cells 11 in the direction Z. The connecting member 3A is located on one side in the direction Z from each storage cell 11 (upper side of the paper in FIG. 13), and the connecting member 4A is located on the other side in the direction Z from each storage cell 11 (in FIG. 13). Is located on the lower side of the page). The connecting member 3A is joined to the tip portion 55b of the protruding portion 55 of the positive electrode current collector plate 52 via the welded portion W1, and the connecting member 4A is joined to the protruding portion 57 of the negative electrode current collector plate 53 via the welded portion W3. It is joined to the tip portion 57b of.

蓄電装置1Bにおいて最も外側に位置する正極集電板52の先端部55bの延在方向と、他の正極集電板52の先端部55bの延在方向とは、互いに反対になっている。これにより、最も外側に位置する正極集電板52の先端部55bの方向Xに沿った長さが絶縁緩衝部材7の厚さよりも長い場合であっても、当該先端部55bが拘束部材5に接触することを防止できる。また、蓄電装置1Bにおいて最も外側に位置する負極集電板53の先端部57bの延在方向と、他の負極集電板53の先端部57bの延在方向とは、互いに反対になっている。これにより、最も外側に位置する負極集電板53の先端部57bの方向Xに沿った長さが絶縁緩衝部材8の厚さよりも長い場合であっても、当該先端部57bが拘束部材6に接触することを防止できる。 The extending direction of the tip portion 55b of the positive electrode current collector plate 52 located on the outermost side of the power storage device 1B and the extending direction of the tip portion 55b of the other positive electrode current collector plate 52 are opposite to each other. As a result, even if the length of the tip portion 55b of the positive electrode current collector plate 52 located on the outermost side along the direction X is longer than the thickness of the insulating buffer member 7, the tip portion 55b becomes the restraint member 5. It is possible to prevent contact. Further, the extending direction of the tip portion 57b of the negative electrode current collector plate 53 located on the outermost side of the power storage device 1B and the extending direction of the tip portion 57b of the other negative electrode current collector plate 53 are opposite to each other. .. As a result, even if the length of the tip portion 57b of the negative electrode current collector plate 53 located on the outermost side along the direction X is longer than the thickness of the insulating buffer member 8, the tip portion 57b becomes the restraint member 6. It is possible to prevent contact.

以上に説明した第3実施形態に係る蓄電装置1Bにおいても、上記第1実施形態と同様の作用効果が奏される。 The power storage device 1B according to the third embodiment described above also has the same effects as those of the first embodiment.

本発明に係る蓄電装置は、上記実施形態及び上記変形例に限定されず、他に様々な変形が可能である。例えば、上記実施形態及び上記変形例では、蓄電セルは方向Xから見て略矩形状を呈しているが、これに限られない。蓄電セルは、方向Xから見て三角形状、五角形状等の多角形状を呈してもよいし、円形状を呈してもよいし、楕円形状を呈してもよい。同様に、各集電板等の形状も、上記実施形態及び上記変形例に限定されない。また、上記実施形態及び上記変形例では、蓄電セルは縦置きされているが、これに限られない。各蓄電セルは平置きであってもよい。この場合、拘束部材の形状等を適宜変更してもよい。 The power storage device according to the present invention is not limited to the above-described embodiment and the above-mentioned modification, and various other modifications are possible. For example, in the above-described embodiment and the above-described modified example, the power storage cell has a substantially rectangular shape when viewed from the direction X, but the present invention is not limited to this. The power storage cell may have a polygonal shape such as a triangular shape or a pentagonal shape when viewed from the direction X, may have a circular shape, or may have an elliptical shape. Similarly, the shape of each current collector plate or the like is not limited to the above-described embodiment and the above-mentioned modification. Further, in the above-described embodiment and the above-described modified example, the power storage cell is vertically arranged, but the present invention is not limited to this. Each storage cell may be placed horizontally. In this case, the shape of the restraint member may be changed as appropriate.

上記実施形態及び上記変形例では、正極集電板及び負極集電板のそれぞれに対しては、セルスタックに配置される前に屈曲加工等が施されるが、これに限られない。例えば、正極集電板及び負極集電板のそれぞれが金型加工される際に、基端部、先端部、及び屈曲部が予め設けられてもよい。この場合、正極集電板及び負極集電板のそれぞれの突出部に対する屈曲加工を省略できる。 In the above-described embodiment and the above-described modification, each of the positive electrode current collector plate and the negative electrode current collector plate is subjected to bending processing or the like before being arranged in the cell stack, but the present invention is not limited to this. For example, when each of the positive electrode current collector plate and the negative electrode current collector plate is molded, the base end portion, the tip end portion, and the bent portion may be provided in advance. In this case, bending processing for each of the protruding portions of the positive electrode current collector plate and the negative electrode current collector plate can be omitted.

上記実施形態及び上記変形例では、正極本体部の縁は、方向Xから見て保持部材に重ならないが、これに限られない。当該縁は、保持部材の外周面よりも内側に位置していればよい。上記縁が保持部材の外周面よりも内側に位置する限り、当該縁の少なくとも一部は、方向Xから見て保持部材に重なってもよい。具体的には、縁は、保持部材の内周面に重なってもよいし、保持部材の側面上に位置してもよい。また、例えば、正極本体部の寸法D12と、方向Zに沿った基端部の長さとの合計値は、蓄電セルの寸法D2未満(すなわち、D2>D12+方向Zに沿った基端部の長さ)であってもよい。この場合、正極本体部の縁が、方向Zに交差すると共に正極突出部につながる第1縁部、及び方向Zにおいて第1縁部の反対側に位置する第2縁部を含むとすると、少なくとも第2縁部は、保持部材の外周面よりも内側に位置する。これにより、蓄電装置がケースに収容されたとき、第2縁部とケースの底面とは、方向Zにおいて互いに離間する。このため、第2縁部を介して正極本体部がケース等に短絡しにくくなる。なお、負極本体部の縁も同様に、保持部材の外周面よりも内側に位置していればよい。負極本体部の縁は、方向Zに交差すると共に負極突出部につながる第3縁部、及び方向Zにおいて第3縁部の反対側に位置する第4縁部を有し、少なくとも第4縁部は、保持部材の外周面よりも内側に位置してもよい。これにより、第4縁部を介して負極本体部がケース等に短絡しにくくなる。 In the above-described embodiment and the above-described modified example, the edge of the positive electrode main body portion does not overlap the holding member when viewed from the direction X, but the present invention is not limited to this. The edge may be located inside the outer peripheral surface of the holding member. As long as the edge is located inside the outer peripheral surface of the holding member, at least a part of the edge may overlap the holding member when viewed from the direction X. Specifically, the edge may overlap the inner peripheral surface of the holding member or may be located on the side surface of the holding member. Further, for example, the total value of the dimension D12 of the positive electrode body and the length of the proximal end along the direction Z is less than the dimension D2 of the power storage cell (that is, D2> D12 + the length of the proximal end along the direction Z). It may be. In this case, assuming that the edge of the positive electrode body includes a first edge that intersects the direction Z and is connected to the positive electrode protrusion, and a second edge that is located on the opposite side of the first edge in the direction Z, at least. The second edge portion is located inside the outer peripheral surface of the holding member. As a result, when the power storage device is housed in the case, the second edge portion and the bottom surface of the case are separated from each other in the direction Z. Therefore, the positive electrode main body portion is less likely to be short-circuited to the case or the like via the second edge portion. Similarly, the edge of the negative electrode main body may be located inside the outer peripheral surface of the holding member. The edge of the negative electrode body has a third edge that intersects the direction Z and is connected to the protruding negative electrode, and a fourth edge that is located on the opposite side of the third edge in the direction Z, and is at least the fourth edge. May be located inside the outer peripheral surface of the holding member. As a result, the negative electrode main body portion is less likely to be short-circuited to the case or the like via the fourth edge portion.

上記実施形態及び上記変形例では、電極積層体にはバイポーラ電極が含まれているが、これに限られない。例えば、電極積層体には、正極層が設けられた正極箔と、負極層が設けられた負極箔と、セパレータとが含まれてもよい。 In the above embodiment and the above modification, the electrode laminate includes a bipolar electrode, but the electrode laminate is not limited to this. For example, the electrode laminate may include a positive electrode foil provided with a positive electrode layer, a negative electrode foil provided with a negative electrode layer, and a separator.

上記実施形態及び上記変形例では、保持部材は、電極積層体の外周面を封止するように略矩形枠形状を呈するが、これに限られない。例えば、電解質が固体電解質であってセパレータが固体電解質から構成される場合、電極積層体の外周面の一部は保持部材から露出してもよい。例えば、保持部材は、方向Zにおいて蓄電セルと、当該蓄電セルに接触する集電板の先端部との間に位置し、且つ、当該先端部に接触していればよい。この場合であっても、当該先端部は保持部材の外周面に接触されるので、当該保持部材が溶接部を形成する際の台座として機能する。一方、電解質が流動性を示す場合、保持部材は、電極積層体の外周面の全てを封止することが好ましい。これにより、電解質を介した短絡の発生等を保持部材によって良好に抑制できる。 In the above-described embodiment and the above-described modification, the holding member has a substantially rectangular frame shape so as to seal the outer peripheral surface of the electrode laminate, but is not limited to this. For example, when the electrolyte is a solid electrolyte and the separator is composed of the solid electrolyte, a part of the outer peripheral surface of the electrode laminate may be exposed from the holding member. For example, the holding member may be located between the storage cell and the tip of the current collector plate in contact with the storage cell in the direction Z, and may be in contact with the tip. Even in this case, since the tip portion is in contact with the outer peripheral surface of the holding member, the holding member functions as a pedestal when forming the welded portion. On the other hand, when the electrolyte exhibits fluidity, it is preferable that the holding member seals the entire outer peripheral surface of the electrode laminate. As a result, the occurrence of a short circuit via the electrolyte can be satisfactorily suppressed by the holding member.

上記実施形態では、保持部材は略矩形枠形状を呈しているが、これに限られない。保持部材は、例えば互いに分離した一対のカバー部材でもよい。保持部材が一対のカバー部材であってセルスタックが電池パックに収容される場合、一方のカバー部材が電池積層体と電池パックの底面との間に位置する。また、上記実施形態では、保持部材の厚さは略一定になっているが、これに限られない。例えば、セルスタックが電池パックに収容される場合、保持部材において、電極積層体と電池パックの底面との間に位置する部分の厚さが最も大きくてもよい。電極積層体にバイポーラ電極が含まれる場合、保持部材においてバイポーラ電極と上記底面との間の部分の厚さが最も大きくてもよい。これにより、蓄電装置と、電池パックの底面もしくは当該底面に溜まった液体等との短絡発生を抑制できる。加えて、セルスタック内の正極集電体と負極集電体とが、電池パックの底面等を介して短絡することも抑制できる。 In the above embodiment, the holding member has a substantially rectangular frame shape, but the present invention is not limited to this. The holding member may be, for example, a pair of cover members separated from each other. When the holding member is a pair of cover members and the cell stack is housed in the battery pack, one cover member is located between the battery laminate and the bottom surface of the battery pack. Further, in the above embodiment, the thickness of the holding member is substantially constant, but the thickness is not limited to this. For example, when the cell stack is housed in the battery pack, the thickness of the portion of the holding member located between the electrode laminate and the bottom surface of the battery pack may be the largest. When the electrode laminate contains a bipolar electrode, the thickness of the portion of the holding member between the bipolar electrode and the bottom surface may be the largest. As a result, it is possible to suppress the occurrence of a short circuit between the power storage device and the bottom surface of the battery pack or the liquid collected on the bottom surface. In addition, it is possible to prevent the positive electrode current collector and the negative electrode current collector in the cell stack from being short-circuited via the bottom surface of the battery pack or the like.

上記実施形態及び上記変形例では、正極集電板及び負極集電板の屈曲部は、略直角に屈曲されているが、これに限られない。例えば、当該屈曲部は、湾曲形状を呈してもよい。この場合、突出部における屈曲部及びその近傍(すなわち、基端部の一部と先端部の一部)は、保持部材等に対して離間してもよい。すなわち、屈曲部及びその近傍と、保護部材等との間に隙間が形成されてもよい。 In the above-described embodiment and the above-described modification, the bent portions of the positive electrode current collector plate and the negative electrode current collector plate are bent at substantially right angles, but the present invention is not limited to this. For example, the bent portion may have a curved shape. In this case, the bent portion in the protruding portion and its vicinity (that is, a part of the base end portion and a part of the tip end portion) may be separated from the holding member or the like. That is, a gap may be formed between the bent portion and its vicinity and the protective member or the like.

上記実施形態及び上記変形例では、セルスタック内の蓄電セルは並列接続されているが、これに限られない。例えば、蓄電セル同士は直列接続されていてもよい。この場合、蓄電装置の正極として機能する一方の接続部材は、セルスタックに含まれる複数の蓄電セルのうち一つに接続されればよい。また、蓄電装置の負極として機能する他方の接続部材は、上記一つの蓄電セルとは異なる蓄電セルに接続されればよい。 In the above embodiment and the above modification, the storage cells in the cell stack are connected in parallel, but the present invention is not limited to this. For example, the storage cells may be connected in series. In this case, one connecting member that functions as a positive electrode of the power storage device may be connected to one of a plurality of power storage cells included in the cell stack. Further, the other connecting member that functions as the negative electrode of the power storage device may be connected to a power storage cell different from the one power storage cell described above.

上記実施形態及び上記変形例では、蓄電セルと、正極集電板と、負極集電板とが互いに別体となっているが、これに限られない。例えば、蓄電セルと、正極集電板と、負極集電板とは、互いに一体化されてもよい。この場合、例えば保持部材が、電極積層体と、正極集電板と、負極集電板とを一体化してもよい。これにより、電極積層体と、正極集電板及び負極集電板との接触を確保できる。また、セルスタックには、蓄電セル、正極集電板及び負極集電板が互いに一体化されたユニットと、正極集電板及び負極集電板が別体である蓄電セルとの両方が含まれてもよい。この場合、当該ユニットと蓄電セルとが、方向Xに沿って交互に配列される。 In the above embodiment and the above modification, the power storage cell, the positive electrode current collector plate, and the negative electrode current collector plate are separate from each other, but the present invention is not limited to this. For example, the storage cell, the positive electrode current collector plate, and the negative electrode current collector plate may be integrated with each other. In this case, for example, the holding member may integrate the electrode laminate, the positive electrode current collector plate, and the negative electrode current collector plate. As a result, contact between the electrode laminate and the positive electrode current collector plate and the negative electrode current collector plate can be ensured. Further, the cell stack includes both a unit in which the current collector cell, the positive electrode current collector plate and the negative electrode current collector plate are integrated with each other, and a storage cell in which the positive electrode current collector plate and the negative electrode current collector plate are separate bodies. You may. In this case, the unit and the storage cell are alternately arranged along the direction X.

上記実施形態及び上記変形例では、保持部材と、正極集電板の突出部と、接続部材とが方向Zに沿って重なる第1領域上に溶接部が設けられているが、これに限られない。例えば、保持部材と、正極集電板の突出部と、接続部材とが方向Xもしくは方向Yに沿って重なる第1領域上に溶接部が設けられてもよい。同様に、絶縁緩衝部材と、最外正極集電板の突出部と、接続部材とが方向Xもしくは方向Yに沿って重なる第2領域上に溶接部が設けられてもよい。また、保持部材と、負極集電板の突出部と、接続部材とが方向Xもしくは方向Yに沿って重なる第3領域上に溶接部が設けられてもよいし、絶縁緩衝部材と、最外負極集電板の突出部と、接続部材とが方向Xもしくは方向Yに沿って重なる第4領域上に溶接部が設けられてもよい。 In the above-described embodiment and the above-described modification, the welded portion is provided on the first region where the holding member, the protruding portion of the positive electrode current collector plate, and the connecting member overlap along the direction Z, but the welding portion is limited to this. No. For example, the welded portion may be provided on the first region where the holding member, the protruding portion of the positive electrode current collector plate, and the connecting member overlap along the direction X or the direction Y. Similarly, a welded portion may be provided on a second region where the insulating buffer member, the protruding portion of the outermost positive electrode current collector plate, and the connecting member overlap along the direction X or the direction Y. Further, a welded portion may be provided on a third region where the holding member, the protruding portion of the negative electrode current collector plate, and the connecting member overlap along the direction X or the direction Y, and the insulating buffer member and the outermost portion may be provided. A welded portion may be provided on a fourth region where the protruding portion of the negative electrode current collector plate and the connecting member overlap along the direction X or the direction Y.

上記実施形態と上記変形例とは、適宜組み合わせてもよい。例えば、上記第2実施形態と上記第1変形例とは、互いに組み合わされてもよい。また、上記第1実施形態と第3実施形態とは、互いに組み合わされてもよい。例えば、上記第1実施形態において、最外正極集電板の先端部の延在方向が、他の正極集電板の先端部の延在方向と反対であってもよいし、最外負極集電板の先端部の延在方向が、他の負極集電板の先端部の延在方向と反対であってもよい。 The above-described embodiment and the above-described modification may be combined as appropriate. For example, the second embodiment and the first modification may be combined with each other. Further, the first embodiment and the third embodiment may be combined with each other. For example, in the first embodiment, the extending direction of the tip of the outermost positive electrode current collector plate may be opposite to the extending direction of the tip of the other positive electrode current collector, or the outermost negative electrode current collector. The extending direction of the tip of the electric plate may be opposite to the extending direction of the tip of the other negative electrode current collector.

1,1A,1B…蓄電装置、2…セルスタック、3、3A…接続部材(第1接続部材)、4,4A…接続部材(第2接続部材)、5,6…拘束部材、7,8…絶縁緩衝部材、7a…主面、7b…外周面、9…カバー部材、11,11A…蓄電セル、12…正極集電板、12a…本体部、12b…縁、12c…突出部、12d…基端部(第1基端部、第2基端部)、12e…先端部(第1先端部、第2先端部)、12f…屈曲部(第1屈曲部、第2屈曲部)、12A…最外正極集電板、13…負極集電板、13a…本体部、13c…突出部、13d…基端部、13e…先端部、13f…屈曲部、13A…最外負極集電板、14…電極積層体、14a,14b…主面、14c…外周面、15,15A,15B…保持部材、15a…内周面、15b…外周面、15c…側面、16…バイポーラ電極、17…セパレータ、21…集電体、22…正極層、23…負極層、31…薄肉部、32,32A…厚肉部、33,33A…耐熱部、41a…第1蓄電セル、41b…第2蓄電セル、42,46,52…正極集電板、43,47,53…負極集電板、D1〜D3,D11,D12…寸法、R1…第1領域、R2…第2領域、W1,W1A…溶接部(第1溶接部)、W2…溶接部(第2溶接部)。 1,1A, 1B ... Power storage device, 2 ... Cell stack, 3, 3A ... Connection member (first connection member), 4,4A ... Connection member (second connection member), 5, 6 ... Restraint member, 7, 8 ... Insulation buffer member, 7a ... Main surface, 7b ... Outer surface, 9 ... Cover member, 11, 11A ... Storage cell, 12 ... Positive electrode current collector, 12a ... Main body, 12b ... Edge, 12c ... Projection, 12d ... Base end portion (first base end portion, second base end portion), 12e ... Tip portion (first tip portion, second tip portion), 12f ... Bending portion (first bending portion, second bending portion), 12A ... 14 ... Electrode laminate, 14a, 14b ... Main surface, 14c ... Outer surface, 15, 15A, 15B ... Holding member, 15a ... Inner peripheral surface, 15b ... Outer surface, 15c ... Side surface, 16 ... Bipolar electrode, 17 ... Separator , 21 ... Current collector, 22 ... Positive electrode layer, 23 ... Negative electrode layer, 31 ... Thin-walled part, 32, 32A ... Thick-walled part, 33, 33A ... Heat-resistant part, 41a ... First storage cell, 41b ... Second storage cell , 42, 46, 52 ... Positive electrode current collector, 43, 47, 53 ... Negative electrode current collector, D1 to D3, D11, D12 ... Dimensions, R1 ... 1st region, R2 ... 2nd region, W1, W1A ... Welding Parts (first welded part), W2 ... Welded parts (second welded part).

Claims (23)

第1方向に沿って積層される複数の第1電極を含む第1電極積層体、及び、前記複数の第1電極を保持する保持部材を有する第1蓄電セルと、
前記第1方向に沿って前記第1蓄電セルに隣接する第1集電板と、
前記第1集電板を介して前記第1蓄電セルに電気的に接続される接続部材と、
前記第1集電板と前記接続部材とを接合する第1溶接部と、
を備え、
前記第1集電板は、前記第1電極積層体に接触する第1本体部と、前記第1方向に交差する第2方向に沿って前記第1本体部の縁から突出する第1突出部とを有し、
前記第1溶接部は、前記保持部材と前記第1突出部と前記接続部材とが順に重なり、且つ、前記保持部材と前記第1突出部とが互いに接触する第1領域上に設けられる、
蓄電装置。
A first electrode laminate including a plurality of first electrodes laminated along the first direction, and a first storage cell having a holding member for holding the plurality of first electrodes.
A first current collector plate adjacent to the first storage cell along the first direction,
A connecting member electrically connected to the first storage cell via the first current collector plate, and
A first welded portion that joins the first current collector plate and the connecting member,
With
The first current collector plate has a first main body portion that contacts the first electrode laminate and a first main body portion that protrudes from the edge of the first main body portion along a second direction that intersects the first direction. And have
The first welded portion is provided on a first region in which the holding member, the first protruding portion, and the connecting member are sequentially overlapped, and the holding member and the first protruding portion are in contact with each other.
Power storage device.
前記第1突出部は、前記第2方向に沿って延在する第1基端部、前記第1方向に沿って延在すると共に前記第2方向において前記第1蓄電セルよりも外側に位置する第1先端部、及び、前記第1基端部と前記第1先端部とをつなぐ第1屈曲部を有し、
前記保持部材は、前記第2方向において前記第1電極積層体と前記第1先端部との間に位置し、前記第1先端部に接触する外周面を有し、
前記第1溶接部は、前記第1先端部に設けられる、請求項1に記載の蓄電装置。
The first protruding portion extends along the first base end portion extending along the second direction, extends along the first direction, and is located outside the first storage cell in the second direction. It has a first tip portion and a first bent portion that connects the first base end portion and the first tip portion.
The holding member is located between the first electrode laminate and the first tip portion in the second direction, and has an outer peripheral surface that contacts the first tip portion.
The power storage device according to claim 1, wherein the first welded portion is provided at the first tip portion.
前記第1基端部は、前記第1方向に交差する前記保持部材の側面に密着している、請求項2に記載の蓄電装置。 The power storage device according to claim 2, wherein the first base end portion is in close contact with a side surface of the holding member intersecting in the first direction. 前記複数の第1電極のそれぞれは、バイポーラ電極である、請求項1〜3のいずれか一項に記載の蓄電装置。 The power storage device according to any one of claims 1 to 3, wherein each of the plurality of first electrodes is a bipolar electrode. 前記第1蓄電セルを含む複数の蓄電セルと、前記第1集電板を含む複数の集電板を有するセルスタックとをさらに備え、
前記セルスタック内では、前記複数の蓄電セルと前記複数の集電板とが前記第1方向に沿って交互に配列されている、請求項1〜4のいずれか一項に記載の蓄電装置。
A plurality of current collector cells including the first current collector cell and a cell stack having a plurality of current collector plates including the first current collector plate are further provided.
The power storage device according to any one of claims 1 to 4, wherein the plurality of power storage cells and the plurality of current collector plates are alternately arranged along the first direction in the cell stack.
前記保持部材は、前記第1電極積層体の外周面上に設けられる、請求項1〜5のいずれか一項に記載の蓄電装置。 The power storage device according to any one of claims 1 to 5, wherein the holding member is provided on the outer peripheral surface of the first electrode laminate. 前記保持部材は、前記第1電極積層体の前記外周面の全てを封止する、請求項6に記載の蓄電装置。 The power storage device according to claim 6, wherein the holding member seals the entire outer peripheral surface of the first electrode laminate. 前記保持部材は、薄肉部と、前記薄肉部よりも厚い厚肉部とを有し、
前記厚肉部は、少なくとも前記第1領域に重なると共に前記第1突出部と接触する、請求項1〜7のいずれか一項に記載の蓄電装置。
The holding member has a thin-walled portion and a thick-walled portion thicker than the thin-walled portion.
The power storage device according to any one of claims 1 to 7, wherein the thick portion overlaps at least the first region and comes into contact with the first protruding portion.
前記薄肉部は、前記複数の第1電極を保持する保持部であり、
前記厚肉部は、前記保持部の一部に密着する耐熱部を有する、請求項8に記載の蓄電装置。
The thin-walled portion is a holding portion that holds the plurality of first electrodes.
The power storage device according to claim 8, wherein the thick portion has a heat-resistant portion that is in close contact with a part of the holding portion.
前記第1方向に沿って積層される複数の第2電極を含む第2電極積層体を有し、前記第1蓄電セルと共に前記第1方向に沿って配列される第2蓄電セルと、
前記第1方向に沿って前記第2蓄電セルに隣接する第2集電板と、
前記第2集電板と前記接続部材とを接合する第2溶接部と、
前記第1方向に沿って前記第1蓄電セル及び前記第2蓄電セルに対して拘束力を付加する拘束部材と、
前記第2蓄電セル及び前記拘束部材の間に配置される絶縁緩衝部材と、
をさらに備え、
前記第2集電板は、前記第2電極積層体に接触する第2本体部と、前記第2方向に沿って前記第2本体部の縁から突出する第2突出部とを有し、
前記第2本体部は、前記第2電極積層体と前記絶縁緩衝部材との間に配置され、
前記第2溶接部は、前記絶縁緩衝部材と前記第2突出部と前記接続部材とが順に重なり、且つ、前記絶縁緩衝部材と前記第2突出部とが互いに接触する第2領域上に設けられる、請求項1〜9のいずれか一項に記載の蓄電装置。
A second storage cell having a second electrode laminate including a plurality of second electrodes stacked along the first direction and arranged along the first storage cell together with the first storage cell, and a second storage cell.
A second current collector plate adjacent to the second storage cell along the first direction,
A second welded portion that joins the second current collector plate and the connecting member,
A restraining member that applies a binding force to the first storage cell and the second storage cell along the first direction, and
An insulating buffer member arranged between the second storage cell and the restraint member,
With more
The second current collector plate has a second main body portion that comes into contact with the second electrode laminate, and a second main body portion that protrudes from the edge of the second main body portion along the second direction.
The second main body is arranged between the second electrode laminate and the insulating buffer member.
The second welded portion is provided on a second region in which the insulating buffer member, the second protruding portion, and the connecting member are sequentially overlapped, and the insulating buffer member and the second protruding portion are in contact with each other. , The power storage device according to any one of claims 1 to 9.
前記第2突出部は、前記第2方向に沿って延在する第2基端部、前記第2蓄電セルから離れるように前記第1方向に沿って延在する第2先端部、及び、前記第2基端部と前記第2先端部とをつなぐ第2屈曲部とを有し、
前記絶縁緩衝部材は、前記第1方向に交差すると共に前記第2本体部に接触する主面と、前記主面の縁から前記第1方向に沿って延在すると共に前記第2先端部に接触する外周面とを有し、
前記第2溶接部は、前記第2先端部に設けられる、請求項10に記載の蓄電装置。
The second protruding portion includes a second base end portion extending along the second direction, a second tip portion extending along the first direction so as to be separated from the second storage cell, and the said portion. It has a second bent portion that connects the second base end portion and the second tip end portion.
The insulating buffer member has a main surface that intersects the first direction and contacts the second main body portion, extends from the edge of the main surface along the first direction, and contacts the second tip portion. Has an outer peripheral surface to
The power storage device according to claim 10, wherein the second welded portion is provided at the second tip portion.
前記第2基端部は、前記絶縁緩衝部材の前記主面に密着している、請求項11に記載の蓄電装置。 The power storage device according to claim 11, wherein the second base end portion is in close contact with the main surface of the insulating buffer member. 水平方向における第1方向に沿って配列される複数の蓄電セルを有するセルスタックと、
前記複数の蓄電セルを前記第1方向に沿って挟持する一対の拘束部材と、
前記複数の蓄電セルを収容する電池パックと、
を備え、
前記複数の蓄電セルのそれぞれは、
前記水平方向に交差する第2方向に沿って立設し、
前記第1方向に沿って積層される複数のバイポーラ電極と、前記複数のバイポーラ電極を保持する保持部材とを有し、
前記複数の蓄電セルのそれぞれにおいて、前記水平方向において前記第1方向に交差する第3方向に沿った寸法は、前記第1方向に沿った寸法と、前記第2方向に沿った寸法とのいずれよりも長く、
前記セルスタックにおいて前記第2方向に交差する面の面積は、前記セルスタックに含まれる他の面のいずれよりも大きく、
前記複数の蓄電セルのそれぞれにおいて、前記第1方向における一端には正極端子に相当する集電体が設けられ、前記第1方向における他端には負極端子に相当する集電体が設けられる、
蓄電装置。
A cell stack having a plurality of storage cells arranged along the first direction in the horizontal direction,
A pair of restraint members that sandwich the plurality of storage cells along the first direction, and
A battery pack accommodating the plurality of storage cells and
With
Each of the plurality of storage cells
Standing along the second direction that intersects in the horizontal direction,
It has a plurality of bipolar electrodes laminated along the first direction and a holding member for holding the plurality of bipolar electrodes.
In each of the plurality of storage cells, the dimension along the third direction intersecting the first direction in the horizontal direction is either the dimension along the first direction or the dimension along the second direction. Longer than
The area of the surface intersecting the second direction in the cell stack is much larger than any other surface that is included in the cell stack,
In each of the plurality of storage cells, a current collector corresponding to a positive electrode terminal is provided at one end in the first direction, and a current collector corresponding to a negative electrode terminal is provided at the other end in the first direction.
Power storage device.
前記複数の蓄電セルのそれぞれは、前記電池パックの底面上に配置されている、請求項13に記載の蓄電装置。 The power storage device according to claim 13, wherein each of the plurality of power storage cells is arranged on the bottom surface of the battery pack. 前記保持部材において、前記バイポーラ電極と前記電池パックの前記底面との間に位置する部分の厚さが最も大きい、請求項14に記載の蓄電装置。 The power storage device according to claim 14, wherein a portion of the holding member located between the bipolar electrode and the bottom surface of the battery pack has the largest thickness. 前記セルスタックは、正極集電板及び負極集電板を有し、
前記正極集電板は、前記複数の蓄電セルに含まれる第1蓄電セルの前記正極端子に相当する前記集電体に接触する正極本体部、及び前記第2方向に沿って前記正極本体部の縁から突出する正極突出部を有し、
前記負極集電板は、前記第1蓄電セルの前記負極端子に相当する前記集電体に接触する負極本体部、及び前記第2方向に沿って前記負極本体部の縁から突出する負極突出部を有し、
前記正極突出部と前記負極突出部とは、前記第3方向において互いに離間している、請求項13〜15のいずれか一項に記載の蓄電装置。
The cell stack has a positive electrode current collector plate and a negative electrode current collector plate.
The positive electrode current collector plate includes a positive electrode body portion in contact with the current collector corresponding to the positive terminal of the first power storage cell included in the plurality of storage cells, and the positive electrode body portion along said second direction It has a positive electrode protrusion that protrudes from the edge, and has a positive electrode protrusion.
The negative electrode current collector plate, the said anode body portion in contact with the current collector corresponding to the negative terminal, and the negative electrode protrusion protruding from an edge of the negative electrode main body portion along the second direction of the first storage cells Have,
The power storage device according to any one of claims 13 to 15, wherein the positive electrode protruding portion and the negative electrode protruding portion are separated from each other in the third direction.
前記正極突出部の前記第3方向に沿った寸法と、前記負極突出部の前記第3方向に沿った寸法とのそれぞれは、前記第1蓄電セルの前記第3方向に沿った前記寸法の半分未満である、請求項16に記載の蓄電装置。 The dimension of the positive electrode protrusion along the third direction and the dimension of the negative electrode protrusion along the third direction are half of the dimension of the first storage cell along the third direction. The power storage device according to claim 16, which is less than. 前記第2方向において前記正極突出部に溶接される第1接続部材と、
前記第2方向において前記負極突出部に溶接される第2接続部材と、をさらに備え、
前記第1接続部材と前記第2接続部材とのそれぞれは、前記第1蓄電セルの前記第2方向における一方側に位置する、請求項16又は17に記載の蓄電装置。
A first connecting member welded to the positive electrode protrusion in the second direction,
A second connecting member welded to the negative electrode protrusion in the second direction is further provided.
The power storage device according to claim 16 or 17, wherein each of the first connection member and the second connection member is located on one side of the first power storage cell in the second direction.
前記正極本体部の前記縁は、前記第2方向に交差すると共に前記正極突出部につながる第1縁部、及び前記第2方向において前記第1縁部の反対側に位置する第2縁部を有し、
前記負極本体部の前記縁は、前記第2方向に交差すると共に前記負極突出部につながる第3縁部、及び前記第2方向において前記第3縁部の反対側に位置する第4縁部を有し、
前記第2縁部及び前記第4縁部のそれぞれは、前記保持部材の外周面よりも内側に位置する、請求項16〜18のいずれか一項に記載の蓄電装置。
The edge of the positive electrode body includes a first edge that intersects the second direction and is connected to the positive electrode protrusion, and a second edge that is located on the opposite side of the first edge in the second direction. Have and
The edge of the negative electrode body has a third edge that intersects the second direction and is connected to the protruding negative electrode, and a fourth edge that is located on the opposite side of the third edge in the second direction. Have and
The power storage device according to any one of claims 16 to 18, wherein each of the second edge portion and the fourth edge portion is located inside the outer peripheral surface of the holding member.
前記正極本体部と前記負極本体部とのそれぞれは、前記第1方向において前記第1蓄電セルと重なり、且つ、前記保持部材とは重なっていない、請求項16〜19のいずれか一項に記載の蓄電装置。 16. Power storage device. 前記一対の拘束部材のそれぞれは、
前記複数の蓄電セルに対して前記第1方向に沿って荷重を付加する主部と、
前記電池パックの底面側に位置する前記主部の一端から前記第1方向に沿って延在する延在部と、を有し、
前記延在部は、前記電池パックの前記底面に固定される、請求項13〜20のいずれか一項に記載の蓄電装置。
Each of the pair of restraint members
A main part that applies a load to the plurality of storage cells along the first direction, and
It has an extending portion extending along the first direction from one end of the main portion located on the bottom surface side of the battery pack.
The power storage device according to any one of claims 13 to 20, wherein the extending portion is fixed to the bottom surface of the battery pack.
前記複数の蓄電セルの前記第2方向における移動を規制するカバー部材をさらに備え、
前記カバー部材と、前記一対の拘束部材の少なくとも一方とは、一体化されている、請求項21に記載の蓄電装置。
A cover member for restricting the movement of the plurality of storage cells in the second direction is further provided.
The power storage device according to claim 21, wherein the cover member and at least one of the pair of restraint members are integrated.
前記第2方向において、前記複数の蓄電セルは、前記カバー部材と、前記電池パックの前記底面との間に位置する、請求項22に記載の蓄電装置。 22. The power storage device according to claim 22, wherein in the second direction, the plurality of power storage cells are located between the cover member and the bottom surface of the battery pack.
JP2019568549A 2018-01-31 2018-05-30 Power storage device Active JP6923007B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018014715 2018-01-31
JP2018014715 2018-01-31
PCT/JP2018/020710 WO2019150596A1 (en) 2018-01-31 2018-05-30 Power storage device

Publications (2)

Publication Number Publication Date
JPWO2019150596A1 JPWO2019150596A1 (en) 2020-12-03
JP6923007B2 true JP6923007B2 (en) 2021-08-18

Family

ID=67479709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019568549A Active JP6923007B2 (en) 2018-01-31 2018-05-30 Power storage device

Country Status (2)

Country Link
JP (1) JP6923007B2 (en)
WO (1) WO2019150596A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7488695B2 (en) * 2020-05-29 2024-05-22 本田技研工業株式会社 Solid-state battery module and solid-state battery cell
CN215868988U (en) * 2021-05-21 2022-02-18 阳光电源股份有限公司 Capacitor structure and power converter

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4767291B2 (en) * 2008-07-07 2011-09-07 トヨタ自動車株式会社 Battery holding frame and battery assembly
JP5398273B2 (en) * 2009-01-09 2014-01-29 Fdk株式会社 Power storage module
DE102011120470A1 (en) * 2011-12-07 2013-06-13 Daimler Ag Battery with a number of electrically interconnected single cells and methods for maintenance, repair and / or optimization of such a battery
JP6174381B2 (en) * 2013-06-06 2017-08-02 日立オートモティブシステムズ株式会社 Storage block and storage module
JP2016207428A (en) * 2015-04-21 2016-12-08 株式会社オートネットワーク技術研究所 Wiring member
JP2017050171A (en) * 2015-09-02 2017-03-09 Fdk株式会社 Power storage module and manufacturing method therefor
JP6705285B2 (en) * 2016-05-23 2020-06-03 株式会社豊田自動織機 Battery pack and battery module
JP2017228364A (en) * 2016-06-20 2017-12-28 株式会社豊田自動織機 Battery pack

Also Published As

Publication number Publication date
WO2019150596A1 (en) 2019-08-08
JPWO2019150596A1 (en) 2020-12-03

Similar Documents

Publication Publication Date Title
KR102619201B1 (en) Secondary Battery and Battery Module Having the Same
EP2846377B1 (en) Battery assembly having single electrode terminal joint part
KR102618844B1 (en) Lead tabs for battery terminals
JP2019192493A (en) Power storage device
JP6923007B2 (en) Power storage device
JP2008016263A (en) Electric storage apparatus
JP2019186021A (en) Power storage device and manufacturing method of power storage device
JP2019186118A (en) Power storage device
JP6970912B2 (en) A power storage element and a power storage device including a power storage element
JP2019186117A (en) Power storage device and manufacturing method of power storage device
JP2020017478A (en) Method for manufacturing all-solid battery and all-solid battery
JP2019096466A (en) Power storage element
JP2019220434A (en) Power storage device
JP2020017432A (en) Power storage cell and power storage device
KR20120038075A (en) Fixing apparatus for pouch type supercapacitor
JP2019175676A (en) Power storage device
JP2019200933A (en) Power storage device
JP2020017449A (en) Power storage device
JP2019200931A (en) Power storage device
JP2019169341A (en) Power storage device
JP2019220433A (en) Power storage device
JP2020017447A (en) Power storage device
JP2020017448A (en) Power storage device
JP2020017404A (en) Power storage device
JP2020030979A (en) Manufacturing method for power storage device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200525

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210712

R151 Written notification of patent or utility model registration

Ref document number: 6923007

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151