[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6912102B2 - Energy absorption mechanism and wooden building - Google Patents

Energy absorption mechanism and wooden building Download PDF

Info

Publication number
JP6912102B2
JP6912102B2 JP2019021908A JP2019021908A JP6912102B2 JP 6912102 B2 JP6912102 B2 JP 6912102B2 JP 2019021908 A JP2019021908 A JP 2019021908A JP 2019021908 A JP2019021908 A JP 2019021908A JP 6912102 B2 JP6912102 B2 JP 6912102B2
Authority
JP
Japan
Prior art keywords
spring
energy absorption
absorption mechanism
plate
brace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019021908A
Other languages
Japanese (ja)
Other versions
JP2019108790A (en
Inventor
古田 智基
智基 古田
方人 中尾
方人 中尾
Original Assignee
株式会社Dit
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Dit filed Critical 株式会社Dit
Publication of JP2019108790A publication Critical patent/JP2019108790A/en
Application granted granted Critical
Publication of JP6912102B2 publication Critical patent/JP6912102B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Description

本発明は、木造建物に用いるエネルギー吸収機構に関する。 The present invention relates to an energy absorption mechanism used in a wooden building.

一般的な木造建物は、柱及び横架材(梁及び土台)の軸組で構成されている。しかし、このような軸組のみでは地震や台風などに十分に抵抗できないことから、軸組に筋交いや面材を追加するなどして、木造建物の剛性および耐力を高めるようにしている。 A typical wooden building is composed of columns and frames of horizontal members (beams and foundations). However, since such a framework alone cannot sufficiently resist earthquakes and typhoons, the rigidity and strength of wooden buildings are increased by adding braces and face materials to the framework.

また、上記の構造において、柱又は横架材と筋交いとの間に取り付けることにより、エネルギーを吸収するダンパが提案されている。(例えば、特許文献1、特許文献2参照)。 Further, in the above structure, a damper that absorbs energy by being attached between a column or a horizontal member and a brace has been proposed. (See, for example, Patent Document 1 and Patent Document 2).

特開2011−174364号公報Japanese Unexamined Patent Publication No. 2011-174364 特開2011−157728号公報Japanese Unexamined Patent Publication No. 2011-157728

特許文献1、特許文献2に記載の発明は、減衰材と高剛性部材を備えるダンパにより、地震等の振動によるエネルギーを吸収しようとするものである。なお、これら特許文献は、本願の発明者が発明したものであり、発明者は従来よりも効果的にエネルギーを吸収すべく鋭意研究を重ね、本願の発明をなした。 The inventions described in Patent Document 1 and Patent Document 2 attempt to absorb energy due to vibration such as an earthquake by a damper provided with a damping material and a high-rigidity member. It should be noted that these patent documents were invented by the inventor of the present application, and the inventor made the invention of the present application by repeating diligent research in order to absorb energy more effectively than before.

本願の発明者は、ダンパ等のエネルギー吸収機構を構成する部材のバネ定数が極めて重要なファクターであることを見いだした。特許文献1及び2の記載によれば、減衰材等の特性としてせん断弾性率、等価粘性減衰定数を規定して、効果的なエネルギー吸収を得ようとするものである。 The inventor of the present application has found that the spring constant of a member constituting an energy absorption mechanism such as a damper is an extremely important factor. According to the descriptions of Patent Documents 1 and 2, the shear modulus and the equivalent viscosity damping constant are defined as the characteristics of the damping material and the like to obtain effective energy absorption.

しかし、これらは減衰材等の形状、例えば高減衰ゴムの形状(接着面の表面積×厚さ)によって、バネ定数は大きく変化する。すなわち、せん断弾性率が同一のゴムであっても、筋交いに生じる引張・圧縮によるせん断力が作用する接着面の表面積が同一である場合、厚さが小さくなるとバネ定数は大きくなり、厚さが大きくなるとバネ定数は小さくなる。 However, the spring constant of these varies greatly depending on the shape of the damping material or the like, for example, the shape of the high damping rubber (surface area x thickness of the adhesive surface). That is, even if the rubbers have the same shear modulus, if the surface area of the adhesive surface on which the shearing force due to tension and compression generated at the brace acts is the same, the spring constant increases as the thickness decreases, and the thickness increases. The larger the value, the smaller the spring constant.

このバネ定数が大き過ぎると、減衰材が変形することなく、振動によるエネルギーを吸収できず、ネジやボルトなどの締結部分に応力がかかり、変形が生じて破壊される。一方、バネ定数が小さ過ぎると、十分な剛性が確保できない。このように、バネ定数は制振において極めて大きなファクターである。 If this spring constant is too large, the damping material will not be deformed, energy due to vibration cannot be absorbed, stress will be applied to the fastening portions such as screws and bolts, and the damping material will be deformed and destroyed. On the other hand, if the spring constant is too small, sufficient rigidity cannot be secured. As described above, the spring constant is an extremely large factor in damping.

そして、本願の発明者は、さらに研究を重ねることによって、エネルギー吸収機構を構成する2つのバネ部材の相関を見いだし、より効果的な制振効果を奏するエネルギー吸収機構を発明した。 Then, the inventor of the present application found the correlation between the two spring members constituting the energy absorption mechanism through further research, and invented the energy absorption mechanism that exerts a more effective vibration damping effect.

以上のように、本発明の目的は、エネルギー吸収機構を構成する2つの部材を規定することにより、振動によるエネルギーに対する減衰能力及び靭性能力の向上を図り、従来よりも制振効果の高いエネルギー吸収機構を提供することにある。 As described above, an object of the present invention is to improve the damping ability and toughness ability against energy due to vibration by defining two members constituting the energy absorption mechanism, and to absorb energy having a higher vibration damping effect than before. To provide a mechanism.

本発明に係る一の態様のエネルギー吸収機構は、鉛直方向に延びる一対の柱材と、水平方向に延びる一対の構造材と、一方の柱材の中央から、他方の柱材と当該構造材との接合部に向けて延びる筋交い材とを備える木造建物に用いられ、前記柱材及び/又は前記構造材と、前記筋交い材と、に固定されるエネルギー吸収機構であって、第1のバネ部と、第2のバネ部と、を備え、前記第1のバネ部は、第1バネ定数K1が1.5〜7.5kN/mmの範囲であり、前記第2のバネ部は、第2バネ定数K2が5.0〜30.0kN/mmの範囲であり、下記数式1を満たし、かつ、下記数式2により導き出されるKの数値が1.4〜4.9の範囲内であり、前記筋交い材の端部と、前記柱材又は前記構造材との間にクリアランスが生じるように設置されることを特徴とする
K1<K2 ・・・(数式1)
K=(K1×K2)/(K1+K2) ・・・(数式2)
The energy absorption mechanism of one aspect according to the present invention includes a pair of pillars extending in the vertical direction, a pair of structural materials extending in the horizontal direction, and from the center of one pillar to the other pillar and the structural material. An energy absorbing mechanism used in a wooden building provided with a brace material extending toward a joint portion of the column and / or a structural material and the brace material, the first spring portion. The first spring portion has a first spring constant K1 in the range of 1.5 to 7.5 kN / mm , and the second spring portion has a second spring portion. It ranges spring constant K2 of 5.0~30.0kN / mm, satisfies the following formula 1, and Ri figures der range of 1.4 to 4.9 of K derived by the following equation 2, It is characterized in that it is installed so as to form a clearance between the end portion of the brace member and the column member or the structural member .
K1 <K2 ... (Formula 1)
K = (K1 x K2) / (K1 + K2) ... (Formula 2)

この構成によれば、第1のバネ部及び第2のバネ部を具備するエネルギー吸収機構により、振動エネルギーに対する減衰能力及び靭性能力を向上し、効果的な制振効果を得ることができる。また、筋交い材と、柱材又は構造材との間にクリアランスが形成されるため、筋交いの圧縮及び引張りのいずれの方向にもエネルギー吸収機構を効かせることができる。これにより、地震などの揺れによるエネルギーを効率良く吸収する。ここで、第1のバネ部及び第2のバネ部を具備するエネルギー吸収機構には、例えばゴムと金属など異なる部材を組み合わせたものや、金属などの同素材が連続して構成され、バネ定数が異なる第1の部分と第2の部分を具備するものが含まれる。 According to this configuration, the energy absorption mechanism including the first spring portion and the second spring portion can improve the damping ability and the toughness ability with respect to the vibration energy, and can obtain an effective vibration damping effect. Further, since a clearance is formed between the brace material and the column material or the structural material, the energy absorption mechanism can be applied in both the compression and tension directions of the brace material. As a result, the energy generated by shaking such as an earthquake is efficiently absorbed. Here, the energy absorption mechanism provided with the first spring portion and the second spring portion is composed of a combination of different members such as rubber and metal, or the same material such as metal continuously formed, and has a spring constant. Includes those comprising a first portion and a second portion that differ in.

また、第1バネ定数K1が1.0kN/mm未満であると耐震性能が低すぎて耐震要素として成り立たず、20.0kN/mmを超えると強度が高すぎて吸収性能を発揮できない。また、第2バネ定数K1が3.0kN/mm未満であると固定部が先に変形してしまい耐震要素として成り立たず、50.0kN/mmを超えると強度が高すぎて吸収性能を発揮できない。また、耐震性能と吸収性能をより高めるため、好ましくは、第1バネ定数K1が1.5〜7.5kN/mmであり、第2バネ定数K2が5.0〜30.0kN/mmであり、Kの数値が1.4〜4.9の範囲内である。 Further, if the first spring constant K1 is less than 1.0 kN / mm, the seismic performance is too low to be established as a seismic element, and if it exceeds 20.0 kN / mm, the strength is too high to exhibit absorption performance. Further, if the second spring constant K1 is less than 3.0 kN / mm, the fixed portion is deformed first and cannot be used as a seismic element, and if it exceeds 50.0 kN / mm, the strength is too high and the absorption performance cannot be exhibited. .. Further, in order to further enhance seismic performance and absorption performance, the first spring constant K1 is preferably 1.5 to 7.5 kN / mm, and the second spring constant K2 is 5.0 to 30.0 kN / mm. , The value of K is in the range of 1.4 to 4.9.

また、前記筋交い材の端部と、前記柱材又は前記構造材との間にクリアランスを設けて設置されるため、筋交いの圧縮及び引張りのいずれの方向にもエネルギー吸収機構を効かせることができる。これにより、地震などの揺れによるエネルギーを効率良く吸収する。 Further, possible to twist the ends of the front Symbol bracing material, because that Ru is installed by providing a clearance between the pillar or the structural material, the energy absorbing mechanism in either direction of compression and tension of the brace Can be done. As a result, the energy generated by shaking such as an earthquake is efficiently absorbed.

本発明に係る一の態様のエネルギー吸収機構は、鉛直方向に延びる一対の柱材と、水平方向に延びる一対の構造材と、当該柱材と当該構造材との接合部に設置されるほおづえ型の筋交い材とを備える木造建物に用いられ、前記柱材及び/又は前記構造材と、前記筋交い材と、に固定されるエネルギー吸収機構であって、第1のバネ部と、第2のバネ部と、を備え、前記第1のバネ部は、第1バネ定数K1が1.5〜7.5kN/mmの範囲であり、前記第2のバネ部は、第2バネ定数K2が5.0〜30.0kN/mmの範囲であり、下記数式1を満たし、かつ、下記数式2により導き出されるKの数値が1.4〜4.9の範囲内であり、前記筋交い材の端部と、前記柱材又は前記構造材との間にクリアランスが生じるように設置されることを特徴とする。また、第1バネ定数K1、第2バネ定数K2の範囲の上下限については、前記と同様である。 The energy absorption mechanism of one aspect according to the present invention is a pair of pillars extending in the vertical direction, a pair of structural materials extending in the horizontal direction, and a brace installed at a joint between the pillars and the structural materials. An energy absorbing mechanism used in a wooden building provided with a brace of a mold and fixed to the column and / or the structural material and the brace, the first spring portion and the second. The first spring portion includes a spring portion and has a first spring constant K1 in the range of 1.5 to 7.5 kN / mm , and the second spring portion has a second spring constant K2 of 5. in the range of .0~30.0kN / mm, satisfies the following formula 1, and Ri figures der range of 1.4 to 4.9 of K derived by the following equation 2, an end of said brace member It is characterized in that it is installed so that a clearance is generated between the portion and the pillar material or the structural material. The upper and lower limits of the range of the first spring constant K1 and the second spring constant K2 are the same as described above.

本発明に係る一の態様のエネルギー吸収機構は、鉛直方向に延びる一対の柱材と、水平方向に延びる一対の構造材と、当該柱材と当該構造材とにより構成される枠に設置される壁材とを備える木造建物に用いられ、前記柱材及び/又は前記構造材と、前記壁材と、の間に固定されるエネルギー吸収機構であって、第1のバネ部と、第2のバネ部と、を備え、前記第1のバネ部は、第1バネ定数K1が1.5〜7.5kN/mmの範囲であり、前記第2のバネ部は、第2バネ定数K2が5.0〜30.0kN/mmの範囲であり、下記数式1を満たし、かつ、下記数式2により導き出されるKの数値が1.4〜4.9の範囲内であり、前記壁材と、前記柱材又は前記構造材との間にクリアランスが生じるように設置されることを特徴とする。また、第1バネ定数K1、第2バネ定数K2の範囲の上下限については、前記と同様である。 The energy absorption mechanism of one aspect according to the present invention is installed in a frame composed of a pair of pillars extending in the vertical direction, a pair of structural materials extending in the horizontal direction, and the pillars and the structural materials. An energy absorbing mechanism used in a wooden building provided with a wall material and fixed between the pillar material and / or the structural material and the wall material, the first spring portion and the second spring portion. The first spring portion includes a spring portion and has a first spring constant K1 in the range of 1.5 to 7.5 kN / mm , and the second spring portion has a second spring constant K2 of 5. in the range of .0~30.0kN / mm, satisfies the following formula 1, and Ri figures der range of 1.4 to 4.9 of K derived by the following equation 2, and the wall material, It is characterized in that it is installed so as to generate a clearance between the pillar material and the structural material. The upper and lower limits of the range of the first spring constant K1 and the second spring constant K2 are the same as described above.

また、このエネルギー吸収機構は、前記クリアランスに、エネルギー吸収材が配されている。この構成によれば、建物の揺れを別途配されるエネルギー吸収材によっても吸収することができる。ここで、エネルギー吸収材の材質は、例えば金属、鋼材、粘弾性体、弾性体、粘性体であり、また弾性体と鋼材の組み合わせなど、これらを複数組み合わせたエネルギー吸収材としてもよい。 Further, in this energy absorption mechanism, an energy absorption material is arranged in the clearance. According to this configuration, the shaking of the building can also be absorbed by the energy absorbing material separately arranged. Here, the material of the energy absorbing material is, for example, a metal, a steel material, a viscoelastic body, an elastic body, or a viscous body, or may be an energy absorbing material in which a plurality of these are combined, such as a combination of an elastic body and a steel material.

また、このエネルギー吸収機構は、前記第1のバネ部は、弾性材からなる第1板状部を備え、前記第2のバネ部は、金属又は樹脂からなり、前記第1のバネ部より剛性が高い第2板状部を備え、前記第1板状部と、前記第2板状部とが接合されてなる。ここで、弾性体には、例えば天然ゴムなどのほか、高減衰ゴムなどの粘弾性体が含まれる。また、第1板状部と第2板状部との接合は、例えば接着による。 Further, in this energy absorption mechanism, the first spring portion includes a first plate-shaped portion made of an elastic material, and the second spring portion is made of metal or resin and is more rigid than the first spring portion. A second plate-shaped portion having a high rigidity is provided, and the first plate-shaped portion and the second plate-shaped portion are joined to each other. Here, the elastic body includes, for example, natural rubber and viscoelastic body such as high damping rubber. Further, the joining between the first plate-shaped portion and the second plate-shaped portion is, for example, by adhesion.

また、このエネルギー吸収機構は、前記第2のバネ部が、一対の第2板状部を備え、前記第1板状部が、一対の前記第2板状部により挟持されてなる。これにより、第1板状部が一対の第2板状部に挟まれた構成となる。 Further, in this energy absorption mechanism, the second spring portion includes a pair of second plate-shaped portions, and the first plate-shaped portion is sandwiched by the pair of the second plate-shaped portions. As a result, the first plate-shaped portion is sandwiched between the pair of second plate-shaped portions.

また、このエネルギー吸収機構は、前記第2のバネ部が、一対の前記第2板状部を接続する接続部を備える。ここで、接続部は、例えばブリッジ状に形成され、当該接続部も1つのバネとして機能する。 Further, this energy absorption mechanism includes a connecting portion in which the second spring portion connects the pair of the second plate-shaped portions. Here, the connecting portion is formed in a bridge shape, for example, and the connecting portion also functions as one spring.

また、このエネルギー吸収機構は、前記接続部が、一対の前記第2板状部を結合する複数のブリッジである。この構成によれば、複数のブリッジがバネとして機能する。 Further, in this energy absorption mechanism, the connecting portion is a plurality of bridges that connect the pair of the second plate-shaped portions. According to this configuration, a plurality of bridges function as springs.

また、このエネルギー吸収機構は、前記第2のバネ部が、前記柱材及び/又は前記構造材と固定する取付部を備える。これにより、エネルギー吸収機構の柱材や構造材への取付が容易となる。 Further, this energy absorption mechanism includes a mounting portion in which the second spring portion is fixed to the pillar material and / or the structural material. This facilitates attachment of the energy absorption mechanism to the pillar material or structural material.

また、このエネルギー吸収機構は、前記第1板状部及び前記第2板状部及び前記取付部が、貫通孔を備える。ここで、貫通孔は、エネルギー吸収機構を筋交いに固定する際に、ネジやボルトが通る孔となる。 Further, in this energy absorption mechanism, the first plate-shaped portion, the second plate-shaped portion, and the mounting portion are provided with through holes. Here, the through hole is a hole through which a screw or a bolt passes when the energy absorption mechanism is fixed to the brace.

また、このエネルギー吸収機構は、前記第2板状部の表面を被覆する、弾性材からなる被覆部をさらに備え、前記被覆部は、前記第1のバネ部と一体に形成されてなる。この被覆部は、第1のバネ部と一体となり、第1のバネ部として機能する。 Further, this energy absorption mechanism further includes a covering portion made of an elastic material that covers the surface of the second plate-shaped portion, and the covering portion is formed integrally with the first spring portion. This covering portion is integrated with the first spring portion and functions as the first spring portion.

また、このエネルギー吸収機構は、前記被覆部が、板状であり、貫通孔を備える。ここで、貫通孔は、エネルギー吸収機構を筋交いに固定する際に、ネジやボルトが通る孔となる。 Further, in this energy absorption mechanism, the covering portion has a plate shape and is provided with a through hole. Here, the through hole is a hole through which a screw or a bolt passes when the energy absorption mechanism is fixed to the brace.

本発明に係る一の態様の木造建物は、上記のエネルギー吸収機構と、前記柱材と、前記構造材と、前記筋交い材とを備え、前記エネルギー吸収機構は、前記筋交い材の端部と、前記柱材及び/又は前記構造材とに固定されている。 The wooden building of one aspect according to the present invention includes the above energy absorption mechanism, the pillar material, the structural material, and the brace material, and the energy absorption mechanism includes the end portion of the brace material and the end portion of the brace material. It is fixed to the pillar material and / or the structural material.

本発明に係る一の態様の木造建物は、上記のエネルギー吸収機構と、前記柱材と、前記構造材と、前記壁材とを備え、前記エネルギー吸収機構は、前記壁材と、前記柱材及び/又は前記構造材とに固定されている。 The wooden building of one aspect according to the present invention includes the above energy absorption mechanism, the pillar material, the structural material, and the wall material, and the energy absorption mechanism includes the wall material and the pillar material. And / or fixed to the structural material.

本発明によれば、耐震性能と吸収性能が高く、従来よりも制振効果の高いエネルギー吸収機構となる。 According to the present invention, the energy absorption mechanism has high seismic performance and absorption performance, and has a higher vibration damping effect than the conventional one.

本発明の一実施形態に係るエネルギー吸収機構を適用した耐力壁の模式図である。It is a schematic diagram of the bearing wall to which the energy absorption mechanism which concerns on one Embodiment of this invention is applied. 試験による引張り時の筋交いの軸力−エネルギー吸収機構の各変位の関係を示すグラフである。It is a graph which shows the relationship of the axial force of the brace at the time of tension by the test, and each displacement of the energy absorption mechanism. 試験と解析による水平荷重−層間変位の比較を示すグラフである。It is a graph which shows the comparison of the horizontal load-interlayer displacement by a test and analysis. 解析により得られる筋交い引張り時の水平荷重−層間変位の関係を示すグラフである。It is a graph which shows the relationship of horizontal load-interlayer displacement at the time of bracing tension obtained by analysis. 第1バネ部材のバネ定数から壁倍率を算出するための表である。It is a table for calculating the wall magnification from the spring constant of the 1st spring member. 壁倍率とバネ定数K1の関係を示すグラフである。It is a graph which shows the relationship between a wall magnification and a spring constant K1. 壁倍率とバネ定数K2の関係を示すグラフである。It is a graph which shows the relationship between a wall magnification and a spring constant K2. 等価粘性減衰定数とバネ定数K1の関係を示すグラフである。It is a graph which shows the relationship between the equivalent viscosity damping constant and the spring constant K1. 壁倍率1.0の時のバネ定数K1とバネ定数K2の関係を示すグラフである。It is a graph which shows the relationship between the spring constant K1 and the spring constant K2 when the wall magnification is 1.0. 壁倍率1.0〜2.5の時のバネ定数K1とバネ定数K2の関係を示すグラフである。It is a graph which shows the relationship between the spring constant K1 and the spring constant K2 when the wall magnification is 1.0 to 2.5. 壁倍率に対するバネ定数K1の下限・上限を示す表である。It is a table which shows the lower limit and upper limit of the spring constant K1 with respect to a wall magnification. 本発明の一実施形態に係るエネルギー吸収機構を柱および構造材に取り付けた状態を示す図である。It is a figure which shows the state which attached the energy absorption mechanism which concerns on one Embodiment of this invention to a pillar and a structural material. (a)は図12における正面図、(b)は同側面図である。(A) is a front view in FIG. 12, and (b) is a side view of the same. (a)はエネルギー吸収機構の斜視図、(b)は第1バネ部材を省略した斜視図である。(A) is a perspective view of the energy absorption mechanism, and (b) is a perspective view in which the first spring member is omitted. (a)はエネルギー吸収機構の裏側からの斜視図、(b)は第1バネ部材を省略した斜視図である。(A) is a perspective view from the back side of the energy absorption mechanism, and (b) is a perspective view in which the first spring member is omitted. 図12のA−A線断面図である。FIG. 12 is a cross-sectional view taken along the line AA of FIG. (a)はエネルギー吸収機構の変形例1の斜視図、(b)は第1バネ部材を省略した斜視図である。(A) is a perspective view of a modified example 1 of the energy absorption mechanism, and (b) is a perspective view in which the first spring member is omitted. エネルギー吸収機構の変形例2を柱及び構造材に取り付けた図である。It is a figure which attached the modification 2 of the energy absorption mechanism to a pillar and a structural material. エネルギー吸収機構の変形例3の要部断面図である。It is sectional drawing of the main part of the modification 3 of the energy absorption mechanism. 別の実施形態に係るエネルギー吸収機構を柱および構造材に取り付けた状態を示す図である。It is a figure which shows the state which attached the energy absorption mechanism which concerns on another Embodiment to a column and a structural material. (a)は図20における正面図、(b)は同側面図である。(A) is a front view in FIG. 20, and (b) is a side view of the same. 図20の変形例に係るエネルギー吸収機構を柱および構造材に取り付けた状態を示す図である。It is a figure which shows the state which attached the energy absorption mechanism which concerns on the modification of FIG. 20 to a pillar and a structural material. (a)は図22における正面図、(b)は同側面図である。(A) is a front view in FIG. 22, and (b) is a side view of the same. 図20の変形例に係るエネルギー吸収機構を柱および構造材に取り付けた状態を示す図である。It is a figure which shows the state which attached the energy absorption mechanism which concerns on the modification of FIG. 20 to a pillar and a structural material. (a)は図24における正面図、(b)は同側面図である。(A) is a front view in FIG. 24, and (b) is a side view of the same. 図20の変形例に係るエネルギー吸収機構を柱および構造材に取り付けた状態を示す図である。It is a figure which shows the state which attached the energy absorption mechanism which concerns on the modification of FIG. 20 to a pillar and a structural material. 図22の変形例に係るエネルギー吸収機構を柱および構造材に取り付けた状態を示す図である。It is a figure which shows the state which attached the energy absorption mechanism which concerns on the modification of FIG. 22 to a pillar and a structural material. 図24の変形例に係るエネルギー吸収機構を柱および構造材に取り付けた状態を示す図である。It is a figure which shows the state which attached the energy absorption mechanism which concerns on the modification of FIG. 24 to a pillar and a structural material. 別の実施形態に係るエネルギー吸収機構を柱および構造材に取り付けた状態を示す図である。It is a figure which shows the state which attached the energy absorption mechanism which concerns on another Embodiment to a column and a structural material. 別の実施形態に係るエネルギー吸収機構を柱および構造材に取り付けた状態を示す図である。It is a figure which shows the state which attached the energy absorption mechanism which concerns on another Embodiment to a column and a structural material. 別の実施形態に係るエネルギー吸収機構を柱および構造材に取り付けた状態を示す図である。It is a figure which shows the state which attached the energy absorption mechanism which concerns on another Embodiment to a column and a structural material. (a)は図31における正面図、(b)は同側面図である。(A) is a front view in FIG. 31, and (b) is a side view of the same. 本発明の別の実施形態に係るエネルギー吸収機構(ダンパ)を柱材に取り付けた状態と、同ダンパを模式的に示す図である。It is a figure which shows typically the state which attached the energy absorption mechanism (damper) which concerns on another Embodiment of this invention to a pillar material, and the damper. 図33の変形例のダンパを柱材に取り付けた状態と、同ダンパを模式的に示す図である。It is a figure which shows typically the state which attached the damper of the modification of FIG. 33 to a pillar material, and the damper. 図33の変形例のダンパを柱材に取り付けた状態と、同ダンパを模式的に示す図である。It is a figure which shows typically the state which attached the damper of the modification of FIG. 33 to a pillar material, and the damper. 別の実施形態に係るダンパを柱材に取り付けた状態と、同ダンパを模式的に示す図である。It is a figure which shows typically the state which attached the damper which concerns on another Embodiment to a pillar material, and the damper. 別の実施形態に係るダンパを柱材に取り付けた状態と、同ダンパを模式的に示す図である。It is a figure which shows typically the state which attached the damper which concerns on another Embodiment to a pillar material, and the damper. 図37の変形例のダンパを柱材に取り付けた状態と、同ダンパを模式的に示す図である。It is a figure which shows typically the state which attached the damper of the modification of FIG. 37 to a pillar material, and the damper. (a)は図33のダンパの機構を説明する図である。(b)は図36のダンパの機構を説明する図である。(A) is a figure explaining the mechanism of the damper of FIG. 33. FIG. 36B is a diagram illustrating the mechanism of the damper of FIG. 36. (a)は図33のダンパにゴムを被覆した状態を示す図である。(b)は図36のダンパにゴムを被覆した状態を示す図である。(c)は図37のダンパにゴムを被覆した状態を示す図である。FIG. 33A is a diagram showing a state in which the damper of FIG. 33 is covered with rubber. FIG. 36B is a diagram showing a state in which the damper of FIG. 36 is covered with rubber. (C) is a diagram showing a state in which the damper of FIG. 37 is covered with rubber.

以下、本発明に係る一実施形態を図面に基づき説明するが、本発明は下記実施形態に限定されるものではない。まず、本実施形態について模式図を用いて説明し、続き具体的な実施形態を説明する。 Hereinafter, an embodiment according to the present invention will be described with reference to the drawings, but the present invention is not limited to the following embodiments. First, this embodiment will be described with reference to a schematic diagram, and then a specific embodiment will be described.

<第1実施形態>
(耐力壁の構造)
図1は、本発明の一実施形態に係るエネルギー吸収機構を適用した耐力壁の模式図であ
る。耐力壁とは、木造建物の軸組において、地震や台風により木造建物に生じる力を主として負担する壁のことである。本発明の一実施形態に係るエネルギー吸収機構は、この耐力壁に取り付けられている。
<First Embodiment>
(Structure of bearing wall)
FIG. 1 is a schematic view of a bearing wall to which the energy absorption mechanism according to the embodiment of the present invention is applied. A bearing wall is a wall that mainly bears the force generated in a wooden building due to an earthquake or typhoon in the framework of a wooden building. The energy absorption mechanism according to the embodiment of the present invention is attached to this bearing wall.

図1に示すように、耐力壁Wは、鉛直方向に延びる一対の柱材100と、水平方向に延びる一対の構造材101とがそれぞれ接合され、一の接合部と他の接合部を結ぶ対角線方向に延びる筋交い材102が配されている。そして、各接合部と筋交い102の各端部との間に、エネルギー吸収機構Sが介在している。 As shown in FIG. 1, in the bearing wall W, a pair of column members 100 extending in the vertical direction and a pair of structural members 101 extending in the horizontal direction are joined to each other, and a diagonal line connecting one joint portion and another joint portion. A bracing member 102 extending in the direction is arranged. An energy absorption mechanism S is interposed between each joint and each end of the brace 102.

エネルギー吸収機構Sは、バネ特性をもつ材料・機構・構造から構成されるもので、図1に示すように、所定のバネ定数(K1)の第1バネ部材S1と、所定のバネ定数(K2)の第2バネ部材S2を備える。本実施形態のエネルギー吸収機構Sは、一例として構造材100および筋交い102の端部に取り付けられるダンパであり、このダンパの詳細については後述する。なお、エネルギー吸収機構Sは、ダンパに限られない。 The energy absorption mechanism S is composed of a material, a mechanism, and a structure having spring characteristics, and as shown in FIG. 1, a first spring member S1 having a predetermined spring constant (K1) and a predetermined spring constant (K2). ) The second spring member S2 is provided. The energy absorption mechanism S of the present embodiment is, for example, a damper attached to the ends of the structural material 100 and the brace 102, and the details of this damper will be described later. The energy absorption mechanism S is not limited to the damper.

エネルギー吸収機構Sは、構造材100及び筋交い102の端部にそれぞれ固定されている。固定の方法としては、例えばネジやボルトを用いる。また、第1バネ部材S1は、例えば高減衰ゴム、ポリウレタンゴム、ブチルゴム、天然ゴムなどの弾性体(粘弾性体を含む)である。また、第2バネ部材S2は、第1バネ部材S1よりも剛性が高いもので、例えば鋼板などの金属板、FRPなどの合成樹脂板等、比較的高い剛性をもつ部材である。 The energy absorption mechanism S is fixed to the ends of the structural material 100 and the brace 102, respectively. As a fixing method, for example, screws or bolts are used. The first spring member S1 is an elastic body (including a viscoelastic body) such as high-damping rubber, polyurethane rubber, butyl rubber, and natural rubber. Further, the second spring member S2 has a higher rigidity than the first spring member S1, and is a member having a relatively high rigidity such as a metal plate such as a steel plate or a synthetic resin plate such as an FRP.

そして、エネルギー吸収機構Sは、地震等により木造建物にエネルギーが入力された時、このエネルギーを吸収するデバイスとして機能する。すなわち、第1バネ部材S1が、主としてエネルギー吸収バネとして機能し、第2バネ部材S2が剛性を確保するとともに高剛性のバネとして機能する。なお、ネジやボルトなどの固定部材も第2バネ部材を補強する。これにより、エネルギー吸収機構S全体がバネ機構として機能し、木造建物に対するエネルギーを吸収する。 Then, when energy is input to the wooden building due to an earthquake or the like, the energy absorption mechanism S functions as a device that absorbs this energy. That is, the first spring member S1 mainly functions as an energy absorbing spring, and the second spring member S2 secures rigidity and functions as a highly rigid spring. Fixing members such as screws and bolts also reinforce the second spring member. As a result, the entire energy absorption mechanism S functions as a spring mechanism and absorbs energy for the wooden building.

このように、第1バネ部材S1は、主としてエネルギーを吸収するバネ特性を備える材料・機構・構造からなり、第2バネ部材S2は、主として剛性を確保し、高剛性のバネとしても機能するバネ特性を備える材料・機構・構造からなる。 As described above, the first spring member S1 is mainly composed of a material, mechanism, and structure having a spring characteristic of absorbing energy, and the second spring member S2 is a spring that mainly secures rigidity and also functions as a highly rigid spring. It consists of materials, mechanisms, and structures with characteristics.

また、第1バネ部材S1は、バネ定数K1が1.5〜7.5kN/mmであり、第2バネ部材S2は、バネ定数K2が5.0〜30.0kN/mmであり、下記の数式1を満たし、かつ、下記の数式2より算出されるKの数値が1.4〜4.9の範囲内である。
K1<K2 ・・・(数式1)
K=(K1×K2)/(K1+K2) ・・・(数式2)
The first spring member S1 has a spring constant K1 of 1.5 to 7.5 kN / mm, and the second spring member S2 has a spring constant K2 of 5.0 to 30.0 kN / mm. The numerical value of K that satisfies the formula 1 and is calculated from the following formula 2 is in the range of 1.4 to 4.9.
K1 <K2 ... (Formula 1)
K = (K1 x K2) / (K1 + K2) ... (Formula 2)

この条件を満たす、第1バネ部材S1及び第2バネ部材S2を備えるエネルギー吸収機構Sを耐力壁に用いることで、十分な強さを確保しつつ、効果的に木造建物にかかるエネルギーを吸収して地震等による被害を最大限に抑制することができる。 By using the energy absorption mechanism S including the first spring member S1 and the second spring member S2 for the bearing wall, which satisfies this condition, the energy applied to the wooden building is effectively absorbed while ensuring sufficient strength. The damage caused by earthquakes can be suppressed to the maximum.

また、次の場合には、以下の条件を満たす第1バネ部材S1と第2バネ部材S2を備えるエネルギー吸収機構Sがより好ましい。筋交い102が30mm×90mmの矩形断面又はこれと同等の断面の場合は、第1バネ定数K1が1.5〜5.5kN/mmであり、Kの数値が1.4〜3.9であることが望ましい。 Further, in the following cases, the energy absorption mechanism S including the first spring member S1 and the second spring member S2 satisfying the following conditions is more preferable. When the brace 102 has a rectangular cross section of 30 mm × 90 mm or a cross section equivalent thereto, the first spring constant K1 is 1.5 to 5.5 kN / mm, and the numerical value of K is 1.4 to 3.9. Is desirable.

また、筋交い102が45mm×90mmの矩形断面又はこれと同等の断面の場合は、第1バネ定数K1が2.5〜7.5kN/mmであり、Kの数値が2.1〜4.9である
ことが望ましい。また、筋交い102が90mm×90mmの矩形断面又はこれと同等の断面の場合は、第1バネ定数K1が1.5〜5.5kN/mmであり、Kの数値が1.4〜3.9であることが望ましい。
When the brace 102 has a rectangular cross section of 45 mm × 90 mm or a cross section equivalent thereto, the first spring constant K1 is 2.5 to 7.5 kN / mm, and the value of K is 2.1 to 4.9. Is desirable. When the brace 102 has a rectangular cross section of 90 mm × 90 mm or a cross section equivalent thereto, the first spring constant K1 is 1.5 to 5.5 kN / mm, and the value of K is 1.4 to 3.9. Is desirable.

(検証)
また、発明者は、上記のエネルギー吸収機構が十分な効果を得られるかについて試験を行った。以下、当該試験の詳細を説明する。この試験は、図1に示す耐力壁のモデルに対する増分解析法に基づく解析と荷重試験により行った。なお、エネルギー吸収機構Sとして、板状の一対の第2バネ部材S2と、板状の第1バネ部材S1とで構成され、第1バネ部材S1が一対の第2バネ部材S2に挟まれる形で介在し、これらが接着された構造を用いた。
(inspection)
In addition, the inventor conducted a test as to whether or not the above energy absorption mechanism can obtain a sufficient effect. The details of the test will be described below. This test was carried out by an analysis based on an incremental analysis method and a load test on the bearing wall model shown in FIG. The energy absorption mechanism S is composed of a pair of plate-shaped second spring members S2 and a plate-shaped first spring member S1, and the first spring member S1 is sandwiched between the pair of second spring members S2. A structure was used in which these were intervened and bonded together.

解析においては、第1バネ部材S1のバネ定数K1を2〜20kN/mmと変化させ、所定の水平荷重Pを掛け、エネルギー吸収機構Sに引張り応力を生じさせた時に得られる耐力壁の強さ(壁倍率)を算出した。 In the analysis, the strength of the bearing wall obtained when the spring constant K1 of the first spring member S1 is changed to 2 to 20 kN / mm, a predetermined horizontal load P is applied, and a tensile stress is generated in the energy absorption mechanism S. (Wall magnification) was calculated.

このときの筋交いに用いる材料のヤング係数Eは12kN/mm2である。また、エネルギー吸収機構Sにおける第2バネ部材S2のバネ定数K2は14kN/mmとした。 The Young's modulus E of the material used for the brace at this time is 12 kN / mm2. Further, the spring constant K2 of the second spring member S2 in the energy absorption mechanism S was set to 14 kN / mm.

まず、上記壁倍率の算出に必要な特性値を算定するため、上記のエネルギー吸収機構Sを適用して静的せん断加力試験を行った。図2にその結果を示す。 First, in order to calculate the characteristic value required for calculating the wall magnification, a static shear force test was performed by applying the energy absorption mechanism S. The result is shown in FIG.

次に、解析の信頼性を確認するため、実際の実験結果と本解析の水平荷重−変位関係を比較したところ、両データが精度良く一致していることが分かった。図3にその比較図を示す。 Next, in order to confirm the reliability of the analysis, when the actual experimental results were compared with the horizontal load-displacement relationship of this analysis, it was found that both data were in good agreement. The comparison diagram is shown in FIG.

次に、実験結果を基にした解析によって、バネ機構Sの引張り応力時における第1バネ部材S1のバネ定数K1と壁倍率の関係、第1バネ部材S1のバネ定数K1と第2バネ部材S2のバネ定数K2の関係を求めた。図4ないし図6にK1−壁倍率の関係、図7にK1−K2の関係を示す。 Next, by analysis based on the experimental results, the relationship between the spring constant K1 of the first spring member S1 and the wall magnification at the time of tensile stress of the spring mechanism S, the spring constant K1 of the first spring member S1 and the second spring member S2 The relationship of the spring constant K2 was obtained. 4 to 6 show the relationship of K1-wall magnification, and FIG. 7 shows the relationship of K1-K2.

なお、図5の表において、壁倍率は、以下の数式3により求めた。
壁倍率=P0×(1/1.96)×(1/L) ・・・(数式3)
ただし、1.96:壁倍率=1を算定する数値(kN/m)
L:試験体の壁の長さ(m)
In the table of FIG. 5, the wall magnification was calculated by the following mathematical formula 3.
Wall magnification = P0 x (1 / 1.96) x (1 / L) ... (Formula 3)
However, 1.96: a numerical value (kN / m) for calculating wall magnification = 1.
L: Length of the wall of the test piece (m)

図6のグラフから、壁倍率1.0の時の第1バネ部材S1のバネ定数K1は2.03kN/mmとなり、K1<K2を満たし、数式2より算出されるKの数値は2.03×14/(2.03+14)=1.78であった。以上より、第1バネ部材S1のバネ定数K1、第2バネ部材S2の第2バネ定数K2、数値Kが本発明の規定の範囲内にある時、必要な耐力壁の強さを得られることが確認された。 From the graph of FIG. 6, the spring constant K1 of the first spring member S1 when the wall magnification is 1.0 is 2.03 kN / mm, K1 <K2 is satisfied, and the numerical value of K calculated from Equation 2 is 2.03. It was × 14 / (2.03 + 14) = 1.78. From the above, when the spring constant K1 of the first spring member S1, the second spring constant K2 of the second spring member S2, and the numerical value K are within the specified range of the present invention, the required strength of the bearing wall can be obtained. Was confirmed.

また、壁倍率1.5の時の第1バネ部材S1のバネ定数K1は3.34kN/mmとなり、K1<K2を満たし、数式2より算出されるKの数値は2.69であった。これにより、必要な耐力壁の強さを得られることが確認された。 Further, when the wall magnification was 1.5, the spring constant K1 of the first spring member S1 was 3.34 kN / mm, K1 <K2 was satisfied, and the numerical value of K calculated from Equation 2 was 2.69. As a result, it was confirmed that the required bearing wall strength could be obtained.

さらに、第1バネ部材S1のバネ定数K1を5.5kN/mmを超えて大きくしても、剛性から求まる壁倍率は高くなるが、ほぼ一定値である降伏耐力から求まる壁倍率のほうが相対的に小さく支配的になるため、壁倍率は2.0近傍以上には大きくならないことが確認された。 Further, even if the spring constant K1 of the first spring member S1 is increased beyond 5.5 kN / mm, the wall magnification obtained from the rigidity becomes high, but the wall magnification obtained from the yield strength, which is a substantially constant value, is relative. It was confirmed that the wall magnification does not increase above around 2.0 because it becomes small and dominant.

また、発明者は、第2バネ部材のバネ定数K2について、第1バネ部材のバネ定数K1が所定数値の場合の、壁倍率とバネ定数K2との関係を算出した。その結果を図7に示す。図7は、上記と同様の増分解析において、バネ定数K1を一定とし、バネ定数K2を増加させたときの壁倍率との関係を示す図である。これにより、バネ定数K2は5.0以上が好ましく、5.0から30.0がより好ましいことがわかる。K2が30.0を超えると、壁倍率が減少し、すなわち、壁の強さが弱まる傾向にあるためである。なお、バネ定数K2の上限を75.0としているのは、75.0を超えると、第2バネ部材S2が変形せず、固定部材であるネジのみが変形するためである。 Further, the inventor has calculated the relationship between the wall magnification and the spring constant K2 when the spring constant K1 of the first spring member is a predetermined value with respect to the spring constant K2 of the second spring member. The result is shown in FIG. FIG. 7 is a diagram showing the relationship with the wall magnification when the spring constant K1 is constant and the spring constant K2 is increased in the same incremental analysis as described above. From this, it can be seen that the spring constant K2 is preferably 5.0 or more, and more preferably 5.0 to 30.0. This is because when K2 exceeds 30.0, the wall magnification tends to decrease, that is, the strength of the wall tends to weaken. The reason why the upper limit of the spring constant K2 is set to 75.0 is that when it exceeds 75.0, the second spring member S2 is not deformed and only the screw which is the fixing member is deformed.

さらに、発明者は、第1バネ部材のバネ定数K1についても検証した。図8は、等価粘性減衰定数(heq)と第1バネ部材のバネ定数K1との関係を示すグラフである。図8は、バネ定数K1の所定値に対して適用されるバネ部材の形状と材質(剛性率(せん断弾性率))の関係から算出したものである。なお、等価粘性減衰定数とは、建物のエネルギー吸収能力を示す数値である。図8によれば、1.5kN/mm―7.5kN/mmにおいて、等価粘性減衰定数が略15%を超え、エネルギー吸収能力が高くなることがわかる。バネ定数K1の等価粘性減衰定数が15%を超えるあたりから制振の効果が発揮されるためである。 Furthermore, the inventor also verified the spring constant K1 of the first spring member. FIG. 8 is a graph showing the relationship between the equivalent viscosity damping constant (hex) and the spring constant K1 of the first spring member. FIG. 8 is calculated from the relationship between the shape and material (rigidity (shear elastic modulus)) of the spring member applied to a predetermined value of the spring constant K1. The equivalent viscosity damping constant is a numerical value indicating the energy absorption capacity of the building. According to FIG. 8, it can be seen that at 1.5 kN / mm-7.5 kN / mm, the equivalent viscosity attenuation constant exceeds approximately 15%, and the energy absorption capacity becomes high. This is because the damping effect is exhibited when the equivalent viscous damping constant of the spring constant K1 exceeds 15%.

これらより、本実施形態におけるバネ定数K1とK2の特定が、剛性の確保及びエネルギー吸収において、非常に効果的であることがわかる。 From these, it can be seen that the specification of the spring constants K1 and K2 in the present embodiment is very effective in ensuring the rigidity and absorbing energy.

次に発明者は、壁倍率1.0の第1バネ部材S1のバネ定数K1と第2バネ部材S2のバネ定数K2の関係を確認した。図9にその関係を示す。同様に、壁倍率1.0〜2.5の時のバネ定数(K1、K2)の関係も求めた。図10にその関係を示す。 Next, the inventor confirmed the relationship between the spring constant K1 of the first spring member S1 having a wall magnification of 1.0 and the spring constant K2 of the second spring member S2. The relationship is shown in FIG. Similarly, the relationship of the spring constants (K1, K2) when the wall magnification is 1.0 to 2.5 was also obtained. The relationship is shown in FIG.

また、バネ定数(K1、K2)の関係において、第1バネ部材S1が主としてエネルギーを吸収し、第2バネ部材S2が主として剛性の確保と、強いエネルギーが入力された場合にエネルギーの吸収を行う機能を発揮することから、このエネルギー吸収機構Sにおいては、K1<K2であることが必要となる。 Further, in relation to the spring constants (K1, K2), the first spring member S1 mainly absorbs energy, and the second spring member S2 mainly secures rigidity and absorbs energy when strong energy is input. In this energy absorption mechanism S, it is necessary that K1 <K2 in order to exert the function.

このことから、図9のグラフにより、壁倍率1.0の場合、第1バネ部材S1のバネ定数K1は1.78kN/mm以上、3.56kN/mm以下であり、第2バネ部材S2のバネ定数K2は3.56kN/mm以上であることが確認できた。 From this, according to the graph of FIG. 9, when the wall magnification is 1.0, the spring constant K1 of the first spring member S1 is 1.78 kN / mm or more and 3.56 kN / mm or less, and the second spring member S2 It was confirmed that the spring constant K2 was 3.56 kN / mm or more.

同様に、図10のグラフにより、壁倍率1.0〜2.5の場合、第1バネ部材S1のバネ定数K1の下限値、上限値を確認した。図11の表に壁倍率1.0〜2.5の場合の第1バネ部材S1のバネ定数K1の下限値、上限値を示す。 Similarly, from the graph of FIG. 10, when the wall magnification was 1.0 to 2.5, the lower limit value and the upper limit value of the spring constant K1 of the first spring member S1 were confirmed. The table of FIG. 11 shows the lower limit value and the upper limit value of the spring constant K1 of the first spring member S1 when the wall magnification is 1.0 to 2.5.

壁倍率1.0と認定する範囲を1.0以上、1.5未満とし、壁倍率1.5と認定する範囲を1.5以上、2.0未満とし、図11の表をもとにして、第1バネ部材S1のバネ定数K1の範囲を表1にまとめた。 The range to be certified as a wall magnification of 1.0 is 1.0 or more and less than 1.5, and the range to be certified as a wall magnification of 1.5 is 1.5 or more and less than 2.0, based on the table in FIG. The range of the spring constant K1 of the first spring member S1 is summarized in Table 1.

Figure 0006912102
Figure 0006912102

以上より、本実施形態のエネルギー吸収機構Sにおける第1バネ部材S1と第2バネ部材S2のバネ定数の条件を規定することにより、必要な壁倍率を確保しつつ、木造建物に入力されるエネルギーに対する減衰能力及び靭性能力の向上を図れることが確認された。 Based on the above, by defining the conditions for the spring constants of the first spring member S1 and the second spring member S2 in the energy absorption mechanism S of the present embodiment, the energy input to the wooden building while ensuring the required wall magnification. It was confirmed that the damping ability and toughness ability could be improved.

(エネルギー吸収機構の構造)
続き、本実施形態に用いたエネルギー吸収機構Sの構造について説明する。以下の説明において、本実施形態のエネルギー吸収機構Sをダンパ1とし、第2バネ部材S2を剛性部材2とし、第1バネ部材S1を弾性部材3として説明する。なお、この構造は一例であり、他の形状を用いてもよく、本発明はこの構造に限定されない。
(Structure of energy absorption mechanism)
Subsequently, the structure of the energy absorption mechanism S used in the present embodiment will be described. In the following description, the energy absorption mechanism S of the present embodiment will be referred to as a damper 1, the second spring member S2 will be referred to as a rigid member 2, and the first spring member S1 will be referred to as an elastic member 3. Note that this structure is an example, and other shapes may be used, and the present invention is not limited to this structure.

図12は、図1の模式図における接合部の拡大図であり、本実施形態に係るエネルギー吸収機構Sの一例としてダンパ1を用い、ダンパ1を木造建物の柱及び筋交いに取り付けた状態を示す斜視図である。図13(a)(b)は、同正面図、同側面図である。 FIG. 12 is an enlarged view of the joint portion in the schematic view of FIG. 1, showing a state in which the damper 1 is used as an example of the energy absorption mechanism S according to the present embodiment and the damper 1 is attached to a pillar and a brace of a wooden building. It is a perspective view. 13 (a) and 13 (b) are a front view and a side view of the same.

図12、図13(a)(b)に示すように、ダンパ1は、柱材100と、これに対し傾斜する方向に延びる筋交い102との間に取り付けられる。具体的には、柱材100は、水平方向に延びる下側の構造材101(土台101)に突き合わせて接合され、この接合部分において柱材100および土台101に対し筋交い102の端部が当接するように配置され、柱材100と筋交い102との間にダンパ1が取り付けられている。 As shown in FIGS. 12 and 13 (a) and 13 (b), the damper 1 is attached between the column member 100 and the brace 102 extending in an inclined direction with respect to the column member 100. Specifically, the column member 100 is abutted and joined to the lower structural member 101 (base 101) extending in the horizontally direction, and the end portion of the brace 102 abuts on the column member 100 and the base 101 at this joint portion. A damper 1 is attached between the column member 100 and the brace 102.

図14(a)及び図15(a)に示すように、ダンパ1は、剛性部材2と、弾性部材3とを備える。図14(b)及び図15(b)に示すように、剛性部材2は、柱材100に固定される板状固定部4と、この板状固定部4に結合部6を介して略90度をなすように連設され筋交い102に固定される筒状固定部5とを有する。なお、結合部6には、ダンパ1の断面二次モーメントを上げるために、リブ加工により凸部9が設けられている。 As shown in FIGS. 14A and 15A, the damper 1 includes a rigid member 2 and an elastic member 3. As shown in FIGS. 14 (b) and 15 (b), the rigid member 2 has a plate-shaped fixing portion 4 fixed to the column member 100 and substantially 90 to the plate-shaped fixing portion 4 via a coupling portion 6. It has a tubular fixing portion 5 which is connected to each other so as to form a degree and is fixed to the brace 102. The joint portion 6 is provided with a convex portion 9 by rib processing in order to increase the moment of inertia of area of the damper 1.

筒状固定部5は、板状固定部4が連設される略矩形状の第1の板部分5aと、第1の板部分5aに対応する大きさを有し第1の板部分5aと平行に延びる第2の板部分5bと、並んで配置され第1及び第2の板部分5a,5bを接続する複数のブリッジ部5cとを有する。これにより、第1及び第2の板部分5a,5b並びにブリッジ5cによって囲まれる、狭い幅Wを有する空隙Cが形成される。なお、第2の板部分5bは、板状固定部4の屈曲方向とは反対側に配置されている。 The tubular fixing portion 5 has a substantially rectangular first plate portion 5a to which the plate-shaped fixing portion 4 is continuously provided, and a first plate portion 5a having a size corresponding to the first plate portion 5a. It has a second plate portion 5b extending in parallel and a plurality of bridge portions 5c arranged side by side and connecting the first and second plate portions 5a and 5b. As a result, a gap C having a narrow width W surrounded by the first and second plate portions 5a and 5b and the bridge 5c is formed. The second plate portion 5b is arranged on the side opposite to the bending direction of the plate-shaped fixing portion 4.

ブリッジ部5cは、略断面逆U字形をして、建物に入力されるエネルギーをその変形により弾性部材3と共に吸収するもので、かかるブリッジ部5cは、図14(b)及び図15(b)に示すように、第1の板部分5aの上下部の幅方向中央および幅方向両端に設け
られている。各ブリッジ部5cの幅は、例えばそれぞれ0.5mm以上の幅で、第1の板部分5aの上部あるいは下部の全幅に対し、全体で2〜60%、好ましくは3〜50%、より好ましくは5〜30%の幅に設定されている。このように全体で少なくとも2%〜60%とすることで、建物に入力されるエネルギーをブリッジ部5cによっても吸収することができる。なお、この実施の形態では同じ幅のブリッジ部5cを3つ設けているが、ブリッジ部5cの幅や数は異なっていてもよい。
The bridge portion 5c has a substantially inverted U-shape in cross section, and absorbs the energy input to the building together with the elastic member 3 by its deformation. The bridge portion 5c has a substantially inverted U shape, and the bridge portion 5c has FIGS. 14 (b) and 15 (b). As shown in the above, the first plate portion 5a is provided at the center in the width direction and at both ends in the width direction of the upper and lower parts of the first plate portion 5a. The width of each bridge portion 5c is, for example, 0.5 mm or more, and is 2 to 60% as a whole, preferably 3 to 50%, more preferably 3 to 50% of the total width of the upper part or the lower part of the first plate portion 5a. The width is set to 5 to 30%. By setting the total to at least 2% to 60% in this way, the energy input to the building can also be absorbed by the bridge portion 5c. In this embodiment, three bridge portions 5c having the same width are provided, but the width and number of the bridge portions 5c may be different.

また、例えば巨大地震など大きなエネルギーの入力等何らかの原因によって弾性部材3との接着が剥がれたとき若しくはゴムが破断したときでもブリッジ部5cが塑性変形して残エネルギーを吸収する。つまり、大エネルギーの入力によって弾性部材3の接着が剥がれたとき若しくはゴムが破断したときに、各ブリッジ部5cはフォールトトレランス機構として作用し、塑性変形してエネルギーを吸収し、耐震性能・制振性能の信頼性を高める機能を発揮する。 Further, even when the adhesion with the elastic member 3 is peeled off or the rubber is broken due to some cause such as a large energy input such as a huge earthquake, the bridge portion 5c is plastically deformed to absorb the residual energy. That is, when the elastic member 3 is peeled off or the rubber is broken by the input of a large amount of energy, each bridge portion 5c acts as a fault tolerance mechanism, plastically deforms to absorb energy, and has seismic performance and vibration damping. Demonstrate the function to improve the reliability of performance.

弾性部材3は、筒状固定部5の内部空間内に内在されるだけでなく、筒状固定部5の外表面に表面層を形成している。そして、隣り合うブリッジ部5cの間には、ブリッジ部5cの表面層の表面と面一になるように弾性部材3が設けられ、その部分で前記内部空間内の弾性部材3と、表面層となる弾性部材3とが一体的に結合されている。 The elastic member 3 is not only embedded in the internal space of the tubular fixing portion 5, but also forms a surface layer on the outer surface of the tubular fixing portion 5. An elastic member 3 is provided between the adjacent bridge portions 5c so as to be flush with the surface of the surface layer of the bridge portion 5c, and the elastic member 3 in the internal space and the surface layer are provided at that portion. The elastic member 3 is integrally connected.

また、板状固定部4が連設される側とは反対側の、筒状固定部5の端部には、その端面の表面層の表面と面一になるように弾性部材3が設けられ、同様に、その部分で前記内部空間内の弾性部材3と、表面層となる弾性部材3とが一体的に結合されている。つまり、弾性部材3は、筒状固定部5の内部空間内に内在する部分3a(図16参照)と、外表面に表面層として設けられる部分3bとが、筒状固定部5の端部に設けられる部分3cと、ブリッジ部5cの間に設けられる部分3dとによって一体的に結合されている。 Further, an elastic member 3 is provided at the end of the tubular fixing portion 5 on the side opposite to the side on which the plate-shaped fixing portion 4 is continuously provided so as to be flush with the surface of the surface layer of the end surface. Similarly, at that portion, the elastic member 3 in the internal space and the elastic member 3 serving as the surface layer are integrally connected. That is, in the elastic member 3, a portion 3a (see FIG. 16) inside the internal space of the tubular fixing portion 5 and a portion 3b provided as a surface layer on the outer surface are formed at the end of the tubular fixing portion 5. The portion 3c provided and the portion 3d provided between the bridge portions 5c are integrally connected.

その結果、弾性部材3は、筒状固定部5の周囲を取り囲み、筒状固定部5が外部から見えないように筒状固定部5全体を被覆していることになる。なお、筒状固定部5の外表面及び内表面を含めて、弾性部材3の筒状固定部5への接触部分は、筒状固定部5に接着され、筒状固定部5と弾性部材3とは一体化されることとなる。 As a result, the elastic member 3 surrounds the tubular fixing portion 5 and covers the entire tubular fixing portion 5 so that the tubular fixing portion 5 cannot be seen from the outside. The contact portion of the elastic member 3 with the tubular fixing portion 5, including the outer surface and the inner surface of the tubular fixing portion 5, is adhered to the tubular fixing portion 5, and the tubular fixing portion 5 and the elastic member 3 are attached. Will be integrated with.

このように、筒状固定部5の内部空間内に内在する部分3aと、外表面に表面層として設けられる部分3bとが、ブリッジ部5cの間に設けられる部分3dによって結合され一体となっているので、弾性部材3と筒状固定部5との結合力が強固になっている。さらに、筒状固定部5の端部に設けられる部分3cによっても結合されるようにしているので、弾性部材3と筒状固定部5との結合力がより強固になっている。 In this way, the portion 3a inside the internal space of the tubular fixing portion 5 and the portion 3b provided as a surface layer on the outer surface are connected and integrated by the portion 3d provided between the bridge portions 5c. Therefore, the bonding force between the elastic member 3 and the tubular fixing portion 5 is strong. Further, since the elastic member 3 is also connected by the portion 3c provided at the end of the tubular fixing portion 5, the bonding force between the elastic member 3 and the tubular fixing portion 5 is further strengthened.

剛性部材2の板状固定部4には、その板状固定部4を複数の第1の固定具7(例えば木ねじ)により柱材100に固定するための複数の取付孔4aが開設されている。 The plate-shaped fixing portion 4 of the rigid member 2 is provided with a plurality of mounting holes 4a for fixing the plate-shaped fixing portion 4 to the pillar material 100 by a plurality of first fixtures 7 (for example, wood screws). ..

また、このダンパ1の弾性部材3は一例として加硫成形により成型されており、筒状固定部5の第1の板部分5aには、筋交い102に固定するために用いる第1の貫通孔5dに加えて、加硫成形時に、前記内部空間内に弾性部材3を流入するための第2の貫通孔5eが形成されている。第2の板部分5bにも、第1の板部分5aの外側から複数の第2の固定具8(例えば木ねじ)により筋交い102に固定するために用いる第3の貫通孔5fに加えて、加硫成形時に、前記内部空間内に弾性部材3が流入するための第4の貫通孔5gが形成されている。 Further, the elastic member 3 of the damper 1 is molded by vulcanization molding as an example, and the first plate portion 5a of the tubular fixing portion 5 has a first through hole 5d used for fixing to the brace 102. In addition, a second through hole 5e for flowing the elastic member 3 into the internal space is formed during vulcanization molding. In addition to the third through hole 5f used for fixing to the brace 102 by a plurality of second fixtures 8 (for example, wood screws) from the outside of the first plate portion 5a, the second plate portion 5b is also added. At the time of vulcanization molding, a fourth through hole 5g for the elastic member 3 to flow into the internal space is formed.

そして、図16に示すように、第1の板部分5aの外側から、複数の第2の固定具8により第2の板部分5bを筋交い102に固定する。なお、第1及び第2の固定具7,8と
しては、それぞれ木ねじの代わりに釘などを用いてよい。
Then, as shown in FIG. 16, the second plate portion 5b is fixed to the brace 102 by the plurality of second fixtures 8 from the outside of the first plate portion 5a. As the first and second fixtures 7 and 8, nails or the like may be used instead of the wood screws, respectively.

また、第2の貫通孔5e及び第4の貫通孔5gに充填される減衰材部分によっても、筒状固定部5の内部空間内に内在する部分3aと、外表面に表面層として設けられる部分3bとが結合されているので、この部分によっても弾性部材3と筒状固定部5との結合力が高められている。 Further, also by the damping material portion filled in the second through hole 5e and the fourth through hole 5g, a portion 3a inside the internal space of the tubular fixing portion 5 and a portion provided as a surface layer on the outer surface. Since 3b is coupled, the coupling force between the elastic member 3 and the tubular fixing portion 5 is also enhanced by this portion.

(変形例)
以上のとおり、図面を参照しながら本発明の好適な実施形態を説明したが、本発明の趣旨を逸脱しない範囲内で、種々の追加、変更または削除が可能である。例えば、前述したダンパ1のほか、本実施形態のエネルギー吸収機構Sは、次のようにして実施することができる。
(Modification example)
As described above, the preferred embodiment of the present invention has been described with reference to the drawings, but various additions, changes or deletions can be made without departing from the spirit of the present invention. For example, in addition to the damper 1 described above, the energy absorption mechanism S of the present embodiment can be implemented as follows.

本実施形態の図1では、筋交いの両端部にエネルギー吸収機構Sを設けているが、一方端部のみにエネルギー吸収機構Sを取り付ける構成としてもよい。その場合、エネルギー吸収機構Sが設けられていない他方端部においては、筋交い102と、柱材100と構造材101との固定は、例えばボルト締結などバネ値の高い固定方法を用いる。一方端部のエネルギー吸収機構Sを効かせるためである。 In FIG. 1 of the present embodiment, the energy absorption mechanism S is provided at both ends of the brace, but the energy absorption mechanism S may be attached only to one end. In that case, at the other end portion where the energy absorption mechanism S is not provided, a fixing method having a high spring value such as bolt fastening is used to fix the brace 102, the column member 100, and the structural member 101. On the other hand, this is to make the energy absorption mechanism S at the end effective.

また、図17(a)(b)に示すように、第2の板部分5b’を、第1の板部分5a’の、板状固定部4が設けられている側とは反対側から板状固定部4の屈曲方向と同じ側あるいは反対側にブリッジ部5c’を介して屈曲させる構造にしてもよい。この場合、第2の板部分のブリッジ部5c’が設けられている部分と反対側は板状固定部4に接触するようにしているが、一部を差し込む結合構造にしてもよい。 Further, as shown in FIGS. 17A and 17B, the second plate portion 5b'is viewed from the side of the first plate portion 5a' that is opposite to the side on which the plate-shaped fixing portion 4 is provided. The structure may be such that the shape fixing portion 4 is bent on the same side or the opposite side as the bending direction via the bridge portion 5c'. In this case, the side of the second plate portion opposite to the portion where the bridge portion 5c'is provided is in contact with the plate-shaped fixing portion 4, but a coupling structure in which a part is inserted may be used.

また、図18に示すように、板状固定部4は、柱材100だけに固定されるようにしているが、柱材100に加えて、土台101にも固定される板状固定部4Aをさらに設けることもできる。この場合、板状固定部4と板状固定部4Aとは,90°の角度をなしている。 Further, as shown in FIG. 18, the plate-shaped fixing portion 4 is fixed only to the pillar material 100, but in addition to the pillar material 100, the plate-shaped fixing portion 4A fixed to the base 101 is also provided. It can also be provided. In this case, the plate-shaped fixing portion 4 and the plate-shaped fixing portion 4A form an angle of 90 °.

また、図19に示すように、筒状固定部5の内部空間は、ブリッジ部5cに対応する部分について、隣り合うブリッジ部5cの間も含め、弾性部材3が設けられず、空隙Cとする構成としてもよい。 Further, as shown in FIG. 19, the internal space of the tubular fixing portion 5 is a gap C in which the elastic member 3 is not provided in the portion corresponding to the bridge portion 5c, including between the adjacent bridge portions 5c. It may be configured.

また、図示しないが、弾性部材3の表面層を備えず、かつ、剛性部材2のブリッジ部を備えない構成としてもよい。すなわち、別体で構成された一対の板状の剛性部材と、これらに挟持される板状の弾性部材よりなるエネルギー吸収機構である。 Further, although not shown, the configuration may be such that the surface layer of the elastic member 3 is not provided and the bridge portion of the rigid member 2 is not provided. That is, it is an energy absorption mechanism composed of a pair of plate-shaped rigid members configured as separate bodies and a plate-shaped elastic member sandwiched between them.

また、剛性部材2には金属板を用いているが、FRPなどの合成樹脂板などを用いることも可能である。弾性部材3には、高減衰のゴムを用いているが、ポリウレタンゴム、ブチルゴムなどの他の粘弾性体、天然ゴムなどの弾性体を用いてよい。 Further, although a metal plate is used for the rigid member 2, a synthetic resin plate such as FRP can also be used. Although high-damping rubber is used for the elastic member 3, another viscoelastic body such as polyurethane rubber or butyl rubber, or an elastic body such as natural rubber may be used.

(その他の実施形態)
次に、上記の実施形態とは別の実施形態A1〜A3について説明する。これら実施形態A1〜A3と上記実施形態との主な相違点は、筋交い102と、柱材100及び/又は構造材101との間にクリアランスが生じるようにダンパ1を設置している点である。
(Other embodiments)
Next, embodiments A1 to A3 different from the above-described embodiment will be described. The main difference between these embodiments A1 to A3 and the above-described embodiment is that the damper 1 is installed so that a clearance is generated between the brace 102 and the column member 100 and / or the structural member 101. ..

実施形態A1は、図20又は図21に示すように、筋交い102と、構造材101との間にクリアランスが生じるようにダンパ1を設置したものである。実施形態A2は、図22又は図23に示すように、筋交い102と、柱材100との間にクリアランスが生じる
ようにダンパ1を設置したものである。実施形態A3は、図24又は図25に示すように、筋交い102と、柱材100及び構造材101との間にクリアランスが生じるようにダンパ1を設置したものである。これらの構造によれば、筋交いの圧縮及び引張りのいずれの方向にもダンパ1を効かせることができ、地震などの揺れによるエネルギーを効率良く吸収する。
In the A1 embodiment, as shown in FIG. 20 or 21, the damper 1 is installed so that a clearance is generated between the brace 102 and the structural material 101. In the A2 embodiment, as shown in FIG. 22 or 23, the damper 1 is installed so that a clearance is generated between the brace 102 and the column member 100. In the A3 embodiment, as shown in FIG. 24 or 25, the damper 1 is installed so that a clearance is generated between the brace 102 and the column member 100 and the structural member 101. According to these structures, the damper 1 can be applied in both the compression and tension directions of the brace, and the energy due to shaking such as an earthquake can be efficiently absorbed.

また、図26〜図28に示す構造は、実施形態A1〜A3の変形例であり、これらのクリアランスに別途エネルギー吸収材10を配したものである。この構成によれば、建物の揺れをエネルギー吸収材10によって、さらに吸収することができる。 Further, the structures shown in FIGS. 26 to 28 are modifications of the embodiments A1 to A3, and the energy absorbing material 10 is separately arranged in these clearances. According to this configuration, the shaking of the building can be further absorbed by the energy absorbing material 10.

また、図29に示す構造は、さらに別の実施形態Bである。この実施形態Bと上記実施形態との主な相違点は、筋交いの構造である。実施形態Bの筋交い202は、ほおづえ型の筋交いであり、柱材100と構造材101との接合部に設置されている。そして、2つのダンパ1が、筋交い202の各端部と、柱材100又は構造材101との間に、それぞれ固定されていて、建物の揺れを吸収する。なお、筋交い202の各端部と、柱材100又は構造材101とは当接している構造でもよいし、これらの間にクリアランスを設ける構造としてもよい。さらに、このクリアランスに別途エネルギー吸収材10を配してもよい。 Further, the structure shown in FIG. 29 is still another embodiment B. The main difference between this embodiment B and the above embodiment is the structure of the brace. The brace 202 of the embodiment B is a brace type brace, and is installed at a joint portion between the column member 100 and the structural member 101. Then, the two dampers 1 are fixed between each end of the brace 202 and the column member 100 or the structural member 101, respectively, to absorb the shaking of the building. It should be noted that each end of the brace 202 may be in contact with the column member 100 or the structural member 101, or a structure may be provided in which a clearance is provided between them. Further, the energy absorbing material 10 may be separately arranged in this clearance.

また、図30に示す構造は、さらに別の実施形態Cである。この実施形態Cと上記実施形態との主な相違点は、筋交いの構造である。実施形態Cの筋交い302は、K型の筋交いであり、一方の柱材100の中央部付近から、他方の柱材100と構造材101との各接合部に向けてそれぞれのびる筋交いである。そして、ダンパ1が、筋交い302の一方端部と、一方の柱材100との間に取り付けられている。また、ダンパ1は、筋交い302の他方端部と、他方の柱材100と構造材101との間にも取り付けられている。なお、筋交い302の各端部と、柱材100又は構造材101とは当接している構造でもよいし、これらの間にクリアランスを設ける構造としてもよい。さらに、このクリアランスに別途エネルギー吸収材10を配してもよい。 Moreover, the structure shown in FIG. 30 is still another embodiment C. The main difference between this embodiment C and the above embodiment is the structure of the brace. The brace 302 of the embodiment C is a K-shaped brace, and is a brace extending from the vicinity of the central portion of one column member 100 toward each joint portion between the other column member 100 and the structural member 101. Then, the damper 1 is attached between one end of the brace 302 and the one pillar member 100. Further, the damper 1 is also attached to the other end portion of the brace 302 and between the other pillar member 100 and the structural member 101. It should be noted that each end of the brace 302 may be in contact with the column member 100 or the structural member 101, or a structure may be provided in which a clearance is provided between them. Further, the energy absorbing material 10 may be separately arranged in this clearance.

また、図31又は図32に示す構造は、さらに別の実施形態Dである。この実施形態Dと上記実施形態との主な相違点は、筋交いの有無である。実施形態Dは、筋交いの代わりに壁材402を用いていて、一対の柱材100と一対の構造材101とで構成される面に壁材402が取り付けられた構造である。そして、ダンパ1が、壁材402と、一対の柱材100と一対の構造材101とが接合される4隅に取り付けられている。なお、ダンパ1は、4隅の接合部以外にも、壁材402と柱材100との間や、壁材402と構造材101との間などに取り付けられる構造でもよい。 Further, the structure shown in FIG. 31 or FIG. 32 is still another embodiment D. The main difference between this embodiment D and the above embodiment is the presence or absence of brace. In the D embodiment, the wall material 402 is used instead of the brace, and the wall material 402 is attached to the surface composed of the pair of pillar materials 100 and the pair of structural materials 101. Then, the damper 1 is attached to the four corners where the wall material 402, the pair of pillar materials 100, and the pair of structural materials 101 are joined. In addition to the joints at the four corners, the damper 1 may have a structure that is attached between the wall material 402 and the pillar material 100, between the wall material 402 and the structural material 101, and the like.

<第2実施形態>
(エネルギー吸収機構の構造)
次に、上記した実施形態とはまた別の実施形態について説明する。この実施形態は、上記したものとエネルギー吸収機構Sの構造が異なる。すなわち、ダンパ1とは別の構造のダンパ20である。以下、この実施形態のダンパ20の構造について説明する。
<Second Embodiment>
(Structure of energy absorption mechanism)
Next, an embodiment different from the above-described embodiment will be described. In this embodiment, the structure of the energy absorption mechanism S is different from that described above. That is, the damper 20 has a structure different from that of the damper 1. Hereinafter, the structure of the damper 20 of this embodiment will be described.

図33は、ダンパ20を示す模式図である。図33に示すように、ダンパ1と同様、ダンパ20は、柱材100と、これに対し傾斜する方向に延びる筋交い102との間に取り付けられる。上記したダンパ1と大きく異なる点は、ダンパ20が、ゴムを使用せず、金属のみを用いてバネ定数の異なる部分を設けた構造である点である。ダンパ20は、金属板が加工されて形成され、バネ定数の異なる第1バネ部21と、第2バネ部22と、板状固定部23とを備える。 FIG. 33 is a schematic view showing the damper 20. As shown in FIG. 33, like the damper 1, the damper 20 is attached between the column member 100 and the brace 102 extending in an inclined direction with respect to the column member 100. The major difference from the damper 1 described above is that the damper 20 has a structure in which a portion having a different spring constant is provided by using only metal without using rubber. The damper 20 is formed by processing a metal plate, and includes a first spring portion 21 having a different spring constant, a second spring portion 22, and a plate-shaped fixing portion 23.

板状固定部23は、柱材100にネジ等で固定される。第2バネ部22は、板状固定部23から略90度折り曲げられて連設されており、筋交い102の方向に延在し、筋交い102にネジ等で固定される。第1バネ部21は、第2バネ部22と同一面上に連設され、筋交い102と反対面に山を成すように折り曲げられていて、一部が切り欠かれている。 The plate-shaped fixing portion 23 is fixed to the pillar member 100 with screws or the like. The second spring portion 22 is bent from the plate-shaped fixing portion 23 by approximately 90 degrees and is continuously provided, extends in the direction of the brace 102, and is fixed to the brace 102 with a screw or the like. The first spring portion 21 is continuously provided on the same surface as the second spring portion 22, is bent so as to form a mountain on the opposite surface to the brace 102, and is partially cut out.

また、第2バネ部22は、板状固定部23に続く矩形状の部分と、そこから第1バネ部21の一方端部に続き、第1バネ部21を超えて、第1バネ部21の他方端部に続く部分とを有する。 Further, the second spring portion 22 continues from the rectangular portion following the plate-shaped fixing portion 23 and one end portion of the first spring portion 21, and extends beyond the first spring portion 21 to the first spring portion 21. It has a portion following the other end of the.

これにより、第1バネ部21は、第2バネ部22に比べてバネ定数が小さくなっていて、振動を吸収する。一方、第2バネ部22はバネ定数が高く剛性が高い。これらの組み合わせにより、剛性と吸収性を兼ね備え、振動に対して効果的なダンパとなる。 As a result, the first spring portion 21 has a smaller spring constant than the second spring portion 22, and absorbs vibration. On the other hand, the second spring portion 22 has a high spring constant and high rigidity. The combination of these makes it a damper that has both rigidity and absorbency and is effective against vibration.

次に、ダンパ20の機構について説明する。図39(a)に示すように、ダンパ20は、振動が生じると、山折り状の第1バネ部21が変形することで振動を吸収する。なお、振動が大きい場合は、第2バネ部22がきくこととなる。 Next, the mechanism of the damper 20 will be described. As shown in FIG. 39A, when vibration occurs, the damper 20 absorbs the vibration by deforming the mountain-folded first spring portion 21. If the vibration is large, the second spring portion 22 will be activated.

なお、図40(a)に示すように、ダンパ20は、第1バネ部21を覆うように、ゴム部材で被覆された構造としてもよい。ゴム部材を被覆することで、バネ定数が上昇し、耐振動性が向上する。すなわち、金属のみの場合よりも、大きい振動に対応可能となる。 As shown in FIG. 40A, the damper 20 may have a structure covered with a rubber member so as to cover the first spring portion 21. By covering the rubber member, the spring constant is increased and the vibration resistance is improved. That is, it is possible to cope with a larger vibration than in the case of only metal.

(変形例)
また、図34にダンパ20の変形例を示す。図34に示すように、ダンパ20が板状固定部23により柱材のみに固定されるのに対し、ダンパ30は、2つの板状固定部33、34を備え、柱材100及び横架材(土台)101にネジ等により固定される構造である。
(Modification example)
Further, FIG. 34 shows a modified example of the damper 20. As shown in FIG. 34, the damper 20 is fixed only to the pillar material by the plate-shaped fixing portion 23, whereas the damper 30 includes two plate-shaped fixing portions 33 and 34, and includes the pillar material 100 and the horizontal member. (Base) The structure is fixed to 101 with screws or the like.

また、図35に示すように、ダンパ40は、ダンパ20の第2バネ部22が板状固定部23に続く部分が矩形状であるのに対し、第2バネ部42が三角形状で構成されている。そして、第2バネ部42の三角形状の斜辺から、山状に折り曲げられた第1バネ部41が続く構造である。なお、ダンパ30及びダンパ40も、第1バネ部31、41がゴム部材で被覆された構造としてもよい。 Further, as shown in FIG. 35, in the damper 40, the second spring portion 22 of the damper 20 has a rectangular shape following the plate-shaped fixing portion 23, whereas the second spring portion 42 has a triangular shape. ing. The structure is such that the first spring portion 41 bent in a mountain shape continues from the triangular hypotenuse of the second spring portion 42. The damper 30 and the damper 40 may also have a structure in which the first spring portions 31 and 41 are covered with a rubber member.

(その他のエネルギー吸収機構)
次に、上記したダンパとは別の構造のダンパについて説明する。図36に示す、ダンパ50は、金属板が加工されて形成され、バネ定数の異なる第1バネ部51と、第2バネ部52と、板状固定部53とを備える。
(Other energy absorption mechanisms)
Next, a damper having a structure different from that described above will be described. The damper 50 shown in FIG. 36 includes a first spring portion 51, a second spring portion 52, and a plate-shaped fixing portion 53, which are formed by processing a metal plate and have different spring constants.

板状固定部53は、柱材100にネジ等で固定される。第2バネ部52は、板状固定部53から略90度折り曲げられて連設されており、筋交い102の方向に延在している。また、第2バネ部52は、板状固定部53に続く三角形状の部分と、三角形状の斜辺に続く第1バネ部51を超えて、第1バネ部51の端部に続く部分とを有する。 The plate-shaped fixing portion 53 is fixed to the pillar member 100 with screws or the like. The second spring portion 52 is bent about 90 degrees from the plate-shaped fixing portion 53 and is continuously provided, and extends in the direction of the brace 102. Further, the second spring portion 52 includes a triangular portion following the plate-shaped fixing portion 53 and a portion extending beyond the first spring portion 51 following the triangular hypotenuse and continuing to the end portion of the first spring portion 51. Have.

第1バネ部51は、第2バネ部52の三角形状の斜辺から続いていて、板状の第2バネ部の両面に突出するように、台形状に折り曲げられて構成されている。具体的には、板状の金属板に切り込みが設けられ、第2バネ部52の面に対して表面側と裏面側に交互に突出するように形成されている。そして、第1バネ部51の筋交い側に突出した一方の面が、筋交い102にネジ等で固定されている。 The first spring portion 51 is formed by being bent into a trapezoidal shape so as to continue from the triangular hypotenuse of the second spring portion 52 and project to both sides of the plate-shaped second spring portion. Specifically, a notch is provided in the plate-shaped metal plate, and is formed so as to alternately project to the front surface side and the back surface side with respect to the surface of the second spring portion 52. Then, one surface of the first spring portion 51 protruding toward the brace side is fixed to the brace 102 with a screw or the like.

これにより、第1バネ部51は、第2バネ部52に比べてバネ定数が小さくなっていて、振動を吸収する。一方、第2バネ部52はバネ定数が高く剛性が高い。これらの組み合わせにより、剛性と吸収性を兼ね備え、振動に対して効果的なダンパとなる。 As a result, the first spring portion 51 has a smaller spring constant than the second spring portion 52, and absorbs vibration. On the other hand, the second spring portion 52 has a high spring constant and high rigidity. The combination of these makes it a damper that has both rigidity and absorbency and is effective against vibration.

次に、ダンパ50の機構について説明する。図39(b)に示すように、ダンパ50は、振動が生じると、台形状の第1バネ部51が変形することで振動を吸収する。なお、振動が大きい場合は、第2バネ部52がきくこととなる。 Next, the mechanism of the damper 50 will be described. As shown in FIG. 39B, when vibration occurs, the damper 50 absorbs the vibration by deforming the trapezoidal first spring portion 51. If the vibration is large, the second spring portion 52 will be activated.

また、図40(b)に示すように、ダンパ50は、第1バネ部51を覆うように、ゴム部材で被覆された構造としてもよい。ゴム部材を被覆することで、バネ定数が上昇し、耐振動性が向上する。すなわち、金属のみの場合よりも、大きい振動に対応可能となる。 Further, as shown in FIG. 40 (b), the damper 50 may have a structure covered with a rubber member so as to cover the first spring portion 51. By covering the rubber member, the spring constant is increased and the vibration resistance is improved. That is, it is possible to cope with a larger vibration than in the case of only metal.

次に、ダンパ50とはまた別の構造のダンパ60について説明する。図37に示すダンパ60は、ダンパ50と、主として第1バネ部の構造が異なる。ダンパ60の第1バネ部61は、第2バネ部62の面から、筋交い102と反対面側に突出する。第1バネ部61は、第2バネ部62から垂直に立ち上がり、そこから第2バネ部62の面と平行に折り曲げられて延在し、そこからさらに第2バネ部62の面に向けて垂直に折り曲げられ、略直方体が突出した構造となっている。そして、この略直方体状の突出部が2つ存在する。 Next, a damper 60 having a structure different from that of the damper 50 will be described. The damper 60 shown in FIG. 37 is different from the damper 50 in the structure of the first spring portion. The first spring portion 61 of the damper 60 projects from the surface of the second spring portion 62 to the side opposite to the brace 102. The first spring portion 61 rises vertically from the second spring portion 62, is bent and extends parallel to the surface of the second spring portion 62 from there, and is further perpendicular to the surface of the second spring portion 62 from there. It has a structure in which a substantially rectangular parallelepiped protrudes. Then, there are two substantially rectangular parallelepiped protrusions.

また、図38に示すダンパ70は、ダンパ60が第1バネ部61と第2バネ部62からなる部分が筋交い102に沿った形状で構成されているのに対し、柱材100から真横に伸びる長方形状で構成されている。また、図40(c)に示すように、ダンパ60及びダンパ70も、第1バネ部61、71がゴム部材で被覆された構造としてもよい。 Further, in the damper 70 shown in FIG. 38, the damper 60 has a portion formed by the first spring portion 61 and the second spring portion 62 having a shape along the brace 102, whereas the damper 60 extends right beside the pillar member 100. It is composed of a rectangular shape. Further, as shown in FIG. 40 (c), the damper 60 and the damper 70 may also have a structure in which the first spring portions 61 and 71 are covered with a rubber member.

1 ダンパ
2 剛性部材
3 弾性部材
4 板状固定部
4a 取付孔
5 筒状固定部
5a 第1の板部分
5b 第2の板部分
5c ブリッジ部
5d 第1の貫通孔
5e 第2の貫通孔
5f 第3の貫通孔
5g 第4の貫通孔
6 結合部
7 第1の固定具
8 第2の固定具
9 凸部
10 エネルギー吸収材
20 ダンパ
21 第1バネ部
22 第2バネ部
23 板状固定部
20 ダンパ
31 第1バネ部
32 第2バネ部
33、34 板状固定部
40 ダンパ
41 第1バネ部
42 第2バネ部
43 板状固定部
50 ダンパ
51 第1バネ部
52 第2バネ部
53 板状固定部
60 ダンパ
61 第1バネ部
62 第2バネ部
63 板状固定部
70 ダンパ
71 第1バネ部
72 第2バネ部
73 板状固定部
100 柱材
101 構造材(土台)
102 筋交い
202 筋交い
302 筋交い
402 壁材
C 空隙
S エネルギー吸収機構
S1 第1バネ部材
S2 第2バネ部材
1 Damper 2 Rigid member 3 Elastic member 4 Plate-shaped fixing part 4a Mounting hole 5 Cylindrical fixing part 5a First plate part 5b Second plate part 5c Bridge part 5d First through hole 5e Second through hole 5f First 3 through hole 5 g 4th through hole 6 Coupling part 7 1st fixing tool 8 2nd fixing tool 9 Convex part 10 Energy absorbing material 20 Damper 21 1st spring part 22 2nd spring part 23 Plate-shaped fixing part 20 Damper 31 1st spring part 32 2nd spring part 33, 34 Plate-shaped fixing part 40 Damper 41 1st spring part 42 2nd spring part 43 Plate-shaped fixing part 50 Damper 51 1st spring part 52 2nd spring part 53 Plate-shaped Fixing part 60 Damper 61 1st spring part 62 2nd spring part 63 Plate-shaped fixing part 70 Damper 71 1st spring part 72 2nd spring part 73 Plate-shaped fixing part 100 Pillar material 101 Structural material (base)
102 Brace 202 Brace 302 Brace 402 Brace 402 Wall material C Void S Energy absorption mechanism S1 1st spring member S2 2nd spring member

Claims (13)

鉛直方向に延びる一対の柱材と、水平方向に延びる一対の構造材と、一方の柱材の中央から、他方の柱材と当該構造材との接合部に向けて延びる筋交い材とを備える木造建物に用いられ、前記柱材及び/又は前記構造材と、前記筋交い材と、に固定されるエネルギー吸収機構であって、
第1のバネ部と、第2のバネ部と、を備え、
前記第1のバネ部は、第1バネ定数K1が1.5〜7.5kN/mmの範囲であり、
前記第2のバネ部は、第2バネ定数K2が5.0〜30.0kN/mmの範囲であり、 下記数式1を満たし、かつ、下記数式2により導き出されるKの数値が1.4〜4.9の範囲内であり、
前記筋交い材の端部と、前記柱材又は前記構造材との間にクリアランスが生じるように設置される、エネルギー吸収機構。
K1<K2 ・・・(数式1)
K=(K1×K2)/(K1+K2) ・・・(数式2)
A wooden structure including a pair of vertically extending columns, a pair of horizontally extending structural members, and a brace extending from the center of one column toward the joint between the other column and the structural member. An energy absorption mechanism used in a building and fixed to the column material and / or the structural material and the brace material.
A first spring portion and a second spring portion are provided.
The first spring portion has a first spring constant K1 in the range of 1.5 to 7.5 kN / mm.
In the second spring portion, the second spring constant K2 is in the range of 5.0 to 30.0 kN / mm, the following mathematical formula 1 is satisfied, and the numerical value of K derived by the following mathematical formula 2 is 1.4 to 1.4 to range der of 4.9 is,
An energy absorption mechanism installed so as to create a clearance between the end portion of the brace member and the column member or the structural member.
K1 <K2 ... (Formula 1)
K = (K1 x K2) / (K1 + K2) ... (Formula 2)
鉛直方向に延びる一対の柱材と、水平方向に延びる一対の構造材と、当該柱材と当該構造材との接合部に設置されるほおづえ型の筋交い材とを備える木造建物に用いられ、前記柱材及び/又は前記構造材と、前記筋交い材と、に固定されるエネルギー吸収機構であって、
第1のバネ部と、第2のバネ部と、を備え、
前記第1のバネ部は、第1バネ定数K1が1.5〜7.5kN/mmの範囲であり、
前記第2のバネ部は、第2バネ定数K2が5.0〜30.0kN/mmの範囲であり、 下記数式1を満たし、かつ、下記数式2により導き出されるKの数値が1.4〜4.9の範囲内であり、
前記筋交い材の端部と、前記柱材又は前記構造材との間にクリアランスが生じるように設置される、エネルギー吸収機構。
K1<K2 ・・・(数式1)
K=(K1×K2)/(K1+K2) ・・・(数式2)
It is used in wooden buildings that include a pair of pillars extending in the vertical direction, a pair of structural materials extending in the horizontal direction, and a brace-shaped bracing material installed at the joint between the pillars and the structural materials. An energy absorption mechanism fixed to the column material and / or the structural material and the brace material.
A first spring portion and a second spring portion are provided.
The first spring portion has a first spring constant K1 in the range of 1.5 to 7.5 kN / mm.
In the second spring portion, the second spring constant K2 is in the range of 5.0 to 30.0 kN / mm, the following mathematical formula 1 is satisfied, and the numerical value of K derived by the following mathematical formula 2 is 1.4 to 1.4 to range der of 4.9 is,
An energy absorption mechanism installed so as to create a clearance between the end portion of the brace member and the column member or the structural member.
K1 <K2 ... (Formula 1)
K = (K1 x K2) / (K1 + K2) ... (Formula 2)
鉛直方向に延びる一対の柱材と、水平方向に延びる一対の構造材と、当該柱材と当該構造材とにより構成される枠に設置される壁材とを備える木造建物に用いられ、前記柱材及び/又は前記構造材と、前記壁材と、の間に固定されるエネルギー吸収機構であって、
第1のバネ部と、第2のバネ部と、を備え、
前記第1のバネ部は、第1バネ定数K1が1.5〜7.5kN/mmの範囲であり、
前記第2のバネ部は、第2バネ定数K2が5.0〜30.0kN/mmの範囲であり、 下記数式1を満たし、かつ、下記数式2により導き出されるKの数値が1.4〜4.9の範囲内であり、
前記壁材と、前記柱材又は前記構造材との間にクリアランスが生じるように設置される、エネルギー吸収機構。
K1<K2 ・・・(数式1)
K=(K1×K2)/(K1+K2) ・・・(数式2)
It is used in a wooden building including a pair of pillars extending in the vertical direction, a pair of structural materials extending in the horizontal direction, and a wall material installed in a frame composed of the pillars and the structural materials. An energy absorbing mechanism fixed between a lumber and / or the structural material and the wall material.
A first spring portion and a second spring portion are provided.
The first spring portion has a first spring constant K1 in the range of 1.5 to 7.5 kN / mm.
In the second spring portion, the second spring constant K2 is in the range of 5.0 to 30.0 kN / mm, the following mathematical formula 1 is satisfied, and the numerical value of K derived by the following mathematical formula 2 is 1.4 to 1.4 to range der of 4.9 is,
An energy absorption mechanism installed so as to create a clearance between the wall material and the pillar material or the structural material.
K1 <K2 ... (Formula 1)
K = (K1 x K2) / (K1 + K2) ... (Formula 2)
前記クリアランスに、エネルギー吸収材が配されている、
請求項1乃至請求項3のいずれか1項に記載のエネルギー吸収機構。
An energy absorber is arranged in the clearance.
The energy absorption mechanism according to any one of claims 1 to 3.
前記第1のバネ部は、弾性材からなる第1板状部を備え、
前記第2のバネ部は、金属又は樹脂からなり、前記第1のバネ部より剛性が高い第2板状部を備え、
前記第1板状部と、前記第2板状部とが接合されてなる、
請求項1乃至請求項4のいずれか1項に記載のエネルギー吸収機構。
The first spring portion includes a first plate-shaped portion made of an elastic material.
The second spring portion is made of metal or resin, and includes a second plate-shaped portion having a higher rigidity than the first spring portion.
The first plate-shaped portion and the second plate-shaped portion are joined to each other.
The energy absorption mechanism according to any one of claims 1 to 4.
前記第2のバネ部は、一対の第2板状部を備え、
前記第1板状部が、一対の前記第2板状部により挟持されてなる、
請求項5に記載のエネルギー吸収機構。
The second spring portion includes a pair of second plate-shaped portions.
The first plate-shaped portion is sandwiched between the pair of the second plate-shaped portions.
The energy absorption mechanism according to claim 5.
前記第2のバネ部は、一対の前記第2板状部を接続する接続部を備える、
請求項6に記載のエネルギー吸収機構。
The second spring portion includes a connecting portion that connects the pair of the second plate-shaped portions.
The energy absorption mechanism according to claim 6.
前記接続部は、一対の前記第2板状部を結合する複数のブリッジである、
請求項7に記載のエネルギー吸収機構。
The connecting portion is a plurality of bridges that connect the pair of the second plate-shaped portions.
The energy absorption mechanism according to claim 7.
前記第2のバネ部は、前記柱材及び/又は前記構造材と固定する取付部を備える、
請求項5乃至請求項8のいずれか1項に記載のエネルギー吸収機構。
The second spring portion includes a mounting portion for fixing to the pillar material and / or the structural material.
The energy absorption mechanism according to any one of claims 5 to 8.
前記第1板状部及び前記第2板状部及び前記取付部は、貫通孔を備える、
請求項9に記載のエネルギー吸収機構。
The first plate-shaped portion, the second plate-shaped portion, and the mounting portion are provided with through holes.
The energy absorption mechanism according to claim 9.
前記第2板状部の表面を被覆する、弾性材からなる被覆部をさらに備え、
前記被覆部は、前記第1のバネ部と一体に形成されてなる、
請求項5乃至請求項10のいずれか1項に記載のエネルギー吸収機構。
A covering portion made of an elastic material for covering the surface of the second plate-shaped portion is further provided.
The covering portion is formed integrally with the first spring portion.
The energy absorption mechanism according to any one of claims 5 to 10.
請求項1又は請求項2に記載のエネルギー吸収機構と、前記柱材と、前記構造材と、前記筋交い材とを備え、
前記エネルギー吸収機構は、前記筋交い材の端部と、前記柱材及び/又は前記構造材とに固定されている、
木造建物。
The energy absorption mechanism according to claim 1 or 2, the pillar material, the structural material, and the brace material are provided.
The energy absorption mechanism is fixed to the end portion of the brace member and the column member and / or the structural member.
Wooden building.
請求項3に記載のエネルギー吸収機構と、前記柱材と、前記構造材と、前記壁材とを備え、
前記エネルギー吸収機構は、前記壁材と、前記柱材及び/又は前記構造材とに固定されている、
木造建物。
The energy absorption mechanism according to claim 3, the pillar material, the structural material, and the wall material are provided.
The energy absorption mechanism is fixed to the wall material and the pillar material and / or the structural material.
Wooden building.
JP2019021908A 2016-12-05 2019-02-08 Energy absorption mechanism and wooden building Active JP6912102B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016235669 2016-12-05
JP2016235669 2016-12-05
JP2017227401A JP6635607B2 (en) 2016-12-05 2017-11-28 Energy absorption mechanism and wooden building

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017227401A Division JP6635607B2 (en) 2016-12-05 2017-11-28 Energy absorption mechanism and wooden building

Publications (2)

Publication Number Publication Date
JP2019108790A JP2019108790A (en) 2019-07-04
JP6912102B2 true JP6912102B2 (en) 2021-07-28

Family

ID=62565330

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017227401A Active JP6635607B2 (en) 2016-12-05 2017-11-28 Energy absorption mechanism and wooden building
JP2019021908A Active JP6912102B2 (en) 2016-12-05 2019-02-08 Energy absorption mechanism and wooden building

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2017227401A Active JP6635607B2 (en) 2016-12-05 2017-11-28 Energy absorption mechanism and wooden building

Country Status (1)

Country Link
JP (2) JP6635607B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6649982B2 (en) 2018-05-10 2020-02-19 アトムメディカル株式会社 Fetal ECG signal processing method and fetal ECG signal processing device
JP7219459B2 (en) * 2019-02-20 2023-02-08 株式会社ポラス暮し科学研究所 brace bearing wall

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08177157A (en) * 1994-12-27 1996-07-09 Ohbayashi Corp Connection of column and slab in steel structure
US5761863A (en) * 1996-11-27 1998-06-09 Clemson University Method of reinforcing a building
JP5023274B2 (en) * 2006-06-13 2012-09-12 株式会社サトウ Damping locking device
JP2011174364A (en) * 2010-02-01 2011-09-08 Bando Chemical Industries Ltd Joint damper and structure of joint section
JP6010847B1 (en) * 2016-01-29 2016-10-19 学校法人都築教育学園 Joint damper and method of manufacturing the same
JP3204251U (en) * 2016-03-04 2016-05-26 株式会社住宅構造研究所 Damping hardware

Also Published As

Publication number Publication date
JP2019108790A (en) 2019-07-04
JP2018091128A (en) 2018-06-14
JP6635607B2 (en) 2020-01-29

Similar Documents

Publication Publication Date Title
JP4161002B1 (en) building
JP2008088641A (en) Reinforcing member of building or structure
TW201400678A (en) Composite damping joint
JP6912102B2 (en) Energy absorption mechanism and wooden building
JP3664611B2 (en) Seismic structure of wooden buildings
JP4585470B2 (en) Reinforcing members and reinforcing structures for buildings and structures
KR102331331B1 (en) Seismic controling system of constructure and construction method thereof
JP4902239B2 (en) Wall structure of building and vibration control panel used for this wall structure
JPH11153194A (en) Damping member integrating elasto-plastic and visco-elastic damper
JP6037298B1 (en) Energy absorption mechanism
JP2021050507A (en) Buckling restraint brace
JP2010024656A (en) Joint damper and structure of joint portion
JP4878338B2 (en) Reinforcement structure of buildings and structures
JP5777036B1 (en) Joint structure of brace and wooden building
JP5803024B2 (en) Bracing damper structure
JP4956340B2 (en) Building or building reinforcement
JP4889050B2 (en) Reinforcing members and reinforcing structures for buildings and structures
JP4456514B2 (en) Seismic control structure of lightweight steel house
JP4456515B2 (en) Seismic control structure of lightweight steel house
JP6218214B2 (en) Frame and building
JP2019178527A (en) Reinforcing structure for wooden building
JP4911715B2 (en) Reinforcement structure of buildings and structures
JP4609628B2 (en) Seismic shock absorber and seismic joint device using the same
JP2010255334A (en) Damping structure and damping building
JP7275712B2 (en) wooden structure

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190410

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210701

R150 Certificate of patent or registration of utility model

Ref document number: 6912102

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150