JP6914686B2 - Inkjet head - Google Patents
Inkjet head Download PDFInfo
- Publication number
- JP6914686B2 JP6914686B2 JP2017058660A JP2017058660A JP6914686B2 JP 6914686 B2 JP6914686 B2 JP 6914686B2 JP 2017058660 A JP2017058660 A JP 2017058660A JP 2017058660 A JP2017058660 A JP 2017058660A JP 6914686 B2 JP6914686 B2 JP 6914686B2
- Authority
- JP
- Japan
- Prior art keywords
- waveform
- pressure chamber
- ink
- pressure
- pulse
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000008602 contraction Effects 0.000 claims description 203
- 238000010586 diagram Methods 0.000 description 35
- 239000000463 material Substances 0.000 description 31
- 238000005192 partition Methods 0.000 description 17
- 230000005499 meniscus Effects 0.000 description 16
- 238000006073 displacement reaction Methods 0.000 description 12
- 238000000034 method Methods 0.000 description 10
- 238000011144 upstream manufacturing Methods 0.000 description 10
- 238000011084 recovery Methods 0.000 description 4
- 239000005871 repellent Substances 0.000 description 4
- 238000004088 simulation Methods 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- 239000003990 capacitor Substances 0.000 description 3
- 238000007599 discharging Methods 0.000 description 3
- 206010015915 eye discharge Diseases 0.000 description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- 229910052451 lead zirconate titanate Inorganic materials 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910020215 Pb(Mg1/3Nb2/3)O3PbTiO3 Inorganic materials 0.000 description 1
- 229910003781 PbTiO3 Inorganic materials 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- NKZSPGSOXYXWQA-UHFFFAOYSA-N dioxido(oxo)titanium;lead(2+) Chemical compound [Pb+2].[O-][Ti]([O-])=O NKZSPGSOXYXWQA-UHFFFAOYSA-N 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- HFGPZNIAWCZYJU-UHFFFAOYSA-N lead zirconate titanate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4].[Pb+2] HFGPZNIAWCZYJU-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 229920000334 poly[3-(3'-N,N,N-triethylamino-1-propyloxy)-4-methylthiophene-2,5-diyl hydrochloride] polymer Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Images
Landscapes
- Particle Formation And Scattering Control In Inkjet Printers (AREA)
Description
本発明の実施形態は、インクジェットヘッドに関する。 Embodiments of the present invention relate to inkjet heads.
インクジェットヘッドを駆動する際には、アクチュエータに対して駆動パルス信号を印加する。この駆動パルス信号により圧力室に振動が生じて圧力室内部の体積が変化し、この圧力室に連通するノズルからインク液滴が吐出される。 When driving the inkjet head, a drive pulse signal is applied to the actuator. The drive pulse signal causes vibration in the pressure chamber to change the volume inside the pressure chamber, and ink droplets are ejected from a nozzle communicating with the pressure chamber.
ところで、圧力室に生じた振動は、インク液滴が吐出された後も残留する。この残留振動は、インク液滴の安定吐出の妨げとなり、印字品質の低下、吐出信頼性の低下を招いている。また、駆動周波数も上げにくいため、高速駆動の妨げにもなっている。このような残留振動をキャンセルする手段は限られており、完全にキャンセルすることは困難である。 By the way, the vibration generated in the pressure chamber remains even after the ink droplets are ejected. This residual vibration hinders stable ejection of ink droplets, resulting in deterioration of print quality and ejection reliability. In addition, since it is difficult to raise the drive frequency, it also hinders high-speed driving. The means for canceling such residual vibration is limited, and it is difficult to completely cancel it.
本発明の実施形態が解決しようとする課題は、インク液滴を吐出した後の残留振動を適正にキャンセルすることができ、吐出安定性を高める上、高速駆動が可能なインクジェットヘッドを提供しようとするものである。 The problem to be solved by the embodiment of the present invention is to provide an inkjet head capable of appropriately canceling residual vibration after ejecting ink droplets, improving ejection stability, and capable of high-speed driving. Is what you do.
一実施形態において、インクジェットヘッドは、インクを収容する圧力室と、圧力室に連通するノズルと、圧力室に対応して設けられ、その圧力室の容積を変位させるアクチュエータと、アクチュエータを駆動する駆動回路とを備える。駆動回路は、拡張パルスと、収縮パルスと、弱収縮パルスとを順に含む駆動波形をアクチュエータに印加してノズルからインクを吐出させる。拡張パルスは、圧力室の容積を第1の時間拡張させて圧力室に負圧を与えるものである。収縮パルスは、圧力室の容積を第2の時間収縮させて圧力室に正圧を与えるものである。弱収縮パルスは、圧力室の容積を第3の時間収縮パルスによる収縮よりも弱く収縮させるものである。 In one embodiment, the inkjet head includes a pressure chamber for accommodating ink, a nozzle communicating with the pressure chamber, an actuator provided corresponding to the pressure chamber to displace the volume of the pressure chamber, and a drive for driving the actuator. It has a circuit. The drive circuit applies a drive waveform including an expansion pulse, a contraction pulse, and a weak contraction pulse to the actuator in order to eject ink from the nozzle. The expansion pulse expands the volume of the pressure chamber for the first time to apply negative pressure to the pressure chamber. The contraction pulse contracts the volume of the pressure chamber for a second time to give a positive pressure to the pressure chamber. The weak contraction pulse causes the volume of the pressure chamber to contract weaker than the contraction caused by the third time contraction pulse.
以下、マルチドロップ方式によるインク液滴吐出の際の消費電力低減と高速駆動を実現できるインクジェットヘッドの実施形態について、図面を用いて説明する。
始めに、図1乃至図6を用いてインクジェットヘッド1の構成について説明する。
Hereinafter, an embodiment of an inkjet head capable of reducing power consumption and high-speed driving when ejecting ink droplets by the multi-drop method will be described with reference to the drawings.
First, the configuration of the
図1は、インクジェットヘッド1の分解斜視図である。インクジェットヘッド1は、例えば、シェアモード方式によるオンデマンド型のインクジェットヘッドである。インクジェットヘッド1は、例えばインクジェットプリンタに搭載され、記録媒体に向けてインクを吐出する。
FIG. 1 is an exploded perspective view of the
インクジェットヘッド1は、基材100と、枠部材200と、ノズルプレート300と、筐体400とを備える。そしてインクジェットヘッド1は、筐体400の内部に上流及び下流インクマニホールド(図示せず)、駆動回路40等を備える。駆動回路40は、インクジェットヘッド1を動作させるものである。上流及び下流インクマニホールドはヘッド1外部の上流及び下流インクタンク(図示せず)に接続される。
The
基材100は、矩形の板状をなしており、その一方の面を実装面121とする。インクジェットヘッド1は、この実装面121の中央部に、基材100の長手方向に延びる2本の圧電部材118を2列に並べて設けている。各圧電部材118は、短手方向の断面が台形であり、互いに離間して平行に配置されている。基材100には、圧電部材118の長手方向に沿って複数の供給口125及び複数の排出口126が設けられている。
The
複数の供給口125は、2本の圧電部材118の間、すなわち、基材100の中央部に沿って基材100の長手方向に並んで設けられている。各供給口125は、基材100を貫通して上流側インクマニホールド(図示せず)に連通し、その先は上流側インクタンク(図示せず)に接続されている。言い換えれば、上流側インクタンクから上流側インクマニホールド、供給口125を通ってインクジェットヘッド1へと供給されたインクは、インク室116(図5,図6を参照)へ流入する。複数の排出口126は、供給口125を間に挟んで2本の圧電部材118の外側に2列に並んで設けられている。各排出口126は、基材100を貫通して下流側インクマニホールド(図示せず)に連通しており、その先は下流側インクタンク(図示せず)に接続されている。各排出口126及び下流側インクマニホールドを通ってインク室116内のインクが下流側インクタンクへと排出される。ヘッド1外部にある下流側インクタンクのインクはポンプ(図示せず)によって上流側インクタンクに戻される。よってインクは、各インクタンクとインク室116との間で、供給口125及び排出口126を通って循環する。
The plurality of
ノズルプレート300は、矩形の板状をなしており、インク液滴を吐出するための複数のノズル301を有する。各ノズル301は、ノズルプレート300を貫通しており、ノズルプレート300の長手方向に沿って2列に並んで配置される。ノズルプレート300の表面302、すなわちノズル301からインク液滴が吐出される側の面には、撥インク膜が形成されている。撥インク膜は、例えば、撥液性を有するシリコン系撥液材料またはフッ素含有系有機材料によって形成される。
The
ノズルプレート300は、枠部材200を介して基材100の実装面121と対向するように配置される。この配置により、インクジェットヘッド1は、基材100と枠部材200とノズルプレート300とによって囲まれたインク室116を形成する。
The
枠部材200は、基材100の実装面121とノズルプレート300との間に配置される。枠部材200は、2本の圧電部材118を囲むとともに、全てのノズル301を囲む大きさを有する。
The
圧電部材118は、例えば、チタン酸ジルコン酸鉛(PZT)によって形成される。圧電部材118は、板状の二つの圧電体を互いの分極方向が対向するように張り合わせて形成されている。本実施の形態に係る圧電部材118は、長手方向に伸びた棒状の外形を有する。なお、圧電材料としてはこれに限らず、例えば、PTO(PbTiO3:チタン酸鉛)、PMNT(Pb(Mg1/3Nb2/3)O3−PbTiO3)、PZNT(Pb(Zn1/3Nb2/3)O3−PbTiO3)、ZnO、及びAlNのような種々の圧電性材料を用いることができる。
圧電部材118は、基材100の実装面121に接着されている。この接着材としては、例えば、熱硬化性を有するエポキシ系接着材が用いられる。
The
The
図2は、基材100に2列に並べられた圧電部材118の一方を部分的に拡大した斜視図である。図2では、内部構造を見やすくするため、ノズルプレート300の一部を不図示としてある。
FIG. 2 is a partially enlarged perspective view of one of the
圧電部材118は、基材100の実装面121と平行に基材100の短手方向に延びた上面118c、及びこの上面118cの両端辺から実装面121に向けて広がるように傾斜した2つの傾斜面118bを有する。圧電部材118は、その表面118aに基材100の短手方向に延びた複数の第1溝131(以下、圧力室131とも言う。)と複数の第2溝132(以下、ダミー室132ともいう。)と、を交互に有する。すなわち圧電部材118は、これらの第1溝131及び第2溝132を隔てる複数の隔壁133を形成している。隔壁133は、言い換えれば、第1溝131と第2溝132の間に設けられた凸部である。第1溝131及び第2溝132の両端は傾斜面118bにつながっている。本実施の形態においては、第1溝131と第2溝132とは、それぞれ同一形状に形成された溝である。なお、第1溝131と第2溝132との形状は異なっていても良い。
The
第2溝132の両端部には、壁材117が設けられている。壁材117は、第2溝132の両端を封止する。壁材117は、圧電部材118の上面118cと面一に設けられた上面117aを有する。圧電部材118の上面118c及び壁材117の上面117aは、ノズルプレート300と接着される。これにより、インク室116へ充填されたインクが第2溝132へ侵入することを防いでいる。
図3は、図1に示すインクジェットヘッド1を長手方向にF3−F3矢視線で切断した部分の拡大断面図である。図4は、図1に示したインクジェットヘッド1の圧電部材118の一方を部分的に拡大した平面図である。図5は、図4に示したインクジェットヘッド1をF5−F5矢視線で切断した断面図である。図6は、図4に示したインクジェットヘッド1をF6−F6矢視線で切断した断面図である。以下、図3乃至図6を用いて、インク室116の構造及びインクの流れ方について詳細に説明する。
FIG. 3 is an enlarged cross-sectional view of a portion of the
始めに、図3に示すように、ノズルプレート300のノズル301は、一つの第1溝131に一つのノズル301が連通するように設けられている。つまり、ノズルプレート300は、2列の圧電部材118にそれぞれ設けられた第1溝131に対応して、2列のノズル301を有する。一方、第2溝132に対応するノズルはない。
First, as shown in FIG. 3, the
図5及び図6に示すようにインク室116は、基材100の実装面121とノズルプレート300と枠部材200とに囲まれた空間である。インク室116には、第1インク室116aと第2インク室116bとを含む。第1インク室116aは2つの圧電部材118の間の空間である。第1インク室116aには、複数の供給口125が連通する。一方、第2インク室116bは、2つの圧電部材118の枠部材200側(外側)の空間である。第2インク室116bには、それぞれ複数の排出口126が連通している。
As shown in FIGS. 5 and 6, the
インクは、ヘッド1の外部の上流側インクタンクから上流側インクマニホールドを経由して第1インク室116aに供給される。インク室116は、供給されるインクにより徐々に満たされる。具体的には、第1インク室116aに流入したインクは、その両側にある圧電部材118の複数の第1溝131を通って、外側にある2つの第2インク室116bへ向けて流出する。これにより、枠部材200で囲まれたインク室116全体がインクで満たされる。そして、第2インク室116bに流れ込んだインクは、複数の排出口126を介して下流側インクマニホールドを経由してヘッド1の外部の下流側インクタンクへと流される。
The ink is supplied from the upstream ink tank outside the
複数の第1溝131の間に交互に配置された複数の第2溝132は、図4及び図5に示すように、その両端が壁材117により塞がれている。このため、第2溝132にインクが侵入することがない。このように、複数の第1溝131は、インクを循環させる流路の一部として機能する一方で、複数の第2溝132は、インクが侵入しないダミー室として機能する。
As shown in FIGS. 4 and 5, both ends of the plurality of
次に、基材100及び圧電部材118に配置される電極及び配線について説明する。
図3に示すように、第1溝131に第1電極134が形成され、第2溝132に第2電極135が形成される。図3の例では、1つの第1溝131に1つの第1電極134が形成されており、1つの第2溝132に2つの第2電極135が形成されている。第1電極134は、第1溝131の一対の側面138と底面139に亘って形成されている。第2電極135は、第2溝132の各側面140と、底面141の一部とに亘ってそれぞれ形成されている。
Next, the electrodes and wiring arranged on the
As shown in FIG. 3, the
図4乃至図6に示すように、第2インク室116bの基材100上には、第1溝131へ延びる第1配線136と、第2溝132へ延びる第2配線137とが設けられている。詳しくは、第1溝131毎に1つの第1配線136が設けられ、第2溝132毎に2つの第2配線137が設けられている。第1配線136の一端は、第1溝131に形成された第1電極134に接続され、第1配線136の他端は、フレキシブル配線板40aを介して図1に示す駆動回路40に接続されている。また、2つの第2配線137の一端は、第2溝132に形成された2つの第2電極135にそれぞれ接続され、第2配線137の他端はフレキシブル配線板40aを介して、駆動回路40に接続されている。
As shown in FIGS. 4 to 6, on the
第1溝131及び第2溝132に設けられる第1電極134及び第2電極135は、例えば、ニッケル薄膜により形成されている。第1電極134及び第2電極135は、これに限らず、例えば、Pt(白金)及びAl(アルミニウム)、Ti(チタン)の薄膜で形成してもよい。さらに第1電極134及び第2電極135の材料として、Cu(銅)、A1(アルミニウム)、Ag(銀)、Ti(チタン)、W(タングステン)、Mo(モリブデン)、Au(金)のような他の材料も用いることができる。
The
上記のような構成により、第1電極134と、該第1電極134と圧電部材118を挟んで対向した第2電極135との電位差によって、該圧電部材118を変形させることができる。すなわち、圧電部材118と、圧電部材118を挟んだ第1電極134及び第2電極135とによって、第1溝131の容積を変化させるアクチュエータが構成される。そしてこのアクチュエータと、インクが満たされた第1溝131と、第1溝131に対応するノズル301とから、インクを吐出する1つのチャネルが構成される。
With the above configuration, the
以下、インクが収容される第1溝131を圧力室131と称し、インクが収容されない第2溝132をダミー室132と称して、説明を続ける。先ず、インクジェットヘッド1の駆動回路40について、図7を用いて説明する。
Hereinafter, the
図7は、駆動回路40の要部構成を、図3に示したインクジェットヘッド1の一部分を拡大した図とともに示すブロック図である。インクジェットヘッド1については、ノズルプレート300のノズル301に連通する1つの圧力室131を中心に、隔壁133を挟んで隣接する2つのダミー室132の一部を示している。前述したように、インクが収容された圧力室131の容積をアクチュエータで変位させることにより、圧力室131に連通したノズル301からインクが吐出される。アクチュエータは、圧力室131に配置された第1電極134と、隣接するダミー室132にそれぞれ配置された第2電極135との電位差により圧力室131の隔壁133をなす圧電部材118をせん断変形させることで、圧力室131の容積を拡張または収縮させる。
FIG. 7 is a block diagram showing a main configuration of the
駆動回路40は、アクチュエータの駆動信号を第1電極134及び第2電極135に印加するための回路である。駆動回路40は、当該波形生成部41、隣接波形生成部42、印刷データ設定部43、波形ユニット選択部44、ドライバ部45及び波形連結制御部46を含む。
The
当該波形生成部31は、当該電極、すなわち圧力室131に配置された第1電極134に印加する信号S1を生成する。隣接波形生成部32は、隣接電極、すなわち圧力室131に隣接する2つのダミー室132に配置された第2電極135に印加する信号S2を生成する。
The waveform generation unit 31 generates a signal S1 to be applied to the electrode, that is, the
印刷データ設定部43は、外部から与えられる印刷データを設定する。波形ユニット選択部44は、印刷データ設定部43に設定された印刷データに基づいて、オン又はオフのセレクト信号SLを出力する。セレクト信号SLは、印刷データの階調値によってオン時間が変わる(図22,図23参照)。
The print
ドライバ部45は、第1電極134に対応した第1ドライバ451と、第2電極135にそれぞれ対応した第2ドライバ452と、を有する。第1ドライバ451は、当該波形生成部41と第1電極134との間に介在される。第1ドライバ451は、当該波形生成部41で生成された信号S1を第1電極134に印加する。第2ドライバ452は、隣接波形生成部42と第2電極135との間に介在される。第2ドライバ452はフローティング(ハイインピーダンス)制御入力を持っており、そのフローティング制御入力端子には、セレクト信号SLが入力される。第2ドライバ452は、セレクト信号SLがオンのとき、隣接波形生成部42で生成された信号S2を第2電極135に印加する。第2ドライバ452は、セレクト信号SLがオフのとき、出力をオフ状態として隣接波形生成部42で生成された信号S2を第2電極135に印加しない。
The
当該波形生成部41及び隣接波形生成部42は、いずれも1ドロップ波形ユニット設定部411,421、2ドロップ波形ユニット設定部412,422、3ドロップ波形ユニット設定部413,423、及び駆動波形生成部414,424を有する。
The
当該波形生成部41において、1ドロップ波形ユニット設定部411は、ノズル301からインク液滴を1ドロップ吐出させるための第1電極134用の駆動波形データを設定する。2ドロップ波形ユニット設定部412は、ノズル301からインク液滴を連続して2ドロップ吐出させるための第1電極134用の駆動波形データを設定する。3ドロップ波形ユニット設定部413は、ノズル301からインク液滴を連続して3ドロップ吐出させるための第1電極134用の駆動波形データを設定する。
In the
隣接波形生成部42において、1ドロップ波形ユニット設定部421は、ノズル301からインク液滴を1ドロップ吐出させるための第2電極135用の駆動波形データを設定する。2ドロップ波形ユニット設定部422は、ノズル301からインク液滴を連続して2ドロップ吐出させるための第2電極135用の駆動波形データを設定する。3ドロップ波形ユニット設定部423は、ノズル301からインク液滴を連続して3ドロップ吐出させるための第2電極135用の駆動波形データを設定する。
以下、各波形ユニット設定部411、421、412、422、413、423にそれぞれ設定される駆動波形データを、駆動波形ユニットと称する。
In the adjacent
Hereinafter, the drive waveform data set in each waveform
当該波形生成部41において、駆動波形生成部414は、各波形ユニット設定部411、412、413にそれぞれ設定された駆動波形ユニットを、予め決められた順番に選択して連結する。そして駆動波形生成部414は、複数の駆動波形ユニットが連結された第1電極134用の駆動波形信号S1をドライバ部45の第1ドライバ451に出力する。
In the
隣接波形生成部42において、駆動波形生成部424は、各波形ユニット設定部421、422、423にそれぞれ設定された駆動波形ユニットを、予め決められた順番に選択して連結する。そして駆動波形生成部424は、複数の駆動波形ユニットが連結された第2電極135用の駆動波形信号S2をドライバ部45の第2ドライバ452に出力する。
駆動波形生成部414,424が駆動波形ユニットを選択する順番は、波形連結制御部46によって制御される。すなわち波形連結制御部46は、各波形ユニット設定部411、421、412、422、413、423の連結順を設定し、その設定どおりに波形ユニットを連結するように、駆動波形生成部414,424を制御する。
ここで、駆動波形生成部414が選択する駆動波形ユニットは、同時に駆動波形生成部424が選択する駆動波形ユニットに対応している。つまり、駆動波形生成部414が1ドロップ波形ユニット設定部411の駆動波形ユニットを選択するときは、駆動波形生成部424も1ドロップ波形ユニット設定部421の駆動波形ユニットを選択する。駆動波形生成部414が2ドロップ波形ユニット設定部412の駆動波形ユニットを選択するときは、駆動波形生成部424も2ドロップ波形ユニット設定部422の駆動波形ユニットを選択する。駆動波形生成部414が3ドロップ波形ユニット設定部413の駆動波形ユニットを選択するときは、駆動波形生成部424も3ドロップ波形ユニット設定部423の駆動波形ユニットを選択する。連結の順番はプログラム可能に構成してもよい。
In the adjacent
The order in which the drive
Here, the drive waveform unit selected by the drive
前述したように、セレクト信号SLがオンの間、駆動波形信号S1は第1電極134に印加され、駆動波形信号S2は第2電極135に印加される。かくして、駆動波形信号S1と駆動波形信号S2との差分電圧によってアクチュエータが駆動される。一方、セレクト信号SLがオフの間は、駆動波形信号S1は第1電極134に印加されるものの、駆動波形信号S2は第2電極135に印加されず、第2電極135はフローティング状態となる。したがって、第2電極135の電位は、アクチュエータの静電容量として誘導される第1電極134の電位に追従する。その結果、第1電極と134と第2電極135との間で電位差が生じないため、アクチュエータは駆動しない。
As described above, while the select signal SL is on, the drive waveform signal S1 is applied to the
次に、本実施の形態で用いる1ドロップ波形、2ドロップ波形及び3ドロップ波形の駆動波形ユニットについて図8乃至図13を用いて説明する。
図8は、当該波形生成部41の1ドロップ波形ユニット設定部411に設定される駆動波形ユニットと、隣接波形生成部42の1ドロップ波形ユニット設定部421に設定される駆動波形ユニットとの差分電圧を示す波形図である。すなわち、1ドロップ波形ユニット設定部411と1ドロップ波形ユニット設定部421とには、図8に示す差分電圧が生じるような駆動波形ユニットがそれぞれ設定されている。この差分電圧がアクチュエータの駆動電圧となる。この駆動電圧がアクチュエータに印加されることで、ノズル301からインク液滴が1ドロップだけ吐出される。このような駆動電圧波形を、本実施の形態では1ドロップ波形と称する。
Next, the drive waveform units of the 1-drop waveform, the 2-drop waveform, and the 3-drop waveform used in the present embodiment will be described with reference to FIGS. 8 to 13.
FIG. 8 shows the difference voltage between the drive waveform unit set in the 1-drop waveform
図9は、1ドロップ波形の駆動電圧がアクチュエータに印加されたときのインク圧力とインク流速とをシミュレーションした結果を示す波形図である。図9において、駆動電圧波形は実線で示されており、インク圧力波形は一点鎖線で示されており、インク流速波形は破線で示されている。また、縦軸の値は正規化されている。 FIG. 9 is a waveform diagram showing the results of simulating the ink pressure and the ink flow velocity when the drive voltage of the one-drop waveform is applied to the actuator. In FIG. 9, the drive voltage waveform is shown by a solid line, the ink pressure waveform is shown by a dash-dotted line, and the ink flow velocity waveform is shown by a broken line. The values on the vertical axis are normalized.
図8に示すように、1ドロップ波形は、第1乃至第7の波形要素e11〜e17で構成される。第1の波形要素e11は、時点t11において、圧力室131の容積を拡張させて、該圧力室131に負圧を与える。第2の波形要素e12は、第1の波形要素e11の後から始まる第1の待ち時間(t12−t11)を生成する。第3の波形要素e13は、時点t12の第1の待ち時間経過後に圧力室131の容積を元に戻して、該圧力室に正圧を与える。第4の波形要素e14は、第3の波形要素e13の後から始まる第2の待ち時間(t13−t12)を生成する。第5の波形要素e15は、時点t13の第2の待ち時間経過後に圧力室131の容積を収縮させて、該圧力室131に正圧を与える。第6の波形要素e16は、第5の波形要素e15の後から始まる第3の待ち時間(t14−t13)を生成する。第7の波形要素e17は、時点t14の第3の待ち時間経過後に圧力室131の容積を元に戻す。
As shown in FIG. 8, the 1-drop waveform is composed of the first to seventh waveform elements e11 to e17. The first corrugated element e11 expands the volume of the
ここに、第1の波形要素e11と第2の波形要素e12と第3の波形要素e13とは、圧力室131の容積を拡張させた後に元へと戻す拡張パルスP11を形成する。すなわち第1の波形要素e11は拡張パルスP11の前縁であり、第2の波形要素e12は拡張パルスP11のパルス幅であり、第3の波形要素e13は拡張パルスP11の後縁である。第5の波形要素e15と第6の波形要素e16と第7の波形要素e17とは、圧力室131の容積を収縮させた後に元へと戻す収縮パルスP12を形成する。すなわち、第5の波形要素e15は収縮パルスP12の前縁であり、第6の波形要素e16は収縮パルスP12のパルス幅であり、第7の波形要素e17は収縮パルスP12の後縁である。
Here, the first waveform element e11, the second waveform element e12, and the third waveform element e13 form an expansion pulse P11 that expands the volume of the
拡張パルスP11の前縁(波形要素e11)の時点t11では、圧力室131の容積を拡張するように両側の隔壁133を変位させる。この変位により、図9に示すように、圧力室131内のインクに負の圧力が瞬間的に加わる。その結果、ノズル301にあるインクのメニスカスが後退する。
At the time point t11 of the front edge (waveform element e11) of the expansion pulse P11, the
その後、インク圧力は、その固有振動に伴い負圧から正圧に転じる。そして、第1の待ち時間(波形要素e12)が経過し、拡張パルスP11の後縁(波形要素e13)の時点t12になったとき、圧力室131の容積を元に戻す。このとき、図9に示すように、インクに正の圧力が瞬間的に加わる。このように、インク圧力が所定値以上の正圧の状態で、パルス変化によりインクに正の圧力が瞬間的に加わると、メニスカスが前進を始めて、ノズル301からインク液滴が1ドロップ吐出される。すなわち第1の待ち時間は、拡張パルスP11の前縁において負圧となったインク圧力が、所定値まで高まるのを待つ時間である。所定値とは、拡張パルスP11の後縁においてインクに正の圧力が瞬間的に加わることでインク液滴が1ドロップ吐出される値である。最も効率よくインクを吐出するには、第1の待ち時間(波形要素e12)は圧力室のインクの固有振動周期の1/2に設定する。
After that, the ink pressure changes from negative pressure to positive pressure due to its natural vibration. Then, when the first waiting time (waveform element e12) elapses and the time point t12 at the trailing edge (waveform element e13) of the expansion pulse P11 is reached, the volume of the
その後、インク圧力は、その固有振動に伴い正圧から負圧に転じる。インク圧力が負圧に転じると、遅れてメニスカスが後退する。そして、インク圧力が負圧の状態で第2の待ち時間(波形要素e14)が経過し、収縮パルスP12の前縁(波形要素e15)の時点t13になったとき、圧力室131の容積が収縮するように両側の隔壁133を変位させる。この変位により、インクに正の圧力を瞬間的に与える。ただし、正の圧力を与える時点t13でインク圧力は負圧であるため、ノズル301からインク液滴が吐出することはない。
After that, the ink pressure changes from positive pressure to negative pressure due to its natural vibration. When the ink pressure turns to negative pressure, the meniscus recedes with a delay. Then, when the second waiting time (waveform element e14) elapses in a state where the ink pressure is negative and the time point t13 at the front edge (waveform element e15) of the contraction pulse P12 is reached, the volume of the
圧力室131の容積が収縮された状態で、第3の待ち時間(波形要素e16)が経過し、収縮パルスP12の後縁(波形要素e17)の時点t14になったとき、圧力室131の容積を元に戻す。この時点t14では、インク圧力振動の振幅の大きさは収縮パルスP12の後縁によってインクに瞬間的に加わる負の圧力と等しく、また、インク流速はゼロである。したがって、その後圧力室131内の残留振動はキャンセルされる。すなわち、第2の待ち時間と第3の待ち時間とは、収縮パルスP12の後縁によって圧力室131内の残留振動がキャンセルされるタイミングを生成するための時間である。
When the volume of the
このように、図8に示した1ドロップ波形の駆動電圧をアクチュエータに印加することにより、圧力室131が、拡張、復帰、収縮、復帰の順に動作する。そして拡張及び復帰の動作により、圧力室131に連通したノズル301から1ドロップのインク液滴が吐出される。また、その後の収縮及び復帰の動作により、インク液滴吐出後の残留振動がキャンセルされる。
In this way, by applying the drive voltage of the one-drop waveform shown in FIG. 8 to the actuator, the
図10は、当該波形生成部41の2ドロップ波形ユニット設定部412に設定される駆動波形ユニットと、隣接波形生成部42の2ドロップ波形ユニット設定部422に設定される駆動波形ユニットとの差分電圧を示す波形図である。すなわち、2ドロップ波形ユニット設定部412と2ドロップ波形ユニット設定部422とには、図10に示す差分電圧が生じるような駆動波形ユニットがそれぞれ設定されている。この差分電圧がアクチュエータの駆動電圧となる。この駆動電圧がアクチュエータに印加されることで、ノズル301からインク液滴が2ドロップ連続して吐出される。このような駆動電圧波形を、本実施の形態では2ドロップ波形と称する。
FIG. 10 shows the difference voltage between the drive waveform unit set in the 2-drop waveform
図11は、2ドロップ波形の駆動電圧がアクチュエータに印加されたときのインク圧力とインク流速とをシミュレーションした結果を示す波形図である。図11において駆動電圧波形は実線で示されており、インク圧力波形は一点鎖線で示されており、インク流速波形は破線で示されている。また、縦軸の値は正規化されている。 FIG. 11 is a waveform diagram showing the results of simulating the ink pressure and the ink flow velocity when the driving voltage of the 2-drop waveform is applied to the actuator. In FIG. 11, the drive voltage waveform is shown by a solid line, the ink pressure waveform is shown by a alternate long and short dash line, and the ink flow velocity waveform is shown by a broken line. The values on the vertical axis are normalized.
図10に示すように、2ドロップ波形は、第1乃至第9の波形要素e21〜e29で構成される。第1の波形要素e21は、時点t21において、圧力室131の容積を拡張させて、該圧力室131に負圧を与える。第2の波形要素e22は、第1の波形要素e21の後から始まる第1の待ち時間(t22−t21)を生成する。第3の波形要素e23は、時点t22の第1の待ち時間経過後に圧力室131の容積を元に戻して、該圧力室131に正圧を与える。第4の波形要素e24は、第3の波形要素e23の後から始まる第2の待ち時間(t23−t22)を生成する。第5の波形要素e25は、時点t23の第2の待ち時間経過後に圧力室131の容積を収縮させて、該圧力室131に正圧を与える。第6の波形要素e26は、第5の波形要素e25の後から始まる第3の待ち時間(t24−t23)を生成する。第7の波形要素e27は、時点t24の第3の待ち時間経過後に圧力室131の容積を少し戻す。図11の例では、波形要素e25による収縮率を100%としたとき、50%の収縮率となるように戻している。第8の波形要素e28は、第7の波形要素e27の後から始まる第4の待ち時間(t25−t24)を生成する。第9の波形要素e29は、時点t25の第4の待ち時間経過後に圧力室131の容積を元に戻す。
As shown in FIG. 10, the two-drop waveform is composed of the first to ninth waveform elements e21 to e29. The first corrugated element e21 expands the volume of the
ここに、第1の波形要素e21と第2の波形要素e22と第3の波形要素e23とは、圧力室131の容積を拡張させた後に元へと戻す拡張パルスP21を形成する。すなわち第1の波形要素e21は拡張パルスP21の前縁であり、第2の波形要素e22は拡張パルスP21のパルス幅であり、第3の波形要素e23は拡張パルスP21の後縁である。第5の波形要素e25と第6の波形要素e26と第7の波形要素e27とは、圧力室131の容積を収縮させた後に少し戻して、第6の波形要素e26で維持された収縮状態よりも弱い収縮状態(弱収縮状態)とする収縮パルスP22を形成する。すなわち、第5の波形要素e25は収縮パルスP22の前縁であり、第6の波形要素e26は収縮パルスP22のパルス幅であり、第7の波形要素e27は収縮パルスP22の後縁である。第8の構成要素e28と第9の構成要素e29とは、圧力室131の弱収縮状態を所定時間維持した後に元へと戻す弱収縮パルスP23を形成する。すなわち、第8の波形要素e28は弱収縮パルスP23のパルス幅であり、第9の波形要素e29は弱収縮パルスP23の後縁である。
Here, the first waveform element e21, the second waveform element e22, and the third waveform element e23 form an expansion pulse P21 that expands the volume of the
拡張パルスP21の前縁(波形要素e21)の時点t21では、圧力室131の容積が拡張するように両側の隔壁133が変位する。この変位により、図11に示すように、圧力室131内のインクに負の圧力が瞬間的に加わる。その結果、ノズル301にあるインクのメニスカスが後退する。
At the time point t21 at the front edge (waveform element e21) of the expansion pulse P21, the
その後、インク圧力は、その固有振動に伴い負圧から正圧に転じる。そして、第1の待ち時間(波形要素e22)が経過し、拡張パルスP21の後縁(波形要素e23)の時点t22になったとき、圧力室131の容積を元に戻す。このとき、図11に示すように、インクに正の圧力が瞬間的に加わる。このように、インク圧力が所定値以上の正圧の状態で、パルス変化によりインクに正の圧力が瞬間的に加わると、メニスカスが前進を始めて、ノズル301からインク液滴が1ドロップ吐出される(1ドロップ目の吐出)。すなわち第1の待ち時間は、拡張パルスP21の前縁において負圧となったインク圧力が、所定値まで高まるのを待つ時間である。所定値とは、拡張パルスP21の後縁においてインクに正の圧力が瞬間的に加わることでインク液滴が1ドロップ吐出される値である。図11の例では、第1の待ち時間を圧力室のインクの固有振動周期の1/2としている。
After that, the ink pressure changes from negative pressure to positive pressure due to its natural vibration. Then, when the first waiting time (waveform element e22) elapses and the time point t22 at the trailing edge (waveform element e23) of the expansion pulse P21 is reached, the volume of the
その後、インク圧力は、その固有振動に伴い正圧から負圧に転じる。インク圧力が負圧に転じると、遅れてメニスカスが後退する。その後、インク圧力は再び正圧に転じる。そして、インク圧力が正圧の状態で第2の待ち時間(波形要素e24)が経過し、収縮パルスP22の前縁(波形要素e25)の時点t23になったとき、圧力室131の容積が収縮するように両側の隔壁133を変位させる。この変位により、インクに正の圧力が瞬間的に与えられる。ここで時点t23は、インク圧力が時点t22のときと略同じ値になった時点である。したがって、インク圧力が所定値以上の正圧の状態で、パルス変化によりインクに正の圧力が瞬間的に加わるので、メニスカスが前進を始めて、ノズル301からインク液滴が1ドロップ吐出される(2ドロップ目の吐出)。すなわち第2の待ち時間は、収縮パルスP22の前縁においてインクに正の圧力が瞬間的に加わることでインク液滴が1ドロップ吐出されるようになるまでインク圧力が高まるのを待つ時間である。
After that, the ink pressure changes from positive pressure to negative pressure due to its natural vibration. When the ink pressure turns to negative pressure, the meniscus recedes with a delay. After that, the ink pressure turns to positive pressure again. Then, when the second waiting time (waveform element e24) elapses in a state where the ink pressure is positive and the time point t23 at the front edge (waveform element e25) of the contraction pulse P22 is reached, the volume of the
圧力室131の容積が収縮された状態で、第3の待ち時間(波形要素e26)が経過し、収縮パルスP22の後縁(波形要素e27)の時点t24になったとき、圧力室131の容積が少し戻るように両側の隔壁133を変位させる。この変位により、圧力室131は収縮状態よりも弱い弱収縮状態となる。この弱収縮状態は、第4の待ち時間(波形要素e28)が経過するまで維持される。そして、弱収縮パルスP23の後縁(波形要素e29)の時点t25になったとき、圧力室131の容積を元に戻す。時点t25では、インク圧力振動の振幅の大きさが弱収縮パルスP23の後縁によってインクに瞬間的に加わる負の圧力と等しく、また、インク流速はゼロである。したがって、その後圧力室131内の残留振動がキャンセルされる。すなわち第3の待ち時間と第4の待ち時間とは、弱収縮パルスP23の後縁によって圧力室131内の残留振動がキャンセルされるタイミングを生成するための時間である。
When the volume of the
このように、図10に示した2ドロップ波形の駆動電圧をアクチュエータに印加することにより、圧力室131が、拡張、復帰、収縮、弱収縮、復帰の順に動作する。そして初めの拡張及び復帰の動作により、圧力室131に連通したノズル301から1ドロップ目のインク液滴が吐出される。また、その後の収縮の動作により、ノズル301から2ドロップ目のインク液滴が吐出される。そして、その後の弱収縮及び復帰の動作により、インク液滴吐出後の残留振動がキャンセルされる。
In this way, by applying the drive voltage of the two-drop waveform shown in FIG. 10 to the actuator, the
図12は、当該波形生成部41の3ドロップ波形ユニット設定部413に設定される駆動波形ユニットと、隣接波形生成部42の3ドロップ波形ユニット設定部423に設定される駆動波形ユニットとの差分電圧を示す波形図である。すなわち、3ドロップ波形ユニット設定部413と3ドロップ波形ユニット設定部423とには、図12に示す差分電圧が生じるような駆動波形ユニットがそれぞれ設定されている。この差分電圧がアクチュエータの駆動電圧となる。この駆動電圧がアクチュエータに印加されることで、ノズル301からインク液滴が3ドロップ連続して吐出される。このような駆動電圧波形を、本実施の形態では3ドロップ波形と称する。
FIG. 12 shows the difference voltage between the drive waveform unit set in the 3-drop waveform
図13は、3ドロップ波形の駆動電圧がアクチュエータに印加されたときのインク圧力とインク流速とをシミュレーションした結果を示す波形図である。図13において駆動電圧波形は実線で示されており、インク圧力波形は一点鎖線で示されており、インク流速波形は破線で示されている。また、縦軸の値は正規化されている。 FIG. 13 is a waveform diagram showing the results of simulating the ink pressure and the ink flow velocity when the driving voltage of the 3-drop waveform is applied to the actuator. In FIG. 13, the drive voltage waveform is shown by a solid line, the ink pressure waveform is shown by a alternate long and short dash line, and the ink flow velocity waveform is shown by a broken line. The values on the vertical axis are normalized.
図12に示すように、3ドロップ波形は、第1乃至第13の波形要素e31〜e43で構成される。第1の波形要素e31は、時点t31において、圧力室131の容積を拡張させて、該圧力室131に負圧を与える。第2の波形要素e32は、第1の波形要素e31の後から始まる第1の待ち時間(t32−t31)を生成する。第3の波形要素e33は、時点t32において、第1の待ち時間経過後に圧力室131の容積を元に戻して、該圧力室に正圧を与える。第4の波形要素e34は、第3の波形要素e33の後から始まる第2の待ち時間(t33−t32)を生成する。第5の波形要素e35は、時点t33において、第2の待ち時間経過後に圧力室131の容積を収縮させて、該圧力室131に正圧を与える。第6の波形要素e36は、第5の波形要素e35の後から始まる第3の待ち時間(t34−t33)を生成する。第7の波形要素e37は、時点t34において、第3の待ち時間経過後に圧力室131の容積を少し戻す。図13の例では、波形要素e35による収縮率を100%としたとき、50%の収縮率となるように戻している。第8の波形要素e38は、第7の波形要素e37の後から始まる第4の待ち時間(t35−t34)を生成する。第9の波形要素e39は、時点t35において、第4の待ち時間経過後に圧力室131の容積を再度収縮させて、該圧力室131に正圧を与える。図13の例では、波形要素e35による収縮率を100%としたとき、同等の収縮率となるように収縮させている。第10の波形要素e40は、第9の波形要素e39の後から始まる第5の待ち時間(t36−t35)を生成する。第11の波形要素e41は、時点t36において、第5の待ち時間経過後に圧力室131の容積を少し戻す。図13の例では、波形要素e39による収縮率を100%としたとき、50%の収縮率となるように戻している。第12の波形要素e42は、第11の波形要素e41の後から始まる第6の待ち時間(t37−t36)を生成する。第13の波形要素e43は、時点t37において、第6の待ち時間経過後に圧力室131の容積を元に戻す。
As shown in FIG. 12, the 3-drop waveform is composed of the first to thirteenth waveform elements e31 to e43. The first corrugated element e31 expands the volume of the
ここに、第1の波形要素e31と第2の波形要素e32と第3の波形要素e33とは、圧力室131の容積を拡張させた後に元へと戻す拡張パルスP31を形成する。すなわち第1の波形要素e31は拡張パルスP31の前縁であり、第2の波形要素e22は拡張パルスP31のパルス幅であり、第3の波形要素e23は拡張パルスP31の後縁である。第5の波形要素e35と第6の波形要素e36と第7の波形要素e37とは、圧力室131の容積を収縮させた後に少し戻して、第6の波形要素e36で維持された収縮状態よりも弱い収縮状態(弱収縮状態)とする第1の収縮パルスP32を形成する。すなわち、第5の波形要素e35は第1の収縮パルスP32の前縁であり、第6の波形要素e36は第1の収縮パルスP32のパルス幅であり、第7の波形要素e37は第1の収縮パルスP32の後縁である。第8の構成要素e38は、第1の収縮パルスP32による圧力室131の弱収縮状態を所定時間維持する第1の弱収縮パルスP33を形成する。すなわち、第8の波形要素e38は第1の弱収縮パルスP33のパルス幅である。第9の波形要素e39と第10の波形要素e40と第11の波形要素e41とは、圧力室131の容積を収縮させた後に少し戻して弱収縮状態とする第2の収縮パルスP34を形成する。すなわち、第9の波形要素e39は第2の収縮パルスP34の前縁であり、第10の波形要素e40は第2の収縮パルスP34のパルス幅であり、第11の波形要素e41は第2の収縮パルスP34の後縁である。第12の構成要素e42と第13の構成要素e43とは、圧力室131の弱収縮状態を所定時間維持した後に元へと戻す第2の弱収縮パルスP35を形成する。すなわち、第12の波形要素e42は第2の弱収縮パルスP35のパルス幅であり、第13の波形要素e43は第2の弱収縮パルスP35の後縁である。
Here, the first waveform element e31, the second waveform element e32, and the third waveform element e33 form an expansion pulse P31 that expands the volume of the
拡張パルスP31の前縁(波形要素e31)の時点t31では、圧力室131の容積が拡張するように両側の隔壁133が変位する。この変位により、図13に示すように、圧力室131内のインクに負の圧力が瞬間的に加わる。その結果、ノズル301にあるインクのメニスカスが後退する。
At the time point t31 of the front edge (waveform element e31) of the expansion pulse P31, the
その後、インク圧力は、その固有振動周期に伴い負圧から正圧に転じる。そして、第1の待ち時間(波形要素e32)が経過し、第1の拡張パルスP31の後縁(波形要素e33)の時点t32になったとき、圧力室131の容積を元に戻す。このとき、図13に示すように、インクに正の圧力が瞬間的に加わる。このように、インク圧力が所定値以上の正圧の状態で、パルス変化によりインクに正の圧力が瞬間的に加わると、メニスカスが前進を始めて、ノズル301からインク液滴が1ドロップ吐出される(1ドロップ目の吐出)。すなわち第1の待ち時間は、拡張パルスP31の前縁において負圧となったインク圧力が、所定値まで高まるのを待つ時間である。所定値とは、拡張パルスP31の後縁においてインクに正の圧力が瞬間的に加わることでインク液滴が1ドロップ吐出される値である。
After that, the ink pressure changes from negative pressure to positive pressure according to its natural vibration cycle. Then, when the first waiting time (waveform element e32) elapses and the time point t32 at the trailing edge (waveform element e33) of the first expansion pulse P31 is reached, the volume of the
その後、インク圧力は、その固有振動に伴い正圧から負圧に転じる。そして、インク圧力が正圧の状態で第2の待ち時間(波形要素e34)が経過し、第1の収縮パルスP32の前縁(波形要素e35)の時点t33になったとき、圧力室131の容積が収縮するように両側の隔壁133を変位させる。この変位により、インクに正の圧力が瞬間的に与えられる。ここで時点t33は、インク圧力が時点t32のときと略同じ値になった時点である。したがって、インク圧力が所定値以上の正圧の状態で、パルス変化によりインクに正の圧力が瞬間的に加わるので、メニスカスが前進を始めて、ノズル301からインク液滴が1ドロップ吐出される(2ドロップ目の吐出)。すなわち第2の待ち時間は、第1の収縮パルスP32の前縁においてインクに正の圧力が瞬間的に加わることでインク液滴が1ドロップ吐出されるようになるまでインク圧力が高まるのを待つ時間である。
After that, the ink pressure changes from positive pressure to negative pressure due to its natural vibration. Then, when the second waiting time (waveform element e34) elapses in a state where the ink pressure is positive and the time point t33 at the front edge (waveform element e35) of the first contraction pulse P32 is reached, the
圧力室131の容積が収縮された後は、インク圧力が負圧に転じる。そして第3の待ち時間(波形要素e36)が経過し、収縮パルスP32の後縁(波形要素e37)の時点t34になったとき、圧力室131の容積が少し戻るように両側の隔壁133を変位させる。この変位により、圧力室131は収縮状態よりも弱い弱収縮状態となり、メニスカスが後退する。ここで時点t34は、インク圧力が負圧となっている間にあり、図13の例ではインクの負圧が極大となる時点である。この時点t34で弱収縮状態とすることにより、インク圧力の振動振幅が増大する。
After the volume of the
弱収縮状態は、第4の待ち時間(波形要素e38)が経過するまで維持され、その間にインク圧力が正圧に転じる。そして、弱収縮パルスP33の後縁(波形要素e39)の時点t35になったとき、圧力室131の容積が再度収縮されるように両側の隔壁133を変位させる。この変位により、インクに正の圧力が瞬間的に加わる。そしてメニスカスが再び前進に転じる。ここで時点t35は、インク圧力が時点t32及びt33のときと略同じ値になった時点よりも遅いタイミングとする。3ドロップ目に正の圧力を与える波形要素e39の大きさは、1ドロップ目のe33、2ドロップ目のe35の半分しかない。したがって、1ドロップ目、2ドロップ目の場合よりもインク圧力が大きくなるまで待つ必要があるため、タイミングを遅くする。なお、時点t35で波形要素e39による駆動を行った後のインク圧力は時点t32及びt33の直後と略同じ値になる。したがって、インク圧力が所定値以上の正圧の状態で、パルス変化によりインクに正の圧力が瞬間的に加わるので、ノズル301からインク液滴が1ドロップ吐出される(3ドロップ目の吐出)。すなわち第4の待ち時間は、第2の収縮パルスP34の前縁においてインクに正の圧力が瞬間的に加わることでインク液滴が1ドロップ吐出されるようになるまでインク圧力が高まるのを待つ時間である。
The weakly contracted state is maintained until the fourth waiting time (waveform element e38) elapses, during which the ink pressure turns to positive pressure. Then, when the time point t35 at the trailing edge (waveform element e39) of the weak contraction pulse P33 is reached, the
圧力室131の容積が収縮された状態で、第5の待ち時間(波形要素e40)が経過し、第2の収縮パルスP34の後縁(波形要素e41)の時点t36になったとき、圧力室131の容積が少し戻るように両側の隔壁133を変位させる。この変位により、圧力室131は収縮状態よりも弱い弱収縮状態となる。この弱収縮状態は、第6の待ち時間(波形要素e42)が経過するまで維持される。そして、第2の弱収縮パルスP35の後縁(波形要素e43)の時点t37になったとき、圧力室131の容積を元に戻す。時点t37では、インク圧力振動の振幅の大きさが第2の弱収縮パルスP35の後縁によってインクに瞬間的に加わる負の圧力と等しく、また、インク流速はゼロである。したがって、その後圧力室131内の残留振動がキャンセルされる。すなわち、第5の待ち時間と第6の待ち時間とは、第2の弱収縮パルスP35の後縁によって圧力室131内の残留振動がキャンセルされるタイミングを生成するための時間である。
When the volume of the
このように、図12に示した3ドロップ波形の駆動電圧をアクチュエータに印加することにより、圧力室131が、拡張、復帰、収縮、弱収縮、収縮、弱収縮、復帰の順に動作する。そして初めの拡張及び復帰の動作により、圧力室131に連通したノズル301から1ドロップ目のインク液滴が吐出される。また、その後の収縮の動作により、ノズル301から2ドロップ目のインク液滴が吐出される。さらに、その後の弱収縮及び収縮の動作により、ノズル301から3ドロップ目のインク液滴が吐出される。そして、その後の弱収縮及び復帰の動作により、インク液滴吐出後の残留振動がキャンセルされる。
In this way, by applying the driving voltage of the three-drop waveform shown in FIG. 12 to the actuator, the
ところで、前述した2ドロップ波形では、収縮パルスP22の後縁に弱収縮パルスP23を生じさせ、この弱収縮パルスP23の後縁で残留振動をキャンセルしている。3ドロップ波形の場合も同様である。これに対し、2ドロップ波形又は3ドロップ波形において、1ドロップ波形のように、収縮パルスP22の後縁で残留振動をキャンセルすることも可能である。ただしこの場合は、残留振動のキャンセルに利用できる波形要素が、収縮パルスP42の後縁となる波形要素e47に限られる。そしてこの波形要素e47の出力タイミングは、先に述べたタイミングに制限されるため、キャンセル時の自由度が小さい。 By the way, in the above-mentioned two-drop waveform, a weak contraction pulse P23 is generated at the trailing edge of the contraction pulse P22, and the residual vibration is canceled at the trailing edge of the weak contraction pulse P23. The same applies to the case of a 3-drop waveform. On the other hand, in the 2-drop waveform or the 3-drop waveform, it is also possible to cancel the residual vibration at the trailing edge of the contraction pulse P22 as in the 1-drop waveform. However, in this case, the waveform element that can be used to cancel the residual vibration is limited to the waveform element e47 that is the trailing edge of the contraction pulse P42. Since the output timing of the waveform element e47 is limited to the timing described above, the degree of freedom at the time of cancellation is small.
一方、図10又は図12に示した2ドロップ波形又は3ドロップ波形は、収縮パルスP22又は第2の収縮パルスP34の後縁に弱収縮状態とする段階を設けている。収縮パルスの後縁に弱収縮状態とする段階を設けると、キャンセルのための波形要素e29又は波形要素e43の調整が可能となる。このため、キャンセル時の自由度が広がる。そこで次に、キャンセルのための波形要素のタイミングの決め方について、2ドロップ波形を例に、図14〜図17を用いて説明する。 On the other hand, the two-drop waveform or the three-drop waveform shown in FIG. 10 or FIG. 12 is provided with a step of making a weak contraction state at the trailing edge of the contraction pulse P22 or the second contraction pulse P34. By providing a step of making the contraction pulse weakly contracted at the trailing edge of the contraction pulse, the waveform element e29 or the waveform element e43 for cancellation can be adjusted. Therefore, the degree of freedom at the time of cancellation is increased. Therefore, next, how to determine the timing of the waveform element for cancellation will be described with reference to FIGS. 14 to 17 by taking a 2-drop waveform as an example.
図14は、2ドロップ波形の弱収縮パルスP23を時点t25で終了させず、圧力室131を弱収縮状態で継続した場合の、インク圧力とインク流速とをシミュレーションした結果を示す波形図である。図14において駆動電圧波形は実線で示されており、インク圧力波形は一点鎖線で示されており、インク流速波形は破線で示されている。また、縦軸の値は正規化されている。
FIG. 14 is a waveform diagram showing the results of simulating the ink pressure and the ink flow velocity when the weak contraction pulse P23 of the 2-drop waveform is not terminated at the time point t25 and the
図14に示すように、時点t25以後も圧力室131を弱収縮状態で継続した場合には、残留振動はキャンセルされない。また、収縮状態から弱収縮状態に移行する時点t24を前後にずらすと、その時点のインク圧力とインク流速が変わるため、その後の残留振動の大きさが変わる。図14の例では、時点t24よりも前に弱収縮状態に移行すると残留振動は大きくなり、時点t24よりも後から弱収縮状態に移行すると残留振動は小さくなる。そこで、時点t24のタイミングを調整して、インク流速がゼロで、かつ、インク圧力が圧力室131を弱収縮状態から初期状態に戻したときに生じる圧力振幅と一致する時点をシミュレーションにより探す。そして、その時点を弱収縮パルスP23の後縁のタイミング、すなわち時点t25とする。そうすることにより、図10に示したように残留振動をキャンセルすることができる。
As shown in FIG. 14, when the
シミュレーションは、図15に示す等価回路を使って行うことができる。等価回路は、電圧源Vに、抵抗RとキャパシタCとインダクタLとの直列回路を接続したものである。図10に示した2ドロップ波形の場合、抵抗Rは0.33Ωであり、キャパシタCは0.37μFであり、インダクタLは0.65μHである。そしてこの場合、第1の待ち時間(t22−t21)は1.56μsであり、第2の待ち時間(t23−t22)は2.80μsであり、第3の待ち時間(t24−t23)は2.94μsであり、第4の待ち時間(t25−t24)は0.66μsである。このような等価回路は、インクジェットヘッド1の残留振動特性から抽出され、その特性によって、抵抗R、キャパシタC及びインダクタLの値が決まる。
The simulation can be performed using the equivalent circuit shown in FIG. The equivalent circuit is a voltage source V connected to a series circuit of a resistor R, a capacitor C, and an inductor L. In the case of the two-drop waveform shown in FIG. 10, the resistor R is 0.33 Ω, the capacitor C is 0.37 μF, and the inductor L is 0.65 μH. In this case, the first waiting time (t22-t21) is 1.56 μs, the second waiting time (t23-t22) is 2.80 μs, and the third waiting time (t24-t23) is 2. It is .94 μs, and the fourth waiting time (t25-t24) is 0.66 μs. Such an equivalent circuit is extracted from the residual vibration characteristics of the
さて、圧力室131の損失は、等価回路の抵抗Rの値によって表される。圧力室131の損失が大きい、すなわち抵抗Rの値が大きい場合には、残留振動は小さくなる。そこでその場合には、収縮状態から弱収縮状態に移行する時点t24を前にずらす。そうすることにより、インク圧力が圧力室131を弱収縮状態から初期状態に戻したときに生じる圧力振幅と一致する時点を確保することができる。そしてその時点を、弱収縮状態を終了させる時点t25とする。
Now, the loss of the
例えば、抵抗Rを0.38Ωと大きくしてシミュレーションを行い、適正な時点t24,t25を選択すると、その駆動電圧波形、インク圧力波形及びインク流速波形は、図16に示すようになる。図16において、第1の待ち時間(t22−t21)は1.56μsであり、第2の待ち時間(t23−t22)は2.80μsであり、第3の待ち時間(t24−t23)は2.84μsであり、第4の待ち時間(t25−t24)は0.86μsである。 For example, when a simulation is performed with the resistance R increased to 0.38Ω and appropriate time points t24 and t25 are selected, the drive voltage waveform, the ink pressure waveform, and the ink flow velocity waveform are as shown in FIG. In FIG. 16, the first waiting time (t22-t21) is 1.56 μs, the second waiting time (t23-t22) is 2.80 μs, and the third waiting time (t24-t23) is 2. It is .84 μs, and the fourth waiting time (t25-t24) is 0.86 μs.
逆に圧力室131の損失が小さい、すなわち抵抗Rの値が小さい場合には、残留振動は大きくなる。そこでその場合には、収縮状態から弱収縮状態に移行する時点t24を後にずらす。そうすることにより、インク圧力が圧力室131を弱収縮状態から初期状態に戻したときに生じる圧力振幅と一致する時点を確保することができる。そしてその時点を、弱収縮状態を終了させる時点t25とする。
On the contrary, when the loss of the
例えば、抵抗Rを0.28Ωと小さくしてシミュレーションを行い、適正な時点t24,t25を選択すると、その駆動電圧波形、インク圧力波形及びインク流速波形は、図17に示すようになる。図17において、第1の待ち時間(t22−t21)は1.56μsであり、第2の待ち時間(t23−t22)は2.80μsであり、第3の待ち時間(t24−t23)は3.14μsであり、第4の待ち時間(t25−t24)は0.36μsである。
このように、収縮パルスの後縁に弱収縮状態とする段階を設けることで、インクの残留振動の減衰の大きさに応じてキャンセルのための波形要素e29又は波形要素e43の調整が可能となるため、キャンセル時の自由度は広がる。
For example, when a simulation is performed with the resistance R reduced to 0.28Ω and appropriate time points t24 and t25 are selected, the drive voltage waveform, the ink pressure waveform, and the ink flow velocity waveform are as shown in FIG. In FIG. 17, the first waiting time (t22-t21) is 1.56 μs, the second waiting time (t23-t22) is 2.80 μs, and the third waiting time (t24-t23) is 3. It is .14 μs, and the fourth waiting time (t25-t24) is 0.36 μs.
In this way, by providing a step of weakly contracting the trailing edge of the contraction pulse, it is possible to adjust the waveform element e29 or the waveform element e43 for cancellation according to the magnitude of the attenuation of the residual vibration of the ink. Therefore, the degree of freedom at the time of cancellation is expanded.
次に、駆動回路40の動作について、図18〜図21を用いて説明する。
図18は、駆動波形生成部414,424が、1ドロップ波形ユニット設定部411,421の駆動波形ユニットを2回選択し、続いて、2ドロップ波形ユニット設定部412,422の駆動波形ユニットを2回選択して、これらを連結した駆動波形信号を生成した例である。同図において波形信号S1は、駆動波形生成部414で生成され、第1ドライバ451を介して圧力室131の第1電極134に印加される駆動波形信号S1である。波形信号S2は、駆動波形生成部424で生成され、第2ドライバ452を介して両隣のダミー室132の第2電極135に印加される駆動波形信号S2である。波形信号ΔVは、駆動波形信号S1と駆動波形信号S2との差分電圧を示している。また、第1ユニットU1は、駆動波形生成部414,424が最初に選択した駆動波形ユニットの波形とその差分電圧を示している。第2ユニットU2は、駆動波形生成部414,424が2番目に選択した駆動波形ユニットの波形とその差分電圧を示している。第3及び第4ユニットU3,U4についても同様であり、3番目又は4番目に選択した駆動波形ユニットの波形とその差分電圧を示している。
Next, the operation of the
In FIG. 18, the drive
図18の例の場合、第1ユニットU1又は第2ユニットU2の波形が圧力室131のアクチュエータに印加されると、ノズル301からインク液滴が1ドロップ吐出される。第3ユニットU3又は第4ユニットの波形が圧力室131のアクチュエータに印加された場合には、ノズル301からインク液滴が連続して2ドロップ吐出される。
In the case of the example of FIG. 18, when the waveform of the first unit U1 or the second unit U2 is applied to the actuator of the
一方、波形ユニット選択部44は、印刷データの階調値が1のとき、第1ユニットU1の期間を有効にするセレクト信号を出力する。階調値が2のときには、波形ユニット選択部44は、第1ユニットU1の期間と第2ユニットU2の期間とを有効にするセレクト信号を出力する。階調値が4のときには、波形ユニット選択部44は、第1ユニットU1の期間〜第3ユニットU3の期間までを有効にするセレクト信号を出力する。階調値が6のときには、波形ユニット選択部44は、第1ユニットU1の期間〜第4ユニットU4の期間までを有効にするセレクト信号を出力する。
On the other hand, the waveform
図20(A)は、波形ユニット選択部44が第1ユニットU1の期間を有効にするセレクト信号SLを出力した場合の波形例である。セレクト信号SLがオンしている第1ユニットU1の期間では、第1電極134に駆動波形信号S1が印加され、第2電極135に駆動波形信号S2が印加される。その結果、駆動波形信号S1と駆動波形信号S2との差分電圧ΔVが圧力室131のアクチュエータに印加されるため、この圧力室131に連通するノズル301からインク液滴が1ドロップ吐出される。一方、セレクト信号SLがオフしている第2〜第4ユニットU2,U3,U4の期間では、第1電極134に駆動波形信号S1が印加されるものの、第2電極135には駆動波形信号S2が印加されず、第2電極135はフローティングとなる。このため、第2電極135の電位は第1電極134の電位に追従する。その結果、差分電圧ΔVは零となるため、インク液滴は吐出されない。かくして、1回の印刷サイクルにおいて1ドロップが吐出される。
FIG. 20A is an example of a waveform when the waveform
図20(B)は、波形ユニット選択部44が第1乃至第3ユニットU1,U2,U3の期間を有効とするセレクト信号SLを出力した場合の波形例である。セレクト信号SLがオンしている第1乃至第3ユニットU1,U2,U3の期間では、第1電極134に駆動波形信号S1が印加され第2電極135に、駆動波形信号S2が印加される。その結果、駆動波形信号S1と駆動波形信号S2との差分電圧ΔVが圧力室131のアクチュエータに印加されるため、この圧力室131に連通するノズル301からインク液滴が4ドロップ連続して吐出される。すなわち、第1ユニットU1の期間では1ドロップが吐出され、第2ドロップU2の期間でも1ドロップが吐出される。また、第3ユニットU3の期間では2ドロップが順に吐出される。一方、セレクト信号SLがオフしている第4ユニットU4の期間では、第1電極134に駆動波形信号S1が印加されるものの、第2電極135には駆動波形信号S2が印加されない。このため、第2電極135の電位は第1電極134の電位に追従する。その結果、差分電圧ΔVは零となるため、インク液滴は吐出されず、第2電極135はフローティングとなる。かくして、1回の印刷サイクルにおいて4ドロップが吐出される。
FIG. 20B is an example of a waveform when the waveform
図20(C)は、波形ユニット選択部44が第1乃至第4ユニットU1,U2,U3,U4の期間を有効にするセレクト信号SLを出力した場合の波形例である。セレクト信号SLがオンしている第1乃至第4ユニットU1,U2,U3,U4の期間では、第1電極134に駆動波形信号S1が印加され第2電極135に、駆動波形信号S2が印加される。その結果、駆動波形信号S1と駆動波形信号S2との差分電圧ΔVが圧力室131のアクチュエータに印加されるため、この圧力室131に連通するノズル301からインク液滴が6ドロップ連続して吐出される。すなわち、第1ユニットU1の期間では1ドロップが吐出され、第2ドロップU2の期間でも1ドロップが吐出される。また、第3ユニットU3の期間では2ドロップが順に吐出され、第4ユニットU4の期間でも2ドロップが連続して吐出される。かくして、1回の印刷サイクルにおいて6ドロップが吐出される。
FIG. 20C is an example of a waveform when the waveform
なお、図示しないが、波形ユニット選択部44が第1ユニットU1の期間と第2ユニットU2の期間とを有効にするセレクト信号SLを出力した場合には、1回の印刷サイクルにおいて2ドロップが連続して吐出される。
Although not shown, when the waveform
したがって、1ドロップ、2ドロップ、4ドロップ又は6ドロップのインク液滴を、印刷データに応じて選択的に吐出させて階調印字を行うマルチドロップ方式を実現することができる。
なお、図示しないが、波形ユニット選択部44が第2ユニットU2の期間と第3ユニットU3の期間とを有効にするセレクト信号SLを出力した場合には、1回の印刷サイクルにおいて3ドロップが連続して吐出される。
また、図示しないが、波形ユニット選択部44が第2ユニットU2の期間と第3、第4ユニットU3、U4の期間とを有効にするセレクト信号SLを出力した場合には、1回の印刷サイクルにおいて5ドロップが連続して吐出される。
波形ユニット選択部44を、所定の階調値に対して波形ユニット選択部44がどの期間を有効にするかをプログラム可能に構成しておけば、階調値に対してU1〜U4の任意の組み合わせで0〜6ドロップを吐出することも可能である。
Therefore, it is possible to realize a multi-drop method in which 1-drop, 2-drop, 4-drop, or 6-drop ink droplets are selectively ejected according to print data to perform gradation printing.
Although not shown, when the waveform
Further, although not shown, when the waveform
If the waveform
図19は、駆動波形生成部414,424が、1ドロップ波形ユニット設定部411,421の駆動波形ユニットを2回選択し、続いて、2ドロップ波形ユニット設定部412,422の駆動波形ユニットを1回選択し、さらに3ドロップ波形ユニット設定部413,423の駆動波形ユニットを1回選択して、駆動波形信号を生成した例である。同図において符号S1、S2、ΔV、U1、U2、U3、U4は、図18と同一のものを示す。
In FIG. 19, the drive
図19の例の場合、第1ユニットU1又は第2ユニットU2の波形が圧力室131のアクチュエータに印加されると、ノズル301からインク液滴が1ドロップ吐出される。第3ユニットU3の波形が圧力室131のアクチュエータに印加された場合には、ノズル301からインク液滴が連続して2ドロップ吐出される。第4ユニットU4の波形が圧力室131のアクチュエータに印加された場合には、ノズル301からインク液滴が連続して3ドロップ吐出される。
In the case of the example of FIG. 19, when the waveform of the first unit U1 or the second unit U2 is applied to the actuator of the
一方、波形ユニット選択部44は、印刷データの階調値が1のとき、第1ユニットU1を選択するセレクト信号を出力する。階調値が2のときには、波形ユニット選択部44は、第1ユニットU1と第2ユニットU2とを選択するセレクト信号を出力する。階調値が4のときには、波形ユニット選択部44は、第1ユニットU1〜第3ユニットU3までを選択するセレクト信号を出力する。階調値が7のときには、波形ユニット選択部44は、第1ユニットU1〜第4ユニットU4までを選択するセレクト信号を出力する。
On the other hand, the waveform
一方、波形ユニット選択部44は、印刷データの階調値が1のとき、第1ユニットU1の期間を有効にするセレクト信号を出力する。階調値が2のときには、波形ユニット選択部44は、第1ユニットU1の期間と第2ユニットU2の期間とを有効にするセレクト信号を出力する。階調値が4のときには、波形ユニット選択部44は、第1ユニットU1の期間〜第3ユニットU3の期間までを有効にするセレクト信号を出力する。階調値が7のときには、波形ユニット選択部44は、第1ユニットU1の期間〜第4ユニットU4の期間までを有効にするセレクト信号を出力する。
図21(A)は、波形ユニット選択部44が第1ユニットU1の期間を有効にするセレクト信号SLを出力した場合の波形例である。また図21(B)は、波形ユニット選択部44が第1乃至第3ユニットU1,U2,U3の期間を有効にするセレクト信号SLを出力した場合の波形例である。これらの例は、図20の(A),(B)について説明した場合と同様なので、ここでの説明は省略する。
On the other hand, the waveform
FIG. 21A is an example of a waveform when the waveform
図21(C)は、波形ユニット選択部44が第1乃至第4ユニットU1,U2,U3,U4の期間を有効にするセレクト信号SLを出力した場合の波形例である。セレクト信号SLがオンしている第1乃至第4ユニットU1,U2,U3,U4の期間では、第1電極134に駆動波形信号S1が印加され第2電極135に、駆動波形信号S2が印加される。その結果、駆動波形信号S1と駆動波形信号S2との差分電圧ΔVが圧力室131のアクチュエータに印加されるため、この圧力室131に連通するノズル301からインク液滴が7ドロップ連続して吐出される。すなわち、第1ユニットU1の期間では1ドロップが吐出され、第2ドロップU2の期間でも1ドロップが吐出される。また、第3ユニットU3の期間では2ドロップが順に吐出され、第4ユニットU4の期間では3ドロップが連続して吐出される。かくして、1回の印刷サイクルにおいて7ドロップが吐出される。
FIG. 21C is an example of a waveform when the waveform
なお、図示しないが、波形ユニット選択部44が第1ユニットU1の期間と第2ユニットU2の期間とを有効にするセレクト信号SLを出力した場合には、1回の印刷サイクルにおいて2ドロップが連続して吐出される。
Although not shown, when the waveform
したがって、1ドロップ、2ドロップ、4ドロップ又は7ドロップのインク液滴を、印刷データに応じて選択的に吐出させて階調印字を行うマルチドロップ方式を実現することができる。
なお、図示しないが、波形ユニット選択部44が第2ユニットU2の期間と第3ユニットU3の期間とを有効にするセレクト信号SLを出力した場合には、1回の印刷サイクルにおいて3ドロップが連続して吐出される。
また、図示しないが、波形ユニット選択部44が第3、第4ユニットU3、U4の期間を有効にするセレクト信号SLを出力した場合には、1回の印刷サイクルにおいて5ドロップが連続して吐出される。
波形ユニット選択部44を、所定の階調値に対して波形ユニット選択部44がどの期間を有効にするかをプログラム可能に構成しておけば、階調値に対してU1〜U4の期間を任意の組み合わせで有効として0〜7ドロップを吐出することも可能である。
1回の印刷サイクルにおいて所定のドロップ数の吐出を行うためのU1〜U4の期間の組み合わせは複数存在する。例えば1回の印刷サイクルにおいて2ドロップを吐出するためにはU1、U2の期間を有効とする方法以外に、単独でU3の期間を有効とする方法としてもよい。例えば1回の印刷サイクルにおいて3ドロップを吐出するためにはU2、U3の期間を有効とする方法以外に、U1、U3の期間を有効とすることもでき、単独でU4の期間を有効とすることもできる。例えば1回の印刷サイクルにおいて5ドロップを吐出するためにはU3、U4の期間を有効とする方法以外に、U1、U2、U4の期間を有効とすることもできる。これらはドロップ数が同じであってもそれぞれに液滴の吐出タイミングが異なるため飛翔特性に違いが生じる。1回の印刷サイクルにおいてどの組み合わせで所定のドロップ数を得るかは、所望の飛翔特性が得られるように自由に選ぶことができる。
Therefore, it is possible to realize a multi-drop method in which 1-drop, 2-drop, 4-drop, or 7-drop ink droplets are selectively ejected according to print data to perform gradation printing.
Although not shown, when the waveform
Further, although not shown, when the waveform
If the waveform
There are a plurality of combinations of U1 to U4 periods for ejecting a predetermined number of drops in one printing cycle. For example, in order to eject 2 drops in one printing cycle, in addition to the method of validating the period of U1 and U2, a method of validating the period of U3 alone may be used. For example, in order to eject 3 drops in one printing cycle, in addition to the method of validating the period of U2 and U3, the period of U1 and U3 can be valid, and the period of U4 is valid independently. You can also do it. For example, in order to eject 5 drops in one printing cycle, in addition to the method of validating the period of U3 and U4, the period of U1, U2 and U4 can be valid. Even if the number of drops is the same, the flight characteristics differ because the droplet ejection timing is different for each. The combination of which to obtain the predetermined number of drops in one printing cycle can be freely selected so as to obtain the desired flight characteristics.
以上詳述したように、本実施形態のインクジェットヘッド1によれば、図10に示した2ドロップ波形を用いることにより、ノズル301から連続して2ドロップを吐出することができる。この2ドロップ波形は、一回の拡張、復帰、収縮の一例動作で2ドロップを連続して吐出させるものである。この一連動作は、図8に示した1ドロップ波形と同じである。したがって、1ドロップ波形と同様の充放電回数で、倍の2ドロップを吐出できるので、1ドロップあたりの消費電力と発熱を抑制することができる。また、1ドロップ目と2ドロップ目との間に、残留振動をキャンセルするための波形要素が挿入されておらず、2ドロップの吐出終了後の復帰動作で残留振動をキャンセルするため、2ドロップを吐出する場合の所要時間が短くなる。その結果、高速駆動が可能となる。
As described in detail above, according to the
また、図10に示した2ドロップ波形を用いることにより、ノズル301から連続して2ドロップを吐出させた後の残量振動をキャンセルすることもできる。しかも、図10に示した2ドロップ波形を用いた場合には、残留振動キャンセル時の自由度が高いので、残量振動をより適正にキャンセルすることができる。その結果、吐出安定性が高く印字品質が良好となるうえ、さらなる高速駆動が可能となる。
Further, by using the 2-drop waveform shown in FIG. 10, it is possible to cancel the residual vibration after continuously ejecting 2 drops from the
また、本実施形態のインクジェットヘッド1によれば、図12に示した3ドロップ波形を用いることにより、ノズル301から連続して3ドロップを吐出することができる。この3ドロップ波形は、一回の拡張、復帰、収縮、弱収縮、収縮の一連動作で3ドロップを連続して吐出させるものである。この一連動作は、1ドロップ波形と図10に示した2ドロップ波形とを用いて3ドロップ吐出させる場合と比較して充放電回数が少ないので、やはり、1ドロップあたりの消費電力と発熱を抑制できる。また、3ドロップを吐出し終えるまでの時間も短いので、高速駆動が可能である。その上、図12に示した3ドロップ波形を用いた場合には、ノズル301から連続して3ドロップを吐出させた後の残量振動をキャンセルすることができる。この場合も、キャンセル時の自由度が高いので、残量振動を適正にキャンセルすることができる。
Further, according to the
以下、実施形態の変形例について説明する。
前記実施形態では、2ドロップ波形及び3ドロップ波形において、収縮パルスP22またはP34の後に弱収縮パルスP23またはP25を入れることにより、残量振動を適正にキャンセルできるようにした。1ドロップ波形においても、収縮パルスP12の後に弱収縮パルスを入れることにより、残量振動を適正にキャンセルできるようになる。
Hereinafter, a modified example of the embodiment will be described.
In the above embodiment, in the 2-drop waveform and the 3-drop waveform, the residual vibration can be appropriately canceled by inserting the weak contraction pulse P23 or P25 after the contraction pulse P22 or P34. Even in the one-drop waveform, the residual vibration can be appropriately canceled by inserting a weak contraction pulse after the contraction pulse P12.
図22は、図8に示した1ドロップ波形の収縮パルスP12の後に弱収縮パルスP13を入れることで、残留振動をキャンセルするようにしたときのインク圧力とインク流速とをシミュレーションした結果を示す波形図である。図22において駆動電圧波形は実線で示されており、インク圧力波形は一点鎖線で示されており、インク流速波形は破線で示されている。また、縦軸の値は正規化されている。 FIG. 22 is a waveform showing the result of simulating the ink pressure and the ink flow velocity when the residual vibration is canceled by inserting the weak contraction pulse P13 after the contraction pulse P12 of the one-drop waveform shown in FIG. It is a figure. In FIG. 22, the drive voltage waveform is shown by a solid line, the ink pressure waveform is shown by a alternate long and short dash line, and the ink flow velocity waveform is shown by a broken line. The values on the vertical axis are normalized.
この例では、第1待ち時間(t12−t11)、すなわち拡張パルスP11のパルス幅は1.56μsである。第2の待ち時間(t13−t12)、すなわち拡張パルスP11から収縮パルスP12までの待機時間は2.08μsである。第3の待ち時間(t14−t13)、すなわち収縮パルスP12のパルス幅は0.3μsである。第4の待ち時間(t15−t14)、すなわち弱収縮パルスP13のパルス幅は0.5μsである。 In this example, the first waiting time (t12-t11), that is, the pulse width of the extended pulse P11 is 1.56 μs. The second waiting time (t13-t12), that is, the waiting time from the expansion pulse P11 to the contraction pulse P12 is 2.08 μs. The third waiting time (t14-t13), that is, the pulse width of the contraction pulse P12 is 0.3 μs. The fourth waiting time (t15-t14), that is, the pulse width of the weak contraction pulse P13 is 0.5 μs.
このような拡張、復帰、収縮、弱収縮、復帰と動作する1ドロップ波形を用いても1ドロップを吐出できる上、吐出後の残留振動をキャンセルすることができる。しかも図22の1ドロップ波形であれば、図8の1ドロップ波形よりもキャンセル時に流速が負となる領域での流速変化を緩やかにすることができる。その結果、誤吐出が起こり難くなるため、吐出がより安定する。 Even if a 1-drop waveform that operates such as expansion, return, contraction, weak contraction, and return is used, 1 drop can be discharged and residual vibration after discharge can be canceled. Moreover, in the case of the one-drop waveform of FIG. 22, the change in the flow velocity in the region where the flow velocity becomes negative at the time of cancellation can be made slower than that of the one-drop waveform of FIG. As a result, erroneous discharge is less likely to occur, and the discharge becomes more stable.
さらに、第2の待ち時間(t13−t12)を短くすると、通常の収縮状態を取ることなく、弱収縮状態だけで残留振動をキャンセルすることもできる。
図23は、弱収縮状態だけで残留振動をキャンセルようにしたときのインク圧力とインク流速とをシミュレーションした結果を示す波形図である。図22において駆動電圧波形は実線で示されており、インク圧力波形は一点鎖線で示されており、インク流速波形は破線で示されている。また、縦軸の値は正規化されている。
Further, if the second waiting time (t13-t12) is shortened, the residual vibration can be canceled only in the weakly contracted state without taking the normal contracted state.
FIG. 23 is a waveform diagram showing the results of simulating the ink pressure and the ink flow velocity when the residual vibration is canceled only in the weakly contracted state. In FIG. 22, the drive voltage waveform is shown by a solid line, the ink pressure waveform is shown by a alternate long and short dash line, and the ink flow velocity waveform is shown by a broken line. The values on the vertical axis are normalized.
この例では、第1待ち時間(t12−t11)、すなわち拡張パルスP11のパルス幅は1.56μsである。第2の待ち時間(t13−t12)、すなわち拡張パルスP11から収縮パルスP12までの待機時間は1.90μsである。第3の待ち時間(t14−t13)、すなわち弱収縮パルスP13のパルス幅は1.06μsである。 In this example, the first waiting time (t12-t11), that is, the pulse width of the extended pulse P11 is 1.56 μs. The second waiting time (t13-t12), that is, the waiting time from the expansion pulse P11 to the contraction pulse P12 is 1.90 μs. The third waiting time (t14-t13), that is, the pulse width of the weak contraction pulse P13 is 1.06 μs.
このような拡張、復帰、弱収縮、復帰と動作する1ドロップ波形を用いても1ドロップを吐出できる上、吐出後の残留振動をキャンセルすることができる。また、図23に示す1ドロップ波形の場合には、吐出のための所要時間が長くなるデメリットはある。しかし、キャンセル時の負の流速が図22の1ドロップ波形と比較してさらに小さく変化が緩やかであるため、誤吐出が起こり難い。よって、吐出が安定する。また、キャンセル時の充電電圧が図8及び図22の1ドロップ波形と比較して半分で良いため、消費電力が小さく発熱量が減るメリットがある。 Even if a 1-drop waveform that operates in such expansion, return, weak contraction, and return is used, 1 drop can be ejected, and residual vibration after ejection can be canceled. Further, in the case of the one-drop waveform shown in FIG. 23, there is a demerit that the time required for ejection becomes long. However, since the negative flow velocity at the time of cancellation is smaller than that of the one-drop waveform shown in FIG. 22 and the change is gradual, erroneous discharge is unlikely to occur. Therefore, the discharge is stable. Further, since the charging voltage at the time of cancellation may be halved as compared with the one-drop waveforms of FIGS. 8 and 22, there is an advantage that the power consumption is small and the amount of heat generated is reduced.
前記実施形態では、図11,図13に示すように、2ドロップ目を吐出させる時点t23,t33のインク圧力は、1ドロップ目を吐出させる時点t22,t32のインク圧力とほぼ同じとなるようにした。しかしながら、必ずしも同じである必要はない。要は、2ドロップ目を吐出させるための波形要素e25,e35のパルス変化により、インクを吐出させることができる程度までインク圧力が正圧になっていればよい。 In the above embodiment, as shown in FIGS. 11 and 13, the ink pressures at the time points t23 and t33 at which the second drop is ejected are substantially the same as the ink pressures at the time points t22 and t32 at which the first drop is ejected. did. However, it does not have to be the same. In short, the ink pressure may be positive to the extent that the ink can be ejected by the pulse change of the waveform elements e25 and e35 for ejecting the second drop.
図24は、図10に示した2ドロップ波形の収縮パルスP22の前縁の時点t23を早めたときのインク圧力とインク流速とをシミュレーションした結果を示す波形図である。図24において駆動電圧波形は実線で示されており、インク圧力波形は一点鎖線で示されており、インク流速波形は破線で示されている。また、縦軸の値は正規化されている。 FIG. 24 is a waveform diagram showing the results of simulating the ink pressure and the ink flow velocity when the time point t23 at the front edge of the contraction pulse P22 of the two-drop waveform shown in FIG. 10 is accelerated. In FIG. 24, the drive voltage waveform is shown by a solid line, the ink pressure waveform is shown by a alternate long and short dash line, and the ink flow velocity waveform is shown by a broken line. The values on the vertical axis are normalized.
この例では、正規化されたインク圧力が0.75のときを拡張パルスP21の後縁の時点t22としているのに対し、同インク圧力が0.5のときを収縮パルスP22の前縁の時点t23としている。このような波形では2ドロップ目の吐出速度が1ドロップ目に比べて遅くなるが、このような2ドロップ波形であってもノズル301から連続して2ドロップ吐出することができる。
In this example, when the normalized ink pressure is 0.75, it is the time point t22 at the trailing edge of the expansion pulse P21, whereas when the ink pressure is 0.5, it is the time point at the leading edge of the contraction pulse P22. It is set to t23. In such a waveform, the ejection speed of the second drop is slower than that of the first drop, but even in such a two-drop waveform, two drops can be continuously ejected from the
図25は、図10に示した2ドロップ波形の収縮パルスP22の前縁の時点t23をさらに早めたときのインク圧力とインク流速とをシミュレーションした結果を示す波形図である。図25において駆動電圧波形は実線で示されており、インク圧力波形は一点鎖線で示されており、インク流速波形は破線で示されている。また、縦軸の値は正規化されている。 FIG. 25 is a waveform diagram showing the results of simulating the ink pressure and the ink flow velocity when the time point t23 at the front edge of the contraction pulse P22 of the two-drop waveform shown in FIG. 10 is further accelerated. In FIG. 25, the drive voltage waveform is shown by a solid line, the ink pressure waveform is shown by a alternate long and short dash line, and the ink flow velocity waveform is shown by a broken line. The values on the vertical axis are normalized.
この例では、正規化されたインク圧力が0.75のときを拡張パルスP21の後縁の時点t22としているのに対し、同インク圧力が正に転じたときを収縮パルスP22の前縁の時点t23としている。このような波形では2ドロップ目の吐出速度が1ドロップ目に比べてさらに遅くなるが、このような2ドロップ波形であってもノズル301から連続して2ドロップ吐出することができる。
In this example, the time when the normalized ink pressure is 0.75 is defined as the time point t22 at the trailing edge of the expansion pulse P21, whereas the time when the ink pressure turns positive is the time point at the leading edge of the contraction pulse P22. It is set to t23. With such a waveform, the ejection speed of the second drop is further slower than that of the first drop, but even with such a two-drop waveform, two drops can be continuously ejected from the
図26は、図12に示した3ドロップ波形の第2の収縮パルスP34の前縁の時点t35を早めたときのインク圧力とインク流速とをシミュレーションした結果を示す波形図である。図26において駆動電圧波形は実線で示されており、インク圧力波形は一点鎖線で示されており、インク流速波形は破線で示されている。また、縦軸の値は正規化されている。 FIG. 26 is a waveform diagram showing the results of simulating the ink pressure and the ink flow velocity when the time point t35 of the front edge of the second contraction pulse P34 of the 3-drop waveform shown in FIG. 12 is accelerated. In FIG. 26, the drive voltage waveform is shown by a solid line, the ink pressure waveform is shown by a alternate long and short dash line, and the ink flow velocity waveform is shown by a broken line. The values on the vertical axis are normalized.
図13では正規化されたインク圧力が0.75のときを拡張パルスP31の後縁の時点t32としており、同インク圧力が1.3のときを第2の収縮パルスP34の前縁の時点t35としていた。これに対して変形例の図26では正規化されたインク圧力が図13と同じ0.75のときを拡張パルスP31の後縁の時点t32としている。しかし、時点t35を早めたため、同インク圧力が図13より低い1.0のときを第2の収縮パルスP34の前縁の時点t35としている。このような3ドロップ波形であってもノズル301から連続して3ドロップ吐出することができる。なお、このような3ドロップ波形では、3ドロップ目の流速が遅くなる。
In FIG. 13, when the normalized ink pressure is 0.75, the time point t32 at the trailing edge of the expansion pulse P31 is defined as the time point t35 at the leading edge of the second contraction pulse P34 when the ink pressure is 1.3. Was supposed to be. On the other hand, in FIG. 26 of the modified example, the time when the normalized ink pressure is 0.75, which is the same as in FIG. 13, is defined as the time point t32 at the trailing edge of the extended pulse P31. However, since the time point t35 has been accelerated, the time when the ink pressure is 1.0, which is lower than that in FIG. 13, is defined as the time point t35 at the front edge of the second contraction pulse P34. Even with such a 3-drop waveform, 3 drops can be continuously ejected from the
図27は、図12に示した3ドロップ波形の第1の収縮パルスP32の前縁の時点t33を早めたときのインク圧力とインク流速とをシミュレーションした結果を示す波形図である。図27において駆動電圧波形は実線で示されており、インク圧力波形は一点鎖線で示されており、インク流速波形は破線で示されている。また、縦軸の値は正規化されている。 FIG. 27 is a waveform diagram showing the results of simulating the ink pressure and the ink flow velocity when the time point t33 of the front edge of the first contraction pulse P32 of the three-drop waveform shown in FIG. 12 is accelerated. In FIG. 27, the drive voltage waveform is shown by a solid line, the ink pressure waveform is shown by a alternate long and short dash line, and the ink flow velocity waveform is shown by a broken line. The values on the vertical axis are normalized.
この例では、正規化されたインク圧力が図13と同じ0.75のときを拡張パルスP31の後縁の時点t32としているのに対し、時点t33を早めて同インク圧力が図13より小さい0.5のときを第1の収縮パルスP32の前縁の時点t33としている。なお、第1の収縮パルスP32の後縁の時点t34を遅らせることで、負圧のピークを小さくしている。したがって、隣接するチャネルに与える正圧を減じるとともに、負圧によって圧力室131内に気泡が生じるのを防ぐことができる。このような3ドロップ波形では2ドロップ目の吐出速度が遅くなるが、このような3ドロップ波形であってもノズル301から連続して2ドロップ吐出することができる。
In this example, the time when the normalized ink pressure is 0.75, which is the same as in FIG. 13, is defined as the time point t32 at the trailing edge of the extended pulse P31, whereas the time point t33 is advanced to 0, where the ink pressure is smaller than in FIG. The time of .5 is defined as the time point t33 of the leading edge of the first contraction pulse P32. By delaying the time point t34 at the trailing edge of the first contraction pulse P32, the peak of the negative pressure is reduced. Therefore, it is possible to reduce the positive pressure applied to the adjacent channels and prevent bubbles from being generated in the
前記実施形態では、図11,図13に示すように、弱収縮パルスP23,P33,P35の収縮率を、収縮パルスP22、P32,P34の収縮率を100&としたときの50%とした。弱収縮パルスP23,P33,P35の収縮率を50%とすると駆動電源が簡素化されるメリットがある。しかし、上記例に限定されるものではない。 In the above embodiment, as shown in FIGS. 11 and 13, the contraction rate of the weak contraction pulses P23, P33, P35 is set to 50% when the contraction rate of the contraction pulses P22, P32, P34 is 100 &. When the contraction rate of the weak contraction pulses P23, P33, and P35 is 50%, there is an advantage that the drive power supply is simplified. However, the present invention is not limited to the above example.
図28は、図10に示した2ドロップ波形において、弱収縮パルスP23の収縮率を、収縮パルスP22の収縮率を100&としたときの30%とした例である。このような2ドロップ波形であっても、時点t22及びt23では、インク圧力が所定値以上の正圧の状態で、パルス変化によりインクに正の圧力が瞬間的に加わるので、それぞれノズル301からインク液滴が1ドロップ吐出される。一方、時点t25では、インク圧力の振幅の大きさが弱収縮パルスP23の後縁によってインクに瞬間的に加わる負の圧力と等しく、また、インク流速もゼロとなる。したがって、圧力室131内の残留振動がキャンセルされる。
FIG. 28 is an example in which the contraction rate of the weak contraction pulse P23 is 30% when the contraction rate of the contraction pulse P22 is 100 & in the two-drop waveform shown in FIG. Even with such a two-drop waveform, at time points t22 and t23, when the ink pressure is a positive pressure equal to or higher than a predetermined value, a positive pressure is momentarily applied to the ink due to a pulse change. One drop is ejected. On the other hand, at time point t25, the magnitude of the amplitude of the ink pressure is equal to the negative pressure momentarily applied to the ink by the trailing edge of the weak contraction pulse P23, and the ink flow velocity becomes zero. Therefore, the residual vibration in the
ところで、前記実施形態において、2ドロップ波形では、収縮パルスP22の後縁に弱収縮パルスP23を生じさせ、この弱収縮パルスP23の後縁で残留振動をキャンセルしている。3ドロップ波形の場合も同様である。しかし、圧力室131におけるインクの圧力振動の減衰が比較的少ない場合には、2ドロップ波形又は3ドロップ波形において、1ドロップ波形のように、収縮パルスP22の後縁で残留振動をキャンセルすることも可能である。
By the way, in the above-described embodiment, in the two-drop waveform, a weak contraction pulse P23 is generated at the trailing edge of the contraction pulse P22, and the residual vibration is canceled at the trailing edge of the weak contraction pulse P23. The same applies to the case of a 3-drop waveform. However, when the attenuation of the pressure vibration of the ink in the
そこで次に、収縮パルスP22の後縁で残留振動をキャンセルする2ドロップ波形について、図29及び図30を用いて説明する。 Therefore, next, a two-drop waveform that cancels the residual vibration at the trailing edge of the contraction pulse P22 will be described with reference to FIGS. 29 and 30.
図29は、2ドロップ波形の波形図であり、図30は、当該2ドロップ波形の駆動電圧がアクチュエータに印加されたときのインク圧力とインク流速とをシミュレーションした結果を示す波形図である。図30において駆動電圧波形は実線で示されており、インク圧力波形は一点鎖線で示されており、インク流速波形は破線で示されている。また、縦軸の値は正規化されている。 FIG. 29 is a waveform diagram of a two-drop waveform, and FIG. 30 is a waveform diagram showing a result of simulating the ink pressure and the ink flow velocity when the drive voltage of the two-drop waveform is applied to the actuator. In FIG. 30, the drive voltage waveform is shown by a solid line, the ink pressure waveform is shown by a chain line, and the ink flow velocity waveform is shown by a broken line. The values on the vertical axis are normalized.
図29に示すように、2ドロップ波形は、第1乃至第7の波形要素e41〜e47で構成される。第1の波形要素e41は、時点t41において、圧力室131の容積を拡張させて、該圧力室131に負圧を与える。第4の波形要素e42は、第1の波形要素e41の後から始まる第1の待ち時間(t42−t41)を生成する。第3の波形要素e43は、時点t42の第1の待ち時間経過後に圧力室131の容積を元に戻して、該圧力室131に正圧を与える。第4の波形要素e44は、第3の波形要素e43の後から始まる第2の待ち時間(t43−t42)を生成する。第5の波形要素e45は、時点t43の第2の待ち時間経過後に圧力室131の容積を収縮させて、該圧力室131に正圧を与える。第6の波形要素e46は、第5の波形要素e45の後から始まる第3の待ち時間(t44−t43)を生成する。第7の波形要素e47は、時点t44の第3の待ち時間経過後に圧力室131の容積を元に戻す。
As shown in FIG. 29, the two-drop waveform is composed of the first to seventh waveform elements e41 to e47. The first corrugated element e41 expands the volume of the
ここに、第1の波形要素e41と第2の波形要素e42と第3の波形要素e43とは、圧力室131の容積を拡張させた後に元へと戻す拡張パルスP41を形成する。すなわち第1の波形要素e41は拡張パルスP41の前縁であり、第2の波形要素e42は拡張パルスP41のパルス幅であり、第3の波形要素e43は拡張パルスP41の後縁である。第5の波形要素e45と第6の波形要素e46と第7の波形要素e47とは、圧力室131の容積を収縮させた後に元に戻す収縮パルスP42を形成する。すなわち、第5の波形要素e45は収縮パルスP42の前縁であり、第6の波形要素e46は収縮パルスP42のパルス幅であり、第7の波形要素e47は収縮パルスP42の後縁である。
Here, the first waveform element e41, the second waveform element e42, and the third waveform element e43 form an expansion pulse P41 that expands the volume of the
拡張パルスP41の前縁(波形要素e41)の時点t41では、圧力室131の容積が拡張するように両側の隔壁133が変位する。この変位により、図30に示すように、圧力室131内のインクに負の圧力が瞬間的に加わる。その結果、ノズル301にあるインクのメニスカスが後退する。
At the time point t41 of the front edge (waveform element e41) of the expansion pulse P41, the
その後、インク圧力は、その固有振動周期に伴い負圧から正圧に転じる。そして、第1の待ち時間(波形要素e42)が経過し、拡張パルスP41の後縁(波形要素e43)の時点t42になったとき、圧力室131の容積を元に戻す。このとき、図30に示すように、インクに正の圧力が瞬間的に与えられる。このように、インク圧力が所定値以上の正圧の状態で、パルス変化によりインクに正の圧力が瞬間的に加わると、メニスカスが前進を始める。そしてノズル301からインク液滴が1ドロップ吐出される(1ドロップ目の吐出)。すなわち第1の待ち時間は、拡張パルスP41の前縁において負圧となったインク圧力が、所定値まで高まるのを待つ時間である。所定値とは、拡張パルスP41の後縁においてインクに正の圧力が瞬間的に加わることでインク液滴が1ドロップ吐出される値である。
After that, the ink pressure changes from negative pressure to positive pressure according to its natural vibration cycle. Then, when the first waiting time (waveform element e42) elapses and the time point t42 at the trailing edge (waveform element e43) of the expansion pulse P41 is reached, the volume of the
その後、インク圧力は、その固有振動に伴い正圧から負圧に転じる。インク圧力が負圧に転じると、遅れてメニスカスが後退する。その後、インク圧力は再び正圧に転じる。そして第2の待ち時間(波形要素e44)が経過し、収縮パルスP42の前縁(波形要素e45)の時点t43になったとき、圧力室131の容積が収縮するように両側の隔壁133を変位させる。この変位により、インクに正の圧力が瞬間的に加わる。ここで時点t43は、インク圧力が時点t42のときと略同じ値になった時点である。したがって、インク圧力が所定値以上の正圧の状態で、パルス変化によりインクに正の圧力が瞬間的に加わるので、メニスカスが前進を始めて、ノズル301からインク液滴が1ドロップ吐出される(2ドロップ目の吐出)。すなわち第2の待ち時間は、収縮パルスP42の前縁においてインクに正の圧力が瞬間的に加わることでインク液滴が1ドロップ吐出されるようになるまでインク圧力が高まるのを待つ時間である。
After that, the ink pressure changes from positive pressure to negative pressure due to its natural vibration. When the ink pressure turns to negative pressure, the meniscus recedes with a delay. After that, the ink pressure turns to positive pressure again. Then, when the second waiting time (waveform element e44) elapses and the time point t43 at the front edge (waveform element e45) of the contraction pulse P42 is reached, the
圧力室131の容積が収縮された状態で、第3の待ち時間(波形要素e46)が経過し、収縮パルスP42の後縁(波形要素e47)の時点t44になったとき、圧力室131の容積を元に戻す。時点t44では、インク圧力振動の振幅の大きさが収縮パルスP42の後縁によってインクに瞬間的に加わる負の圧力と等しく、また、インク流速はゼロである。したがって、その後圧力室131内の残留振動がキャンセルされる。すなわち、第3の待ち時間は、収縮パルスP42の後縁によって圧力室131内の残留振動がキャンセルされるタイミングを生成するための時間である。
When the volume of the
このように、図29に示した2ドロップ波形の駆動電圧をアクチュエータに印加することにより、圧力室131が、拡張、復帰、収縮、復帰の順に動作する。そして初めの拡張及び復帰の動作により、圧力室131に連通したノズル301から1ドロップ目のインク液滴が吐出される。また、その後の収縮の動作により、ノズル301から2ドロップ目のインク液滴が吐出される。そして、その後の復帰の動作により、インク液滴吐出後の残留振動がキャンセルされる。
In this way, by applying the drive voltage of the two-drop waveform shown in FIG. 29 to the actuator, the
なお、図29に示した2ドロップ波形では、残留振動のキャンセルに利用できる波形要素が、収縮パルスP42の後縁となる波形要素e47に限られる。そしてこの波形要素e47の出力タイミングは、先に述べたタイミングに制限されるため、キャンセル時の自由度が小さい。図29に示した2ドロップ波形を利用可能かどうかはインクの残留振動の減衰の大きさに依存する。すなわち、インクの残留振動の減衰が比較的大きい場合、波形要素e47では圧力変化が大きすぎてうまくキャンセルできないことがある。 In the two-drop waveform shown in FIG. 29, the waveform element that can be used to cancel the residual vibration is limited to the waveform element e47 that is the trailing edge of the contraction pulse P42. Since the output timing of the waveform element e47 is limited to the timing described above, the degree of freedom at the time of cancellation is small. Whether or not the two-drop waveform shown in FIG. 29 can be used depends on the magnitude of the attenuation of the residual vibration of the ink. That is, when the attenuation of the residual vibration of the ink is relatively large, the pressure change in the waveform element e47 may be too large to cancel well.
インクジェットヘッド1の構成は、図1乃至図6で説明したものに限定されるものではない。例えば、一つの圧力室毎に一つの圧電部材を持つインクジェットヘッドであっても良く、圧電部材の一対の電極のうち一方の電極電位を固定し他方の電極に駆動波形を与えるインクジェットヘッドであっても良い。あるいは、第1溝131と第2溝132とをいずれもインクが充填される圧力室とし、各圧力室を2つおきに3つの組に分けて分割駆動するシェアドウオール方式のインクジェットヘッドであってもよい。
The configuration of the
この他、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
以下に、本願出願の当初の特許請求の範囲に記載された発明を付記する。
[1]インクを収容する圧力室と、前記圧力室に連通するノズルと、前記圧力室に対応して設けられ、前記圧力室の容積を変位させるアクチュエータと、前記アクチュエータを駆動する駆動回路と、を具備し、前記駆動回路は、前記圧力室の容積を第1の時間拡張させて前記圧力室に負圧を与える拡張パルスと、前記圧力室の容積を第2の時間収縮させて前記圧力室に正圧を与える収縮パルスと、前記圧力室の容積を第3の時間前記収縮パルスによる収縮よりも弱く収縮させる弱収縮パルスと、を順に含む駆動波形を前記アクチュエータに印加して前記ノズルからインクを吐出させる、インクジェットヘッド。
[2]前記弱収縮パルスの開始時点は、その後に前記インクの流速がゼロとなる時点における前記圧力室内の圧力振幅の大きさが、前記弱収縮パルスの後縁による圧力変化の大きさと等しくなる時点であり、その時点で前記弱収縮パルスは終了する、付記[1]記載のインクジェットヘッド。
[3]前記収縮パルスの開始時点は、前記圧力室内の圧力が負圧から正圧に転じた後の時点である、付記[1]又は[2]記載のインクジェットヘッド。
[4]前記収縮パルスの開始時点は、前記圧力室内の圧力が正圧から負圧に転じた後の前記インクの流速が負の時点である、付記[1]又は[2]記載のインクジェットヘッド。
[5]インクを収容する圧力室と、前記圧力室に連通するノズルと、前記圧力室に対応して設けられ、前記圧力室の容積を変位させるアクチュエータと、前記アクチュエータを駆動する駆動回路と、を具備し、前記駆動回路は、前記圧力室の容積を第1の時間拡張させて前記圧力室に負圧を与える拡張パルスと、前記圧力室の容積を第2の時間収縮させて前記圧力室に正圧を与える収縮パルスと、を順に含み、前記収縮パルスによる圧力振幅は、前記拡張パルスによる圧力振幅よりも小さく、かつ前記収縮パルスの開始時点は、その後に前記インクの流速がゼロとなる時点における前記圧力室内の圧力振幅の大きさが、前記収縮パルスの後縁による圧力変化の大きさと等しくなる時点であり、その時点で前記収縮パルスは終了する駆動波形を前記アクチュエータに印加して前記ノズルからインクを吐出させる、インクジェットヘッド。
In addition, although some embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other embodiments, and various omissions, replacements, and changes can be made without departing from the gist of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are also included in the scope of the invention described in the claims and the equivalent scope thereof.
The inventions described in the claims of the original application of the present application are described below.
[1] A pressure chamber for accommodating ink, a nozzle communicating with the pressure chamber, an actuator provided corresponding to the pressure chamber to displace the volume of the pressure chamber, and a drive circuit for driving the actuator. The drive circuit comprises an expansion pulse that expands the volume of the pressure chamber for a first time to give a negative pressure to the pressure chamber, and contracts the volume of the pressure chamber for a second time to cause the pressure chamber. A drive waveform including a contraction pulse that gives a positive pressure to the actuator and a weak contraction pulse that contracts the volume of the pressure chamber weaker than the contraction due to the contraction pulse for a third time is applied to the actuator in order to obtain ink from the nozzle. An inkjet head that discharges.
[2] At the start time of the weak contraction pulse, the magnitude of the pressure amplitude in the pressure chamber at the time when the flow velocity of the ink becomes zero thereafter becomes equal to the magnitude of the pressure change due to the trailing edge of the weak contraction pulse. The inkjet head according to Appendix [1], which is a time point, at which point the weak contraction pulse ends.
[3] The inkjet head according to the appendix [1] or [2], wherein the start time of the contraction pulse is a time after the pressure in the pressure chamber changes from a negative pressure to a positive pressure.
[4] The inkjet head according to Appendix [1] or [2], wherein the start time of the contraction pulse is a time when the flow velocity of the ink after the pressure in the pressure chamber changes from positive pressure to negative pressure is negative. ..
[5] A pressure chamber for accommodating ink, a nozzle communicating with the pressure chamber, an actuator provided corresponding to the pressure chamber to displace the volume of the pressure chamber, and a drive circuit for driving the actuator. The drive circuit comprises an expansion pulse that expands the volume of the pressure chamber for a first time to give a negative pressure to the pressure chamber, and contracts the volume of the pressure chamber for a second time to provide the pressure chamber. The pressure amplitude due to the contraction pulse is smaller than the pressure amplitude due to the expansion pulse, and at the start of the contraction pulse, the flow velocity of the ink becomes zero thereafter. The magnitude of the pressure amplitude in the pressure chamber at the time point becomes equal to the magnitude of the pressure change due to the trailing edge of the contraction pulse, and at that time, the drive waveform at which the contraction pulse ends is applied to the actuator. An inkjet head that ejects ink from a nozzle.
1…インクジェットヘッド、40…駆動回路、41…当該波形生成部、42…隣接波形生成部、43…印刷データ設定部、44…波形ユニット選択部、45…ドライバ部、46…波形連結制御部、100…基材、118…圧電部材、131…第1溝(圧力室)、132…第2溝(ダミー室)、133…隔壁、134…第1電極、135…第2電極、200…枠部材、300…ノズルプレート、301…ノズル、400…筐体、411,421…1ドロップ波形ユニット設定部、412,422…2ドロップ波形ユニット設定部、413,423…3ドロップ波形ユニット設定部、414,424…駆動波形生成部。 1 ... Inkjet head, 40 ... Drive circuit, 41 ... Corresponding waveform generation unit, 42 ... Adjacent waveform generation unit, 43 ... Print data setting unit, 44 ... Waveform unit selection unit, 45 ... Driver unit, 46 ... Waveform connection control unit, 100 ... base material, 118 ... piezoelectric member, 131 ... first groove (pressure chamber), 132 ... second groove (dummy chamber), 133 ... partition wall, 134 ... first electrode, 135 ... second electrode, 200 ... frame member , 300 ... nozzle plate, 301 ... nozzle, 400 ... housing, 411, 421 ... 1 drop waveform unit setting unit, 421, 422 ... 2 drop waveform unit setting unit, 413, 423 ... 3 drop waveform unit setting unit, 414. 424 ... Drive waveform generator.
Claims (6)
前記圧力室に連通するノズルと、
前記圧力室に対応して設けられ、前記圧力室の容積を変位させるアクチュエータと、 前記アクチュエータを駆動する駆動回路と、
を具備し、
前記駆動回路は、
前記圧力室の容積を第1の時間拡張させて前記圧力室に負圧を与える拡張パルスと、 前記圧力室の容積を第2の時間収縮させて前記圧力室に正圧を与える収縮パルスと、 前記圧力室の容積を第3の時間前記収縮パルスによる収縮よりも弱く収縮させる弱収縮パルスと、
を順に含み、前記弱収縮パルスの開始時点は、その後に前記インクの流速がゼロとなる時点における前記圧力室内の圧力振幅の大きさが、前記弱収縮パルスの後縁による圧力変化の大きさと等しくなる時点であり、その時点で前記弱収縮パルスは終了する駆動波形を前記アクチュエータに印加して前記ノズルからインクを吐出させる、インクジェットヘッド。 A pressure chamber that houses ink and
A nozzle communicating with the pressure chamber and
An actuator that is provided corresponding to the pressure chamber and displaces the volume of the pressure chamber, and a drive circuit that drives the actuator.
Equipped with
The drive circuit
An expansion pulse that expands the volume of the pressure chamber for a first time to give a negative pressure to the pressure chamber, and a contraction pulse that contracts the volume of the pressure chamber for a second time to give a positive pressure to the pressure chamber. A weak contraction pulse that causes the volume of the pressure chamber to contract weaker than the contraction caused by the contraction pulse for a third time.
The magnitude of the pressure amplitude in the pressure chamber at the time when the flow velocity of the ink becomes zero thereafter is equal to the magnitude of the pressure change due to the trailing edge of the weak contraction pulse. An inkjet head that applies a drive waveform at which the weak contraction pulse ends at that time to the actuator to eject ink from the nozzle.
前記圧力室に連通するノズルと、
前記圧力室に対応して設けられ、前記圧力室の容積を変位させるアクチュエータと、 前記アクチュエータを駆動する駆動回路と、
を具備し、
前記駆動回路は、
前記圧力室の容積を第1の時間拡張させて前記圧力室に負圧を与える拡張パルスと、 前記圧力室の容積を第2の時間収縮させて前記圧力室に正圧を与える収縮パルスと、 前記圧力室の容積を第3の時間前記収縮パルスによる収縮よりも弱く収縮させる弱収縮パルスと、
を順に含み、前記収縮パルスの開始時点は、前記圧力室内の圧力が負圧から正圧に転じた後の時点である駆動波形を前記アクチュエータに印加して前記ノズルからインクを吐出させる、インクジェットヘッド。 A pressure chamber that houses ink and
A nozzle communicating with the pressure chamber and
An actuator that is provided corresponding to the pressure chamber and displaces the volume of the pressure chamber, and a drive circuit that drives the actuator.
Equipped with
The drive circuit
An expansion pulse that expands the volume of the pressure chamber for a first time to give a negative pressure to the pressure chamber, and a contraction pulse that contracts the volume of the pressure chamber for a second time to give a positive pressure to the pressure chamber. A weak contraction pulse that causes the volume of the pressure chamber to contract weaker than the contraction caused by the contraction pulse for a third time.
Inkjet head that applies a drive waveform to the actuator at the start time of the contraction pulse after the pressure in the pressure chamber changes from negative pressure to positive pressure to eject ink from the nozzle. ..
前記圧力室に連通するノズルと、
前記圧力室に対応して設けられ、前記圧力室の容積を変位させるアクチュエータと、 前記アクチュエータを駆動する駆動回路と、
を具備し、
前記駆動回路は、
前記圧力室の容積を第1の時間拡張させて前記圧力室に負圧を与える拡張パルスと、 前記圧力室の容積を第2の時間収縮させて前記圧力室に正圧を与える収縮パルスと、 前記圧力室の容積を第3の時間前記収縮パルスによる収縮よりも弱く収縮させる弱収縮パルスと、
を順に含み、前記収縮パルスの開始時点は、前記圧力室内の圧力が正圧から負圧に転じた後の前記インクの流速が負の時点である駆動波形を前記アクチュエータに印加して前記ノズルからインクを吐出させる、インクジェットヘッド。 A pressure chamber that houses ink and
A nozzle communicating with the pressure chamber and
An actuator that is provided corresponding to the pressure chamber and displaces the volume of the pressure chamber, and a drive circuit that drives the actuator.
Equipped with
The drive circuit
An expansion pulse that expands the volume of the pressure chamber for a first time to give a negative pressure to the pressure chamber, and a contraction pulse that contracts the volume of the pressure chamber for a second time to give a positive pressure to the pressure chamber. A weak contraction pulse that causes the volume of the pressure chamber to contract weaker than the contraction caused by the contraction pulse for a third time.
Is included in order, and at the start time of the contraction pulse, a drive waveform at which the flow velocity of the ink after the pressure in the pressure chamber changes from positive pressure to negative pressure is applied to the actuator is applied from the nozzle. An inkjet head that ejects ink.
前記圧力室に連通するノズルと、
前記圧力室に対応して設けられ、前記圧力室の容積を変位させるアクチュエータと、 前記アクチュエータを駆動する駆動回路と、
を具備し、
前記駆動回路は、
前記圧力室の容積を第1の時間拡張させて前記圧力室に負圧を与える拡張パルスと、 前記圧力室の容積を第2の時間収縮させて前記圧力室に正圧を与える収縮パルスと、 前記圧力室の容積を第3の時間前記収縮パルスによる収縮よりも弱く収縮させる弱収縮パルスと、
を順に含み、さらに前記拡張パルスと前記収縮パルスとの間に、少なくとも前記圧力室内のインクの圧力が負圧となるまで待つ待ち時間を含む駆動波形を前記アクチュエータに印加して前記ノズルからインクを吐出させる、インクジェットヘッド。 A pressure chamber that houses ink and
A nozzle communicating with the pressure chamber and
An actuator that is provided corresponding to the pressure chamber and displaces the volume of the pressure chamber, and a drive circuit that drives the actuator.
Equipped with
The drive circuit
An expansion pulse that expands the volume of the pressure chamber for a first time to give a negative pressure to the pressure chamber, and a contraction pulse that contracts the volume of the pressure chamber for a second time to give a positive pressure to the pressure chamber. A weak contraction pulse that causes the volume of the pressure chamber to contract weaker than the contraction caused by the contraction pulse for a third time.
Is sequentially included, and a drive waveform including at least a waiting time for waiting until the pressure of the ink in the pressure chamber becomes negative is applied to the actuator between the expansion pulse and the contraction pulse to apply ink from the nozzle. Inkjet head to eject.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017058660A JP6914686B2 (en) | 2017-03-24 | 2017-03-24 | Inkjet head |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017058660A JP6914686B2 (en) | 2017-03-24 | 2017-03-24 | Inkjet head |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018161747A JP2018161747A (en) | 2018-10-18 |
JP6914686B2 true JP6914686B2 (en) | 2021-08-04 |
Family
ID=63859123
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017058660A Active JP6914686B2 (en) | 2017-03-24 | 2017-03-24 | Inkjet head |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6914686B2 (en) |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004142448A (en) * | 2002-09-30 | 2004-05-20 | Seiko Epson Corp | Liquid jet device and controller thereof |
JP2008260228A (en) * | 2007-04-12 | 2008-10-30 | Toshiba Tec Corp | Inkjet head driving apparatus, and inkjet head driving method |
JP5417079B2 (en) * | 2009-07-31 | 2014-02-12 | 理想科学工業株式会社 | Inkjet recording device |
JP5944652B2 (en) * | 2011-11-29 | 2016-07-05 | 理想科学工業株式会社 | Ink droplet discharge method for ink jet recording apparatus |
WO2014051073A1 (en) * | 2012-09-27 | 2014-04-03 | コニカミノルタ株式会社 | Method for driving inkjet head, device for driving inkjet head and inkjet recording apparatus |
JP2014142448A (en) * | 2013-01-23 | 2014-08-07 | Jvc Kenwood Corp | Image display device |
JP5871851B2 (en) * | 2013-04-16 | 2016-03-01 | 株式会社東芝 | Ink jet head driving method and driving apparatus |
US9427956B2 (en) * | 2014-09-22 | 2016-08-30 | Kabushiki Kaisha Toshiba | Drive method and drive apparatus for ink jet head |
-
2017
- 2017-03-24 JP JP2017058660A patent/JP6914686B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2018161747A (en) | 2018-10-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9427956B2 (en) | Drive method and drive apparatus for ink jet head | |
JP5871851B2 (en) | Ink jet head driving method and driving apparatus | |
JP6847615B2 (en) | Inkjet head drive device and drive method | |
JP2000015803A (en) | Method for driving ink-jet head | |
JP2022058820A (en) | Ink jet head and ink jet printer | |
JP2016034720A (en) | Ink jet head | |
JP6920846B2 (en) | Inkjet head | |
CN111634121B (en) | Liquid ejecting head and printer | |
JP7012436B2 (en) | Inkjet head | |
JP6450533B2 (en) | Inkjet head and inkjet printer | |
US10780693B2 (en) | Inkjet head | |
JP6920847B2 (en) | Inkjet head | |
US20150070423A1 (en) | Inkjet head, driving device of inkjet head and driving method thereof | |
JP6914686B2 (en) | Inkjet head | |
JP2010105300A (en) | Liquid discharge apparatus | |
US12097702B2 (en) | Inkjet head | |
JP7188551B2 (en) | Method for driving droplet ejection head | |
JP4541856B2 (en) | Driving method of piezoelectric ink jet head | |
JP2023091465A (en) | inkjet head | |
JP2023042912A (en) | Ink jet head | |
JP2020152070A (en) | Liquid discharge head and liquid discharge device | |
JP2024047749A (en) | Liquid discharge head | |
JP2021049785A (en) | Inkjet head |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200221 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20210119 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210126 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210325 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210413 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210609 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210615 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210714 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6914686 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |