JP6912557B2 - 水電解システム、水電解方法、水素の製造方法 - Google Patents
水電解システム、水電解方法、水素の製造方法 Download PDFInfo
- Publication number
- JP6912557B2 JP6912557B2 JP2019509421A JP2019509421A JP6912557B2 JP 6912557 B2 JP6912557 B2 JP 6912557B2 JP 2019509421 A JP2019509421 A JP 2019509421A JP 2019509421 A JP2019509421 A JP 2019509421A JP 6912557 B2 JP6912557 B2 JP 6912557B2
- Authority
- JP
- Japan
- Prior art keywords
- gas
- separation tank
- water electrolysis
- electrolytic cell
- electrolysis system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims description 555
- 238000005868 electrolysis reaction Methods 0.000 title claims description 384
- 229910052739 hydrogen Inorganic materials 0.000 title claims description 143
- 239000001257 hydrogen Substances 0.000 title claims description 142
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims description 111
- 238000004519 manufacturing process Methods 0.000 title claims description 17
- 239000007788 liquid Substances 0.000 claims description 451
- 238000000926 separation method Methods 0.000 claims description 380
- 239000008151 electrolyte solution Substances 0.000 claims description 248
- 239000003792 electrolyte Substances 0.000 claims description 192
- 239000007789 gas Substances 0.000 claims description 116
- 238000005192 partition Methods 0.000 claims description 112
- 239000001301 oxygen Substances 0.000 claims description 110
- 229910052760 oxygen Inorganic materials 0.000 claims description 110
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 109
- 150000002431 hydrogen Chemical class 0.000 claims description 72
- 238000009826 distribution Methods 0.000 claims description 65
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims description 37
- 229910001882 dioxygen Inorganic materials 0.000 claims description 37
- 239000011347 resin Substances 0.000 claims description 30
- 229920005989 resin Polymers 0.000 claims description 30
- 239000003595 mist Substances 0.000 claims description 23
- 239000003513 alkali Substances 0.000 claims description 16
- -1 polytetrafluoroethylene Polymers 0.000 claims description 14
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 claims description 14
- 229920001577 copolymer Polymers 0.000 claims description 13
- 230000007246 mechanism Effects 0.000 claims description 13
- 239000000203 mixture Substances 0.000 claims description 13
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 13
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 13
- 238000007599 discharging Methods 0.000 claims description 8
- 239000011810 insulating material Substances 0.000 claims description 8
- 229920001038 ethylene copolymer Polymers 0.000 claims description 6
- 238000011144 upstream manufacturing Methods 0.000 claims description 6
- 229920002492 poly(sulfone) Polymers 0.000 claims description 5
- 230000005405 multipole Effects 0.000 description 137
- 239000000463 material Substances 0.000 description 52
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 50
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 33
- 229910052759 nickel Inorganic materials 0.000 description 23
- 230000000694 effects Effects 0.000 description 20
- 230000000052 comparative effect Effects 0.000 description 17
- 239000012528 membrane Substances 0.000 description 17
- 229920000840 ethylene tetrafluoroethylene copolymer Polymers 0.000 description 16
- 239000002585 base Substances 0.000 description 15
- 238000000576 coating method Methods 0.000 description 15
- 239000011248 coating agent Substances 0.000 description 13
- 229910052751 metal Inorganic materials 0.000 description 13
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 12
- 230000007423 decrease Effects 0.000 description 12
- 238000000034 method Methods 0.000 description 12
- 239000002184 metal Substances 0.000 description 11
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical group [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 11
- IUVCFHHAEHNCFT-INIZCTEOSA-N 2-[(1s)-1-[4-amino-3-(3-fluoro-4-propan-2-yloxyphenyl)pyrazolo[3,4-d]pyrimidin-1-yl]ethyl]-6-fluoro-3-(3-fluorophenyl)chromen-4-one Chemical compound C1=C(F)C(OC(C)C)=CC=C1C(C1=C(N)N=CN=C11)=NN1[C@@H](C)C1=C(C=2C=C(F)C=CC=2)C(=O)C2=CC(F)=CC=C2O1 IUVCFHHAEHNCFT-INIZCTEOSA-N 0.000 description 10
- 239000012071 phase Substances 0.000 description 10
- 239000003054 catalyst Substances 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- 239000007864 aqueous solution Substances 0.000 description 8
- 238000010586 diagram Methods 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- 150000001875 compounds Chemical class 0.000 description 7
- 230000006866 deterioration Effects 0.000 description 7
- 238000005259 measurement Methods 0.000 description 7
- 229920002943 EPDM rubber Polymers 0.000 description 6
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 6
- 229910000990 Ni alloy Inorganic materials 0.000 description 6
- 239000010941 cobalt Substances 0.000 description 6
- 229910017052 cobalt Inorganic materials 0.000 description 6
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 6
- 229910052742 iron Inorganic materials 0.000 description 6
- 239000004576 sand Substances 0.000 description 6
- 229910000831 Steel Inorganic materials 0.000 description 5
- 230000001186 cumulative effect Effects 0.000 description 5
- 238000013461 design Methods 0.000 description 5
- 238000009434 installation Methods 0.000 description 5
- 239000003014 ion exchange membrane Substances 0.000 description 5
- 238000007789 sealing Methods 0.000 description 5
- 239000010959 steel Substances 0.000 description 5
- 229910000975 Carbon steel Inorganic materials 0.000 description 4
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 4
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 4
- 239000004698 Polyethylene Substances 0.000 description 4
- 241000220317 Rosa Species 0.000 description 4
- 239000004809 Teflon Substances 0.000 description 4
- 229920006362 Teflon® Polymers 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 239000010962 carbon steel Substances 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 229920001971 elastomer Polymers 0.000 description 4
- 229920001973 fluoroelastomer Polymers 0.000 description 4
- 230000001965 increasing effect Effects 0.000 description 4
- 239000012466 permeate Substances 0.000 description 4
- 229920000573 polyethylene Polymers 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 239000005060 rubber Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 230000000087 stabilizing effect Effects 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- 239000004734 Polyphenylene sulfide Substances 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 230000001276 controlling effect Effects 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 230000002708 enhancing effect Effects 0.000 description 3
- 238000010304 firing Methods 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 229920000069 polyphenylene sulfide Polymers 0.000 description 3
- 229920000915 polyvinyl chloride Polymers 0.000 description 3
- 239000004800 polyvinyl chloride Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 238000010248 power generation Methods 0.000 description 3
- 230000002265 prevention Effects 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 229910001928 zirconium oxide Inorganic materials 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 229910052684 Cerium Inorganic materials 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- 244000043261 Hevea brasiliensis Species 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- 229920000459 Nitrile rubber Polymers 0.000 description 2
- 241000209094 Oryza Species 0.000 description 2
- 235000007164 Oryza sativa Nutrition 0.000 description 2
- 239000005062 Polybutadiene Substances 0.000 description 2
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 229920006311 Urethane elastomer Polymers 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 239000003575 carbonaceous material Substances 0.000 description 2
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000007667 floating Methods 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 238000004817 gas chromatography Methods 0.000 description 2
- 229910021389 graphene Inorganic materials 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 229910052741 iridium Inorganic materials 0.000 description 2
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 229920003052 natural elastomer Polymers 0.000 description 2
- 229920001194 natural rubber Polymers 0.000 description 2
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 238000007750 plasma spraying Methods 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 229920001084 poly(chloroprene) Polymers 0.000 description 2
- 229920002857 polybutadiene Polymers 0.000 description 2
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 2
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 2
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 235000009566 rice Nutrition 0.000 description 2
- 229910052707 ruthenium Inorganic materials 0.000 description 2
- 229920002379 silicone rubber Polymers 0.000 description 2
- 239000004945 silicone rubber Substances 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 238000000638 solvent extraction Methods 0.000 description 2
- 229920000181 Ethylene propylene rubber Polymers 0.000 description 1
- 229930182556 Polyacetal Natural products 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 229920000491 Polyphenylsulfone Polymers 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 101100434947 Prochlorococcus marinus (strain SARG / CCMP1375 / SS120) anmK gene Proteins 0.000 description 1
- 239000007868 Raney catalyst Substances 0.000 description 1
- 229910000564 Raney nickel Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 150000001447 alkali salts Chemical class 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000003011 anion exchange membrane Substances 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- 229920005549 butyl rubber Polymers 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000005341 cation exchange Methods 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- UUAGAQFQZIEFAH-UHFFFAOYSA-N chlorotrifluoroethylene Chemical group FC(F)=C(F)Cl UUAGAQFQZIEFAH-UHFFFAOYSA-N 0.000 description 1
- 239000000701 coagulant Substances 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 150000001869 cobalt compounds Chemical class 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- MYRTYDVEIRVNKP-UHFFFAOYSA-N divinylbenzene Substances C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000011491 glass wool Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 239000005431 greenhouse gas Substances 0.000 description 1
- 159000000011 group IA salts Chemical class 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- HCDGVLDPFQMKDK-UHFFFAOYSA-N hexafluoropropylene Chemical group FC(F)=C(F)C(F)(F)F HCDGVLDPFQMKDK-UHFFFAOYSA-N 0.000 description 1
- 229920002681 hypalon Polymers 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 230000010220 ion permeability Effects 0.000 description 1
- 238000009940 knitting Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000006262 metallic foam Substances 0.000 description 1
- 150000002816 nickel compounds Chemical class 0.000 description 1
- 229910000480 nickel oxide Inorganic materials 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 125000000962 organic group Chemical group 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- 238000005504 petroleum refining Methods 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 239000002952 polymeric resin Substances 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 229910021642 ultra pure water Inorganic materials 0.000 description 1
- 239000012498 ultrapure water Substances 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B15/00—Operating or servicing cells
- C25B15/02—Process control or regulation
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/02—Hydrogen or oxygen
- C25B1/04—Hydrogen or oxygen by electrolysis of water
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B15/00—Operating or servicing cells
- C25B15/08—Supplying or removing reactants or electrolytes; Regeneration of electrolytes
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B9/00—Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B9/00—Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
- C25B9/17—Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
- C25B9/19—Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B9/00—Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
- C25B9/70—Assemblies comprising two or more cells
- C25B9/73—Assemblies comprising two or more cells of the filter-press type
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B9/00—Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
- C25B9/70—Assemblies comprising two or more cells
- C25B9/73—Assemblies comprising two or more cells of the filter-press type
- C25B9/77—Assemblies comprising two or more cells of the filter-press type having diaphragms
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Automation & Control Theory (AREA)
- Inorganic Chemistry (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Description
[1]
少なくとも電解槽と気液分離タンクとを有する水電解システムであり、
ガスと電解液との混合物を前記電解槽から前記気液分離タンクに流入させるための流入口が、前記気液分離タンク内の電解液の液面よりも高い位置に設置されており、
前記気液分離タンクの電解液液面と、前記電解槽から前記気液分離タンクへ電解液を送る電解液戻し配管の鉛直方向に最も高い位置との鉛直方向の距離をh(単位:m)、
前記電解槽の電解液配液管入口の鉛直方向に最も低い位置と前記気液分離タンクの電解液液面との鉛直方向の距離をH(単位:m)とした時に、以下の関係を満たし、
0.04×H≦h≦0.5×H
前記電解液戻し配管の鉛直方向に最も高い位置が、前記気液分離タンクの電解液液面より鉛直方向上側にあり、前記電解液配液管入口の鉛直方向に最も低い位置が、前記気液分離タンクの電解液液面より鉛直方向下側にある、
ことを特徴とする、水電解システム。
[2]
前記流入口に取り付けられる配管は、前記気液分離タンクの内壁に沿って設置されている、[1]に記載の水電解システム。
[3]
前記電解槽と前記電解液を配液又は集液する管であるヘッダーとが独立しており、前記ヘッダーが、前記電解槽の隔壁内及び/又は前記電解槽の外枠外の下部及び/又は上部に設けられ、且つ、前記隔壁に垂直な方向に延在するように設けられている、[1]又は[2]に記載の水電解システム。
[4]
前記電解槽と前記電解液を配液又は集液する管であるヘッダーとが一体化されており、前記ヘッダーが、前記電解槽の隔壁内及び/又は前記電解槽の外枠内の下部及び/又は上部に設けられ、且つ、前記隔壁に垂直な方向に延在するように設けられている、[1]〜[3]のいずれかに記載の水電解システム。
[5]
前記気液分離タンクの内面に樹脂ライニング層を有しており、
前記樹脂ライニング層の厚みが0.5〜4.0mmである、
[1]〜[4]のいずれかに記載の水電解システム。
[6]
前記樹脂ライニング槽の厚みの標準偏差が1.0mm以下である、[5]に記載の水電解システム。
[7]
前記樹脂ライニング層がフッ素系樹脂である、[5]又は[6]に記載の水電解システム。
[8]
前記フッ素系樹脂が、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン・エチレン共重合体(ETFE)からなる群から選択される少なくとも1種類である、[7]に記載の水電解システム。
[9]
前記樹脂ライニング層が2層以上である、[5]〜[8]のいずれかに記載の水電解システム。
[10]
前記気液分離タンクの外面が保温材で覆われている、[1]〜[9]のいずれかに記載の水電解システム。
[11]
前記電解液と水素ガスとを分離する水素分離タンクと、前記電解液と酸素ガスとを分離する酸素分離タンクとに接続された合流管をさらに有する、[1]〜[9]のいずれかに記載の水電解システム。
[12]
[1]〜[11]のいずれかに記載の水電解システムを、電流密度8kA/m2以上で継時的に電流密度が変動する電源下で、且つ、電解温度80℃以上で使用することを特徴とする、水電解方法。
[13]
アルカリを含有する水を少なくとも電解槽と気液分離タンクとを有するシステムにより水電解し、水素を製造する水素製造方法において、
ガスと電解液との混合物を前記気液分離タンク内の電解液の液面よりも高い位置で前記電解槽から前記気液分離タンクに流入させ、
前記気液分離タンクの電解液液面と、前記電解槽から前記気液分離タンクへ電解液を送る電解液戻し配管の鉛直方向に最も高い位置との鉛直方向の距離をh(単位:m)、
前記電解槽の電解液配液管入口の鉛直方向に最も低い位置と前記気液分離タンクの電解液液面との鉛直方向の距離をH(単位:m)とした時に、以下の関係を満たし、
0.04×H≦h≦0.5×H
前記電解液戻し配管の鉛直方向に最も高い位置が、前記気液分離タンクの電解液液面より鉛直方向上側にあり、前記電解液配液管入口の鉛直方向に最も低い位置が、前記気液分離タンクの電解液液面より鉛直方向下側にある、
ことを特徴とする、水素製造方法。
[14]
前記電解槽と前記気液分離タンクとが離れて設けられている、[1]〜[11]のいずれか一項に記載の水電解システム。
[15]
前記気液分離タンクが、酸素分離タンクと水素分離タンクとを含み、
前記酸素分離タンクの電解液液面と、前記電解槽から前記酸素分離タンクへ電解液を送る陽極電解液戻し配管の鉛直方向に最も高い位置との鉛直方向の距離をhaと、
前記水素分離タンクの電解液液面と、前記電解槽から前記水素分離タンクへ電解液を送る陰極電解液戻し配管の鉛直方向に最も高い位置との鉛直方向の距離をhcとが、
以下の関係を満たす、[13]又は[14]に記載の水電解システム。
ha≦hc
[16]
前記気液分離タンクが、酸素分離タンクと水素分離タンクとを含み、
前記酸素分離タンク及び前記水素分離タンクから吐出された電解液が混合されて、前記電解槽に送られる、[13]〜[15]のいずれかに記載の水電解システム。
[17]
経時的に電流密度が変動する電力源を更に含む、[13]〜[16]のいずれかに記載の水電解システム。
[18]
前記電解槽と、前記電解槽に前記電解液を配液又は集液する管であるヘッダーとが一体化されており、前記ヘッダーが、前記電解槽の隔壁内及び/又は前記電解槽の外枠内の下部に設けられ、且つ、前記隔壁に垂直な方向に延在するように設けられている、[13]〜[17]のいずれかに記載の水電解システム。
[19]
前記電解槽が、陽極室と陰極室とを有し、
前記陽極室と前記陰極室とを隔離する隔膜がポリスルホン系隔膜である、[13]〜[18]のいずれかに記載の水電解システム。
[20]
少なくとも水封器、水補給器をさらに有する水電解システムであり、
前記水封器は、前記気液分離タンクの下流且つ前記水補給器の上流に接続されている
[1]に記載の水電解システム。
[21]
前記水電解システムの全体の水量を調節する機構をさらに有する、[20]に記載の水電解システム。
[22]
前記気液分離タンクは、酸素分離タンクと水素分離タンクとを含み、
前記水素分離タンクと前記酸素分離タンクとに接続された合流管をさらに備える、
[20]又は[21]に記載の水電解システム。
[23]
前記水封器は、酸素分離タンクの下流及び水素分離タンクの下流の少なくとも一方に接続されている、[20]〜[22]のいずれかに記載の水電解システム。
[24]
前記水封器の下流に接続されたバッファータンクをさらに有する、[20]〜[23]のいずれかに記載の水電解システム。
[25]
前記水封器の下流に接続された水素ガス及び/又は酸素ガスを系外に排出する配管をさらに有し、
前記配管に、フレームアレスターを有する、
[20]〜[24]のいずれかに記載の水電解システム。
[26]
前記配管に、前記フレームアレスターのミスト凝縮液を前記水封器に戻す機構をさらに有する、[20]〜[25]のいずれかに記載の水電解システム。
[27]
前記フレームアレスターが、その気体通過方向を水平方向又は鉛直方向下向きとして、設けられている、[25]又は[26]に記載の水電解システム。
[28]
[20]〜[27]のいずれかに記載の水電解システムを用いて、
前記水補給器より水を前記水封器を経由して供給する
ことを特徴とする、水電解方法。
[29]
前記酸素分離タンクから吐出された電解液と、前記水素分離タンクから吐出された電解液とを、前記合流管で混合し、前記電解槽に導入する、[28]に記載の水電解方法。
[30]
前記水封器から排出された水を前記バッファータンクを経由して前記電解槽に供給する、[28]又は[29]に記載の水電解方法。
[31]
前記フレームアレスターに凝縮するミストを前記水封器に戻す、[28]〜[30]のいずれかに記載の水電解方法。
[32]
少なくとも、電解槽、気液分離タンク、水補給器を有する水電解システムであり、
水素ガス及び/又は酸素ガスを系外に排出する配管をさらに有し、
前記配管に、フレームアレスターを有する
ことを特徴とする、[1]に記載の水電解システム。
本発明の第二の実施形態のアルカリ水電解システムは、上記構成を有するため、電力効率が低下しにくく、低電流条件において、ガス純度に優れる。
本発明の第三の実施形態によれば、水封器を利用してアルカリ水電解システム全体を効率化することができる。
以下、本発明の第一の課題を解決するための第一の実施形態について記載する。
本実施形態のアルカリ水電解システム70は、少なくとも電解槽50と気液分離タンク72とを有するアルカリ水電解システム70であり、ガスと電解液との混合物を電解槽50から気液分離タンク72に流入させるための流入口72iが、気液分離タンク72内の電解液の液面よりも高い位置に設置されている。
具体的には、本実施形態のアルカリ水電解システム70では、電解槽50と電解液を配液又は集液する管であるヘッダー10とが独立しており、ヘッダー10が、電解槽50の隔壁1内及び/又は電解槽50の外枠3外の下部及び/又は上部に設けられ、且つ、隔壁1に垂直な方向に延在するように設けられていてもよい。
また、電解槽50と電解液を配液又は集液する管であるヘッダー10とが一体化されており、ヘッダー10が、電解槽50の隔壁1内及び/又は電解槽50の外枠3内の下部及び/又は上部に設けられ、且つ、隔壁1に垂直な方向に延在するように設けられていてもよい。
本実施形態のアルカリ水電解システム70における電解槽50は、特に限定されることなく、単極式としても複極式としてもよいが、工業的に、複極式の電解槽が好ましい。
複極式電解槽50は、電源の電流を小さくできるという特徴を持ち、電解により化合物や所定の物質等を短時間で大量に製造することができる。電源設備は出力が同じであれば、定電流、高電圧の方が安価でコンパクトになるため、工業的には単極式よりも複極式の方が好ましい。
一例のアルカリ水電解システム70の複極式電解槽50に用いられる複極式エレメント60は、図2に示すように、陽極2aと陰極2cとを隔離する隔壁1を備え、隔壁1を縁取る外枠3を備えている。より具体的には、隔壁1は導電性を有し、外枠3は隔壁1の外縁に沿って隔壁1を取り囲むように設けられている。
図2に示す一例では、複極式電解槽50は、一端からファストヘッド51g、絶縁板51i、陽極ターミナルエレメント51aが順番に並べられ、更に、陽極側ガスケット部分7、隔膜4、陰極側ガスケット部分7、複極式エレメント60が、この順番で並べて配置される。このとき、複極式エレメント60は陽極ターミナルエレメント51a側に陰極2cを向けるよう配置する。陽極側ガスケット部分7から複極式エレメント60までは、設計生産量に必要な数だけ繰り返し配置される。陽極側ガスケット部分7から複極式エレメント60までを必要数だけ繰り返し配置した後、再度、陽極側ガスケット部分7、隔膜4、陰極側ガスケット部分7を並べて配置し、最後に陰極ターミナルエレメント51c、絶縁板51i、ルーズヘッド51gをこの順番で配置される。複極式電解槽50は、全体をタイロッド方式51r(図2参照)や油圧シリンダー方式等の締め付け機構により締め付けることによりー体化され、複極式電解槽50となる。
複極式電解槽50を構成する配置は、陽極2a側からでも陰極2c側からでも任意に選択でき、上述の順序に限定されるものではない。
なお、図1〜図7に示す複極式電解槽50に取り付けられるヘッダー10の配設態様として、代表的には、内部ヘッダー10I型と外部ヘッダー10O型とがあるが、本発明では、いずれの型を採用してもよく、特に限定されない。
図5に、図4に示す内部ヘッダー型のアルカリ水電解システムの電解槽を図4の線A−Aに沿う面により切断したときの断面の一部を示す。
図6に、本実施形態の一例の外部ヘッダー型のアルカリ水電解システムの電解槽を平面図で示す。
図7に、図6に示す外部ヘッダー型のアルカリ水電解システムの電解槽を図6の線B−Bに沿う面により切断したときの断面の一部を示す。
一例では、外枠3のうちの下方に、陽極入口ヘッダー10Iaiに連通する陽極用配液管20Iaiと、陰極入口ヘッダー10Iciに連通する陰極用配液管20Iciとを備えており、また、同様に、外枠3のうちの上方に、陽極出口ヘッダー10Iaoに連通する陽極用集液管20Iaoと、陰極出口ヘッダー10Icoに連通する陰極用集液管20Icoとを備えている。
また、通常、図4、図5に示すように、陽極用配液管20Iaiは、陽極入口ヘッダー10Iaiの全てを連通し、陰極用配液管20Iciは、陰極入口ヘッダー10Iciの全てを連通し、陽極用集液管20Iaoは、陽極出口ヘッダー10Iaoの全てを連通し、陰極用集液管20Icoは、陰極出口ヘッダー10Icoの全てを連通してよい。
なお、ここで、隔壁1に沿う所与の方向D1に対して平行に延びるとは、隔壁1に沿う所与の方向D1と厳密な意味で同じ方向に延びることを意味するものではなく、隔壁1に沿う所与の方向D1に対して、例えば、10°以下の範囲で、傾斜する方向に延びる場合も含むことを意味する。なお、上記傾斜角度は、5°以下であることが好ましく、2°以下であることがより好ましい。
なお、ここで、隔壁1に垂直な方向に延びるとは、隔壁1に厳密な意味で垂直な方向に延びることを意味するものではなく、隔壁1に垂直な方向に対して、例えば、隔壁1に沿う方向にみて45°以下の範囲で、傾斜する方向に延びる場合も含むことを意味する。なお、上記傾斜角度は、30°以下であることが好ましく、15°以下であることがより好ましい。
一例では、外枠3のうちの下方に、陽極入口ヘッダー10Oaiに連通する陽極用配液管20Oaiと、陰極入口ヘッダー10Ociに連通する陰極用配液管20Ociとを備えており、また、同様に、外枠3のうちの側方に、陽極出口ヘッダー10Oaoに連通する陽極用集液管20Oaoと、陰極出口ヘッダー10Ocoに連通する陰極用集液管20Ocoとを備えている。
また、通常、陽極用配液管20Oai、陰極用配液管20Oci、陽極用集液管20Oao、陰極用集液管20Ocoは、各電極室5に1つずつ設けられるが、本実施形態では、これに限定されず、複数の電極室5で兼用されてもよい。
対数が減ると、リーク電流によるガス純度の影響は緩和される一方で、対数が増加すると、電解液を各電解セル65に均一に分配することが困難になる。下限未満の場合や上限超の場合には、電力供給を停止した際に生じる自己放電を低減して、電気制御システムの安定化を可能にする効果、及び、高効率での電力の貯蔵、具体的には、ポンプ動力の低減やリーク電流の低減を実現することを可能にする効果の並立が困難になる。
また、複極式エレメント60の数(対数)が増え過ぎると、電解槽50の製作が困難になるおそれがあり、製作精度が悪い複極式エレメント60を多数スタックした場合には、シール面圧が不均一になりやすく、電解液の漏れやガス漏洩が生じやすい。
また、以下では、本発明の効果を高めるための好適形態についても詳述する。
本実施形態における隔壁1の形状は、所定の厚みを有する板状の形状としてよいが、特に限定されない。
隔壁1の平面視形状としては、特に限定されることなく、矩形(正方形、長方形等)、円形(円、楕円等)としてよく、ここで、矩形は角が丸みを帯びていてもよい。
本実施形態のアルカリ水電解による水素製造において、エネルギー消費量の削減、具体的には電解電圧の低減は、大きな課題である。この電解電圧は電極2に大きく依存するため、両電極2の性能は重要である。
本実施形態における外枠3の形状は、隔壁1を縁取ることができる限り特に限定されないが、隔壁1の平面に対して垂直な方向に沿う内面を隔壁1の外延に亘って備える形状としてよい。
外枠3の形状としては、特に限定されることなく、隔壁1の平面視形状に合わせて適宜定められてよい。
本実施形態のアルカリ水電解システム70の複極式電解槽50において用いられる隔膜4としては、イオンを導通しつつ、発生する水素ガスと酸素ガスを隔離するために、イオン透過性の隔膜4が使用される。このイオン透過性の隔膜4は、イオン交換能を有するイオン交換膜と、電解液を浸透することができる多孔膜が使用できる。このイオン透過性の隔膜4は、ガス透過性が低く、イオン伝導率が高く、電子電導度が小さく、強度が強いものが好ましい。
多孔膜は、複数の微細な貫通孔を有し、隔膜4を電解液が透過できる構造を有する。電解液が多孔膜中に浸透することにより、イオン伝導を発現するため、孔径や気孔率、親水性といった多孔構造の制御が非常に重要となる。一方、電解液だけでなく、発生ガスを通過させないこと、すなわちガスの遮断性を有することが求められる。この観点でも多孔構造の制御が重要となる。
イオン交換膜としては、カチオンを選択的に透過させるカチオン交換膜とアニオンを選択的に透過させるアニオン交換膜があり、いずれの交換膜でも使用することができる。
イオン交換膜の材質としては、特に限定されず、公知のものを用いることができる。例えば、含フッ素系樹脂やポリスチレン・ジビニルベンゼン共重合体の変性樹脂が好適に使用できる。特に耐熱性及び耐薬品性等に優れる点で、含フッ素系イオン交換膜が好ましい。
ゼロギャップ型セルにおける複極式エレメント60では、極間距離を小さくする手段として、電極2と隔壁1との間に弾性体であるバネを配置し、このバネで電極2を支持する形態をとることが好ましい。例えば、第1の例では、隔壁1に導電性の材料で製作されたバネを取り付け、このバネに電極2を取り付けてよい。また、第2の例では、隔壁1に取り付けた電極リブ6にバネを取り付け、そのバネに電極2を取り付けてよい。なお、このような弾性体を用いた形態を採用する場合には、電極2が隔膜4に接する圧力が不均一にならないように、バネの強度、バネの数、形状等必要に応じて適宜調節する必要がある。
集電体2rは、その上に積層される導電性弾性体2eや電極2へ電気を伝えるとともに、それらから受ける荷重を支え、電極2から発生するガスを隔壁1側に支障なく通過させる役割がある。従って、この集電体2rの形状は、エキスパンドメタルや打ち抜き多孔板等が好ましい。この場合の集電体2rの開口率は、電極2から発生した水素ガスを支障なく隔壁1側に抜き出せる範囲であることが好ましい。しかし、あまり開口率が大きいと強度が低下する、或いは導電性弾性体2eへの導電性が低下する等の問題が生ずる場合があり、小さすぎるとガス抜けが悪くなる場合がある。
導電性弾性体2eは、集電体2rと電極2の間にあって集電体2r及び電極2と接しており、電気を電極2に伝えること、電極2から発生したガスの拡散を阻害しないことが必須要件である。ガスの拡散が阻害されることにより、電気的抵抗が増加し、また電解に使用される電極2面積が低下することで、電解効率が低下するためである。そして最も重要な役割は、隔膜4を損傷させない程度の適切な圧力を電極2に均等に加えることで、隔膜4と電極2とを密着させることである。
本実施形態における複極式電解槽50では、図4〜図7に示すとおり、隔壁1と外枠3と隔膜4とにより、電解液が通過する電極室5が画成されている。
本実施形態のアルカリ水電解システム70の複極式電解槽50では、隔壁1に整流板6(陽極整流板6a、陰極整流板6c)が取り付けられ、整流板6が電極2と物理的に接続されていることが好ましい。かかる構成によれば、整流板6が電極2の支持体となり、ゼロギャップ構造Zを維持しやすい。
ここで、整流板6に、電極2が設けられていてもよく、整流板6に、集電体2r、導電性弾性体2e、電極2がこの順に設けられていてもよい。
前述の一例のアルカリ水電解システム70の複極式電解槽50では、陰極室5cにおいて、整流板6−集電体2r−導電性弾性体2e−電極2の順に重ね合わせられた構造が採用され、陽極室5aにおいて、整流板6−電極2の順に重ね合わせられた構造が採用されている。
本実施形態のアルカリ水電解システム70の複極式電解槽50では、隔壁1を縁取る外枠3同士の間に隔膜4を有するガスケット7が挟持されることが好ましい。
ガスケット7は、複極式エレメント60と隔膜4の間、複極式エレメント60間を電解液と発生ガスに対してシールするために使用され、電解液や発生ガスの電解槽外への漏れや両極室間におけるガス混合を防ぐことができる。
ゴム材料や樹脂材料としては、具体的には、天然ゴム(NR)、スチレンブタジエンゴム(SBR)、クロロプレンゴム(CR)、ブタジエンゴム(BR)、アクリロニトリル−ブタジエンゴム(NBR)、シリコーンゴム(SR)、エチレン−プロピレンゴム(EPT)、エチレン−プロピレン−ジエンゴム(EPDM)、フッ素ゴム(FR)、イソブチレン−イソプレンゴム(IIR)、ウレタンゴム(UR)、クロロスルホン化ポリエチレンゴム(CSM)等のゴム材料、ポリテトラフルオロエチレン(PTFE)やテトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン・エチレン共重合体(ETFE)、クロロトリフルオエチレン・エチレン共重合体(ECTFE)等のフッ素樹脂材料や、ポリフェニレンサルファイド(PPS)、ポリエチレン、ポリイミド、ポリアセタール等の樹脂材料を用いることができる。これらの中でも、弾性率や耐アルカリ性の観点でエチレン−プロピレン−ジエンゴム(EPDM)、フッ素ゴム(FR)が特に好適である。
アルカリ水電解システム70の複極式電解槽50は、電解セル65毎に、陰極室5c、陽極室5aを有する。電解槽50で、電気分解反応を連続的に行うためには、各電解セル65の陰極室5cと陽極室5aとに電気分解によって消費される原料を十分に含んだ電解液を供給し続ける必要がある。
内部ヘッダー10I型とは、複極式電解槽50とヘッダー10(電解液を配液又は集液する管)とが一体化されている形式をいう。
外部ヘッダー10O型とは、複極式電解槽50とヘッダー10(電解液を配液又は集液する管)とが独立している形式をいう。
外部ヘッダー10O型の例では、隔壁1の端縁にある外枠3のうちの下方に位置する部分に設けられたヘッダー10用貫通孔に、管腔状部材が設置され、管腔状部材が、陽極入口ヘッダー10Oai及び陰極入口ヘッダー10Ociに接続されており、また、同様に、隔壁1の端縁にある外枠3のうちの上方に位置する部分に設けられたヘッダー10用貫通孔に、管腔状部材(例えば、ホースやチューブ等)が設置され、かかる管腔状部材が、陽極出口ヘッダー10Oao及び陰極出口ヘッダー10Ocoに接続されている。
図1に、本実施形態の一例のアルカリ水電解システムの概要を示す。
本実施形態のアルカリ水電解システム70は、例えば、図1に示すように、電解槽50と、電解液を循環させるための送液ポンプ71と、電解液と水素及び/又は酸素とを分離する気液分離タンク72(水素分離タンク72h、酸素分離タンク72o)と、電解により消費した水を補給するための水補給器73とを有する。
本実施形態のアルカリ水電解システム70では、複数のタンクが用いられる。具体的には、気液分離タンク72、電極液を溜めるタンクが主な使用タンクとして挙げられるが、本システムにて使用する液体を貯蔵できる容器であれば、特に限定されない。
気液分離タンク72は、アルアリ水電解システム70の中では、アルカリ水電解終了後の陽極2a側及び陰極2c側の電解液中に含まれるガスを分離するために重要な役割を果たす。
水素分離タンク72hは陰極室5cに接続され、酸素分離タンク72oは陽極室5aに接続されて用いられる。
本実施形態のアルカリ水電解システム70は、図3(A)(i)に示すように、ガスと電解液との混合物を電解槽50から気液分離タンク72に流入させるための流入口72iが、気液分離タンク72内の電解液の液面72sよりも高い位置に設置されている。
かかる構成によれば、ガスと電解液との混合物が流入口72iから電解液の液面72sに至るまでにおいてガス抜きの時間を確保することができ、気液分離タンク72において気液分離性を顕著に向上させることができる。
この点、本実施形態の比較例のアルカリ水電解システムでは、図3(A)(ii)に示すように、流入口72iが、気液分離タンク72内の電解液の液面72sよりも低い位置に設置されている、すなわち、ガスと電解液との混合物が電解液中に流入するが、この構成では気液分離性が十分とはならない場合がある。
気液分離タンク72の底面から電解液の液面72sまでの長さhsは、気液分気液分離タンク72の高さをHとして、0.1〜0.9Hであることが好ましく、0.3〜0.7Hであることがさらに好ましい(図3(A)参照)。
また、気液分離タンク72の底面から流入口72iの設置位置までの長さhiは、気液分気液分離タンク72の高さをHとして、0.11〜0.91Hであることが好ましく、0.31〜0.71Hであることがさらに好ましい(図3(A)参照)。
さらに、本実施形態では、hsが0.3〜0.7Hであり、且つ、hiが0.4〜0.8Hであることが最も好ましい。
一方で、本実施形態のアルカリ水電解システム70では、図3(B)(ii)に示すように、流入口72iに取り付けられる配管72inは、気液分離タンク72の内壁に沿って、設置されていることが好ましい。
かかる態様によれば、気液分離タンク72に、タンクに貯められている電解液の液面72sよりも上側から、ガスと混合状態となった電解液を、旋回流で流入させることができ、気液分離時間を長く取れることにより、酸素分離タンク72oにおける酸素中水素濃度及び水素分離タンク72hにおける水素中酸素濃度を低減することができる。
内部ヘッダー10I型は、設置フットプリントの制約がある場合に好適に採用されるが、一方で、ガス純度が悪化する傾向があったところ、内部ヘッダー10I型のアルカリ水電解システム70においても良好なガス純度を得ることが可能となる。そのため、気液分離性の向上の効果を有利に得ることができる。
合流管90により両タンクから吐出された電解液が混合される一液循環のシステムではガス純度の低下が生じやすいことから、本実施形態のアルカリ水電解システム70における気液分離性の向上の効果を有利に得ることができる。
合流管90の配設態様は、水素分離タンク72hから排出される電解液と酸素分離タンク72oから排出される電解液とが合流できる限り、特に限定されない。
フッ素系樹脂を選択することで、特に、本発明のアルカリ水電解に用いる電極液に対する耐久性を向上させることができる。
厚みのバラつきを制御は、ライニング層を形成する前に行うタンクの表面のブラストの条件を調整することにより行うことができる。
本実施形態では、樹脂ライニング層を形成するにあたり、前もって、気液分離タンク72の内面に、脱脂処理、砂等を用いたブラスト処理、プライマー処理を、1つ又は複数施してもよい。
樹脂ライニング層の形成は、例えば、回転焼成、紛体塗装による塗布、液体塗布、吹付等により行ってよい。
保温材としては、通常の断熱材としてよく、ガラスウール、発泡材等が挙げられる。
電解セル65と気液分離タンク72との間に遮断弁を付けることが好ましいが、これに限定されるものではない。
また、タンク高さも同様に、高さが低い場合は、上記変動の影響を受けやすいため、高くすることが好ましい。
本実施形態において用いられる送液ポンプ71としては、特に限定されず、適宜定められてよい。
本実施形態において用いられる水補給器73としては、特に限定されず、適宜定められてよい。
水としては、一般上水を使用してもよいが、長期間に渡る運転を考慮した場合、イオン交換水、RO水、超純水等を使用することが好ましい。
本実施形態のアルカリ水電解システム70は、電解槽50、気液分離タンク72、水補給器73以外にも、整流器74、酸素濃度計75、水素濃度計76、流量計77、圧力計78、熱交換器79、圧力制御弁80を備えてよい。
本実施形態のアルカリ水電解方法は、本実施形態のアルカリ水電解システム70を用いて、実施することができる。
上記温度範囲とすれば、高い電解効率を維持しながら、アルカリ水電解シスレム70の部材が熱により劣化することを効果的に抑制することができる。
特に、変動電源を使用する場合には、電流密度の上限を上記範囲にすることが好ましい。
アルカリ塩の濃度としては、20質量%〜50質量%が好ましく、25質量%〜40質量%がより好ましい。
本実施形態では、イオン導電率、動粘度、冷温化での凍結の観点から、25質量%〜40質量%のKOH水溶液が特に好ましい。
上記のような、変動電源を用いた場合、具体的には、アルカリ水電解システム70に低電流密度から高電流密度までがランダムに印可されることとなり、特に低電流密度時に酸素中水素濃度が悪化することとなるところ、本実施形態のアルカリ水電解方法を採用すれば、酸素中水素濃度の悪化を抑制することが可能となる。
本実施形態の水素製造方法は、アルカリを含有する水を電解槽により水電解し、水素を製造するものであり、本実施形態の水電解システム、本実施形態の水電解方法を用いて実施されてよい。
また、システムでは、ガスと電解液との混合物を電解槽から気液分離タンクに流入させるための流入口が、気液分離タンク内の電解液の液面よりも高い位置に設置されていてよい。
本発明のアルカリ水電解システムは、複極式電解槽と気液分離タンクと少なくとも有する、電解液が循環するアルカリ水電解システムであって、上記気液分離タンクの電解液液面と、上記複極式電解槽から上記気液分離タンクへ電解液を送る電解液戻し配管の鉛直方向に最も高い位置との鉛直方向の距離をh(単位:m)、上記複極式電解槽の電解液配液管入口の鉛直方向に最も低い位置と上記気液分離タンクの電解液液面との鉛直方向の距離をH(単位:m)とした時に、以下の関係を満たし、
0.01×H≦h≦0.5×H
上記電解液戻し配管の鉛直方向に最も高い位置が、上記気液分離タンクの電解液液面より鉛直方向上側にあり、上記電解液配液管入口の鉛直方向に最も低い位置が、上記気液分離タンクの電解液液面より鉛直方向下側にある。
本実施形態のアルカリ水電解システムによれば、電解液が循環しやすくなるため、アルカリ水電解に用いるエネルギーを抑制することができる。また、電力源として変動電源を用いた場合でも、低電密条件下においてガス純度が悪化しにくく、高電密条件下において、電解液の温度が上がりにくく、隔膜が劣化しにくい。
本実施形態のアルカリ水電解システム70は、複極式電解槽50と、電解液と水素及び/又は酸素とを分離する気液分離タンク72とを有する。気液分離タンク72は、主に電解液と水素とを分離する水素分離タンク72h(陰極側気液分離タンク)、主に電解液と酸素とを分離する酸素分離タンク72O(陽極側気液分離タンク)とを含むことが好ましい。
本実施形態のアルカリ水電解システム70は、さらに、経時的に電流密度が変動する電力源等の電力源、電解液を循環させるための送液ポンプ71、電解により消費した水を補給するための水補給器等を有していてもよい。
ここで、電解液が循環する本実施形態のアルカリ水電解システム70において、複極式電解槽50から気液分離タンク72に、水素及び/又は酸素を含む電解液を戻す配管を電解液戻し配管81(陽極電解液戻し配管81a、陰極電解液戻し配管81c)、気液分離タンク72から複極式電解槽50に気液分離後の電解液を送る配管を電解液送り配管82(陽極電解液戻し配管82a、陰極電解液戻し配管82c)、と称する場合がある。陽極電解液戻し配管82aと、陰極電解液戻し配管82cとは、途中で合流していてもよい。
また、電解液戻し配管81と複極式電解槽50との接続部(例えば、電解液戻し配管81と複極式電解槽50の電解液集液管との接続部)を電解液集液管出口50o、電解液戻し配管81と気液分離タンク72との接続部を流入口72iと称する場合がある。
また、電解液送り配管82と気液分離タンク72との接続部を流出口72e、電解液送り配管82と複極式電解槽50との接続部(例えば、電解液送り配管82と複極式電解槽50の電解液配液管との接続部)を電解液配液管入口50iと称する場合がある。
本実施形態のアルカリ水電解システムは、気液分離タンク及び複極式電解槽の電解液の状態(例えば、密度、気泡割合等)との関係で、気液分離タンクの電解液液面72s、気液分離タンクの流入口72i、複極式電解槽の電解液配液管入口50i等の鉛直方向の位置を設定することにより、電解液を循環させる際のポンプ動力を低減又はなくすことができるために電力効率に一層優れ、低電流密度条件においてガス純度が一層悪化しにくく、高電流密度条件において電解液の温度上昇による隔膜の劣化を一層抑制できる点に着目した発明である。
本実施形態のアルカリ水電解システム70は、気液分離タンク72の電解液液面72sと、上記複極式電解槽50から上記気液分離タンク72へ電解液を送る電解液戻し配管81の鉛直方向に最も高い位置81hとの鉛直方向の距離をh(単位:m)、上記複極式電解槽50の電解液配液管入口50iの鉛直方向に最も低い位置50ilと上記気液分離タンクの電解液液面72sとの鉛直方向の距離をH(単位:m)とした時に、
0.01×H≦h≦0.5×H
の関係を満たす。
上記hが0.01×H未満であると、気液分離が悪化し、ガス純度が著しく低下する。上記hは、電解液の循環が一層安定し、ガス純度が一層向上する観点から、0.01×H超であることが好ましく、0.02×H以上であることがより好ましく、更に好ましくは0.03×H以上、更に好ましくは0.04×H以上、更に好ましくは0.05以上、特に好ましくは0.1×H以上である。
上記hは、アルカリ水電解システムの電力効率に一層優れ、低電流条件におけるガス純度が一層悪化しにくくなる観点から、0.5×H未満であることが好ましく、0.46×H以下であることがより好ましく、更に好ましくは0.4×H以下、特に好ましくは0.36×H以下である。
なお、上記気泡割合Bは、後述の実施例に記載の方法で測定される値をいう。
ここで、電解液戻し配管の鉛直方向に最も高い位置81hとは、電解液戻し配管81の鉛直方向の最も高い位置における、配管内腔の鉛直方向の最も高い位置をいう。例えば、電解液戻し配管81が、気液分離タンクの流入口72iより鉛直方向に高い位置を通らない場合は、流入口72iの内腔の鉛直方向に最も高い位置となる(図8参照)。
また、電解液配液管入口の鉛直方向に最も低い位置50ilとは、電解液配液管入口の内腔の鉛直方向に最も低い位置をいう。
電解液戻し配管81と電解液送り配管82の長さは、電解液の循環が安定する観点から、0.5m以上10m以下であることが好ましい。
本実施形態のアルカリ水電解システムでは、Hとhとが特定の関係となるように、気液分離タンクの電解液液面、電解液戻し配管の鉛直方向に最も高い位置、及び電解液配液管入口の鉛直方向に最も低い位置を配置することにより、送液ポンプを低出力で、又は層液ポンプを用いることなく電解液を循環させることができ、電力効率に優れる。特に、複極式電解槽内の電解液の密度と、気液分離タンク内の電解液の密度の差等を利用して、送液ポンプを用いることなく、電解液を循環させることで、一層電力効率に優れる。
本実施形態のアルカリ水電解方法は、本実施形態のアルカリ水電解用電解システム70を用いて、上記気液分離タンクの電解液液面と、上記複極式電解槽から上記気液分離タンクへ電解液を送る電解液戻し配管の鉛直方向に最も高い位置との鉛直方向の距離h(単位:m)、上記複極式電解槽の電解液配液管入口の鉛直方向に最も低い位置と上記気液分離タンクの電解液液面との鉛直方向の距離H(単位:m)、上記複極式電解槽内の電解液の密度De(単位:g/cm3)、上記気液分離タンク内の電解液の密度Dt(単位:g/cm3)が、0.01×H≦h≦0.5×Hを満たす行件で行うことが好ましく、0.01×H≦h≦(De/Dt)×Hを満たす条件で行うことがより好ましい。
すなわち、本実施形態によれば、変動電源を用いてアルカリ水電解を行う際に、低電流密度時のガス純度に優れ、さらに高電流密度時に電解液の温度が上昇しにくく、複極式電解槽内の隔膜が劣化しにくい。さらに、複極式電解槽内の電解液の密度、及び気液分離タンク内の電解液の密度との関係で、気液分離タンクの流入口の位置を定めて、電解液の密度差を利用して電解液を循環させるため、電解液の循環の電力を低減させることができ、電力効率が低下しにくい。また、変動電源を用いた場合でも、電力に応じて変化する電解液の密度に応じて循環量が制御されるため、安定したアルカリ水電解が可能となる。
上記温度範囲とすれば、高い電解効率を維持しながら、ガスケット7、隔膜4等のアルカリ水電解システム70の部材が熱により劣化することを効果的に抑制することができる。
電解液の温度は、85℃〜125℃であることがさらに好ましく、90℃〜115℃であることが特に好ましい。また、気液分離タンク温度を上記範囲にする事で、複極式電解槽50内と気液分離タンク内にある電解液の密度差が付きやすく、電解液が循環しやすくなる。
また、変動電源を使用する場合、電流密度の変動周期は、1〜5000秒であることが好ましく、5〜3000秒であることがさらに好ましい。
特に、変動電源を使用する場合には、電流密度の上限を上記範囲にすることで効果が得られやすい。
本実施形態のアルカリ水電解システム70は、少なくとも、電解槽50、気液分離タンク72、水封器91、水補給器73を有するアルカリ水電解システムである。
ここで、水封器91は、気液分離タンク72の下流且つ水補給器73の上流に接続されている。
そして、配管に、フレームアレスター94を有し、また、フレームアレスター94のミスト凝集液(フレームアレスター94に凝縮するミスト)を水封器91に戻す機構を有する。
ここで、アルカリ水電解システム70は、水素ガス及び/又は酸素ガスを系外に排出する配管93をさらに有するものとしてよく、配管93に、フレームアレスター94を有するものとしてよい。
図1に、本実施形態の一例のアルカリ水電解システムの概要を示す。
本実施形態のアルカリ水電解システム70は、例えば、図1に示すように、電解槽50と、電解液を循環させるための送液ポンプ71と、電解液と水素及び/又は酸素とを分離する気液分離タンク72(水素分離タンク72h、酸素分離タンク72o)と、電解により消費した水を補給するための水補給器73とを有する。
さらに、本実施形態のアルカリ水電解システム70によれば、そのアルカリ性を帯びた水を回収し電解液として再利用することによって、外部から供給する水の量が削減できること、アルカリ性となった水の処理が不要になること、システムの構造が簡単になることにより、ランニングコスト、メンテコスト、イニシャルコストが削減すること、といったメリットが得られる。
本実施形態では、水封器91内の水を気液分離タンク72の下流に供給することを特徴としている(図1参照)。
このような構成とすることで、アルカリが混入する可能性が高い水封器中の水をアルカリ水が循環しているアルカリ水電解システム70に利用して、効率的なシステムの稼働が可能となる。
また、水封器91への水の供給装置をアルカリ水電解システム70への水の水補給器73と兼ねた上で、水封器91からの水のアルカリ水電解システム70への供給位置を、水補給器73から直接アルカリ水電解システム70へ水を供給する位置と同じように、気液分離タンク72の下流としている。これにより、これまで廃棄しており利用していなかった水封器91内の水を有効に再利用することが可能になるとともに、常に水封器91を同じ条件で稼働させることが可能となるので信頼性も向上させることが可能になる。
なお、酸素側及び水素側の双方に水封器を利用する場合、水補給器73は同一のものを使用してもよく、それぞれ異なるものを設置しても構わない。
水封器91にシステム全体の水量調節機能を設けてもよい。水封器91と水補給器73を一体の設備とみなして、システム全体の水量調節機能を設けても構わない。
また、システムの系内はアルカリ性であるため、水封器91は、水量調節機能の他に、pHをコントロールするための機能を併せ持っていてもよい。
そして、当該二つの気液分離タンク72o、72hから吐出された電解液が混合して電解槽50に流入する、所謂一液混合型であってもよい。
合流管90の配設態様は、水素分離タンク72hから排出される電解液と酸素分離タンク72oから排出される電解液とが合流できる限り、特に限定されない。
例えば、下限位置に到達した際に水を供給し、上限位置に到達した時点で供給を停止すればよい。また、電解電流密度に応じて、供給する水量を調整することも可能である。本実施形態では、水量調整方法を限定するものではない。補給水の制御は、水補給器73から水封器91への水供給量で行うことができる。また、貯水タンクを介して、貯水タンクからの供給で行うこともでき、その際、水補給器73から水封器91への供給を定量供給としてもよいし、水封器91の液面で制御することもできる。
本実施形態では、フレームアレスター94は、逆火防止機能を有していればよいが、ガス流路閉塞防止機能を有することが好ましい。
ガス流路閉塞防止機能は、ガスに含まれるミストがフレームアレスター94内に貯まることにより、ガスの出口流路が閉塞し、酸素側と水素側の差圧が制御できなくなる、又は、水封器91内の圧力が高まることにより、水封器91内の液面レベルが低下する、という問題を解決するために、有用な機構である。
例えば、電解システム70内の圧力を、調圧弁で5〜100kPa程度に制御している場合は、フレームアレスター94が閉塞した初期段階において、電解システム70内の圧力は所定の圧力で制御されるが、水封器91内の圧力が高まるため、水封器91内の液面レベルが低下し、水封機能の低下を招く。
一方、電解システム70内の圧力を水封器91に導入する水の水封高さで1〜5kPa程度に制御する場合は、フレームアレスター94が閉塞した際、水素/酸素ガス配管の閉塞度合が大きい方から系内の圧力が高くなるため、差圧が大きく変化する傾向になる。
上記機構としては、具体的には、フレームアレスター94表面上のミスト凝集水を移動させ、ガス流路を確保するために、フレームアレスター94表面上のミスト凝集水を蒸発させるもの、ミストに不活性のガスを吹き付けミスト凝集水を移動させるもの、単純にフレームアレスター94に傾斜を付け、フレームアレスター94表面上のミスト凝集水を移動させるもの、フレームアレスター94の設置角度を鉛直上向きに対して水平または上方から下方へ取り付けることで、フレームアレスター94内の気体通過方向を、水平、または上方から下方に流す構造とするものがある。
ここで、アルカリ水電解システム70は、水素ガス及び/又は酸素ガスを系外に排出する配管93をさらに有するものとしてよく、配管93に、フレームアレスター94を有するものとしてよい。
この際、フレームアレスター94が前述の機構と同様に、凝縮するミストを気液分離タンク72等に戻す機構を有していてもよい。
本実施形態において用いられる気液分離タンク72は、電解液と水素ガスとを分離する水素分離タンク72hと、電解液と酸素ガスとを分離する酸素分離タンク72oとを含む。
本実施形態において用いられる水補給器73としては、特に限定されず、適宜定められてよい。
本実施形態のアルカリ水電解方法は、本実施形態のアルカリ水電解システム70を用いて、実施することができる。
かかる方法によれば、従来は廃棄していた水封用の水を電解液用の水に活用することができ、電解液量や電解液濃度を管理・制御することが容易になり、また、アルカリ性の排水処理量を削減することができる。
かかる方法によれば、フレームアレスター94に凝縮して溜まるミスト成分による、ガス配管93の閉塞を抑制することができ、酸素側と水素側との差圧の制御が容易になる。
複極式エレメント及びそれを用いたアルカリ水電解システムは、下記のとおり作製した。
複極式エレメントとして、陽極と陰極とを区画する隔壁と、隔壁を取り囲む外枠と、を備えたものを用いた。隔壁及び複極式エレメントのフレーム等の電解液に接液する部材の材料は、全てニッケルとした。
陽極としては、あらかじめブラスト処理を施したニッケルエキスパンド基材を用い、酸化ニッケルの造粒物をプラズマ溶射法によって導電性基材の両面に吹き付けて製作した。
導電性基材として、直径0.15mmのニッケルの細線を40メッシュで編んだ平織メッシュ基材上に白金を担持したものを用いた。
酸化ジルコニウム(商品名「EP酸化ジルコニウム」、第一稀元素化学工業社製)、N−メチル−2−ピロリドン(和光純薬工業社製)、ポリスルホン(「ユーデル」(登録商標)、ソルベイアドバンストポリマーズ社製)、及びポリビニルピロリドン(重量平均分子量(Mw)900000、和光純薬工業社製)を用いて、以下の成分組成の塗工液を得た。
ポリスルホン:15質量部
ポリビニルピロリドン:6質量部
N−メチル−2−ピロリドン:70質量部
酸化ジルコニウム:45質量部
上記塗工液を、基材であるポリフェニレンサルファイドメッシュ(くればぁ社製、膜厚280μm、目開き358μm、繊維径150μm)の両表面に対して塗工した。塗工後直ちに、塗工液を塗工した基材を蒸気下へ晒し、その後、凝固浴中へ浸漬して、基材表面に塗膜を形成させた。その後、純水で塗膜を十分洗浄して多孔膜を得た。
この多孔膜を隔膜Aとした。
陽極Aを、切断加工により、50cm角(縦50cm×横50cm)に調整し、陽極サンプルAとした。
隔膜Aを、切断加工により、52.5cm角(縦52.5cm×横52.5cm)に調整し、隔膜サンプルAとした。
複極式エレメントを隔膜を保持したガスケットを介してスタックさせ、複極式電解槽を組み立てることによって、陰極サンプルAと陽極サンプルAとを隔膜の両側から押し付けて接触させ、ゼロギャップ構造を形成した。
陽極側では陽極サンプルAのみを用い、陰極側は「陰極−導電性弾性体−集電体」の組み合わせからなる陰極サンプルを用いた。
陽極サンプルとしては、前述のものを用いた。
集電体として、あらかじめブラスト処理を施したニッケルエキスパンド基材を用いた。基材の厚みは1mmであり、開口率は54%であった。
導電性弾性体として、線径0.15mmのニッケル製ワイヤーを織ったものを、波高さ5mmになるように波付け加工したものを使用した。
導電性弾性体を集電体上にスポット溶接して固定した。
陰極サンプルAとしては、前述のものを用いた。
複極式エレメントを49個使用し、図2に示すように、一方の端側で、ファストヘッド、絶縁板、陽極ターミナルユニットを配置し、さらに、陽極側ガスケット部分、隔膜、陰極側ガスケット部分、複極式エレメントをこの順に並べたものを49組配置し、さらに、陽極側ガスケット部分、隔膜、陰極側ガスケット部分を配置し、もう一方の端側で、陰極ターミナルユニット、絶縁板、ルーズヘッドを配列し、その後、これらをファストヘッド及びルーズヘッドの両側からガスケットのシール面圧で2450kN/m2で締め付けることでスタックし、複極式電解槽を組み立てた。
この実施例においては、陰極室及び陽極室が、それぞれ50室ある50対の直列接続構造を有していた。
ガスケットとして、EPDMゴムを材質とし、100%変形時の弾性率が4.0MPaであり、厚みが4.0mmであるものを用いた。このガスケットは、平面視での開口部の寸法がアクリル製のセル枠の電極室の寸法であり、ここで、開口部の内壁の厚み方向中央部分に、隔膜を挿入することでこれを保持するための、厚み0.4mmのスリット構造を有していた。
内部ヘッダー10I型の複極式エレメント60を採用した。
そして、図4、図5に示すように、ヘッダー10(陽極入口ヘッダー10Iai、陰極入口ヘッダー10Ici、陽極出口ヘッダー10Iao、陰極出口ヘッダー10Ico)のいずれもが、複極式エレメント60の隔壁1の側方の2辺に対して平行に延びるように(隔壁1の上方の辺及び下方の辺に対して直交して延びるように)、配置した。
また、図4、図5に示すように、導管20(陽極用配液管20Iai、陰極用配液管20Ici、陽極用集液管20Iao、陰極用集液管20Ico)のいずれもが、複極式エレメント60の隔壁1に垂直な方向に延びるように、配置した。
こうして、内部ヘッダー10I型の電解槽を作製した。
陰極入口ヘッダー10Iciを介して陰極室5cへ、陰極室5cから陰極出口ヘッダー10Icoを介して、電解液を流した。また、陽極入口ヘッダー10Iaiを介して陽極室5aへ、陽極室5aから陽極出口ヘッダー10Icoを介して、電解液を流した。
図4に示すように、陰極電解液入口5ciは平面視で長方形の外枠の下辺の一方端側に、陰極電解液出口5coは平面視で長方形の外枠3の下辺の他方端側に繋がる側辺の上側に、それぞれ接続されている。ここでは、陰極電解液入口5ciと陰極電解液出口5coとを、平面視で長方形の電解室5において電極室5の電極室5の中央部を挟んで向かい合うように、設けた。電解液は、鉛直方向に対して傾斜しながら下方から上方へ流れ、電極面に沿って上昇した。
この実施例の複極式電解槽50では、陽極室5aや陰極室5cの電解液入口5iから、陽極室5aや陰極室5cに、電解液が流入し、陽極室5aや陰極室5cの電解液出口5oから、電解液と生成ガスとが、電解槽50外へ流出する構造とした。
陰極室5cでは、電解により水素ガスが発生し、陽極室5aでは、電解により酸素ガスが発生するため、前述した、陰極出口ヘッダー10Icoでは、電解液と水素ガスとの混相流となり、陽極出口ヘッダー10Icoでは、電解液と酸素ガスとの混相流となった。
気液分離タンクは、高さ1400mm、容積1m3のものを用意した。
気液分離タンクの液量は、それぞれ設計容積の50%程度とした。
実施例A1は、hiがhsよりも大きく、δ=60°、θ=0°のものとした。
比較例A1は、hiがhsよりも小さく、δ=0°、θ=0°のものとした。
そして、後述の実施例B1と同様に、気液分離タンクに樹脂ライニング層を設ける処理を行った。表1に詳細を示す。
整流器から複極式電解槽に対して、複極式電解槽の陰極及び陽極の面積に対して、10kA/m2となるように通電をした。
送液ポンプにより、陽極室、酸素分離タンク(陽極用気液分離タンク)、陽極室1aの循環を、また、陰極室、水素分離タンク(陰極用気液分離タンク)、陰極室、の循環を行った。
整流器から電解槽に対して、電流密度が10kA/m2となるように連続で通電し、水電解を行った。それぞれの条件において、100時間ずつ運転し、80時間経過時に評価を行った。
その結果を表1に記す。
複極式エレメント及びそれを用いたアルカリ水電解システムは、下記のとおり作製した。
複極式エレメントとして、陽極と陰極とを区画する隔壁と隔壁を取り囲む外枠とが一体化されたニッケル製の部材を用いた。隔壁の平面視でのサイズは、縦500mm×横500mmとし、厚みは2mmとした。
隔壁の陽極室側に、高さ25mm、厚み1.5mmのニッケル製の陽極側整流板(陽極側リブ)を4枚、隔壁の陰極室側に、高さ25mm、厚み1.5mmのニッケル製の陰極側整流板(陰極側リブ)を4枚、溶接により、95mmの間隔(外枠−整流板距離は95.5mm)で、取り付けた。
整流板には、隔壁に溶接された側に、半径10mmの半円形状の穴を、整流板の延在方向について等間隔に、12か所設けた。
実施例1において使用した陽極、陰極、隔膜、ガスケットと同様のものを使用した。
陽極及び陰極の平面視でのサイズは、500mm×500mmとした。
複極式エレメントを5個使用し、図2に示すように、一方の端側で、ファストヘッド、絶縁板、陽極ターミナルエレメントを配置し、さらに、陽極側ガスケット部分、隔膜、陰極側ガスケット部分、複極式エレメントをこの順に並べたものを5組配置し、さらに、陽極側ガスケット部分、隔膜、電陰極側ガスケット部分を配置し、もう一方の端側で、陰極ターミナルエレメント、絶縁板、ルーズヘッドを配列し、その後、これらをファストヘッド及びルーズヘッドの両側から8本のタイロッドを使用し、各タイロッドをトルクレンチにより締め付けトルク59Nmで締め付けることでスタックし、複極式電解槽を組み立てた。
この実施例においては、陰極室及び陽極室が、それぞれ5室ある5対の直列接続構造を有していた。
ゼロギャップ型の複極式エレメントは、隔壁に垂直な方向にみて、縦540mm×横620mmの長方形の形状を有していた。
電極室の隔壁に垂直な方向の長さ(電極室の深さ)は、陽極室で25mmであり、陰極室で25mmであった。
前述のとおり、複極式電解槽を組み立てることによって、図2に示すような、陰極と陽極とを隔膜の両側から押し付けて接触させ、ゼロギャップ構造を形成した。
陽極側では陽極のみを用い、陰極側は「陰極−導電性弾性体−集電体」の組み合わせを用い、ゼロギャップ構造の詳細は、実施例1と同様とした。
この実施例の複極式電解槽50では、図6、図7に示すように、この実施例の複極式電解槽50では、電解槽50の筐体の外方に、電解液を配液及び集液するための導管20(陽極用配液管20Oai、陰極用配液管20Oci、陽極用集液管20Oao、陰極用集液管20Oco)が設けられている。
更に、この電解槽50では、これらの導管20から電解室5に電解液を通過させるホース(陽極入口側ホース10Oai、陽極出口側ホース10Oao、陰極入口側ホース10Oci、陰極出口側ホース10Oco)を、外部から取り付けた。
なお、各ホース(10Oai、10Oao、10Oci、10Oco)には、それぞれ熱電対を設置し、電極室を通過する前後での電解液の温度差を測定した。
こうして、外部ヘッダー型の電解槽を作製した。
陰極入口側ホース10Ociを介して陰極室5cへ、陰極室5cから陰極出口側ホース10Ocoを介して、電解液を流した。
また、陽極入口側ホース10Oaiを介して陽極室5aへ、陽極室5aから陽極出口側ホース10Oaoを介して、電解液を流した。
図6、図7に示すように、入口側ホースは平面視で長方形の外枠の下辺の一方端側に、出口側ホースは平面視で長方形の外枠の下辺の他方端側に繋がる側辺の上側に、それぞれ接続されている。ここでは、入口側ホースと出口側ホースとを、平面視で長方形の電解室において電極室の電極室の中央部を挟んで向かい合うように、設けた。電解液は、鉛直方向に対して傾斜しながら下方から上方へ流れ、電極面に沿って上昇した。
この実施例の複極式電解槽では、陽極室5aや陰極室5cの入口側ホースから、陽極室5aや陰極室5cに、電解液が流入し、陽極室5aや陰極室5cの出口側ホースから、電解液と生成ガスとが、電解槽外へ流出する構造とした。
陰極室5cでは、電解により水素ガスが発生し、陽極室5aでは、電解により酸素ガスが発生するため、前述した、陰極出口側ホース10Ocoでは、電解液と水素ガスとの混相流となり、陽極出口側ホース10Oaoでは、電解液と酸素ガスとの混相流となった。
酸素濃度計としては、アドバンストインストゥルメンツ社製のGPR−2500を用いた。
水素濃度計としては、理研計器(株)社製のSD−D58・ACを用いた。
圧力計としては、横河電機(株)社製のEJA−118Wを用いた。
送液ポンプ、気液分離タンク、水補給器等は、いずれも当該技術分野において通常使用されるものを用いて、アルカリ水電解システムを作製した(図1参照)。
気液分離タンクの液量は、それぞれ設計容積の50%程度とした。
実施例A2は、hiがhsよりも大きく、δ=60°、θ=0°のものとした。
比較例A2は、hiがhsよりも小さく、δ=0°、θ=0°のものとした。
実施例A3は、hiがhsよりも大きく、δ=70°、θ=90°のものとした。
そして、後述の実施例B1と同様に、気液分離タンクに樹脂ライニング層を設ける処理を行った。表1に詳細を示す。
整流器から複極式電解槽に対して、複極式電解槽の陰極及び陽極の面積に対して、10kA/m2となるように通電をした。
送液ポンプにより、陽極室、酸素分離タンク(陽極用気液分離タンク)、陽極室の循環を、また、陰極室、水素分離タンク(陰極用気液分離タンク)、陰極室、の循環を行った。
整流器から電解槽に対して、電流密度が10kA/m2となるように連続で通電し、水電解を行った。それぞれの条件において、100時間ずつ運転し、80時間経過時に評価を行った。
その結果を表1に記す。
特に下記の条件とした以外はアルカリ水電解システムの全体構成を実施例A1と同様とした。
このタンクをアルカリ水電解の気液分離タンク(水素分離タンク、酸素分離タンク)に使用した。
タンクの容積は、水素分離タンク及び酸素分離タンク共に2m3であった。
アルカリ水電解システムの詳細な条件を表1に示す。
整流器から複極式電解槽に対して、複極式電解槽の陰極及び陽極の面積に対して、電流密度6kA/m2となるように通電をした。
循環流量を1m3/hrとした。
電解液の温度は最高95℃とした。
特に下記の条件とした以外はアルカリ水電解システムの全体構成を実施例A1と同様とした。
このタンクをアルカリ水電解の気液分離タンク(水素分離タンク、酸素分離タンク)に使用した。
タンクの容積は、水素分離タンク及び酸素分離タンク共に2m3であった。
アルカリ水電解システムの詳細な条件を表1に示す。
整流器から複極式電解槽に対して、複極式電解槽の陰極及び陽極の面積に対して、電流密度6kA/m2となるように通電をした。
循環流量を1m3/hrとした。
電解液の温度は最高95℃とした。
特に下記の条件とした以外はアルカリ水電解システムの全体構成を実施例A1と同様とした。
このタンクをアルカリ水電解の気液分離タンク(水素分離タンク、酸素分離タンク)に使用した。
タンクの容積は、水素分離タンク及び酸素分離タンク共に0.3m3であった。
アルカリ水電解システムの詳細な条件を表1に示す。
整流器から複極式電解槽に対して、複極式電解槽の陰極及び陽極の面積に対して、電流密度10kA/m2となるように通電をした。
循環流量を0.1m3/hrとした。
電解液の温度は最高80℃とした。
特に下記の条件とした以外はアルカリ水電解システムの全体構成を実施例A1と同様とした。
このタンクをアルカリ水電解の気液分離タンク(水素分離タンク、酸素分離タンク)に使用した。
タンクの容積は、水素分離タンク及び酸素分離タンク共に0.5m3であった。
アルカリ水電解システムの詳細な条件を表1に示す。
整流器から複極式電解槽に対して、複極式電解槽の陰極及び陽極の面積に対して、電流密度6kA/m2となるように通電をした。
循環流量を1m3/hrとした。
電解液の温度は最高70℃とした。
特に下記の条件とした以外はアルカリ水電解システムの全体構成を実施例A2と同様とした。
このタンクをアルカリ水電解の気液分離タンク(水素分離タンク、酸素分離タンク)に使用した。
タンクの容積は、水素分離タンク及び酸素分離タンク共に0.5m3であった。
アルカリ水電解システムの詳細な条件を表1に示す。
整流器から複極式電解槽に対して、複極式電解槽の陰極及び陽極の面積に対して、電流密度10kA/m2となるように通電をした。
循環流量を0.2m3/hrとした。
電解液の温度は最高95℃とした。
複極式エレメントを下記の通りに作製した。なお、電解装置を作製する際に使用する一部のものについても記載する。
内部ヘッダー10I型の複極式エレメント60を採用した。
そして、図4、図5に示すように、ヘッダー10(陽極入口ヘッダー10ai、陰極入口ヘッダー10ci、陽極出口ヘッダー10ao、陰極出口ヘッダー10co)のいずれもが、複極式エレメント60の隔壁1の側方の2辺に対して平行に延びるように(隔壁1の上方の辺及び下方の辺に対して直交して延びるように)、配置した。
また、図4、図5に示すように、導管20(陽極用配液管20ai、陰極用配液管20ci、陽極用集液管20ao、陰極用集液管20co)のいずれもが、複極式エレメント60の隔壁1に垂直な方向に延びるように、配置した。
こうして、内部ヘッダー10I型の電解槽を作製した。
陰極入口ヘッダー0Iciを介して陰極室5cへ、陰極室5cから陰極出口ヘッダー10coを介して、電解液を流した。また、陽極入口ヘッダー10aiを介して陽極室5aへ、陽極室5aから陽極出口ヘッダー10coを介して、電解液を流した。
図4に示すように、陰極電解液入口5ciは平面視で長方形の外枠の下辺の一方端側に、陰極電解液出口5coは平面視で長方形の外枠3の下辺の他方端側に繋がる側辺の上側に、それぞれ接続されている。ここでは、陰極電解液入口5ciと陰極電解液出口5coとを、平面視で長方形の電解室5において電極室5の電極室5の中央部を挟んで向かい合うように、設けた。電解液は、鉛直方向に対して傾斜しながら下方から上方へ流れ、電極面に沿って上昇した。
この実施例の複極式電解槽50では、陽極室5aや陰極室5cの電解液入口5iから、陽極室5aや陰極室5cに、電解液が流入し、陽極室5aや陰極室5cの電解液出口5oから、電解液と生成ガスとが、電解槽50外へ流出する構造とした。
陰極室5cでは、電解により水素ガスが発生し、陽極室5aでは、電解により酸素ガスが発生するため、前述した、陰極出口ヘッダー10coでは、電解液と水素ガスとの混相流となり、陽極出口ヘッダー10coでは、電解液と酸素ガスとの混相流となった。
外枠の下方に設けられた、導管(配液管、集液管)の流路の断面積S2は、0.0009m2に調整した。
ヘッダー(陽極入口ヘッダー、陽極出口ヘッダー、陰極入口ヘッダー、陰極出口ヘッダー)の流路の断面積S3は、0.000016m2に調整した。
送液ポンプにより、陽極室、陽極電解液戻し配管、酸素分離タンク(陽極用気液分離タンク)、陽極電解液送り配管、陽極室の循環を、また、陰極室、陰極電解液戻し配管、水素分離タンク(陰極用気液分離タンク)、陰極電解液送り配管、陰極室の循環を、行った。送液ポンプは、電解槽へ通電開始前に止め、送液ポンプを用いずに電解液を循環させた。
酸素分離タンク、水素分離タンクが、複極式電解槽と接している一体型のアルカリ水電解システムとした。
陽極電解液戻し配管に設けた陽極温度計及び陰極電解液戻し配管に設けた陰極温度計により、通電開始100時間後の複極式電解槽の電解液集液管出口から送られる電解液の温度(℃)を測定した。
結果を表3に示す。
通電開始100時間後の、陽極側の電解液配液管入口に流れる陽極電解液圧力(kPa)、及び陰極側の電解液配液管入口に流れる陰極電解液圧力(kPa)を測定し、陽極電解液圧力と陰極電解液圧力との差の振幅を測定した。
陽極電解液圧力と陰極電解液圧力との差の振幅が小さいほど、隔膜を介したガスの混合が少なくなり、隔膜や電極へのダメージを低減できるため、好ましい。
通電開始100時間後の、酸素分離タンクから回収された酸素ガス中の酸素ガス及び水素ガスの濃度を測定し、回収された酸素ガス全量に対する水素ガスの含有率(水素ガスの濃度/(酸素ガスの濃度+水素ガスの濃度)×100)を算出した。また、水素分離タンクから回収された水素ガス中の水素ガス及び酸素ガスの濃度を測定し、回収された水素ガス全量に対する酸素ガスの含有率(酸素ガスの濃度/(水素ガスの濃度+酸素ガスの濃度)×100)を算出した。
ガスの濃度は、図1に示すように、圧力制御弁80の下流に設けた、H2/O2濃度計75、76により測定した。
他のガスの含有割合が小さいほど、得られるガスの純度が優れていると判断した。
本実施例C、比較例Cと同じ寸法の透明の電解槽及び配管ラインを用意し、一定電密で、1時間電解後に、電解を停止し、停止の前後の電解液の体積変化により、電解液中の気泡の体積割合(気泡の体積/(液体の体積+気泡の体積))を測定した。6kA/m2のとき、10%程度、10kA/m2のとき、15%程度だった。
酸素分離タンクと複極式電解槽、及び水素分離タンクと複極式電解槽を、それぞれ1.0m離し、約2mの電解液戻し配管、電解液送り配管で接続したこと以外は、実施例C1と同様にしてアルカリ水電解システムを作製した。
測定結果を表3に示す。
ha及びhcを0.5mとしたこと以外は、実施例C2と同様にしてアルカリ水電解システムを作製した。
測定結果を表3に示す。
ha及びhcを0.1mとしたこと以外は、実施例C2と同様にしてアルカリ水電解システムを作製した。
測定結果を表3に示す。
haを0.7m、hcを0.9mとしたこと以外は、実施例C2と同様にしてアルカリ水電解システムを作製した。
測定結果を表3に示す。
haを0.9m、hcを0.7mとしたこと以外は、実施例C2と同様にしてアルカリ水電解システムを作製した。
測定結果を表3に示す。
ha及びhcを1.1mとしたこと以外は、実施例C2と同様にしてアルカリ水電解システムを作製した。
測定結果を表3に示す。
ha及びhcを0.01mとしたこと以外は、実施例C2と同様にしてアルカリ水電解システムを作製した。
測定結果を表3に示す。
実施例C2〜C6は、電解液集液管出口の電解液温度が、陽極、陰極共に90℃以下で、許容範囲であり、低く抑えることができた。また、ガス純度は実施例C1よりも大幅に改善した。
実施例C6は、陰極及び陽極の電解液配液管入口の循環液圧力差の振幅が大幅に改善した。
一方、比較例C1は電解液集液管出口の電解液温度が高く、比較例C2はガス純度が高かった。
アルカリ水電解用複極式セル及びそれを用いたアルカリ水電解システムは、下記のとおり作製した。
複極式エレメントを5個使用し、図2に示すように、一方の端側で、ファストヘッド、絶縁板、陽極ターミナルエレメントを配置し、さらに、陽極側ガスケット部分、隔膜、陰極側ガスケット部分、複極式エレメントをこの順に並べたものを5組配置し、さらに、陽極側ガスケット部分、隔膜、電陰極側ガスケット部分を配置し、もう一方の端側で、陰極ターミナルエレメント、絶縁板、ルーズヘッドを配列し、その後、これらをファストヘッド及びルーズヘッドの両側から8本のタイロッドを使用し、各タイロッドをトルクレンチにより締め付けトルク59Nmで締め付けることでスタックし、複極式電解槽を組み立てた。
この実施例においては、陰極室及び陽極室が、それぞれ5室ある5対の直列接続構造を有していた。
電極室の隔壁に垂直な方向の長さ(電極室の深さ)は、陽極室で25mmであり、陰極室で25mmであった。
この実施例の複極式電解槽50では、図6、図7に示すように、この実施例の複極式電解槽50では、電解槽50の筐体の外方に、電解液を配液及び集液するための導管20(陽極用配液管20Oai、陰極用配液管20Oci、陽極用集液管20Oao、陰極用集液管20Oco)が設けられている。
更に、この電解槽50では、これらの導管20から電解室5に電解液を通過させるホース(陽極入口側ホース10Oai、陽極出口側ホース10Oao、陰極入口側ホース10Oci、陰極出口側ホース10Oco)を、外部から取り付けた。
なお、各ホース(10Oai、10Oao、10Oci、10Oco)には、それぞれ熱電対を設置し、電極室を通過する前後での電解液の温度差を測定した。
こうして、外部ヘッダー型の電解槽を作製した。
陰極入口側ホース10Ociを介して陰極室5cへ、陰極室5cから陰極出口側ホース10Ocoを介して、電解液を流した。
また、陽極入口側ホース10Oaiを介して陽極室5aへ、陽極室5aから陽極出口側ホース10Oaoを介して、電解液を流した。
図6、図7に示すように、入口側ホースは平面視で長方形の外枠の下辺の一方端側に、出口側ホースは平面視で長方形の外枠の下辺の他方端側に繋がる側辺の上側に、それぞれ接続されている。ここでは、入口側ホースと出口側ホースとを、平面視で長方形の電解室において電極室の電極室の中央部を挟んで向かい合うように、設けた。電解液は、鉛直方向に対して傾斜しながら下方から上方へ流れ、電極面に沿って上昇した。
この実施例の複極式電解槽では、陽極室5aや陰極室5cの入口側ホースから、陽極室5aや陰極室5cに、電解液が流入し、陽極室5aや陰極室5cの出口側ホースから、電解液と生成ガスとが、電解槽外へ流出する構造とした。
陰極室5cでは、電解により水素ガスが発生し、陽極室5aでは、電解により酸素ガスが発生するため、前述した、陰極出口側ホース10Ocoでは、電解液と水素ガスとの混相流となり、陽極出口側ホース10Oaoでは、電解液と酸素ガスとの混相流となった。
酸素濃度計としては、アドバンストインストゥルメンツ社製のGPR−2500を用いた。
水素濃度計としては、理研計器(株)社製のSD−D58・ACを用いた。
また、酸素濃度計、水素濃度計の上流側には、ミスト除去を目的として、ボルテックスクーラー(図示せず)を設置した。
圧力計としては、横河電機(株)社製のEJA−118Wを用いた。
送液ポンプ、気液分離タンクは、いずれも当該技術分野において通常使用されるものを用いて、アルカリ水電解システムを作製した(図1参照)。
水封器としては、内径φ400mm×高さ600mmのSUS製円筒容器を用い、水封高さが450mmとなるように円筒容器にオーバーフローノズルを取り付けた。円筒容器の上蓋には、ガスを導入するための配管とガスを排出するための配管とを接続し、ガスを導入するための配管は水封部まで延伸させた。また、水封器内の液面レベルを目視で確認できるように、液面計を取り付けた。
フレームアレスターとしては、クリンプ・リボン式フレームアレスター(金子産業(株)製のFAR−150)を用いた。
バッファータンクとしては、内径φ600mm×高さ600mmのSUS製円筒容器を用いた。
水封器より出たガスは、フレームアレスターを通過し、系外に排出された。
水補給器より、水封器に水が供給され、オーバーフローした水は、バッファータンクに溜められた。そして、水はバッファータンクから水供給ポンプにより電解液として電解槽に供給された。
バッファータンクから電解液循環ラインへの水供給量は、水素側気液分離タンクの液面レベルで制御し、液面レベル43%で供給ポンプ停止、液面レベル40%で供給ポンプ稼働とした。
水補給器から水封器への水補給量は、バッファータンクの液面レベルで制御し、液面レベル60%で補給ポンプ停止、液面レベル50%で補給ポンプ稼働とした。
フレームアレスターは、水封器のガスライン下流側(系外にガスが排出さされるライン)に水平方向に取り付けた。フレームアレスターでは、ガスに随伴されるミスト成分が凝縮し、凝縮した成分の一部が水やアルカリ水となってガスライン下流側に流れた。この凝縮水とガスとを分岐させ、凝縮水を水封器に戻すラインが設けられた。この凝縮水戻しラインは、途中に液溜り部を有し、流れてきた凝縮水がオーバーフローして水封器に戻り、ガスの流れは遮断できるようにした。
整流器から複極式電解槽に対して、複極式電解槽の陰極及び陽極の面積に対して、10kA/m2となるように通電をした。
送液ポンプにより、陽極室、酸素分離タンク(陽極用気液分離タンク)、陽極室1aの循環を、また、陰極室、水素分離タンク(陰極用気液分離タンク)、陰極室、の循環を行った。
気液分離タンクの液量は、それぞれ設計容積の45%とした。
整流器から電解槽に対して、電流密度が10kA/m2となるように連続で通電し、水電解を行った。運転は1000時間行い、開始時、500時間後、950時間後における、循環電解液濃度、水素分離タンク液面レベル、水素側水封器液面レベル、酸素側水封器液面レベル、水素側・酸素側水封器液面レベルの差圧を測定した。結果を表4に示す。
実施例D、比較例Dにおける電解システムについて、実施例A及び実施例Bにおける電解試験と同様に、電解試験を行った。結果を表4に示す。
また、水素中酸素濃度を常時測定し、0.05%以下に維持されていることが確認できた。
フレームアレスターを、水封器のガスライン下流側(系外にガスが排出さされるライン)に鉛直方向で、ガスの流れを下方から上方に流れるように、取り付けた。フレームアレスター内に貯まった凝縮水は、ガスライン上流の下方に貯まり戻り出るため、凝縮水戻しラインは設けなかった。
上記以外は、実施例D1と同様に水電解を行った。
そして、実施例D1と同様に電解試験1及び電解試験2により評価した。結果を表5に示す。
また、水素中酸素濃度を常時測定し、0.05%以下に維持されていることが確認できた。
水素側/酸素側気液分離タンクと水素側/酸素側水封器との間に設けた圧力制御弁80をそれぞれ全開とし、圧力調整をせず、運転を行った以外は、実施例D2と同様に行った。結果を表6に示す。
また、水素中酸素濃度を常時測定し、0.05%以下に維持されていることが確認できた。
2 電極
2a 陽極
2c 陰極
2e 導電性弾性体
2r 集電体
3 外枠
4 隔膜
5 電極室
5a 陽極室
5c 陰極室
5i 電解液入口
5o 電解液出口
5ai 陽極電解液入口
5ao 陽極電解液出口
5ci 陰極電解液入口
5co 陰極電解液出口
6 整流板(リブ)
6a 陽極整流板(陽極リブ)
6c 陰極整流板(陰極リブ)
7 ガスケット
10 ヘッダー
10ai 陽極入口ヘッダー
10ao 陽極出口ヘッダー
10ci 陰極入口ヘッダー
10co 陰極出口ヘッダー
10I 内部ヘッダー
10Iai 陽極入口ヘッダー
10Iao 陽極出口ヘッダー
10Ici 陰極入口ヘッダー
10Ico 陰極出口ヘッダー
10O 外部ヘッダー
10Oai 陽極入口ヘッダー(陽極入口側ホース)
10Oao 陽極出口ヘッダー(陽極出口側ホース)
10Oci 陰極入口ヘッダー(陰極入口側ホース)
10Oco 陰極出口ヘッダー(陰極出口側ホース)
20 導管
20ai 陽極用配液管
20ao 陽極用集液管
20ci 陰極用配液管
20co 陰極用集液管
20Iai 陽極用配液管
20Iao 陽極用集液管
20Ici 陰極用配液管
20Ico 陰極用集液管
20Oai 陽極用配液管
20Oao 陽極用集液管
20Oci 陰極用配液管
20Oco 陰極用集液管
50 電解槽
51g ファストヘッド、ルーズヘッド
51i 絶縁板
51a 陽極ターミナルエレメント
51c 陰極ターミナルエレメント
51r タイロッド
60 複極式エレメント
65 電解セル
70 アルカリ水電解システム
71 送液ポンプ
72 気液分離タンク
72h 水素分離タンク
72o 酸素分離タンク
72i 流入口
72e 流出口
72s 電解液の液面
72in 流入口に取り付けられる配管
73 水補給器
74 整流器
75 酸素濃度計
76 水素濃度計
77 流量計
78 圧力計
79 熱交換器
80 圧力制御弁
81 電解液戻し配管
81a 陽極電解液戻し配管
81c 陰極電解液戻し配管
82 電解液送り配管
82a 陽極電解液送り配管
82c 陰極電解液送り配管
90 合流管
A 軸を示す点
D1 隔壁に沿う所与の方向(電解液通過方向)
H 気液分離タンクの高さ
Z ゼロギャップ構造
Claims (32)
- 少なくとも電解槽と気液分離タンクとを有する水電解システムであり、
ガスと電解液との混合物を前記電解槽から前記気液分離タンクに流入させるための流入口が、前記気液分離タンク内の電解液の液面よりも高い位置に設置されており、
前記気液分離タンクの電解液液面と、前記電解槽から前記気液分離タンクへ電解液を送る電解液戻し配管の鉛直方向に最も高い位置との鉛直方向の距離をh(単位:m)、
前記電解槽の電解液配液管入口の鉛直方向に最も低い位置と前記気液分離タンクの電解液液面との鉛直方向の距離をH(単位:m)とした時に、以下の関係を満たし、
0.04×H≦h≦0.5×H
前記電解液戻し配管の鉛直方向に最も高い位置が、前記気液分離タンクの電解液液面より鉛直方向上側にあり、前記電解液配液管入口の鉛直方向に最も低い位置が、前記気液分離タンクの電解液液面より鉛直方向下側にある、
ことを特徴とする、水電解システム。 - 前記流入口に取り付けられる配管は、前記気液分離タンクの内壁に沿って設置されている、請求項1に記載の水電解システム。
- 前記電解槽と前記電解液を配液又は集液する管であるヘッダーとが独立しており、前記ヘッダーが、前記電解槽の隔壁内及び/又は前記電解槽の外枠外の下部及び/又は上部に設けられ、且つ、前記隔壁に垂直な方向に延在するように設けられている、請求項1又は2に記載の水電解システム。
- 前記電解槽と前記電解液を配液又は集液する管であるヘッダーとが一体化されており、前記ヘッダーが、前記電解槽の隔壁内及び/又は前記電解槽の外枠内の下部及び/又は上部に設けられ、且つ、前記隔壁に垂直な方向に延在するように設けられている、請求項1〜3のいずれか一項に記載の水電解システム。
- 前記気液分離タンクの内面に樹脂ライニング層を有しており、
前記樹脂ライニング層の厚みが0.5〜4.0mmである、
請求項1〜4のいずれか一項に記載の水電解システム。 - 前記樹脂ライニング槽の厚みの標準偏差が1.0mm以下である、請求項5に記載の水電解システム。
- 前記樹脂ライニング層がフッ素系樹脂である、請求項5又は6に記載の水電解システム。
- 前記フッ素系樹脂が、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン・エチレン共重合体(ETFE)からなる群から選択される少なくとも1種類である、請求項7に記載の水電解システム。
- 前記樹脂ライニング層が2層以上である、請求項5〜8のいずれか一項に記載の水電解システム。
- 前記気液分離タンクの外面が保温材で覆われている、請求項1〜9のいずれか一項に記載の水電解システム。
- 前記電解液と水素ガスとを分離する水素分離タンクと、前記電解液と酸素ガスとを分離する酸素分離タンクとに接続された合流管をさらに有する、請求項1〜9のいずれか一項に記載の水電解システム。
- 請求項1〜11のいずれか一項に記載の水電解システムを、電流密度8kA/m2以上で継時的に電流密度が変動する電源下で、且つ、電解温度80℃以上で使用することを特徴とする、水電解方法。
- アルカリを含有する水を少なくとも電解槽と気液分離タンクとを有するシステムにより水電解し、水素を製造する水素製造方法において、
ガスと電解液との混合物を前記気液分離タンク内の電解液の液面よりも高い位置で前記電解槽から前記気液分離タンクに流入させ、
前記気液分離タンクの電解液液面と、前記電解槽から前記気液分離タンクへ電解液を送る電解液戻し配管の鉛直方向に最も高い位置との鉛直方向の距離をh(単位:m)、
前記電解槽の電解液配液管入口の鉛直方向に最も低い位置と前記気液分離タンクの電解液液面との鉛直方向の距離をH(単位:m)とした時に、以下の関係を満たし、
0.04×H≦h≦0.5×H
前記電解液戻し配管の鉛直方向に最も高い位置が、前記気液分離タンクの電解液液面より鉛直方向上側にあり、前記電解液配液管入口の鉛直方向に最も低い位置が、前記気液分離タンクの電解液液面より鉛直方向下側にある、
ことを特徴とする、水素製造方法。 - 前記電解槽と前記気液分離タンクとが離れて設けられている、請求項1〜11のいずれか一項に記載の水電解システム。
- 前記気液分離タンクが、酸素分離タンクと水素分離タンクとを含み、
前記酸素分離タンクの電解液液面と、前記電解槽から前記酸素分離タンクへ電解液を送る陽極電解液戻し配管の鉛直方向に最も高い位置との鉛直方向の距離をhaと、
前記水素分離タンクの電解液液面と、前記電解槽から前記水素分離タンクへ電解液を送る陰極電解液戻し配管の鉛直方向に最も高い位置との鉛直方向の距離をhcとが、
以下の関係を満たす、請求項14に記載の水電解システム。
ha≦hc - 前記気液分離タンクが、酸素分離タンクと水素分離タンクとを含み、
前記酸素分離タンク及び前記水素分離タンクから吐出された電解液が混合されて、前記電解槽に送られる、請求項14又は15に記載の水電解システム。 - 経時的に電流密度が変動する電力源を更に含む、請求項14〜16のいずれか一項に記載の水電解システム。
- 前記電解槽と、前記電解槽に前記電解液を配液又は集液する管であるヘッダーとが一体化されており、前記ヘッダーが、前記電解槽の隔壁内及び/又は前記電解槽の外枠内の下部に設けられ、且つ、前記隔壁に垂直な方向に延在するように設けられている、請求項14〜17のいずれか一項に記載の水電解システム。
- 前記電解槽が、陽極室と陰極室とを有し、
前記陽極室と前記陰極室とを隔離する隔膜がポリスルホン系隔膜である、請求項14〜18のいずれか一項に記載の水電解システム。 - 少なくとも水封器、水補給器をさらに有する水電解システムであり、
前記水封器は、前記気液分離タンクの下流且つ前記水補給器の上流に接続されている
請求項1に記載の水電解システム。 - 前記水電解システムの全体の水量を調節する機構をさらに有する、請求項20に記載の水電解システム。
- 前記気液分離タンクは、酸素分離タンクと水素分離タンクとを含み、
前記水素分離タンクと前記酸素分離タンクとに接続された合流管をさらに備える、
請求項20又は21に記載の水電解システム。 - 前記水封器は、酸素分離タンクの下流及び水素分離タンクの下流の少なくとも一方に接続されている、請求項20〜22のいずれか一項に記載の水電解システム。
- 前記水封器の下流に接続されたバッファータンクをさらに有する、請求項20〜23のいずれか一項に記載の水電解システム。
- 前記水封器の下流に接続された水素ガス及び/又は酸素ガスを系外に排出する配管をさらに有し、
前記配管に、フレームアレスターを有する、
請求項20〜24のいずれか一項に記載の水電解システム。 - 前記配管に、前記フレームアレスターのミスト凝縮液を前記水封器に戻す機構をさらに有する、請求項20〜25のいずれか一項に記載の水電解システム。
- 前記フレームアレスターが、その気体通過方向を水平方向又は鉛直方向下向きとして、設けられている、請求項25又は26に記載の水電解システム。
- 請求項20〜27のいずれか一項に記載の水電解システムを用いて、
前記水補給器より水を前記水封器を経由して供給する
ことを特徴とする、水電解方法。 - 前記酸素分離タンクから吐出された電解液と、前記水素分離タンクから吐出された電解液とを、前記合流管で混合し、前記電解槽に導入する、請求項28に記載の水電解方法。
- 前記水封器から排出された水を前記バッファータンクを経由して前記電解槽に供給する、請求項28又は29に記載の水電解方法。
- 前記フレームアレスターに凝縮するミストを前記水封器に戻す、請求項28〜30のいずれか一項に記載の水電解方法。
- 少なくとも、電解槽、気液分離タンク、水補給器を有する水電解システムであり、
水素ガス及び/又は酸素ガスを系外に排出する配管をさらに有し、
前記配管に、フレームアレスターを有する
ことを特徴とする、請求項1に記載の水電解システム。
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017072931 | 2017-03-31 | ||
JP2017072918 | 2017-03-31 | ||
JP2017072968 | 2017-03-31 | ||
JP2017072968 | 2017-03-31 | ||
JP2017072931 | 2017-03-31 | ||
JP2017072918 | 2017-03-31 | ||
PCT/JP2018/013955 WO2018182005A1 (ja) | 2017-03-31 | 2018-03-30 | 水電解システム、水電解方法、水素の製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2018182005A1 JPWO2018182005A1 (ja) | 2019-11-07 |
JP6912557B2 true JP6912557B2 (ja) | 2021-08-04 |
Family
ID=63676428
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019509421A Active JP6912557B2 (ja) | 2017-03-31 | 2018-03-30 | 水電解システム、水電解方法、水素の製造方法 |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP3604620A4 (ja) |
JP (1) | JP6912557B2 (ja) |
WO (1) | WO2018182005A1 (ja) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA3117925C (en) | 2018-11-05 | 2023-01-17 | Asahi Kasei Kabushiki Kaisha | Method of producing hydrogen |
JP2022519575A (ja) * | 2019-02-01 | 2022-03-24 | アクアハイドレックス, インコーポレイテッド | 閉じ込められた電解質を有する電気化学システム |
JP7454428B2 (ja) * | 2020-03-31 | 2024-03-22 | 旭化成株式会社 | 電解槽、電解装置、電解方法 |
EP4151775A1 (en) * | 2020-05-15 | 2023-03-22 | Asahi Kasei Kabushiki Kaisha | Electrolysis system and method for using same |
JP7542334B2 (ja) | 2020-06-15 | 2024-08-30 | 旭化成株式会社 | 内部マニホールド型複極式水電解エレメント |
WO2022124309A1 (ja) * | 2020-12-07 | 2022-06-16 | 旭化成株式会社 | アルカリ水電解システム、およびアルカリ水電解システムの運転方法 |
CN113388867B (zh) * | 2021-07-05 | 2024-07-30 | 包头华鼎铜业发展有限公司 | 一种可脱除气泡的电解液低位循环槽 |
EP4137608A1 (en) * | 2021-08-17 | 2023-02-22 | Industrie De Nora S.P.A. | Method for the electrolysis of water at variable current densities |
CN113789546B (zh) * | 2021-10-14 | 2024-03-26 | 中国华能集团清洁能源技术研究院有限公司 | 一种隔膜完整性测试系统及使用方法 |
CN114000163B (zh) * | 2021-11-30 | 2024-05-28 | 中国华能集团清洁能源技术研究院有限公司 | 一种含盐废水电解制氢系统及其工作方法 |
US20250011951A1 (en) | 2021-12-10 | 2025-01-09 | Asahi Kasei Kabushiki Kaisha | Internal manifold-type bipolar electrolysis element, electrolyzer, and method of producing hydrogen |
CN114606523B (zh) * | 2022-04-27 | 2024-03-29 | 阳光氢能科技有限公司 | 一种变功率制氢系统及其自动控制系统和方法 |
CN114717576B (zh) * | 2022-05-07 | 2024-03-29 | 阳光氢能科技有限公司 | 一种制氢系统和碱液循环方法 |
CN115537816B (zh) * | 2022-10-08 | 2024-06-07 | 青岛理工大学 | 一种用于酸性氯化铜蚀刻剂的再生与铜回收的旋流电解系统及方法 |
CN115652351B (zh) * | 2022-11-03 | 2023-06-20 | 嘉庚创新实验室 | 一种非对称电解水制氢装置 |
WO2024192261A1 (en) * | 2023-03-14 | 2024-09-19 | Verdagy, Inc. | Electrolyte recirculation for improved hydrogen evolution |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5844750B2 (ja) * | 1979-02-26 | 1983-10-05 | 株式会社トクヤマ | 排出物の取出し方法 |
JPS5993703U (ja) * | 1982-12-15 | 1984-06-26 | 三菱重工業株式会社 | 水素ガス抜きタンク |
JPS59185789A (ja) * | 1983-04-06 | 1984-10-22 | Hodogaya Chem Co Ltd | 塩素酸アルカリ用塔式電解装置 |
JPH0759756B2 (ja) * | 1987-04-08 | 1995-06-28 | 株式会社日立製作所 | 水素酸素発生装置 |
US5296121A (en) * | 1992-08-24 | 1994-03-22 | The Dow Chemical Company | Target electrode for preventing corrosion in electrochemical cells |
JP3072333B2 (ja) * | 1995-03-23 | 2000-07-31 | 財団法人地球環境産業技術研究機構 | 固体高分子電解質膜を用いる水電解槽 |
JP4240834B2 (ja) * | 2001-03-27 | 2009-03-18 | 三菱重工業株式会社 | 固体高分子膜型水電解装置 |
JP2005240661A (ja) * | 2004-02-26 | 2005-09-08 | Mitsubishi Heavy Ind Ltd | ガス排出装置及びそれを用いたガスヒートポンプ |
JP2005330515A (ja) * | 2004-05-18 | 2005-12-02 | Mitsubishi Heavy Ind Ltd | 自然エネルギー利用水電解システム |
JP2013028822A (ja) | 2011-07-26 | 2013-02-07 | Toshiba Corp | アルカリ水電解装置およびアルカリ水電解方法 |
JP6231296B2 (ja) | 2013-05-16 | 2017-11-15 | エア・ウォーター株式会社 | ガスの減湿装置および方法 |
JP6438741B2 (ja) * | 2014-11-07 | 2018-12-19 | 旭化成株式会社 | 電解システムの電気絶縁方法 |
JP6404685B2 (ja) * | 2014-11-14 | 2018-10-10 | 旭化成株式会社 | 複極式アルカリ水電解セル、及び電解槽 |
JP6438744B2 (ja) * | 2014-11-14 | 2018-12-19 | 旭化成株式会社 | 電解用陰極の活性化方法 |
-
2018
- 2018-03-30 WO PCT/JP2018/013955 patent/WO2018182005A1/ja unknown
- 2018-03-30 EP EP18775253.0A patent/EP3604620A4/en active Pending
- 2018-03-30 JP JP2019509421A patent/JP6912557B2/ja active Active
Also Published As
Publication number | Publication date |
---|---|
WO2018182005A1 (ja) | 2018-10-04 |
EP3604620A4 (en) | 2020-05-20 |
EP3604620A1 (en) | 2020-02-05 |
JPWO2018182005A1 (ja) | 2019-11-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6912557B2 (ja) | 水電解システム、水電解方法、水素の製造方法 | |
JP6948384B2 (ja) | 水電解システム、水電解方法、水素の製造方法 | |
JP6797940B2 (ja) | 電解槽、電解装置、電解方法、水素製造方法 | |
US20240003028A1 (en) | Alkaline water electrolysis system and method of operating alkaline water electrolysis system | |
JP7308361B2 (ja) | 電解システム及びその使用方法 | |
JP7454428B2 (ja) | 電解槽、電解装置、電解方法 | |
JP7295704B2 (ja) | 電解装置の運転方法及び電解装置 | |
JP2021195596A (ja) | アルカリ水電解槽 | |
JP7542334B2 (ja) | 内部マニホールド型複極式水電解エレメント | |
JP7228692B2 (ja) | 電解装置の運転方法 | |
JP7579086B2 (ja) | 電解装置の運転方法、および電解システム | |
JP6858841B2 (ja) | 外部ヘッダー型複極式エレメント、外部ヘッダー型複極式電解槽、及び水素製造方法 | |
WO2022124045A1 (ja) | アルカリ水電解システム、およびアルカリ水電解システムの運転方法 | |
EP4446474A1 (en) | Internal manifold type bipolar electrolysis element, electrolytic cell, and method for producing hydrogen | |
JP7269099B2 (ja) | 電解装置の運転方法及び電解装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190524 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200707 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200824 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20210202 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210413 |
|
C60 | Trial request (containing other claim documents, opposition documents) |
Free format text: JAPANESE INTERMEDIATE CODE: C60 Effective date: 20210413 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20210421 |
|
C21 | Notice of transfer of a case for reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C21 Effective date: 20210427 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210622 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210708 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6912557 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |