[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6996500B2 - Prepreg, prepreg with metal foil, laminated board, metal-clad laminated board and printed circuit board - Google Patents

Prepreg, prepreg with metal foil, laminated board, metal-clad laminated board and printed circuit board Download PDF

Info

Publication number
JP6996500B2
JP6996500B2 JP2018516306A JP2018516306A JP6996500B2 JP 6996500 B2 JP6996500 B2 JP 6996500B2 JP 2018516306 A JP2018516306 A JP 2018516306A JP 2018516306 A JP2018516306 A JP 2018516306A JP 6996500 B2 JP6996500 B2 JP 6996500B2
Authority
JP
Japan
Prior art keywords
prepreg
resin
component
acrylic polymer
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018516306A
Other languages
Japanese (ja)
Other versions
JPWO2017195344A1 (en
Inventor
貴代 北嶋
健一 富岡
稔 垣谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Resonac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd, Resonac Corp filed Critical Hitachi Chemical Co Ltd
Publication of JPWO2017195344A1 publication Critical patent/JPWO2017195344A1/en
Application granted granted Critical
Publication of JP6996500B2 publication Critical patent/JP6996500B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/244Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture

Landscapes

  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)

Description

本発明は、プリプレグ、金属箔付きプリプレグ、積層板、金属張積層板及びプリント回路基板に関する。 The present invention relates to a prepreg, a prepreg with a metal foil, a laminated board, a metal-clad laminated board, and a printed circuit board.

情報電子機器の急速な普及に伴って、電子機器の小型化及び薄型化が進んでおり、その中に搭載されるプリント回路基板も高密度化、高機能化の要求が高まっている。 With the rapid spread of information electronic devices, the miniaturization and thinning of electronic devices are progressing, and the demand for higher density and higher functionality of printed circuit boards mounted therein is increasing.

プリント回路基板の高密度化は、基材となるガラスクロスの厚さをより薄くすること、例えば、30μm以下の厚さにすることで更に好適に成し遂げられるため、そのようなガラスクロスを備えたプリプレグが、昨今開発及び上市されている。これにより、プリント回路基板の高密度化はますます進行しているものの、それに伴い、プリント回路基板における十分な耐熱性、絶縁信頼性及び配線層と絶縁層との接着性等を確保することが困難になってきている。 Since the high density of the printed circuit board can be more preferably achieved by making the thickness of the glass cloth as a base material thinner, for example, by making the thickness of 30 μm or less, such a glass cloth is provided. Prepreg has been developed and put on the market these days. As a result, the density of printed circuit boards is increasing, but along with this, it is possible to ensure sufficient heat resistance, insulation reliability, and adhesiveness between the wiring layer and the insulating layer in the printed circuit board. It's getting harder.

このような高機能プリント回路基板に使用される配線板材料には、耐熱性、電気絶縁性、長期信頼性、及び接着性等が要求されている。また、これらの高機能プリント回路基板の中の1つに挙げられるフレキシブルな配線板材料には、上記の特性に加え、低弾性であることも要求されている。 The wiring board material used for such a high-performance printed circuit board is required to have heat resistance, electrical insulation, long-term reliability, adhesiveness, and the like. Further, in addition to the above-mentioned characteristics, the flexible wiring board material listed as one of these high-performance printed circuit boards is also required to have low elasticity.

さらには、セラミック部品を搭載したプリント回路基板においては、セラミック部品とプリント回路基板の熱膨張係数の差、及び外的な衝撃によって発生する部品接続信頼性の問題がある。この問題の解決方法として、プリント回路基板側からの応力緩和が挙げられる。 Further, in the printed circuit board on which the ceramic component is mounted, there are problems of the difference in the coefficient of thermal expansion between the ceramic component and the printed circuit board, and the component connection reliability generated by an external impact. As a solution to this problem, stress relaxation from the printed circuit board side can be mentioned.

これらの要求を満たす配線板材料としては、例えば、アクリロニトリルブタジエン系樹脂、カルボキシ基含有アクリロニトリルブタジエン樹脂等の架橋性官能基を共重合した高分子アクリルポリマーに熱硬化性樹脂を配合した樹脂組成物が提案されている(例えば、特許文献1~3参照)。 As a wiring board material satisfying these requirements, for example, a resin composition obtained by blending a thermosetting resin with a polymer acrylic polymer copolymerized with a crosslinkable functional group such as an acrylonitrile butadiene resin or a carboxy group-containing acrylonitrile butadiene resin. It has been proposed (see, for example, Patent Documents 1 to 3).

特開平8-283535号公報Japanese Unexamined Patent Publication No. 8-283535 特開2002-134907号公報JP-A-2002-134907. 特開2002-371190号公報Japanese Patent Application Laid-Open No. 2002-371190

架橋性官能基を共重合した高分子アクリルポリマーと、熱硬化性樹脂を混合してなるポリアクリレートエポキシ樹脂は、あたかもお互いに連結しあって規則正しく分散した状態の構造であり、主成分が高分子アクリルポリマーである高分子アクリルポリマーの海相と、主成分がポリアクリレートエポキシ樹脂であるエポキシ樹脂の島相との相分離構造を形成する。相分離構造を形成した高分子アクリルポリマーとポリアクリレートエポキシ樹脂を含有する樹脂組成物は、高分子アクリルポリマーとエポキシ樹脂の双方の優れた特徴を兼ね備えることが望まれているが、十分に双方の優れた特徴を兼ね備えるものはなかった。
架橋性官能基を共重合した高分子アクリルポリマーの特徴は、低弾性、伸び率が高い、及び官能基を入れ易い等である。一方、熱硬化性樹脂であるエポキシ樹脂の特徴は、高い絶縁信頼性、高い耐熱性、及び高ガラス転移温度(Tg)等である。
The polyacrylate epoxy resin, which is a mixture of a polymer acrylic polymer copolymerized with a crosslinkable functional group and a thermosetting resin, has a structure in which they are connected to each other and are regularly dispersed, and the main component is a polymer. It forms a phase-separated structure between the sea phase of a polymer acrylic polymer, which is an acrylic polymer, and the island phase of an epoxy resin whose main component is a polyacrylate epoxy resin. A resin composition containing a polymer acrylic polymer and a polyacrylate epoxy resin having a phase-separated structure is desired to have excellent characteristics of both the polymer acrylic polymer and the epoxy resin, but both of them are sufficiently obtained. None had excellent features.
The characteristics of the high molecular weight acrylic polymer copolymerized with the crosslinkable functional group are low elasticity, high elongation, and easy insertion of the functional group. On the other hand, the characteristics of the epoxy resin, which is a thermosetting resin, are high insulation reliability, high heat resistance, high glass transition temperature (Tg), and the like.

架橋性官能基を共重合した高分子アクリルポリマーとエポキシ樹脂(熱硬化性樹脂)が均一に混ざり合い、見かけ上相溶に近い構造を有した場合は、高分子アクリルポリマー海相の網目にエポキシ樹脂がナノサイズで分散しているため、高分子アクリルポリマーの特性に偏り、エポキシ樹脂が有する高い絶縁信頼性、高い耐熱性、及び高Tgが十分に発現できない。また、比較的金属箔との密着強度が弱い高分子アクリルポリマーの表面積が大きくなり、絶縁層と金属箔との密着強度が低下してしまう。
一方、相分離構造において、島相の比率が高い場合は、エポキシ樹脂の島相の特性に偏り、金属箔との密着強度は向上するものの、高分子アクリルポリマーが有する低弾性及び柔軟性が十分に発現できない。
If the polymer acrylic polymer copolymerized with the crosslinkable functional group and the epoxy resin (thermocurable resin) are uniformly mixed and have a structure that is apparently close to compatibility, the epoxy is in the mesh of the polymer acrylic polymer sea phase. Since the resin is dispersed in nano size, the characteristics of the polymer acrylic polymer are biased, and the high insulation reliability, high heat resistance, and high Tg of the epoxy resin cannot be sufficiently expressed. In addition, the surface area of the polymer acrylic polymer, which has a relatively weak adhesion to the metal foil, becomes large, and the adhesion strength between the insulating layer and the metal foil decreases.
On the other hand, when the ratio of the island phase is high in the phase separation structure, the characteristics of the island phase of the epoxy resin are biased and the adhesion strength with the metal foil is improved, but the low elasticity and flexibility of the high molecular weight acrylic polymer are sufficient. Cannot be expressed in.

更には、強度及び耐熱性を付与する目的でフィラー成分の導入が試みられているが、成分の凝集及び沈降、樹脂組成物の高弾性化及び耐熱性の低下を招き、バランスをとることが難しかった。すなわち、絶縁信頼性、高耐熱性、柔軟性、及び低弾性等をすべて満足する絶縁層を形成することが困難であった。 Further, attempts have been made to introduce a filler component for the purpose of imparting strength and heat resistance, but it is difficult to balance the components due to aggregation and sedimentation of the components, high elasticity of the resin composition and deterioration of heat resistance. rice field. That is, it has been difficult to form an insulating layer that satisfies all of insulation reliability, high heat resistance, flexibility, low elasticity, and the like.

本発明の目的は、低弾性、絶縁信頼性、耐熱性、及び金属箔との接着性に優れる、プリプレグ、金属箔付きプリプレグ、積層板、金属張積層板及びプリント回路基板を提供することである。 An object of the present invention is to provide a prepreg, a prepreg with a metal foil, a laminated board, a metal-clad laminated board, and a printed circuit board, which have excellent low elasticity, insulation reliability, heat resistance, and adhesion to a metal foil. ..

本発明は以下に記載の各事項に関する。
(1)(A)アクリルポリマーを含む第1相と、(B)熱硬化性樹脂を含む島相としての第2相とが相分離構造を形成し、前記島相の平均ドメインサイズが1μm~10μmであり、(C)フィラーを含有する樹脂組成物が含浸されたプリプレグ。
(2)前記(A)アクリルポリマーの配合量が、前記(A)アクリルポリマーと前記(B)熱硬化性樹脂の総量を100質量部としたとき10~70質量部である、(1)に記載のプリプレグ。
(3)前記(C)フィラーとして、(C-1)カップリング処理されたフィラーを含有する、(1)又は(2)に記載のプリプレグ。
(4)前記(C)フィラーとして、(C-2)カップリング処理されていないフィラーを含有する、(1)~(3)のいずれかに記載のプリプレグ。
(5)前記(B)熱硬化性樹脂が、(B-1)エポキシ樹脂と(B-2)フェノール樹脂を含む、(1)~(4)のいずれかに記載のプリプレグ。
(6)前記(B-1)エポキシ樹脂が、1分子内に2個以上のエポキシ基を有するエポキシ樹脂を含有する、(5)に記載のプリプレグ。
(7)前記(B-1)エポキシ樹脂の重量平均分子量が、200~1,000である、(5)又は(6)に記載のプリプレグ。
(8)前記(B-1)エポキシ樹脂のエポキシ当量が、150~500である、(5)~(7)に記載のプリプレグ。
(9)前記(A)アクリルポリマーの重量平均分子量が、10,000~1,500,000である、(1)~(8)のいずれかに記載のプリプレグ。
(10)前記(B-2)フェノール樹脂が、1分子内に2個以上の水酸基を有するフェノール樹脂を含有する、(5)~(9)のいずれかに記載のプリプレグ。
(11)前記(C)フィラーとして、シリカを含有する、(1)~(10)のいずれかに記載のプリプレグ。
(12)前記(C-2)フィラーの体積平均粒径が、1.0μm~3.5μmである(1)~(11)のいずれかに記載のプリプレグ。
(13)(1)~(12)のいずれかに記載のプリプレグと金属箔とを積層してなる金属箔付きプリプレグ。
(14)(1)~(12)のいずれかに記載のプリプレグを複数有する積層板。
(15)(14)に記載の積層板がさらに金属箔を有する金属張積層板。
(16)(14)に記載の積層板がさらに回路を有するプリント回路基板。
The present invention relates to the following matters.
(1) The first phase containing (A) an acrylic polymer and the second phase as an island phase containing (B) a thermosetting resin form a phase-separated structure, and the average domain size of the island phase is 1 μm or more. A prepreg having a size of 10 μm and impregnated with a resin composition containing (C) a filler.
(2) The blending amount of the (A) acrylic polymer is 10 to 70 parts by mass when the total amount of the (A) acrylic polymer and the (B) thermosetting resin is 100 parts by mass, according to (1). The listed prepreg.
(3) The prepreg according to (1) or (2), which contains (C-1) a coupled filler as the (C) filler.
(4) The prepreg according to any one of (1) to (3), which contains (C-2) a filler that has not been coupled as the (C) filler.
(5) The prepreg according to any one of (1) to (4), wherein the (B) thermosetting resin contains (B-1) epoxy resin and (B-2) phenol resin.
(6) The prepreg according to (5), wherein the (B-1) epoxy resin contains an epoxy resin having two or more epoxy groups in one molecule.
(7) The prepreg according to (5) or (6), wherein the (B-1) epoxy resin has a weight average molecular weight of 200 to 1,000.
(8) The prepreg according to (5) to (7), wherein the epoxy equivalent of the (B-1) epoxy resin is 150 to 500.
(9) The prepreg according to any one of (1) to (8), wherein the acrylic polymer (A) has a weight average molecular weight of 10,000 to 1,500,000.
(10) The prepreg according to any one of (5) to (9), wherein the (B-2) phenol resin contains a phenol resin having two or more hydroxyl groups in one molecule.
(11) The prepreg according to any one of (1) to (10), which contains silica as the filler (C).
(12) The prepreg according to any one of (1) to (11), wherein the volume average particle size of the (C-2) filler is 1.0 μm to 3.5 μm.
(13) A prepreg with a metal foil obtained by laminating the prepreg according to any one of (1) to (12) and a metal foil.
(14) A laminated board having a plurality of prepregs according to any one of (1) to (12).
(15) The laminated plate according to (14) is a metal-clad laminate having a metal foil.
(16) A printed circuit board in which the laminated board according to (14) further has a circuit.

本発明によれば、低弾性、絶縁信頼性、耐熱性、及び金属箔との接着性に優れる、プリプレグ、樹脂付き金属箔、及びプリント回路基板を提供することができる。 According to the present invention, it is possible to provide a prepreg, a metal foil with a resin, and a printed circuit board, which have excellent low elasticity, insulation reliability, heat resistance, and adhesion to a metal foil.

樹脂組成物の相分離構造が連続球状構造である場合を表すモデル図である。It is a model figure which shows the case where the phase separation structure of a resin composition is a continuous spherical structure. 樹脂組成物の相分離構造が海島構造である場合を表すモデル図である。It is a model figure which shows the case where the phase separation structure of a resin composition is a sea-island structure. 樹脂組成物の相分離構造が複合分散相構造である場合を表すモデル図である。It is a model figure which shows the case where the phase separation structure of a resin composition is a composite dispersed phase structure. 樹脂組成物の相分離構造が共連続相構造である場合を表すモデル図である。It is a model figure which shows the case where the phase separation structure of a resin composition is a co-continuous phase structure. 本発明で得られる海島構造を有する樹脂組成物の一例としての断面構造を表す電子顕微鏡写真である。It is an electron micrograph which shows the cross-sectional structure as an example of the resin composition which has a sea-island structure obtained by this invention. 本発明で得られる複合分散相構造を有する樹脂組成物の一例としての断面構造を表す電子顕微鏡写真である。6 is an electron micrograph showing a cross-sectional structure as an example of a resin composition having a composite dispersed phase structure obtained in the present invention.

以下、本発明の一実施形態について詳述するが、本発明は以下の実施形態に限定されるものではない。 Hereinafter, one embodiment of the present invention will be described in detail, but the present invention is not limited to the following embodiments.

(プリプレグ)
本発明の実施の形態に係るプリプレグは、(A)アクリルポリマー(以下、「(A)成分」と称する。)を含む第1相と、(B)熱硬化性樹脂(以下、「(B)成分」と称する。)を含む島相としての第2相とが相分離構造を形成し、前記島相の平均ドメインサイズが1μm~10μmであり、(C)フィラー成分(以下、「(C)成分」と称する。)を含有する樹脂組成物が含浸されたプリプレグであることを特徴とする。
(A)成分が島相ではなくて海相を形成する理由については、分子量が大きくて絡み合いが多い(A)成分中で、(B)成分の相分離が起こる際、(A)成分が島相となるためにはその絡み合いや架橋網目を切断しなくてはならず、島相にはなりにくいためと考えられる。
(Prepreg)
The prepreg according to the embodiment of the present invention includes a first phase containing (A) an acrylic polymer (hereinafter, referred to as “(A) component”) and (B) a thermosetting resin (hereinafter, “(B)). The second phase as an island phase containing (referred to as “component”) forms a phase-separated structure, and the average domain size of the island phase is 1 μm to 10 μm, and the (C) filler component (hereinafter, “(C)). It is a prepreg impregnated with a resin composition containing "component").
The reason why the component (A) forms a sea phase instead of the island phase is that the component (A) is an island when the phase separation of the component (B) occurs in the component (A) having a large molecular weight and many entanglements. It is thought that it is difficult to become an island phase because the entanglement and the cross-linked network must be cut in order to become a phase.

[樹脂組成物]
[アクリルポリマー:(A)成分]
(A)成分は、アクリルポリマーであり、通常(メタ)アクリル酸アルキルエステルをモノマーとする共重合体である。共重合体としては、架橋性官能基を共重合したアクリルポリマーが好ましい。このような共重合体は一般に、(メタ)アクリル酸アルキルエステルと架橋性官能基を有する共重合モノマーとを共重合することにより生成される。架橋性官能基を有する共重合モノマーとしては、(メタ)アクリル酸アルキルエステルと共重合できる化合物であれば特に制限されものではなく、架橋性官能基としては、エポキシ基を有することが好ましく、グリシジル基を有することがより好ましい。架橋性官能基を有する共重合モノマーとしては、(メタ)アクリル酸グリシジルを用いることが好ましい。(メタ)アクリル酸アルキルエステルにおいて、アルキル基は炭素数1~20のアルキル基であることが好ましく、アルキル基は置換基を有していてもよい。アルキル基の置換基としては、例えば、脂環基、グリシジル基、水酸基を有する炭素数1~6のアルキル基、含窒素環状基等が挙げられる。
(メタ)アクリル酸アルキルエステルとしては、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル、アクリル酸ヘキシル、アクリル酸2-エチルヘキシル、アクリル酸イソブチル、アクリル酸エチレングリコールメチルエーテル、アクリル酸シクロヘキシル、アクリル酸2-ヒドロキシエチル、アクリル酸2-ヒドロキシプロピル、アクリル酸イソボルニル、アクリル酸アミド、アクリル酸イソデシル、アクリル酸オクタデシル、アクリル酸ラウリル、アクリル酸アリル、アクリル酸N-ビニルピロリドン、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸ヘキシル、メタクリル酸2-エチルヘキシル、メタクリル酸イソブチル、メタクリル酸エチレングリコールメチルエーテル、メタクリル酸シクロヘキシル、メタクリル酸2-ヒドロキシエチル、メタクリル酸2-ヒドロキシプロピル、メタクリル酸イソボルニル、メタクリル酸アミド、メタクリル酸イソデシル、メタクリル酸オクタデシル、メタクリル酸ラウリル、メタクリル酸アリル、メタクリル酸N-ビニルピロリドン、アクリロニトリル等が挙げられる。
[Resin composition]
[Acrylic polymer: (A) component]
The component (A) is an acrylic polymer, which is usually a copolymer having a (meth) acrylic acid alkyl ester as a monomer. As the copolymer, an acrylic polymer copolymerized with a crosslinkable functional group is preferable. Such copolymers are generally produced by copolymerizing a (meth) acrylic acid alkyl ester with a copolymerization monomer having a crosslinkable functional group. The copolymerizable monomer having a crosslinkable functional group is not particularly limited as long as it is a compound capable of copolymerizing with the (meth) acrylic acid alkyl ester, and the crosslinkable functional group preferably has an epoxy group, and glycidyl. It is more preferable to have a group. As the copolymerization monomer having a crosslinkable functional group, it is preferable to use glycidyl (meth) acrylate. In the (meth) acrylic acid alkyl ester, the alkyl group is preferably an alkyl group having 1 to 20 carbon atoms, and the alkyl group may have a substituent. Examples of the substituent of the alkyl group include an alicyclic group, a glycidyl group, an alkyl group having a hydroxyl group and having 1 to 6 carbon atoms, a nitrogen-containing cyclic group and the like.
Examples of the (meth) acrylic acid alkyl ester include methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, hexyl acrylate, 2-ethylhexyl acrylate, isobutyl acrylate, ethylene glycol methyl ether acrylate, and acrylic. Cyclohexyl acid, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, isobornyl acrylate, amide acrylate, isodecyl acrylate, octadecyl acrylate, lauryl acrylate, allyl acrylate, N-vinylpyrrolidone acrylate, methacrylic acid Methyl, ethyl methacrylate, propyl methacrylate, butyl methacrylate, hexyl methacrylate, 2-ethylhexyl methacrylate, isobutyl methacrylate, ethylene glycol methyl ether methacrylate, cyclohexyl methacrylate, 2-hydroxyethyl methacrylate, 2-hydroxyethyl methacrylate Examples thereof include hydroxypropyl, isobornyl methacrylate, methacrylic acid amide, isodecyl methacrylate, octadecyl methacrylate, lauryl methacrylate, allyl methacrylate, N-vinylpyrrolidone methacrylate, acrylonitrile and the like.

(A)成分がエポキシを有する場合、そのエポキシ価は、2当量/kg~18当量/kgであることが好ましく、2当量/kg~8当量/kgであることがより好ましい。エポキシ価が2当量/kg以上であると、硬化物のガラス転移温度の低下が抑えられて基板の耐熱性が十分に保たれ、18当量/kg以下であると、貯蔵弾性率が大きくなりすぎることなく、基板の寸法安定性が保持される傾向にある。(A)成分のエポキシ価は、(メタ)アクリル酸グリシジルとこれと共重合可能な他のモノマーとを共重合する際、共重合比を適宜調整することで調節可能である。通常、(メタ)アクリル酸グリシジル100質量部に対して、これ以外のモノマーの比率を5質量部~15質量部とすることで、2当量/kg~18当量/kgのエポキシ価を有する高分子アクリルポリマーが得られる。 When the component (A) has an epoxy group , its epoxy value is preferably 2 equivalents / kg to 18 equivalents / kg, and more preferably 2 equivalents / kg to 8 equivalents / kg. When the epoxy value is 2 equivalents / kg or more, the decrease in the glass transition temperature of the cured product is suppressed and the heat resistance of the substrate is sufficiently maintained, and when it is 18 equivalents / kg or less, the storage elastic modulus becomes too large. There is a tendency for the dimensional stability of the substrate to be maintained. The epoxy value of the component (A) can be adjusted by appropriately adjusting the copolymerization ratio when copolymerizing glycidyl (meth) acrylate with another monomer copolymerizable therewith. Usually, a polymer having an epoxy value of 2 equivalents / kg to 18 equivalents / kg is obtained by setting the ratio of other monomers to 100 parts by mass of glycidyl (meth) acrylate in an amount of 5 parts by mass to 15 parts by mass. An acrylic polymer is obtained.

エポキシ基を有する(A)成分の市販品としては、例えば、「HTR-860」(ナガセケムテックス株式会社製、商品名、エポキシ価3.1)、「KH-CT-865」(日立化成株式会社製、商品名、エポキシ価3.0)、「HAN5-M90S」(根上工業株式会社製、商品名、エポキシ価2.2)が入手可能である。(A)成分の重量平均分子量は、伸び率を向上させる観点、及び低弾性を向上させる観点から、10,000~1,500,000であることが好ましく、50,000~1,500,000であることがより好ましく、300,000~1,500,000であることがさらに好ましく、300,000~1,100,000であることが特に好ましい。(A)成分の重量平均分子量が1,500,000以下であると、溶剤に溶けやすくて扱いやすい傾向にある。また、(A)成分の重量平均分子量が1,500,000以下であると、(B)成分を配合したときにドメインの比較的大きな共連続相を有する相分離構造を形成しにくい傾向にあり、高い絶縁信頼性、高耐熱性、金属箔との高い接着性を発現しやすくなる傾向にある。(A)成分の重量平均分子量が10,000以上であると、(A)成分の有する低弾性を発現しやすい傾向となる。
(A)成分は、重量平均分子量の異なる2種以上を組み合わせてもよい。
上記の重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)分析によって測定される値であって、標準ポリスチレン換算値のことを意味する。GPC分析は、テトラヒドロフラン(THF)を溶解液として用いて行うことができる。
Commercially available products of the component (A) having an epoxy group include, for example, "HTR-860" (manufactured by Nagase ChemteX Corporation, trade name, epoxy value 3.1), "KH-CT-865" (Hitachi Kasei Co., Ltd.). Company-made product name, epoxy value 3.0), "HAN5-M90S" (manufactured by Negami Kogyo Co., Ltd., product name, epoxy value 2.2) are available. The weight average molecular weight of the component (A) is preferably 10,000 to 1,500,000 from the viewpoint of improving the elongation rate and the low elasticity, and is preferably 50,000 to 1,500,000. It is more preferably 300,000 to 1,500,000, and particularly preferably 300,000 to 1,100,000. When the weight average molecular weight of the component (A) is 1,500,000 or less, it tends to be easily dissolved in a solvent and easy to handle. Further, when the weight average molecular weight of the component (A) is 1,500,000 or less, it tends to be difficult to form a phase-separated structure having a relatively large co-continuous phase of the domain when the component (B) is blended. , High insulation reliability, high heat resistance, and high adhesiveness to metal foil tend to be easily exhibited. When the weight average molecular weight of the component (A) is 10,000 or more, the low elasticity of the component (A) tends to be easily exhibited.
As the component (A), two or more kinds having different weight average molecular weights may be combined.
The above weight average molecular weight is a value measured by gel permeation chromatography (GPC) analysis and means a standard polystyrene equivalent value. GPC analysis can be performed using tetrahydrofuran (THF) as the lysate.

また、(A)成分は、プレッシャークッカーバイアステスト(PCBT)等の絶縁信頼性の加速試験において十分な特性を得るためには、そのアルカリ金属イオン濃度が500ppm以下であることが好ましく、より好ましくは200ppm以下、さらに好ましくは100ppm以下である。 Further, the alkali metal ion concentration of the component (A) is preferably 500 ppm or less, more preferably 500 ppm or less, in order to obtain sufficient characteristics in an accelerated test of insulation reliability such as a pressure cooker bias test (PCBT). It is 200 ppm or less, more preferably 100 ppm or less.

(A)成分は、一般的にはラジカルを発生させるラジカル重合開始剤を用いて、モノマーをラジカル重合することにより得られる。ラジカル重合開始剤としては、アゾビスイソブチロニトリル(AIBN)、過安息香酸tert-ブチル、過酸化ベンゾイル、過酸化ラウロイル、過硫酸カリウム等の過硫酸塩、クメンヒドロペルオキシド、t-ブチルヒドロペルオキシド、ジクミルペルオキシド、ジt-ブチルペルオキシド、2,2’-アゾビス-2,4-ジメチルバレロニトリル、t-ブチルペルイソブチレート、t-ブチルペルピバレート、過酸化水素/第一鉄塩、過硫酸塩/酸性亜硫酸ナトリウム、クメンヒドロペルオキシド/第一鉄塩、過酸化ベンゾイル/ジメチルアニリン等が挙げられる。ラジカル重合開始剤として、これらを単独で用いてもよいし、2種以上を組み合わせてもよい。 The component (A) is generally obtained by radically polymerizing a monomer using a radical polymerization initiator that generates radicals. Examples of the radical polymerization initiator include azobisisobutyronitrile (AIBN), tert-butyl perbenzoate, benzoyl peroxide, lauroyl peroxide, persulfate such as potassium persulfate, cumene hydroperoxide, and t-butyl hydroperoxide. , Dicumyl peroxide, dit-butyl peroxide, 2,2'-azobis-2,4-dimethylvaleronitrile, t-butylperisobutyrate, t-butylperpivalate, hydrogen peroxide / ferrous salt, Examples thereof include persulfate / sodium acid sulfite, cumene hydroperoxide / ferrous salt, benzoyl peroxide / dimethylaniline and the like. As the radical polymerization initiator, these may be used alone or in combination of two or more.

本発明の実施の形態に係る樹脂組成物において(A)成分の配合量は、(A)成分と(B)成分の総量を100質量部としたとき10~70質量部であることが好ましい。10質量部未満であると、(A)成分の優れた特徴である低弾性が効果的に発現しない傾向にある。また70質量部を超えると、良好な金属箔との接着強度が得られない傾向や、難燃性が低下する傾向がある。
また、特に低弾性とする観点からは、(A)成分と(B)成分の総量100質量部における(A)成分の配合量が15質量部以上であることが好ましく、20質量部以上であることがより好ましく、30質量部以上であることがさらに好ましい。
また、特に良好な金属箔との接着強度を得る観点からは、(A)成分と(B)成分の総量100質量部における(A)成分の配合量が60質量部以下であることが好ましく、50質量部以下であることがより好ましく、40質量部以下であることがさらに好ましい。
In the resin composition according to the embodiment of the present invention, the blending amount of the component (A) is preferably 10 to 70 parts by mass when the total amount of the component (A) and the component (B) is 100 parts by mass. If it is less than 10 parts by mass, the low elasticity, which is an excellent feature of the component (A), tends not to be effectively exhibited. On the other hand, if it exceeds 70 parts by mass, good adhesive strength with the metal foil tends not to be obtained, and flame retardancy tends to decrease.
Further, from the viewpoint of particularly low elasticity, the blending amount of the component (A) in 100 parts by mass of the total amount of the component (A) and the component (B) is preferably 15 parts by mass or more, preferably 20 parts by mass or more. More preferably, it is more preferably 30 parts by mass or more.
Further, from the viewpoint of obtaining particularly good adhesive strength with the metal foil, it is preferable that the blending amount of the component (A) in 100 parts by mass of the total amount of the component (A) and the component (B) is 60 parts by mass or less. It is more preferably 50 parts by mass or less, and further preferably 40 parts by mass or less.

[熱硬化性樹脂:(B)成分]
本発明において用いられる(B)成分としては、(A)成分と組み合わせて硬化したときに相分離構造を有するものが適宜選択される。(B)成分としては、特に限定されるものではないが、例えば、エポキシ樹脂、シアネート樹脂、ビスマレイミド樹脂、ビスマレイミド樹脂とジアミンとの付加重合物、フェノール樹脂、レゾール樹脂、イソシアネート樹脂、トリアリルイソシアヌレート樹脂、トリアリルシアヌレート樹脂、及びビニル基含有ポリオレフィン化合物等が挙げられる。これらの中でも耐熱性、絶縁性等の性能のバランスを考慮すると、エポキシ樹脂又はシアネート樹脂が好ましい。
[Thermosetting resin: component (B)]
As the component (B) used in the present invention, a component having a phase-separated structure when cured in combination with the component (A) is appropriately selected. The component (B) is not particularly limited, but is, for example, an epoxy resin, a cyanate resin, a bismaleimide resin, an addition polymer of a bismaleimide resin and a diamine, a phenol resin, a resole resin, an isocyanate resin, and a triallyl. Examples thereof include isocyanurate resin, triallyl cyanurate resin, vinyl group-containing polyolefin compound and the like. Among these, epoxy resin or cyanate resin is preferable in consideration of the balance of performance such as heat resistance and insulation.

本発明の実施の形態に係る樹脂組成物を硬化すると、相分離構造を有する樹脂複合体を形成し得る(B)成分は、(B-1)1分子内に2個以上のエポキシ基を有するエポキシ樹脂(以下、「(B-1)成分」と称する。)と(B-2)1分子内に2個以上の水酸基を有するフェノール樹脂(以下、「(B-2)成分」と称する。)を含む樹脂組成物であることが好ましい。 When the resin composition according to the embodiment of the present invention is cured, the component (B) capable of forming a resin composite having a phase-separated structure has (B-1) two or more epoxy groups in one molecule. Epoxy resin (hereinafter referred to as "(B-1) component") and (B-2) phenol resin having two or more hydroxyl groups in one molecule (hereinafter referred to as "(B-2) component". ) Is preferably included.

<1分子内に2個以上のエポキシ基を有するエポキシ樹脂:(B-1)成分>
(B)成分は、(B-1)成分を含むことが好ましい。
(B-1)成分の重量平均分子量は、200~1,000であることが好ましく、300~900であることがより好ましい。重量平均分子量が200以上であると、(A)成分と相分離構造を形成する傾向があり、1,000以下であるとドメインの比較的小さな第2相を有する相分離構造を形成しやすい傾向があり、低弾性を発現しやすい傾向がある。
(B-1)成分のエポキシ当量としては、150~500であることが好ましく、150~450であることがより好ましく、150~300であることがより好ましい。エポキシ樹脂のエポキシ当量が上記の範囲内にあると、第2相の平均ドメインサイズが大きくなり過ぎない傾向にある。
<Epoxy resin having two or more epoxy groups in one molecule: component (B-1)>
The component (B) preferably contains the component (B-1).
The weight average molecular weight of the component (B-1) is preferably 200 to 1,000, more preferably 300 to 900. When the weight average molecular weight is 200 or more, it tends to form a phase-separated structure with the component (A), and when it is 1,000 or less, it tends to easily form a phase-separated structure having a relatively small second phase of the domain. There is a tendency to develop low elasticity.
The epoxy equivalent of the component (B-1) is preferably 150 to 500, more preferably 150 to 450, and even more preferably 150 to 300. When the epoxy equivalent of the epoxy resin is within the above range, the average domain size of the second phase tends not to be too large.

(B-1)成分としては、公知のものを用いることができ、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビフェニル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、リン含有エポキシ樹脂、ナフタレン骨格含有エポキシ樹脂、アラルキレン骨格含有エポキシ樹脂、フェノールビフェニルアラルキル型エポキシ樹脂、フェノールサリチルアルデヒドノボラック型エポキシ樹脂、低級アルキル基置換フェノールサリチルアルデヒドノボラック型エポキシ樹脂、ジシクロペンタジエン骨格含有エポキシ樹脂、多官能グリシジルアミン型エポキシ樹脂、多官能脂環式エポキシ樹脂、テトラブロモビスフェノールA型エポキシ樹脂等が挙げられる。これらの1種又は2種以上を用いることができる。
(B-1)成分の市販品としては、例えば、フェノールノボラック型エポキシ樹脂である「N770」(DIC株式会社製、商品名)、テトラブロモビスフェノールA型エポキシ樹脂である「EPICLON 153」(DIC株式会社製、商品名)、ビフェニルアラルキル型エポキシ樹脂である「NC-3000H」(日本化薬株式会社製、商品名)、ビスフェノールA型エポキシ樹脂である「エピコート1001」(三菱化学株式会社製、商品名)、リン含有エポキシ樹脂である「ZX-1548」(東都化成株式会社製、商品名)、クレゾールノボラック型エポキシ樹脂である「EPICLON N-660」(DIC株式会社製、商品名)等が挙げられる。
As the component (B-1), known components can be used, for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, biphenyl type epoxy resin, phenol novolac type epoxy resin, cresol. Novolac type epoxy resin, bisphenol A novolak type epoxy resin, phosphorus-containing epoxy resin, naphthalene skeleton-containing epoxy resin, aralkylene skeleton-containing epoxy resin, phenol biphenyl aralkyl type epoxy resin, phenol salicylaldehyde novolak type epoxy resin, lower alkyl group substituted phenol salicyl Examples thereof include aldehyde novolak type epoxy resin, dicyclopentadiene skeleton-containing epoxy resin, polyfunctional glycidylamine type epoxy resin, polyfunctional alicyclic epoxy resin, tetrabromobisphenol A type epoxy resin and the like. One or more of these can be used.
Commercially available products of the component (B-1) include, for example, "N770" (trade name, manufactured by DIC Co., Ltd.), which is a phenol novolac type epoxy resin, and "EPICLON 153" (DIC stock), which is a tetrabromobisphenol A type epoxy resin. Company-made product name), biphenyl aralkyl type epoxy resin "NC-3000H" (Nippon Kayaku Co., Ltd. product name), bisphenol A type epoxy resin "Epicoat 1001" (Mitsubishi Chemical Co., Ltd. product) Name), phosphorus-containing epoxy resin "ZX-1548" (manufactured by Toto Kasei Co., Ltd., trade name), cresol novolac type epoxy resin "EPICLON N-660" (manufactured by DIC Co., Ltd., trade name), etc. Be done.

<1分子内に2個以上の水酸基を有するフェノール樹脂:(B-2)成分>
(B)成分は、金属箔との密着強度確保の観点から、(B-2)成分を含むことが好ましい。
(B-2)成分としては、公知のものを用いることができ、例えば、アラルキル型フェノール樹脂、ジシクロペンタジエン型フェノール樹脂、サリチルアルデヒド型フェノール樹脂、ベンズアルデヒド型フェノール樹脂とアラルキル型フェノール樹脂の共重合型樹脂及びノボラック型フェノール樹脂等が挙げられる。これらの1種又は2種以上を用いることができる。
<Phenol resin having two or more hydroxyl groups in one molecule: (B-2) component>
The component (B) preferably contains the component (B-2) from the viewpoint of ensuring the adhesion strength with the metal foil.
As the component (B-2), known components can be used, and for example, an aralkyl-type phenol resin, a dicyclopentadiene-type phenol resin, a salicylaldehyde-type phenol resin, a copolymerization of a benzaldehyde-type phenol resin and an aralkyl-type phenol resin. Examples thereof include a mold resin and a novolak type phenol resin. One or more of these can be used.

(B-2)成分としては、低吸水性の観点から、フェノールノボラック等の多価フェノール類の使用が好ましい。
(B-2)成分の市販品として、例えば、クレゾールノボラック型樹脂である「KA-1165」(DIC株式会社社製、商品名)、及びビフェニルノボラック型樹脂である「MEH-7851」(明和化成株式会社社製、商品名)等が挙げられる。
As the component (B-2), it is preferable to use polyhydric phenols such as phenol novolac from the viewpoint of low water absorption.
Commercially available products of the component (B-2) include, for example, "KA-1165" (trade name, manufactured by DIC Corporation), which is a cresol novolac type resin, and "MEH-7851" (Meiwa Kasei), which is a biphenyl novolac type resin. Co., Ltd., product name) and the like.

(B-2)成分の配合割合は、通常、ガラス転移温度が高くなるようにその配合比が決定される。例えば、(B-2)成分としてフェノールノボラック型樹脂を用いる場合は、(B-1)成分のエポキシ基に対して0.5当量~1.5当量であることが好ましい。エポキシ基に対して0.5当量~1.5当量であることで、外層銅との接着性の低下を防ぎ、かつガラス転移温度(Tg)及び絶縁性の低下をも防ぐことができる。 The blending ratio of the component (B-2) is usually determined so that the glass transition temperature is high. For example, when a phenol novolac type resin is used as the component (B-2), it is preferably 0.5 equivalent to 1.5 equivalent with respect to the epoxy group of the component (B-1). When the amount is 0.5 equivalent to 1.5 equivalent with respect to the epoxy group, it is possible to prevent a decrease in the adhesiveness with the outer layer copper and also prevent a decrease in the glass transition temperature (Tg) and the insulating property.

<(B)成分の硬化剤>
本発明の樹脂組成物は、(B)成分の硬化剤を含んでもよい。(B)成分の硬化剤としては、公知のものを用いることができる。例えば、ジシアンジアミド、ジアミノジフェニルメタン、ジアミノジフェニルスルフォン等のアミン系硬化剤、無水ピロメリット酸、無水トリメリット酸、ベンゾフェノンテトラカルボン酸等の酸無水物硬化剤又はこれらの混合物等が挙げられる。
本発明における(B)成分とその硬化剤との組み合わせは、使用する(A)成分、硬化条件、硬化剤、及び硬化触媒により種々の組み合わせが考えられる。
一般的に、樹脂硬化物の相構造は相分離速度と架橋反応速度の競争反応で決定される。エポキシ樹脂を例として挙げれば、触媒種及び骨格構造等をコントロールして、特性のそれぞれ異なるエポキシ樹脂を混合し、硬化させることで、平均ドメインサイズが約1μm~10μmという相分離構造である海島構造を形成することが可能となる。
<Curing agent for component (B)>
The resin composition of the present invention may contain a curing agent for the component (B). As the curing agent for the component (B), a known one can be used. Examples thereof include an amine-based curing agent such as dicyandiamide, diaminodiphenylmethane and diaminodiphenylsulphon, an acid anhydride curing agent such as pyromellitic anhydride, trimellitic anhydride and benzophenonetetracarboxylic acid, or a mixture thereof.
Various combinations of the component (B) and the curing agent thereof in the present invention can be considered depending on the component (A) used, the curing conditions, the curing agent, and the curing catalyst.
Generally, the phase structure of the cured resin is determined by the competitive reaction between the phase separation rate and the crosslinking reaction rate. Taking epoxy resin as an example, the sea-island structure is a phase-separated structure with an average domain size of about 1 μm to 10 μm by controlling the catalyst species, skeletal structure, etc., mixing epoxy resins with different characteristics, and curing them. Can be formed.

[フィラー:(C)成分]
本発明の実施の形態に係る樹脂組成物は、(C)成分としてシリカを1種以上含有することが好ましい。また、本発明の実施の形態に係る樹脂組成物は、(C)成分として、(C-1)カップリング処理を施したフィラー(以下、「(C-1)成分」と称する。)を1種以上含有することが好ましい。また、本発明の実施の形態に係る樹脂組成物は、(C)成分として、(C-2)カップリング処理を施していないフィラー(以下、「(C-2)成分」と称する。)を1種以上含有することが好ましい。
[Filler: (C) component]
The resin composition according to the embodiment of the present invention preferably contains at least one type of silica as the component (C). Further, in the resin composition according to the embodiment of the present invention, as the component (C), a filler subjected to the (C-1) coupling treatment (hereinafter, referred to as “(C-1) component”) is used as one. It is preferable to contain more than seeds. Further, in the resin composition according to the embodiment of the present invention, as the component (C), a filler not subjected to the (C-2) coupling treatment (hereinafter, referred to as “component (C-2)”) is used. It is preferable to contain at least one kind.

本発明に用いられる(C)成分は、(C-1)成分を1種以上、且つ、(C-2)成分を1種以上含むことが好ましい。カップリング処理を施したものと施していない(C-2)成分を用いることで、樹脂組成物内のフィラー分散性をコントロールすることができ、(A)成分及び(B)成分の双方の特徴を十分に発現することが可能となる。
(C-1)成分の平均粒径は、0.1μm~1.5μmであることが好ましく、0.2μm~1.2μmであることがより好ましく、0.3μm~1.0μmであることがさらに好ましい。(C-1)成分の平均粒径が0.1μm以上であるとワニス化した際にフィラー同士が分散しやすくなり凝集が起こりにくい傾向があり、1.5μm以下であるとワニス化の際に(C)成分の沈降が起き難い傾向がある。
(C-2)成分の平均粒径は、1.0μm~3.5μmであることが好ましく、1.2μm~3.2μmであることがより好ましく、1.4μm~3.0μmであることがさらに好ましい。(C-2)成分の平均粒径が1.0μm以上であるとフィラー同士が分散しやすくなり凝集が起こりにくい傾向があり、3.5μm以下であるとワニス化の際に(C)成分の沈降が起き難い傾向がある。
ここで、平均粒子径とは、粒子の全体積を100%として粒子径による累積度数分布曲線を求めたとき、体積50%に相当する点の粒子径のことであり、レーザ回折散乱法を用いた粒度分布測定装置等で測定することができる。
The component (C) used in the present invention preferably contains one or more components (C-1) and one or more components (C-2). By using the component (C-2) with and without the coupling treatment, the dispersibility of the filler in the resin composition can be controlled, and the characteristics of both the component (A) and the component (B) are characteristic. Can be fully expressed.
The average particle size of the component (C-1) is preferably 0.1 μm to 1.5 μm, more preferably 0.2 μm to 1.2 μm, and more preferably 0.3 μm to 1.0 μm. More preferred. When the average particle size of the component (C-1) is 0.1 μm or more, the fillers tend to disperse easily when varnished, and aggregation tends to be difficult to occur. When the average particle size is 1.5 μm or less, varnished. (C) There is a tendency that sedimentation of the component is unlikely to occur.
The average particle size of the component (C-2) is preferably 1.0 μm to 3.5 μm, more preferably 1.2 μm to 3.2 μm, and more preferably 1.4 μm to 3.0 μm. More preferred. When the average particle size of the component (C-2) is 1.0 μm or more, the fillers tend to disperse easily and aggregation tends to occur, and when the average particle size is 3.5 μm or less, the component (C) is varnished. It tends to be difficult for sedimentation to occur.
Here, the average particle size is the particle size of a point corresponding to a volume of 50% when the cumulative frequency distribution curve by the particle size is obtained with the total volume of the particles as 100%, and the laser diffraction scattering method is used. It can be measured with the particle size distribution measuring device or the like.

本発明に用いられる(C)成分は、公知のものを使用できる。熱膨張率を下げる目的、難燃性を確保する目的のため無機系フィラーを添加することが好ましい。無機系フィラーとしては、シリカ、アルミナ、酸化チタン、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、ケイ酸カルシウム、酸化カルシウム、酸化マグネシウム、窒化アルミニウム、ほう酸アルミウイスカ、窒化ホウ素、炭化ケイ素等を挙げることができる。中でも、誘電率が低いこと、線膨張率が低いことからシリカを用いることがより好ましい。
本発明で用いられるシリカとしては、湿式法又は乾式法で合成された各種合成シリカ又は珪石を破砕した破砕シリカ、一度溶融させた溶融シリカ等種々なものを用いることができる。
As the component (C) used in the present invention, known components can be used. It is preferable to add an inorganic filler for the purpose of lowering the thermal expansion rate and ensuring flame retardancy. Examples of the inorganic filler include silica, alumina, titanium oxide, aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, calcium silicate, calcium oxide, magnesium oxide, aluminum nitride, aluminum borate whisker, boron nitride, silicon carbide and the like. Can be mentioned. Above all, it is more preferable to use silica because of its low dielectric constant and low linear expansion rate.
As the silica used in the present invention, various synthetic silicas synthesized by a wet method or a dry method, crushed silica obtained by crushing silica stone, molten silica once melted, and the like can be used.

本発明において、(C)成分の配合比は、全樹脂組成物の固形分の5質量%~40質量%であることが好ましく、10質量%~35質量%であることがより好ましく、15質量%~30質量%であることがさらに好ましい。(C)成分の配合比が40質量%以下であることで、絶縁性樹脂が脆くなることがなく、(A)成分の架橋性官能基を共重合した高分子アクリルポリマーの有する低弾性、柔軟性が十分に得られる傾向がある。また、(C)成分の配合比が5質量%以上であることで、線膨張率が低くなり十分な耐熱性が得られる傾向がある。
本明細書において、「固形分」とは、溶媒等の揮発する物質を除いた不揮発分のことであり、該樹脂組成物を乾燥させた際に、揮発せずに残る成分を示し、室温で液状、水飴状及びワックス状のものも含む。ここで、本明細書において室温とは25℃を示す。
In the present invention, the compounding ratio of the component (C) is preferably 5% by mass to 40% by mass, more preferably 10% by mass to 35% by mass, and 15% by mass of the solid content of the total resin composition. It is more preferably% to 30% by mass. When the compounding ratio of the component (C) is 40% by mass or less, the insulating resin does not become brittle, and the polymer acrylic polymer copolymerized with the crosslinkable functional group of the component (A) has low elasticity and flexibility. There is a tendency to obtain sufficient sex. Further, when the compounding ratio of the component (C) is 5% by mass or more, the linear expansion rate tends to be low and sufficient heat resistance tends to be obtained.
In the present specification, the "solid content" is a non-volatile content excluding a volatile substance such as a solvent, and indicates a component that remains unvolatile when the resin composition is dried, and at room temperature. Includes liquid, starch syrup and waxy ones. Here, the room temperature is 25 ° C. in the present specification.

<硬化促進剤>
樹脂組成物は、硬化促進剤を含んでもよい。硬化促進剤としては、特に限定されるものではないが、アミン類、又はイミダゾール類が好ましい。アミン類は、ジシアンジアミド、ジアミノジフェニルエタン、グアニル尿素等を例示することができる。イミダゾール類は、2-フェニルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-フェニルイミダゾリウムトリメリテイト、ベンゾイミダゾール等を例示することができる。
硬化促進剤の配合量は、例えば、樹脂組成物におけるオキシラン環の総量に応じて決定することができるが、一般的に樹脂組成物の樹脂固形分100質量部中、0.01質量部~10質量部とすることが好ましく、0.02質量部~9.0質量部であることがより好ましく、0.03質量部~8.0質量部であることがさらに好ましい。
<Curing accelerator>
The resin composition may contain a curing accelerator. The curing accelerator is not particularly limited, but amines or imidazoles are preferable. Examples of amines include dicyandiamide, diaminodiphenylethane, guanylurea and the like. The imidazoles include 2-phenylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-undecylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-phenylimidazolium trimellitate, Benzoimidazole and the like can be exemplified.
The blending amount of the curing accelerator can be determined, for example, according to the total amount of the oxylan ring in the resin composition, but is generally 0.01 part by mass to 10 parts by mass in 100 parts by mass of the resin solid content of the resin composition. It is preferably 0.02 parts by mass to 9.0 parts by mass, more preferably 0.03 parts by mass to 8.0 parts by mass.

<その他成分>
本発明に係る樹脂組成物は、必要に応じて、例えば、架橋剤、難燃剤、流動調整剤、導電性粒子、カップリング剤、顔料、レベリング剤、消泡剤、イオントラップ剤及び酸化防止剤等を含んでいてもかまわず、公知のものを用いることができる。
<Other ingredients>
The resin composition according to the present invention may be, for example, a cross-linking agent, a flame retardant, a flow conditioner, a conductive particle, a coupling agent, a pigment, a leveling agent, a defoaming agent, an ion trapping agent and an antioxidant. Any known substance may be used regardless of the inclusion of the above.

<溶剤>
本発明の樹脂組成物を用いて、プリプレグ等を製造する場合、本発明の樹脂組成物の成分が有機溶媒に溶解又は分散した状態のワニスにしてもよい。
本発明の樹脂組成物をワニスにする際に用いられる有機溶剤としては、特に制限されるものではないが、ケトン系、芳香族炭化水素系、エステル系、アミド系、アルコール系等が用いられる。
ケトン系溶剤としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等が挙げられる。
芳香族炭化水素系溶媒としては、例えば、トルエン、キシレン等が挙げられる。
エステル系溶剤としては、例えば、メトキシエチルアセテート、エトキシエチルアセテート、ブトキシエチルアセテート、酢酸エチル等が挙げられる。
アミド系溶剤としては、例えば、N-メチルピロリドン、ホルムアミド、N-メチルホルムアミド、N,N-ジメチルアセトアミド等が挙げられる。
アルコール系溶剤としては、例えば、メタノール、エタノール、エチレングリコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、ジエチレングリコール、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、トリエチレングリコール、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、プロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノプロピルエーテル等が挙げられる。
これらの有機溶剤は1種又は2種以上を混合して用いてもよい。
<Solvent>
When a prepreg or the like is produced using the resin composition of the present invention, the varnish may be a varnish in which the components of the resin composition of the present invention are dissolved or dispersed in an organic solvent.
The organic solvent used when making the resin composition of the present invention into a varnish is not particularly limited, but a ketone type, an aromatic hydrocarbon type, an ester type, an amide type, an alcohol type and the like are used.
Examples of the ketone solvent include acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone and the like.
Examples of the aromatic hydrocarbon solvent include toluene, xylene and the like.
Examples of the ester solvent include methoxyethyl acetate, ethoxyethyl acetate, butoxyethyl acetate, ethyl acetate and the like.
Examples of the amide-based solvent include N-methylpyrrolidone, formamide, N-methylformamide, N, N-dimethylacetamide and the like.
Examples of the alcohol solvent include methanol, ethanol, ethylene glycol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, diethylene glycol, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, triethylene glycol, and propylene glycol monomethyl ether. Examples thereof include dipropylene glycol monomethyl ether, propylene glycol monopropyl ether, and dipropylene glycol monopropyl ether.
These organic solvents may be used alone or in admixture of two or more.

[相分離構造]
本発明における相分離構造とは、海島構造、連続球状構造、複合分散相構造、共連続相構造であって、島相の平均ドメインサイズは1μm~10μmであり、好ましくは1.5μm~9μmであり、より好ましくは2μm~8μmである。
島相の平均ドメインサイズが1μm未満であると、熱硬化性樹脂(B)の持つ良好な絶縁信頼性及び高耐熱性が発現し難い傾向にある。また、比較的金属箔との接着強度が弱いアクリルポリマーの表面積が大きくなり、絶縁層と金属箔との良好な接着強度が得られない傾向にある。
また、島相の平均ドメインサイズが10μmを超えると、(A)成分の持つ低弾性が発現し難い傾向にある。
ここで、島相の平均ドメインサイズとは、熱硬化させた当該樹脂組成物の断面をミクロトームにて平滑化した後、電子顕微鏡により得られた断面構造から、70個以上の島相について、最大幅と最小幅をそれぞれ測定し、その平均値を算出した。
[Phase separation structure]
The phase-separated structure in the present invention is a sea-island structure, a continuous spherical structure, a composite dispersed phase structure, and a co-continuous phase structure, and the average domain size of the island phase is 1 μm to 10 μm, preferably 1.5 μm to 9 μm. Yes, more preferably 2 μm to 8 μm.
When the average domain size of the island phase is less than 1 μm, it tends to be difficult to exhibit the good insulation reliability and high heat resistance of the thermosetting resin (B). In addition, the surface area of the acrylic polymer, which has a relatively weak adhesive strength with the metal foil, becomes large, and there is a tendency that good adhesive strength between the insulating layer and the metal foil cannot be obtained.
Further, when the average domain size of the island phase exceeds 10 μm, the low elasticity of the component (A) tends to be difficult to develop.
Here, the average domain size of the island phase is the maximum for 70 or more island phases from the cross-sectional structure obtained by an electron microscope after smoothing the cross section of the thermosetting resin composition with a microtome. The large and minimum widths were measured respectively, and the average value was calculated.

なお、相分離構造としての海島構造、連続球状構造、複合分散相構造、及び共連続相構造(連続相構造ともいう)については、例えば、「ポリマーアロイ」第325頁(1993)東京化学同人に、連続球状構造については、例えば、Keizo Yamanaka and Takashi Iniue,POLYMER,Vol.30,pp.662(1989)に詳しく述べられている。 Regarding the sea-island structure, continuous spherical structure, composite dispersed phase structure, and co-continuous phase structure (also referred to as continuous phase structure) as the phase-separated structure, for example, "Polymer Alloy", p. 325 (1993), Tokyo Chemical Co., Ltd. , The continuous spherical structure is described in detail in, for example, Keizo Yamanaka and Takashi Iniue, POLYMER, Vol.30, pp.662 (1989).

図1~図4に、それぞれ連続球状構造、海島構造、複合分散相構造、及び共連続相構造を表すモデル図を示す。 1 to 4 show model diagrams showing a continuous spherical structure, a sea-island structure, a composite dispersed phase structure, and a co-continuous phase structure, respectively.

このような微細な相分離構造は、樹脂組成物の触媒種、反応温度等の硬化条件、又は樹脂組成物の各成分間の相溶性を制御することにより得られる。相分離を発生しやすくするためには、例えば、アルキル基置換のエポキシ樹脂を用いて高分子アクリルポリマーとの相溶性を低下させたり、同一の組成系の場合には、硬化温度を高くしたり、触媒種の選択によって硬化速度を遅くすることによって達成できる。 Such a fine phase separation structure can be obtained by controlling the catalyst species of the resin composition, the curing conditions such as the reaction temperature, or the compatibility between each component of the resin composition. In order to facilitate phase separation, for example, an epoxy resin substituted with an alkyl group may be used to reduce the compatibility with the high molecular weight acrylic polymer, or in the case of the same composition system, the curing temperature may be raised. This can be achieved by slowing the curing rate by selecting the catalyst type.

図5に、このようにして得られた海島構造を有する樹脂組成物の一例の断面構造を表す電子顕微鏡写真を示す。図示するように、樹脂組成物は、アクリルポリマー相とエポキシ樹脂リッチ相とからなる海島構造を有している。また、エポキシ樹脂からなる島相の平均ドメインサイズは、約1μm~10μmである。このような相分離構造を有することにより、アクリルポリマーの有する低弾性と、熱硬化性樹脂の有する高い絶縁信頼性、高耐熱性、金属箔との高い接着性の双方の優れた特徴を兼ね備えることができる。 FIG. 5 shows an electron micrograph showing an example cross-sectional structure of the resin composition having a sea-island structure thus obtained. As shown in the figure, the resin composition has a sea-island structure composed of an acrylic polymer phase and an epoxy resin rich phase. The average domain size of the island phase made of epoxy resin is about 1 μm to 10 μm. By having such a phase-separated structure, it has excellent features of both low elasticity of acrylic polymer, high insulation reliability of thermosetting resin, high heat resistance, and high adhesion to metal leaf. Can be done.

上述のように,本発明に用いられる樹脂組成物は、これに(C)成分を添加しない場合は,海島構造又は連続球状構造を形成するが、(C)成分を添加することにより、海島構造又は連続球状構造に加えて、微細な共連続相構造又は複合分散相構造の樹脂絶縁層も形成され得る。図6に、複合分散相構造を有する絶縁性樹脂の一例の断面構造を表す電子顕微鏡写真を示す。 As described above, the resin composition used in the present invention forms a sea-island structure or a continuous spherical structure when the component (C) is not added thereto, but the sea-island structure is formed by adding the component (C). Alternatively, in addition to the continuous spherical structure, a resin insulating layer having a fine co-continuous phase structure or a composite dispersed phase structure can also be formed. FIG. 6 shows an electron micrograph showing an example cross-sectional structure of an insulating resin having a composite dispersed phase structure.

[プリプレグの製造方法]
本発明のプリプレグは、上述の樹脂組成物のワニスを基材に含浸させ、例えば、80℃~180℃の範囲で乾燥させて製造することができる。
基材は、金属張積層板、プリント回路基板等を製造する際に用いられるものであれば特に制限されないが、通常、織布、不織布等の繊維基材が用いられる。繊維基材の材質としては、例えば、ガラス、アルミナ、アスベスト、ボロン、シリカアルミナガラス、シリカガラス、チラノ、炭化ケイ素、窒化ケイ素、ジルコニア等の無機繊維、アラミド、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリエーテルサルフォン、カーボン、セルロース等の有機繊維及びこれら混抄系などが挙げられる。これらの中でも、ガラスクロスが好ましく、厚みが100μm以下のガラスクロスがより好ましく、厚みが50μm以下のガラスクロスが特に好ましい。ガラスクロスの厚みが50μm以下であると、任意に折り曲げ可能なプリント回路基板を得ることができ、製造プロセス上での温度、吸湿等に伴う寸法変化が小さいため好ましい。
[Manufacturing method of prepreg]
The prepreg of the present invention can be produced by impregnating a base material with the varnish of the above-mentioned resin composition and drying it in the range of, for example, 80 ° C to 180 ° C.
The base material is not particularly limited as long as it is used for manufacturing a metal-clad laminate, a printed circuit board, or the like, but a fiber base material such as a woven fabric or a non-woven fabric is usually used. Examples of the material of the fiber base material include glass, alumina, asbestos, boron, silica alumina glass, silica glass, tyranno, silicon carbide, silicon nitride, inorganic fibers such as zirconia, aramid, polyether ether ketone, polyetherimide, and the like. Examples thereof include organic fibers such as polyether sulfone, carbon and cellulose, and mixed abstracts thereof. Among these, glass cloth is preferable, glass cloth having a thickness of 100 μm or less is more preferable, and glass cloth having a thickness of 50 μm or less is particularly preferable. When the thickness of the glass cloth is 50 μm or less, a printed circuit board that can be bent arbitrarily can be obtained, and dimensional changes due to temperature, moisture absorption, etc. in the manufacturing process are small, which is preferable.

得られるプリプレグのワニスに使用した有機溶剤が80質量%以上揮発していることが好ましい。ワニスに使用した有機溶剤が80質量%以上揮発していれば、製造方法、乾燥条件等も制限はなく、乾燥時の温度は、例えば、80℃~180℃、時間はワニスのゲル化時間との兼ね合いで適宜設定される。また、ワニスの含浸量は、ワニス固形分と基材の総量に対して、ワニス固形分が30質量%~80質量%になるようにされることが好ましい。 It is preferable that the organic solvent used in the varnish of the obtained prepreg is volatilized in an amount of 80% by mass or more. As long as the organic solvent used for the varnish is volatilized by 80% by mass or more, there are no restrictions on the manufacturing method, drying conditions, etc. It is set appropriately in consideration of the above. Further, the impregnation amount of the varnish is preferably set so that the varnish solid content is 30% by mass to 80% by mass with respect to the total amount of the varnish solid content and the base material.

(金属箔付きプリプレグ)
本発明の金属箔付きプリプレグは、上述のプリプレグと金属箔とを積層してなることが好ましい。
本発明の金属箔付きプリプレグは、例えば、本発明のプリプレグの片面又は両面に金属箔を重ね、通常130℃~250℃、好ましくは150℃~230℃の範囲の温度で、通常0.5MPa~20MPa、好ましくは1MPa~8MPaの範囲の圧力で加熱加圧することで製造することができる。加熱加圧の方法についても、特に限定されるものではなく、例えば、多段プレス、多段真空プレス、連続成形、オートクレーブ成形機等を使用することができる。
また、本発明の金属箔付きプリプレグを製造する際に用いられる金属箔としては、特に限定されるものではないが、例えば、銅箔、アルミニウム箔が一般的に用いられる。金属箔の厚みも特に限定されるものではなく、1μm~200μmのものを使用できる。その他にも、例えば、ニッケル、ニッケル‐リン、ニッケル‐スズ合金、ニッケル‐鉄合金、鉛、鉛‐スズ合金等を中間層とし、この両面に0.5μm~15μmの銅層と10μm~300μmの銅層を設けた3層構造の複合箔あるいはアルミニウムと銅箔を複合した2層構造複合箔を用いることができる。
(Prepreg with metal leaf)
The prepreg with a metal foil of the present invention is preferably formed by laminating the above-mentioned prepreg and the metal foil.
In the prepreg with a metal foil of the present invention, for example, a metal foil is laminated on one side or both sides of the prepreg of the present invention, and the temperature is usually in the range of 130 ° C. to 250 ° C., preferably 150 ° C. to 230 ° C., and usually 0.5 MPa to It can be produced by heating and pressurizing at a pressure in the range of 20 MPa, preferably 1 MPa to 8 MPa. The method of heating and pressurizing is also not particularly limited, and for example, a multi-stage press, a multi-stage vacuum press, continuous forming, an autoclave forming machine and the like can be used.
The metal foil used in producing the prepreg with a metal foil of the present invention is not particularly limited, but for example, a copper foil or an aluminum foil is generally used. The thickness of the metal foil is not particularly limited, and one having a thickness of 1 μm to 200 μm can be used. In addition, for example, nickel, nickel-phosphorus, nickel-tin alloy, nickel-iron alloy, lead, lead-tin alloy, etc. are used as intermediate layers, and a copper layer of 0.5 μm to 15 μm and a copper layer of 10 μm to 300 μm are used on both sides thereof. A three-layer structure composite foil provided with a copper layer or a two-layer structure composite foil in which aluminum and copper foil are composited can be used.

(積層板)
本発明の積層板は、上述のプリプレグを複数有するものであることが好ましい。
本発明の積層板は、例えば、本発明のプリプレグを積層し加熱加圧してなるものである。加熱加圧の方法は、特に限定されるものではなく、例えば、多段プレス、多段真空プレス、連続成形、オートクレーブ成形機等を使用することができる。
(Laminated board)
The laminated board of the present invention preferably has a plurality of the above-mentioned prepregs.
The laminated board of the present invention is made by laminating, for example, the prepreg of the present invention and heating and pressurizing. The method of heating and pressurizing is not particularly limited, and for example, a multi-stage press, a multi-stage vacuum press, continuous forming, an autoclave forming machine and the like can be used.

(金属張積層板)
本発明の金属張積層板は、上述の積層板がさらに金属箔を有するものであることが好ましい。
本発明の金属張積層板は、例えば、本発明の積層板の片面又は両面に金属箔を重ね、通常130℃~250℃、好ましくは150℃~230℃の範囲の温度で、通常0.5MPa~20MPa、好ましくは1MPa~8MPaの範囲の圧力で加熱加圧することで製造することができる。加熱加圧の方法についても、特に限定されるものではなく、例えば、多段プレス、多段真空プレス、連続成形、オートクレーブ成形機等を使用することができる。
また、本発明の金属張積層板を製造する際に用いられる金属箔としては、特に限定されるものではないが、例えば、銅箔、アルミニウム箔が一般的に用いられる。金属箔の厚みも特に限定されるものではなく、1μm~200μmのものを使用できる。その他にも、例えば、ニッケル、ニッケル-リン、ニッケル-スズ合金、ニッケル-鉄合金、鉛、鉛-スズ合金等を中間層とし、この両面に0.5μm~15μmの銅層と10μm~300μmの銅層を設けた3層構造の複合箔あるいはアルミニウムと銅箔を複合した2層構造複合箔を用いることができる。
(Metal-clad laminate)
In the metal-clad laminate of the present invention, it is preferable that the above-mentioned laminate further has a metal foil.
In the metal-clad laminate of the present invention, for example, a metal foil is laminated on one side or both sides of the laminate of the present invention, and the temperature is usually in the range of 130 ° C to 250 ° C, preferably 150 ° C to 230 ° C, and is usually 0.5 MPa. It can be produced by heating and pressurizing at a pressure in the range of about 20 MPa, preferably 1 MPa to 8 MPa. The method of heating and pressurizing is also not particularly limited, and for example, a multi-stage press, a multi-stage vacuum press, continuous forming, an autoclave forming machine and the like can be used.
Further, the metal foil used in manufacturing the metal-clad laminate of the present invention is not particularly limited, but for example, a copper foil or an aluminum foil is generally used. The thickness of the metal foil is not particularly limited, and one having a thickness of 1 μm to 200 μm can be used. In addition, for example, nickel, nickel-phosphorus, nickel-tin alloy, nickel-iron alloy, lead, lead-tin alloy, etc. are used as intermediate layers, and a copper layer of 0.5 μm to 15 μm and a copper layer of 10 μm to 300 μm are placed on both sides thereof. A three-layer structure composite foil provided with a copper layer or a two-layer structure composite foil in which aluminum and copper foil are composited can be used.

(プリント回路基板)
本発明のプリント回路基板は、上述の積層板がさらに回路を有するものであることが好ましい。回路は、本発明の積層板を回路加工してなるものであることが好ましい。
本発明のプリント回路基板の製造方法は、特に限定されるものではないが、片面又は両面に金属箔が設けられた本発明の積層板(金属張積層板)の金属箔に回路(配線)加工を施すことによって製造することができる。
(Printed circuit board)
In the printed circuit board of the present invention, it is preferable that the above-mentioned laminated board further has a circuit. The circuit is preferably formed by processing the laminated board of the present invention.
The method for manufacturing the printed circuit board of the present invention is not particularly limited, but circuit (wiring) processing is performed on the metal foil of the laminated plate (metal-clad laminated plate) of the present invention in which the metal foil is provided on one side or both sides. Can be manufactured by applying.

以下、実施例を示し、本発明について具体的に説明するが、本発明はこれらに限定されるものではない。なお、下記例中の数値は特に断らない限り、質量%を意味する。 Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited thereto. Unless otherwise specified, the numerical values in the following examples mean mass%.

[実施例1~実施例13]
(A)成分、(B-1)成分、(B-2)成分、(C-1)成分、(C-2)成分を表1に示す配合量で配合し、メチルエチルケトンに溶解後、(D)成分、カップリング剤を表1に従って配合し、不揮発分40%の樹脂組成物ワニスを得た。
[Examples 1 to 13]
The component (A), the component (B-1), the component (B-2), the component (C-1), and the component (C-2) are blended in the blending amounts shown in Table 1, dissolved in methyl ethyl ketone, and then (D). ) Ingredients and coupling agents were blended according to Table 1 to obtain a resin composition varnish having a non-volatile content of 40%.

[比較例1~比較例10]
(A)成分、(B-1)成分、(B-2)成分、(C-1)成分、(C-2)成分を表2に示す配合量で配合し、メチルエチルケトンに溶解後、成分(D)を表2に従って配合し、不揮発分40%の樹脂組成物ワニスを得た。
[Comparative Example 1 to Comparative Example 10]
The components (A), (B-1), (B-2), (C-1), and (C-2) are blended in the blending amounts shown in Table 2, dissolved in methyl ethyl ketone, and then the components ( D) was blended according to Table 2 to obtain a resin composition varnish having a non-volatile content of 40%.

[プリプレグ、樹脂付き銅箔、金属張積層板の作製]
(1)プリプレグの作製
実施例1~13、比較例1~10で作製したワニスを厚さ0.028mmのガラス布「1037」(旭シュエーベル株式会社製、商品名)に含浸後、140℃にて10分間加熱して、乾燥しプリプレグを得た。
(2)樹脂付き銅箔の作製
実施例1~13、比較例1~10で作製したワニスを厚さ18μmの電解銅箔「YGP-18」(日本電解株式会社社製、商品名)に塗工機により塗工成型し、140℃にて約6分熱風乾燥させ、塗布厚さ50μmの樹脂付き銅箔を作製した。
(3)金属張積層板(銅張積層板)の作製
4枚重ねた(1)で作成したプリプレグの両側に厚さ18μmの電解銅箔「YGP-18」(日本電解株式会社社製、商品名)を接着面がプリプレグと合わさるように重ね、200℃にて60分間、4MPaの真空プレス条件で両面銅張積層板を作製した。また、樹脂付き銅箔は樹脂面が向き合うように重ね、200℃にて60分間、4MPaの真空プレス条件で両面銅張積層板を作製した。
[Manufacturing of prepreg, copper foil with resin, metal-clad laminate]
(1) Preparation of prepreg The varnish produced in Examples 1 to 13 and Comparative Examples 1 to 10 is impregnated into a 0.028 mm thick glass cloth "1037" (manufactured by Asahi Schebel Co., Ltd., trade name) and then heated to 140 ° C. The mixture was heated for 10 minutes and dried to obtain a prepreg.
(2) Preparation of Copper Foil with Resin The varnish prepared in Examples 1 to 13 and Comparative Examples 1 to 10 is applied to an electrolytic copper foil "YGP-18" (manufactured by Nippon Denkai Co., Ltd., trade name) having a thickness of 18 μm. It was coated and molded by a machine, and dried with hot air at 140 ° C. for about 6 minutes to prepare a copper foil with a resin having a coating thickness of 50 μm.
(3) Preparation of metal-clad laminated board (copper-clad laminated board) Electrolytic copper foil "YGP-18" with a thickness of 18 μm on both sides of the prepreg made by stacking four sheets (1) (manufactured by Nippon Denkai Co., Ltd., product) Name) was laminated so that the adhesive surface was aligned with the prepreg, and a double-sided copper-clad laminate was produced under vacuum pressing conditions of 4 MPa at 200 ° C. for 60 minutes. Further, the copper foils with resin were stacked so that the resin surfaces faced each other, and a double-sided copper-clad laminate was produced under vacuum press conditions of 4 MPa at 200 ° C. for 60 minutes.

[ワニス、プリプレグ及び金属張積層板の評価方法]
(1)ワニス性
ワニス性の評価は、作製したワニスを透明な容器に受け、24時間後の外観を目視により観察し、ワニス成分の分離、及び、沈降物について観察した。ワニス色相が均一であれば分離していないと判断した。また、容器の底に沈降物の堆積が目視で確認できない場合は沈降物なしと判断した。結果を表1、2に示す。
(2)プリプレグのタック性
プリプレグのタック性の評価は、作製したプリプレグを250mm×250mmサイズに加工し100枚重ね、密閉封入可能な袋に入れたものを、温度25℃、湿度70%の恒温恒湿環境に投入し、プリプレグ同士の密着発生有無を観察した。48時間経過後に、1番下に配置したプリプレグとそれと接するプリプレグが剥がれ、おのおのが投入前の表面を維持している場合は、密着発生なしとし、タック性が問題ないと判断した。結果を表1、2に示す。
(3)プリプレグの外観(凝集物の有無)
プリプレグの外観の評価は、20倍の拡大鏡を用いて凝集物の発生について観察した。結果を表1、2に示す。
(4)貯蔵弾性率
貯蔵弾性率の評価は、樹脂付き銅箔を樹脂面が向き合うように重ね作製した銅張積層板を全面エッチングした積層板を、幅5mm×長さ30mmに切断し、動的粘弾性測定装置(株式会社UBM社製)を用いて貯蔵弾性率を算出した。25℃の貯蔵弾性率が2.0×10Pa以下であれば応力緩和効果を発現可能と判断した。結果を表1、2に示す。
(5)引張り伸び率
引張り伸び率の評価は、樹脂付き銅箔を樹脂面が向き合うように重ね作製した銅張積層板を全面エッチングした積層板を、幅10mm×長さ100mmに切断し、オートグラフ(島津製作所製)を用いて引張り伸び率を算出した。25℃の引張り伸び率が3%以上であれば応力緩和効果を発現可能と判断した。結果を表1、2に示す。
(6)耐熱性
4枚重ねたプリプレグから作製した両面銅張積層板を50mm四方の正方形に切り出して試験片を得た。その試験片を260℃のはんだ浴中に浸漬して、その時点から試験片の膨れが目視で認められる時点までに経過した時間を測定した。経過時間の測定は300秒までとし、300秒以上は耐熱性が十分であると判断した。結果を表1、2に示す。
(7)基板に対する金属箔接着性の評価
4枚重ねたプリプレグから作製した両面銅張積層板の銅箔を部分的にエッチングして、3mm幅の銅箔ラインを形成した。次に、銅箔ラインを、接着面に対して90°方向に50mm/分の速度で引き剥がした際の荷重を測定し、銅箔引き剥がし強さとした。銅箔引き剥がし強さが結果を0.5kN/m以上であれば金属箔との接着性は十分であると判断した。表1、2に示す。
(8)相構造観察試験
島相の平均ドメインサイズは、樹脂付き銅箔を樹脂面が向き合うように重ね作製した銅張積層板の樹脂絶縁層の断面をミクロトームにて平滑化した後、過硫酸塩溶液でエッチングし、電子顕微鏡により得られた断面構造から、70個以上の島相について、最大幅と最小幅をそれぞれ測定し,その平均値を算出した。結果を表1、2に示す。
(9)電気絶縁信頼性
電気絶縁信頼性は、4枚重ねたプリプレグから作製した両面銅張積層板をスルーホール穴壁間隔が350μmとなるよう加工したテストパターンを用いて、各試料について400穴の絶縁抵抗を経時的に測定した。測定条件は、85℃/85%RH雰囲気中100V印加して行い、導通破壊が発生するまでの時間を測定した。測定時間は2000時間までとし、1000時間以上は電気絶縁信頼性が十分であると判断した。結果を表1、2に示す。
[Evaluation method for varnish, prepreg and metal-clad laminate]
(1) Varnish property In the evaluation of varnish property, the prepared varnish was received in a transparent container, the appearance after 24 hours was visually observed, and the separation of the varnish component and the sediment were observed. If the varnish hue was uniform, it was judged that the varnish was not separated. If the deposit of sediment could not be visually confirmed on the bottom of the container, it was judged that there was no sediment. The results are shown in Tables 1 and 2.
(2) Tackiness of prepreg The tackiness of prepreg is evaluated by processing the prepared prepreg into a size of 250 mm x 250 mm, stacking 100 sheets, and putting it in a bag that can be sealed and sealed at a constant temperature of 25 ° C and 70% humidity. It was put into a constant humidity environment and the presence or absence of adhesion between prepregs was observed. After 48 hours had passed, if the prepreg placed at the bottom and the prepreg in contact with it were peeled off and each maintained the surface before loading, it was judged that no adhesion occurred and there was no problem with tackiness. The results are shown in Tables 1 and 2.
(3) Appearance of prepreg (presence or absence of agglomerates)
Evaluation of the appearance of the prepreg was made by observing the formation of aggregates using a 20x magnifying glass. The results are shown in Tables 1 and 2.
(4) Storage elastic modulus The storage elastic modulus is evaluated by cutting a laminated plate obtained by laminating copper foils with resin so that the resin surfaces face each other and etching the entire surface of the copper-clad laminate into a width of 5 mm and a length of 30 mm. The storage elastic modulus was calculated using a dynamic viscoelasticity measuring device (manufactured by UBM Co., Ltd.). It was judged that the stress relaxation effect could be exhibited when the storage elastic modulus at 25 ° C. was 2.0 × 109 Pa or less. The results are shown in Tables 1 and 2.
(5) Tensile elongation ratio The evaluation of the tensile elongation ratio is performed by cutting a laminated plate made by laminating copper foils with resin so that the resin surfaces face each other and etching the entire surface of the copper-clad laminate to a width of 10 mm × length of 100 mm. The tensile elongation was calculated using a graph (manufactured by Shimadzu Corporation). It was judged that the stress relaxation effect could be exhibited if the tensile elongation at 25 ° C. was 3% or more. The results are shown in Tables 1 and 2.
(6) Heat resistance A double-sided copper-clad laminate prepared from four stacked prepregs was cut into a 50 mm square to obtain a test piece. The test piece was immersed in a solder bath at 260 ° C., and the time elapsed from that point to the point where swelling of the test piece was visually observed was measured. The elapsed time was measured up to 300 seconds, and it was judged that the heat resistance was sufficient for 300 seconds or more. The results are shown in Tables 1 and 2.
(7) Evaluation of Metal Leaf Adhesiveness to Substrate The copper foil of a double-sided copper-clad laminate prepared from four stacked prepregs was partially etched to form a copper foil line having a width of 3 mm. Next, the load when the copper foil line was peeled off at a speed of 50 mm / min in the 90 ° direction with respect to the adhesive surface was measured to determine the copper foil peeling strength. If the peeling strength of the copper foil was 0.5 kN / m or more, it was judged that the adhesiveness with the metal foil was sufficient. It is shown in Tables 1 and 2.
(8) Phase structure observation test The average domain size of the island phase is determined by smoothing the cross section of the resin insulating layer of a copper-clad laminate made by stacking copper foils with resin so that the resin surfaces face each other with a microtome, and then persulfating. Etching with a salt solution was performed, and the maximum width and the minimum width were measured for 70 or more island phases from the cross-sectional structure obtained by an electron microscope, and the average value was calculated. The results are shown in Tables 1 and 2.
(9) Electrical insulation reliability The electrical insulation reliability is 400 holes for each sample using a test pattern in which a double-sided copper-clad laminate made from four stacked prepregs is processed so that the through-hole hole wall spacing is 350 μm. Insulation resistance was measured over time. The measurement conditions were such that 100 V was applied in an atmosphere of 85 ° C./85% RH, and the time until conduction failure occurred was measured. The measurement time was up to 2000 hours, and it was judged that the electrical insulation reliability was sufficient for 1000 hours or more. The results are shown in Tables 1 and 2.

Figure 0006996500000001
Figure 0006996500000001

Figure 0006996500000002
Figure 0006996500000002

※1:商品名「KH-CT-865」、日立化成株式会社製、(重量平均分子量:Mw=45×10~65×10、式(1)で表される化合物として、エステル部分に炭素数5~10のシクロアルキル基を有するメタクリル酸エステルを含有且つ、構造中にニトリル基を含まないアクリルポリマー)
※2:商品名「HTR-860P-3」、ナガセケムテックス株式会社製、(重量平均分子量:Mw=80×10、構造中にニトリル基を含まないアクリルポリマー)
※3:商品名「HAN5-M90S」、根上工業株式会社製、(重量平均分子量:Mw=90×10、構造中にニトリル基を含むアクリルポリマー)
※4:商品名「N770」、DIC株式会社製、(フェノールノボラック型エポキシ樹脂)
※5:商品名「EPICLON 153」、DIC株式会社製、(テトラブロモビスフェノールA型エポキシ樹脂)
※6:商品名「NC-3000H」、日本化薬株式会社製、(ビフェニルアラルキル型エポキシ樹脂)
※7:商品名「4005P」、三菱化学株式会社製、(ビスフェノールF型エポキシ樹脂)
※8:商品名「KA-1165」、DIC株式会社製、(クレゾールノボラック型樹脂)
※9:商品名「SC-2050KC」、アドマテック株式会社製、(溶融球状シリカ、シランカップリング処理、平均粒子径0.5μm)
※10:商品名「HK-001」、河合石灰株式会社製、(水酸化アルミニウム、平均粒子径4.0μm)
※11:商品名「F05-12」、福島窯業株式会社製、(破砕シリカ、平均粒子径2.5μm)
※12:商品名「F05-30」、福島窯業株式会社製、(破砕シリカ、平均粒子径4.2μm)
※13:商品名「2PZ」、四国化成工業株式会社製、(2-フェニルイミダゾール)
※14:商品名「A-187」、東レ・ダウコーニング株式会社製、(シランカップリング剤)
* 1: Product name "KH-CT-865", manufactured by Hitachi Kasei Co., Ltd. (weight average molecular weight: Mw = 45 × 10 4 to 65 × 10 4 , as a compound represented by the formula (1) in the ester moiety Acrylic polymer containing a methacrylic acid ester having a cycloalkyl group having 5 to 10 carbon atoms and containing no nitrile group in the structure)
* 2: Product name "HTR-860P-3", manufactured by Nagase ChemteX Corporation (weight average molecular weight: Mw = 80 × 10 4 , acrylic polymer containing no nitrile group in the structure)
* 3: Product name "HAN5-M90S", manufactured by Negami Kogyo Co., Ltd. (weight average molecular weight: Mw = 90 × 10 4 , acrylic polymer containing a nitrile group in the structure)
* 4: Product name "N770", manufactured by DIC Corporation, (phenol novolac type epoxy resin)
* 5: Product name "EPICLON 153", manufactured by DIC Corporation, (Tetrabromobisphenol A type epoxy resin)
* 6: Product name "NC-3000H", manufactured by Nippon Kayaku Co., Ltd. (biphenyl aralkyl type epoxy resin)
* 7: Product name "4005P", manufactured by Mitsubishi Chemical Corporation, (bisphenol F type epoxy resin)
* 8: Product name "KA-1165", manufactured by DIC Corporation, (cresol novolac type resin)
* 9: Product name "SC-2050KC", manufactured by Admatech Co., Ltd. (molten spherical silica, silane coupling treatment, average particle diameter 0.5 μm)
* 10: Product name "HK-001", manufactured by Kawai Lime Co., Ltd. (aluminum hydroxide, average particle size 4.0 μm)
* 11: Product name "F05-12", manufactured by Fukushima Ceramics Co., Ltd. (crushed silica, average particle size 2.5 μm)
* 12: Product name "F05-30", manufactured by Fukushima Ceramics Co., Ltd. (crushed silica, average particle size 4.2 μm)
* 13: Product name "2PZ", manufactured by Shikoku Chemicals Corporation, (2-phenylimidazole)
* 14: Product name "A-187", manufactured by Toray Dow Corning Co., Ltd. (silane coupling agent)

表1から明らかなように、本発明の実施例は低弾性、耐熱性、金属箔との接着性、絶縁信頼性の全てに優れている。一方、比較例は低弾性、耐熱性、金属箔との接着性、絶縁信頼性の全てに優れるものはない。 As is clear from Table 1, the embodiments of the present invention are excellent in all of low elasticity, heat resistance, adhesion to metal foil, and insulation reliability. On the other hand, none of the comparative examples are excellent in low elasticity, heat resistance, adhesiveness to metal foil, and insulation reliability.

本発明の樹脂組成物、プリプレグ、金属箔付きプリプレグ、積層板、金属張積層板及びプリント回路基板によれば、低弾性、高い絶縁信頼性、高耐熱性、金属箔との高い密着性を有する。 According to the resin composition, prepreg, prepreg with metal foil, laminated board, metal-clad laminated board and printed circuit board of the present invention, it has low elasticity, high insulation reliability, high heat resistance, and high adhesion to metal foil. ..

Claims (16)

(A)アクリルポリマーを含む第1相と、(B)熱硬化性樹脂を含む島相としての第2相とが相分離構造を形成し、前記島相の平均ドメインサイズが1μm~10μmであり、(C)フィラーを含有する樹脂組成物が含浸されたプリプレグであって、
前記(A)アクリルポリマーの重量平均分子量が、300,000~1,500,000であり、
前記(B)熱硬化性樹脂が(B-1)エポキシ樹脂を含み、
前記(A)アクリルポリマーの配合量が、前記(A)アクリルポリマーと前記(B)熱硬化性樹脂の総量を100質量部としたとき10~70質量部である、プリプレグ
The first phase containing (A) an acrylic polymer and the second phase as an island phase containing (B) a thermosetting resin form a phase-separated structure, and the average domain size of the island phase is 1 μm to 10 μm. , (C) A prepreg impregnated with a resin composition containing a filler .
The weight average molecular weight of the acrylic polymer (A) is 300,000 to 1,500,000.
The (B) thermosetting resin contains (B-1) epoxy resin,
A prepreg in which the blending amount of the (A) acrylic polymer is 10 to 70 parts by mass when the total amount of the (A) acrylic polymer and the (B) thermosetting resin is 100 parts by mass .
前記(A)アクリルポリマーの配合量が、前記(A)アクリルポリマーと前記(B)熱硬化性樹脂の総量を100質量部としたとき1560質量部である、請求項1に記載のプリプレグ。 The prepreg according to claim 1, wherein the blending amount of the (A) acrylic polymer is 15 to 60 parts by mass when the total amount of the (A) acrylic polymer and the (B) thermosetting resin is 100 parts by mass. .. 前記(C)フィラーとして、(C-1)カップリング処理されたフィラーを含有する、請求項1又は2に記載のプリプレグ。 The prepreg according to claim 1 or 2, which contains (C-1) a coupled filler as the (C) filler. 前記(C)フィラーとして、(C-2)カップリング処理されていないフィラーを含有する、請求項1~3のいずれか1項に記載のプリプレグ。 The prepreg according to any one of claims 1 to 3, which contains (C-2) a filler that has not been coupled as the (C) filler. 前記(C-2)フィラーの体積平均粒径が、1.0μm~3.5μmである請求項4に記載のプリプレグ。The prepreg according to claim 4, wherein the volume average particle size of the (C-2) filler is 1.0 μm to 3.5 μm. 前記(B)熱硬化性樹脂が、さらに(B-2)フェノール樹脂を含む、請求項1~のいずれか1項に記載のプリプレグ。 The prepreg according to any one of claims 1 to 5 , wherein the (B) thermosetting resin further contains (B-2) a phenol resin. 前記(B-2)フェノール樹脂が、1分子内に2個以上の水酸基を有するフェノール樹脂を含有する、請求項6に記載のプリプレグ。The prepreg according to claim 6, wherein the (B-2) phenol resin contains a phenol resin having two or more hydroxyl groups in one molecule. 前記(B-1)エポキシ樹脂が、1分子内に2個以上のエポキシ基を有するエポキシ樹脂を含有する、請求項1~7のいずれか1項に記載のプリプレグ。 The prepreg according to any one of claims 1 to 7, wherein the (B-1) epoxy resin contains an epoxy resin having two or more epoxy groups in one molecule. 前記(B-1)エポキシ樹脂の重量平均分子量が、200~1,000である、請求項1~8のいずれか1項に記載のプリプレグ。 The prepreg according to any one of claims 1 to 8, wherein the (B-1) epoxy resin has a weight average molecular weight of 200 to 1,000. 前記(B-1)エポキシ樹脂のエポキシ当量が、150~500である、請求項1~9のいずれか1項に記載のプリプレグ。 The prepreg according to any one of claims 1 to 9 , wherein the epoxy equivalent of the (B-1) epoxy resin is 150 to 500. 前記(A)アクリルポリマーの重量平均分子量が、300,0001,100,000である、請求項1~10のいずれか1項に記載のプリプレグ。 The prepreg according to any one of claims 1 to 10, wherein the acrylic polymer (A) has a weight average molecular weight of 300,000 to 1,100,000 . 前記(C)フィラーとして、シリカを含有する、請求項1~11のいずれか1項に記載のプリプレグ。 The prepreg according to any one of claims 1 to 11, which contains silica as the filler (C). 請求項1~12のいずれか1項に記載のプリプレグと金属箔とを積層してなる金属箔付きプリプレグ。 A prepreg with a metal foil obtained by laminating the prepreg according to any one of claims 1 to 12 and a metal foil. 請求項1~12のいずれか1項に記載のプリプレグを複数有する積層板。 A laminated board having a plurality of prepregs according to any one of claims 1 to 12 . 請求項14に記載の積層板がさらに金属箔を有する金属張積層板。 The metal-clad laminate according to claim 14 , further comprising a metal foil. 請求項14に記載の積層板がさらに回路を有するプリント回路基板。 A printed circuit board in which the laminated board according to claim 14 further comprises a circuit.
JP2018516306A 2016-05-13 2016-05-13 Prepreg, prepreg with metal foil, laminated board, metal-clad laminated board and printed circuit board Active JP6996500B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/064253 WO2017195344A1 (en) 2016-05-13 2016-05-13 Prepreg, metal-foil-equipped prepreg, laminate plate, metal-clad laminate plate, and printed circuit board

Publications (2)

Publication Number Publication Date
JPWO2017195344A1 JPWO2017195344A1 (en) 2019-03-22
JP6996500B2 true JP6996500B2 (en) 2022-01-17

Family

ID=60267698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018516306A Active JP6996500B2 (en) 2016-05-13 2016-05-13 Prepreg, prepreg with metal foil, laminated board, metal-clad laminated board and printed circuit board

Country Status (2)

Country Link
JP (1) JP6996500B2 (en)
WO (1) WO2017195344A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019208810A1 (en) * 2018-04-27 2019-10-31 株式会社ブリヂストン Composite prepreg and composite laminate
WO2019208825A1 (en) * 2018-04-27 2019-10-31 株式会社ブリヂストン Composite prepreg and laminate
WO2020100916A1 (en) * 2018-11-14 2020-05-22 株式会社ブリヂストン Reinforced fiber composite resin production method
WO2023199803A1 (en) * 2022-04-12 2023-10-19 Agc株式会社 Liquid composition, prepreg, resin-including metal substrate, and wiring board

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002038022A (en) 2000-07-21 2002-02-06 Toppan Printing Co Ltd Insulating resin composition for multilayer printed wiring board, multilayer printed wiring board using the same, and production method using the same
JP2011162615A (en) 2010-02-05 2011-08-25 Kyocera Chemical Corp Prepreg and metal-clad laminated plate
JP2012211255A (en) 2011-03-31 2012-11-01 Toho Tenax Co Ltd Resin composition, cured matter, prepreg and fiber-reinforced composite material

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5919691B2 (en) * 2011-09-07 2016-05-18 日立化成株式会社 Semiconductor device
JP6277542B2 (en) * 2013-02-28 2018-02-14 パナソニックIpマネジメント株式会社 Prepreg, metal-clad laminate
US9944766B2 (en) * 2014-08-27 2018-04-17 Panasonic Intellectual Property Management Co., Ltd. Prepreg, metal-clad laminated board, and printed wiring board
JP6451204B2 (en) * 2014-10-22 2019-01-16 日立化成株式会社 Resin composition, prepreg, metal foil with resin, and laminate and printed wiring board using these

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002038022A (en) 2000-07-21 2002-02-06 Toppan Printing Co Ltd Insulating resin composition for multilayer printed wiring board, multilayer printed wiring board using the same, and production method using the same
JP2011162615A (en) 2010-02-05 2011-08-25 Kyocera Chemical Corp Prepreg and metal-clad laminated plate
JP2012211255A (en) 2011-03-31 2012-11-01 Toho Tenax Co Ltd Resin composition, cured matter, prepreg and fiber-reinforced composite material

Also Published As

Publication number Publication date
WO2017195344A1 (en) 2017-11-16
JPWO2017195344A1 (en) 2019-03-22

Similar Documents

Publication Publication Date Title
JP7287432B2 (en) Resin composition, prepreg, resin-coated metal foil, laminate, printed wiring board, and method for producing resin composition
JP6277542B2 (en) Prepreg, metal-clad laminate
JP5082373B2 (en) Resin composition for printed wiring board, prepreg, substrate, metal foil-clad laminate, metal foil with resin, and printed wiring board
JP2011162615A (en) Prepreg and metal-clad laminated plate
JP6996500B2 (en) Prepreg, prepreg with metal foil, laminated board, metal-clad laminated board and printed circuit board
JP2010209140A (en) Prepreg, metal-clad laminate and printed circuit board
JP6972651B2 (en) Resin composition, prepreg, metal foil with resin, laminated board and printed wiring board
JP6451204B2 (en) Resin composition, prepreg, metal foil with resin, and laminate and printed wiring board using these
JP2009185170A (en) Prepreg, metal-clad laminate and printed wiring board
JP4586609B2 (en) Curable resin composition, prepreg, substrate, metal foil-clad laminate and printed wiring board
JP4839934B2 (en) Curable resin composition, prepreg, substrate, metal foil-clad laminate, metal foil with resin, and printed wiring board
JP5056099B2 (en) Curable resin composition, resin-impregnated base material, prepreg, substrate, metal foil with adhesive layer and printed wiring board
JP2008266513A (en) Curable resin composition, prepreg, laminate, metal foil with adhesive layer, film sheet, and printed wiring board using these materials
JP4526783B2 (en) Adhesive composition for laminating flexible printed wiring board and adhesive film
TWI778410B (en) Prepregs, Prepregs with Metal Foils, Laminates, Metal-Clad Laminates, and Printed Circuit Boards
TWI777919B (en) Prepregs, Prepregs with Metal Foils, Laminates, Metal-Clad Laminates, and Printed Circuit Boards
JP7070074B2 (en) Resin composition, prepreg, metal leaf with resin, laminated board and printed wiring board
WO2023145473A1 (en) Resin composition, prepreg, resin-equipped film, resin-equipped metal foil, metal-cladded laminated board, and printed wiring board
JP2022122082A (en) Resin composition, prepreg, metal foil with resin, laminate, print circuit board and semiconductor package
KR101095171B1 (en) Resin composition for printed circuit board and printed circuit board using the same
JP2006219664A (en) Curable resin composition, prepreg, substrate, metal foil-clad laminated plate, metal foil with resin, and printed wiring board
JP2008108955A (en) Wiring board material, resin impregnated base, prepreg, metal foil with resin, laminate sheet, and printed circuit board
JP2012025161A (en) Metal foil with resin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200317

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200612

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210629

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211129

R151 Written notification of patent or utility model registration

Ref document number: 6996500

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350