[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6988881B2 - ポリエチレン微多孔膜を含む二次電池用セパレータ - Google Patents

ポリエチレン微多孔膜を含む二次電池用セパレータ Download PDF

Info

Publication number
JP6988881B2
JP6988881B2 JP2019504575A JP2019504575A JP6988881B2 JP 6988881 B2 JP6988881 B2 JP 6988881B2 JP 2019504575 A JP2019504575 A JP 2019504575A JP 2019504575 A JP2019504575 A JP 2019504575A JP 6988881 B2 JP6988881 B2 JP 6988881B2
Authority
JP
Japan
Prior art keywords
polyolefin
film
stretching
microporous membrane
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019504575A
Other languages
English (en)
Other versions
JPWO2018164056A1 (ja
Inventor
燕仔 陳
敏彦 金田
直哉 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Publication of JPWO2018164056A1 publication Critical patent/JPWO2018164056A1/ja
Application granted granted Critical
Publication of JP6988881B2 publication Critical patent/JP6988881B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/005Shaping by stretching, e.g. drawing through a die; Apparatus therefor characterised by the choice of materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D7/00Producing flat articles, e.g. films or sheets
    • B29D7/01Films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/494Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/04Condition, form or state of moulded material or of the material to be shaped cellular or porous
    • B29K2105/041Microporous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/34Electrical apparatus, e.g. sparking plugs or parts thereof
    • B29L2031/3468Batteries, accumulators or fuel cells
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • H01M50/406Moulding; Embossing; Cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Cell Separators (AREA)

Description

本発明は、ポリオレフィン微多孔膜に関するものである。
微多孔膜は、ろ過膜、透析膜などのフィルター、電池用セパレータや電解コンデンサー用のセパレータなどの種々の分野に用いられる。これらの中でも、ポリオレフィンを樹脂材料とする微多孔膜は、耐薬品性、絶縁性、機械的強度などに優れ、シャットダウン特性を有するため、近年、二次電池用セパレータとして広く用いられる。
二次電池、例えばリチウムイオン二次電池は、エネルギー密度が高いため、パーソナルコンピュータ、携帯電話などに用いる電池として広く使用されている。また、二次電池は、電気自動車やハイブリッド自動車のモータ駆動用電源としても期待されている。
近年、二次電池のエネルギー密度の高密度化による電極の体積の増加に伴い、セパレータとして用いられる微多孔膜の薄膜化が要求されている。しかしながら、セパレータの薄膜化により、セパレータの膜強度の低下とともに、電池の自己放電が大きくなる場合があり、膜強度の向上及び自己放電特性の向上が求められている。
例えば、特許文献1では、ポリオレフィン樹脂と溶剤とを混合してポリオレフィン微多孔膜を形成する方法であって、可塑剤(溶剤)等を抽出した後の延伸工程(二次延伸:乾式延伸)における延伸速度を特定の範囲にすることで、リチウムイオン二次電池用セパレータとしたときに、自己放電が抑制されるポリオレフィン微多孔膜が開示されている。
また、例えば、特許文献2では、幅方向の150℃での熱収縮率が30%未満であり、長さ方向及び幅方向の引張り強度が30MPa以上であって、ポリオレフィンを90質量%以上含む樹脂組成物からなるポリオレフィン微多孔膜が開示されている。そして、このポリオレフィン微多孔膜は、自己放電特性に優れることが記載されている。
また、例えば、特許文献3では、ポリオレフィンを含み、133.0℃以下のシャットダウン温度および110.0mAh以下の自己放電容量を有する微多孔膜が開示されている。また、例えば、特許文献4では、平均透過光量に対し透過光量が5倍以上となる部分が1mあたり0.5個以下である多孔性ポリプロピレンフィルムが開示されている。そして、この多孔性ポリプロピレンフィルムは、自己放電特性に優れることが記載されている。
ところで、二次電池において、セパレータはイオンの透過性を維持しながら、正極と負極との間の短絡を防止する機能を担っている。しかし、電池の充放電に伴う電極の膨張/収縮の影響により、セパレータは厚さ方向に対して力の負荷などによる圧迫と解放とが繰り返され、その結果、セパレータの変形あるいはイオンの透過性に変化が生じて、電池特性の低下を招くおそれがあることが指摘されていた。そこで、このような電池特性の低下を抑制するため、上記の圧迫によるセパレータの変形あるいはイオンの透過性の変化を抑制することが求められている。
また、二次電池の製造工程においては、例えば、正極と負極とがセパレータを介して積層巻回されて、電極積層体が作製される。このような電極積層体の作製時、電極及びセパレータが加圧されて、圧縮されることがある。圧縮されたセパレータは、膜厚や透気度が低下して、レート特性が低下したり、漏れ電流が増加して自己放電特性が低下したりすることがある。特に、近年の二次電池の高容量化や高密度化に伴う電極の体積の増加により、電池作製時におけるセパレータに加わる圧力は大きくなる傾向がある。よって、セパレータには、電極の体積の増加による、薄膜化と併せて、耐圧縮性の向上が求められている。
例えば、特許文献5では、ポリオレフィン微多孔膜において、プレス機により、2.2MPaの圧力下、90℃で5分間圧縮した際の、圧縮前に対する膜厚変動率が、15%を超えると、バッテリーセパレータとして用いた場合に短絡が発生したり、歩留まりの低下によってバッテリー生産性が低下したりするおそれがあることが記載されている。
特開2014−162851号公報 特開2013−256606号公報 国際公開2010/027065号 国際公開2010/107023号 国際公開2010/058789号
上記特許文献1〜4に記載のポリオレフィン微多孔膜は、自己放電が低減されることが記載されているが、それぞれの特許文献において、実施例中で用いられる膜厚は約20μmであり、より薄膜化した場合、さらなる自己放電特性の向上が求められる。
また、従来の膜の耐圧縮性を評価する試験は、一般的に、膜に対して短時間の加圧処理(例えば、2.2MPa、90℃、5分間の処理)を行った際の膜厚の変動を評価することにより行われ、この変動が小さいほど、耐圧縮性が高いと評価していた(例えば、上記特許文献5)。しかしながら、実際の電池の製造においては、電極及びセパレータを長時間の加圧処理により圧縮することにより電池を製造するため、従来の耐圧縮性を評価する試験の条件では、微多孔膜のクリープ特性などを考慮したものとなっておらず、電池作製時に要求される耐圧縮性の評価条件としては十分でなかった。また、従来の膜の耐圧縮性を評価する試験においては、膜を加圧処理した後、弾性復元した膜を測定しており、膜の永久歪みなどを反映する値を測定している。
そこで、本発明者らは、製造時の加圧などの実際の膜に生じる状態を反映させた、膜の耐圧縮性の試験を用いて、電池に好適に使用可能な膜を精度よく解析し、本発明を完成した。
本発明は、上記事情に鑑みて、薄膜化した際も、耐圧縮性に優れ、電池用セパレータとして用いた場合、自己放電特性に優れるポリオレフィン微多孔膜を提供することを目的とする。
本発明の第1の態様のポリオレフィン微多孔膜は、温度80℃、圧力1MPaで60分間加熱圧縮した時の膜厚変化率が、加熱圧縮前のポリオレフィン微多孔質膜の膜厚100%に対して、0%以上15%以下である。
また、上記ポリオレフィン微多孔膜は、目付が3.4g/m未満、及び、空孔率が40%以上の少なくとも一方の条件を満たしてもよい。また、上記ポリオレフィン微多孔膜は、MD方向の引張強度が230MPa以上であってもよい。また、上記ポリオレフィン微多孔膜は、TD方向の引張伸度が100%以上であってもよい。
本発明の第2の態様の多層ポリオレフィン微多孔膜は、上記ポリオレフィン微多孔膜を少なくとも1層有する。
本発明の第3の態様のコート付ポリオレフィン微多孔膜は、上記ポリオレフィン微多孔膜の少なくとも一方の表面に、1層以上のコーティング層を備える。
本発明の第4の態様の電池は、上記ポリオレフィン微多孔膜を含むセパレータを用いてなる。
本発明のポリオレフィン微多孔膜は、耐圧縮性に優れ、電池用セパレータとして用いた場合、自己放電特性に優れる。
以下、本発明の本実施形態について説明する。なお、本発明は以下説明する実施形態に限定されるものではない。
1.ポリオレフィン微多孔膜
本明細書において、ポリオレフィン微多孔膜とは、ポリオレフィンを主成分として含む微多孔膜をいい、例えば、ポリオレフィンを微多孔膜全量に対して90質量%以上含む微多孔膜をいう。以下、本実施形態のポリオレフィン微多孔膜の物性について説明する。
(耐圧縮性)
本明細書において、電池の製造工程における耐圧縮性は、「温度80℃、圧力1MPaで60分間加熱圧縮した時の膜厚変化率」(以下、「加熱圧縮時の膜厚変化率」ともいう。)で評価する。例えば、特許文献5では、多層微小孔性膜の熱圧縮の後厚み変化の測定方法として、5分間、90℃で2.2MPa(22kgf/cm)の圧力下で圧縮機械により熱圧縮して、平均の厚みを決定することが記載されている。しなしながら、従来の測定条件では、実際の電池の製造条件が反映されていなかった。そこで、発明者らは、実際の電池の製造工程における条件に対応するように、上記の条件で耐圧縮性の評価を行った。
本実施形態のポリオレフィン微多孔膜は、温度80℃、圧力1MPaで60分間加熱圧縮した時の膜厚変化率が、加熱圧縮前のポリオレフィン微多孔質膜の膜厚100%に対して、0%以上15%以下、好ましくは0%以上14%以下である。ポリオレフィン微多孔膜の耐圧縮性が、上記範囲である場合、このポリオレフィン微多孔膜をセパレータとして用いた二次電池の自己放電特性が向上する。この理由は特に限定されないが、耐圧縮性が上記範囲である場合、セパレータが十分な膜強度を有するため、自己放電が抑制されるためと推定される。
上記加熱圧縮時の膜厚変化率(%)は、少なくとも10枚を積層したポリオレフィン微多孔膜を、一組の高度に水平な板の間に置き、60分間、80℃で1MPaの圧力下で圧縮機械(新東工業株式会社製、CYPT−20特)により加熱圧縮した際、圧縮した状態における、一枚あたりの膜厚の平均を測定し、下記式(1)により、算出された値をいう。
式(1):
[(圧縮前の平均厚さ−圧縮した状態の平均厚さ)/(圧縮前の平均厚さ)]×100
なお、上記の加熱圧縮時の膜厚変化率は、上述のように、圧縮時(圧縮した状態)での膜厚を測定するので、膜が弾性復元する前に膜厚を測定することができ、膜の弾性復元、膜の温度履歴などによる測定値のばらつきがなく、上記した製造時の加圧などの実際の膜に生じる状態を反映した値となる。
上記加熱圧縮時の膜厚変化率は、ポリオレフィン微多孔膜を製造する際、例えば、超高分子量ポリエチレン及び/又は核剤を含有させたり、重量平均分子量Mwや延伸倍率(特に、後述する乾燥後のフィルムの延伸倍率)を調整したりすることなどにより、上記範囲とすることができる。
(引張強度)
ポリオレフィン微多孔膜のMD方向の引張強度(引張破断強度)の下限は、例えば、100MPa以上であり、好ましくは230MPa以上であり、より好ましくは250MPa以上であり、さらに好ましくは、280MPa以上である。MD方向の引張強度の上限は、特に限定されないが、例えば、600MPa以下である。MD方向の引張強度が上記範囲である場合、高い張力が掛かった場合も膜が破断しにくく、高い耐久性が要求される用途に用いることができる。例えば、上記のような強度に優れた微多孔膜をセパレータとして用いた場合、電池作製時や使用時における短絡を抑制するとともに、高い張力をかけてセパレータを巻回可能となり、電池の高容量化を図ることができる。また、薄膜化したポリオレフィン微多孔膜の少なくとも一方の表面にコーティング層を形成する場合、より高いMD方向の引張強度が要求される。よって、コーティング層の塗工性を向上させるという観点から、ポリオレフィン微多孔膜のMD方向の引張強度は、好ましくは230MPa以上であり、より好ましくは250MPa以上であり、さらに好ましくは、280MPa以上である。MD方向の引張強度が上記範囲である場合、塗工用の基材として好適に用いることができる。
ポリオレフィン微多孔膜のTD方向の引張強度の下限は、特に限定されないが、例えば、100MPa以上であり、好ましくは150MPa以上であり、より好ましくは170MPa以上である。TD方向の引張強度の上限は、特に限定されないが、例えば、300MPa以下である。また、ポリオレフィン微多孔膜において、TD引張強度に対するMD引張強度の比(MD引張強度/TD引張強度)は、1.0超であるのが好ましく、1.0超1.8以下であるのが好ましく、より好ましくは1.2以上1.7以下である。
ポリオレフィン微多孔膜のTD引張強度、及びTD引張強度に対するMD引張強度の比のうち少なくとも1つが、上記の範囲である場合、引張強度が優れているため、高い強度や耐久性が要求される用途に好適に用いることができる。また、セパレータの捲回方向は、通常MD方向であることから、TD引張強度に対するMD引張強度の比は上記範囲内であることが好ましい。
なお、MD引張強度およびTD引張強度については、ASTM D882に準拠した方法により測定した値である。
(引張伸度)
ポリオレフィン微多孔膜のMD方向の引張伸度(引張破断伸度)は、特に限定されないが、例えば、50%以上300%以下であり、50%以上100%以下であるのが好ましい。MD方向の破断伸度が、上記の範囲である場合、塗工する時に高い張力が掛かった場合も変形しにくく、シワも発生しにくいので塗工欠陥が抑制され塗工表面の平面性が良いので好ましい。
ポリオレフィン微多孔膜のTD方向の引張伸度(引張破断伸度)は、特に限定されないが、例えば、50%以上300%以下であり、100%以上であるのが好ましい。TD方向の破断伸度が、上記の範囲である場合、衝撃試験などで評価できる耐衝突性に優れ、また、ポリオレフィン微多孔膜をセパレータとして用いた場合、電極の凹凸、電池の変形、電池発熱による内部応力発生等に対して、セパレータが追従できるので好ましい。
なお、MD引張伸度およびTD引張伸度は、ASTM D−882Aに準拠した方法により測定した値である。
(突刺強度)
ポリオレフィン微多孔膜の突刺強度の下限は、好ましくは1.96N以上であり、より好ましくは2.00N以上である。突刺強度の上限は、特に限定されないが、例えば、7.00N以下である。突刺強度が上記範囲である場合、ポリオレフィン微多孔膜の膜強度に優れる。また、このポリオレフィン微多孔膜をセパレータとして用いた二次電池は、電極の短絡の発生や自己放電が抑制される。突刺強度は、ポリオレフィン微多孔膜を製造する際、例えば、超高分子量ポリエチレン及び/又は核剤を含有させたり、ポリオレフィン微多孔膜を構成するポリオレフィン樹脂の重量平均分子量(Mw)や延伸倍率(特に、後述する乾燥後のフィルムの延伸倍率)を調整したりすることにより、上記範囲とすることができる。
また、ポリオレフィン微多孔膜は、膜厚5μm換算の突刺強度が、1.96N以上であることが好ましく、より好ましくは2.00N以上であり、更に好ましくは2.50N以上である。膜厚5μm換算の突刺強度の上限は、特に限定されないが、例えば、4.00N以下である。突刺強度が上記範囲である場合、ポリオレフィン微多孔膜を薄膜化した際も膜強度に優れ、このポリオレフィン微多孔膜をセパレータとして用いた二次電池は電極の短絡の発生及び自己放電が抑制される。
突刺強度は、先端が球面(曲率半径R:0.5mm)の直径1mmの針で、膜厚T(μm)のポリオレフィン微多孔膜を2mm/秒の速度で突刺したときの最大荷重(N)を測定した値である。また、膜厚5μm換算の突刺強度(N/5μm)は、下記の式で求めることのできる値である。
式:突刺強度(5μm換算)=測定された突刺強度(N)×5(μm)/膜厚T(μm)
(透気度)
ポリオレフィン微多孔膜の透気度(ガーレー値)は、特に限定されないが、例えば、50秒/100cm以上300秒/100cm以下である。ポリオレフィン微多孔膜の透気度は、二次電池用セパレータとして用いる場合、好ましくは250秒/100cm以下であり、より好ましくは200秒/100cm以下であり、さらに好ましくは150秒/100cm以下である。透気度が上記範囲である場合、二次電池用セパレータとして用いた際、イオン透過性に優れ、二次電池のインピーダンスが低下し電池出力が向上する。透気度は、ポリオレフィン微多孔膜を製造する際の延伸条件などを調節することにより、上記範囲とすることができる。
また、ポリオレフィン微多孔膜の透気度(ガーレー値)は、膜厚5μmで換算した透気度が150秒/100cm/5μm以下であることが好ましい。
(膜厚)
ポリオレフィン微多孔膜の膜厚の上限は、特に限定されないが、例えば、30μm以下であり、好ましくは20μm以下、より好ましくは10μm以下、さらに好ましくは7μm以下である。膜厚の下限は、特に限定されないが、例えば、1μm以上であり、好ましくは3μm以上である。膜厚が上記範囲である場合、ポリオレフィン微多孔膜を電池用セパレータとして使用した際、電池容量が向上する。本実施形態のポリオレフィン微多孔膜は、高い突刺強度等を有し、薄膜化した際でも、高い自己放電特性及びレート特性を有する。
(空孔率)
ポリオレフィン微多孔膜の空孔率の下限は、特に限定されないが、例えば、10%以上であり、好ましくは20%以上であり、さらに好ましくは40%以上である。空孔率の下限は、特に限定されないが、例えば、70%以下であり、60%以下であることが好ましく、50%以下であることがさらに好ましい。。ポリオレフィン微多孔膜を二次電池用セパレータとして用いる場合、ポリオレフィン微多孔膜の空孔率は、好ましくは20%以上60%以下であり、より好ましくは20%以上50%以下である。空孔率が上記範囲であることにより、電解液の保持量を高め、高いイオン透過性を確保することができる。また、空孔率が上記範囲であると、レート特性が向上する。また、イオン透過性及びレート特性をより高めるという観点から、空孔率が40%以上であることが好ましい。空孔率は、製造過程において、ポリオレフィン樹脂の構成成分の配合割合や延伸倍率、熱固定条件などを調節することにより、上記範囲とできる。
(目付)
ポリオレフィン微多孔膜の目付の上限は、例えば、4.0g/m以下であり、3.4g/m未満であるのが好ましい。目付の下限は、特に限定されないが、例えば、1.0g/m以上であり、1.5g/m以上であることがより好ましい。ポリオレフィン微多孔膜の目付が上記範囲である場合、ポリオレフィン微多孔膜をセパレータとして用いたときに、単位体積当たりの電解液の保持量を高め、高いイオン透過性を確保することができ、また、ポリオレフィン微多孔膜の膜厚が薄い場合においても、自己放電特性に優れる。ポリオレフィン微多孔膜の目付は、製造過程において、ポリオレフィン樹脂の構成成分の配合割合や延伸倍率などを調節することにより、上記範囲とすることができる。なお、ポリオレフィン微多孔膜の目付は、1mのポリオレフィン微多孔膜の重量である。
(目付・空孔率)
ポリオレフィン微多孔膜は、目付が3.4g/m未満、及び、空孔率が40%以上、の少なくとも一方の条件を満たすことが好ましい。ポリオレフィン微多孔膜の目付または空孔率が上記範囲である場合、ポリオレフィン微多孔膜をセパレータとして用いたときに、単位体積当たりの電解液の保持量を増加させることができ、電池特性を向上させることができる。また、ポリオレフィン微多孔膜が上記条件を満たす場合、薄膜化したポリオレフィン微多孔膜の膜厚において、電池用セパレータとして用いた際に、自己放電特性、レート特性及びサイクル特性により優れる。
(熱収縮率)
ポリオレフィン微多孔膜の105℃8時間におけるMD方向の熱収縮率は、例えば、10%以下であり、6%以下であるのが好ましく、4%以下であるのがより好ましい。ポリオレフィン微多孔膜の105℃におけるTD方向の熱収縮率は、例えば、10%以下であり、8%以下であるのが好ましく、6%以下であるのがより好ましい。MD方向の熱収縮率の下限、及びTD方向の熱収縮率の下限は、特に限定されないが、例えば、0.5%以上であるのが好ましい。MD方向の熱収縮率、及びTD方向の熱収縮率が上記範囲である場合、耐熱収縮性に優れ、ポリオレフィン微多孔膜をセパレータとして用いたとき等に、熱による膨張・収縮を抑制することができる。
(組成)
ポリオレフィン微多孔膜は、ポリオレフィン樹脂を主成分として含む。ポリオレフィン樹脂としては、例えば、ポリエチレン、ポリプロピレンなどを用いることができる。例えば、ポリオレフィン微多孔膜全量に対して、ポリエチレンを50質量%以上含むことができる。ポリエチレンとしては、特に限定されず、種々のポリエチレンを用いることができ、例えば、高密度ポリエチレン、中密度ポリエチレン、分岐状低密度ポリエチレン、直鎖状低密度ポリエチレン等が用いられる。なお、ポリエチレンは、エチレンの単独重合体であってもよく、エチレンと他のα−オレフィンとの共重合体であってもよい。α−オレフィンとしては、プロピレン、ブテン−1、ヘキセン−1、ペンテン−1、4−メチルペンテン−1、オクテン、酢酸ビニル、メタクリル酸メチル、スチレン等が挙げられる。
ポリオレフィン微多孔膜は、高密度ポリエチレン(密度:0.920g/m以上0.970g/m以下)を含有する場合、溶融押出特性に優れ、均一な延伸加工特性に優れる。原料として用いられる高密度ポリエチレンの重量平均分子量(Mw)は、例えば1×10以上1×10未満程度である。なお、Mwは、ゲルパーミエーションクロマトグラフィー(GPC)により測定される値である。高密度ポリエチレンの含有量は、例えば、ポリオレフィン樹脂全体100質量%に対して、50質量%以上である。高密度ポリエチレンの含有量は、その上限が、例えば100質量%以下であり、他の成分を含む場合は、例えば90質量%以下である。
また、ポリオレフィン微多孔膜は、超高分子量ポリエチレン(UHMwPE)を含むことができる。原料として用いられる超高分子量ポリエチレンは、重量平均分子量(Mw)が1×10以上(10万以上)であり、好ましくは1×10以上8×10以下である。Mwが上記範囲である場合、成形性が良好となる。なお、Mwは、ゲルパーミエーションクロマトグラフィー(GPC)により測定される値である。超高分子量ポリエチレンは1種を単独で、または2種以上を併用して用いることができ、例えばMwの異なる二種以上の超高分子量ポリエチレン同士を混合して用いてもよい。
超高分子量ポリエチレンは、ポリオレフィン樹脂全体100質量%に対して、例えば0質量%以上70質量%以下含むことができる。例えば、超高分子量ポリエチレンの含有量が10質量%以上60質量%以下である場合、得られるポリオレフィン微多孔膜のMwを後述する特定の範囲に容易に制御しやすく、かつ押出し混練性などの生産性に優れる傾向がある。また、超高分子量ポリエチレンを含有した場合、ポリオレフィン微多孔膜を薄膜化した際にも高い機械的強度を得ることができる。
ポリオレフィン微多孔膜は、ポリプロピレンを含んでもよい。ポリプロピレンの種類は、特に限定されず、プロピレンの単独重合体、プロピレンと他のα−オレフィン及び/又はジオレフィンとの共重合体(プロピレン共重合体)、あるいはこれらの混合物のいずれでも良いが、機械的強度及び貫通孔径の微小化等の観点から、プロピレンの単独重合体を用いることが好ましい。ポリオレフィン樹脂全体ポリプロピレンの含有量は、例えば0質量%以上15質量%以下であり、耐熱性の観点から、好ましくは2.5質量%以上15質量%以下である。
また、ポリオレフィン微多孔膜は、必要に応じて、ポリエチレン及びポリプロピレン以外のその他の樹脂成分を含むことができる。その他の樹脂成分としては、例えば、耐熱性樹脂等を用いることができる。また、ポリオレフィン微多孔膜は、本発明の効果を損なわない範囲において、酸化防止剤、熱安定剤、帯電防止剤、紫外線吸収剤、ブロッキング防止剤や充填剤、結晶造核剤、結晶化遅延剤等の各種添加剤を含有させてもよい。
2.ポリオレフィン微多孔膜の製造方法
ポリオレフィン微多孔膜の製造方法は、上記の特性を有するポリオレフィン微多孔膜が得られれば、特に限定されず、公知のポリオレフィン微多孔膜の製造方法を用いることができる。ポリオレフィン微多孔膜の製造方法としては、例えば、乾式の製膜方法及び湿式の製膜方法が挙げられる。本実施形態のポリオレフィン微多孔膜の製造方法としては、膜の構造及び物性の制御の容易性の観点から湿式の製膜方法が好ましい。湿式の製膜方法としては、例えば、日本国特許第2132327号および日本国特許第3347835号の明細書、国際公開2006/137540号等に記載された方法を用いることができる。
以下、ポリオレフィン微多孔膜の製造方法(湿式の製膜方法)について説明する。なお、以下の説明は、製造方法の一例であって、この方法に限定されるものではない。
まず、ポリオレフィン樹脂と成膜用溶剤(溶剤)とを溶融混練して樹脂溶液を調製する。溶融混練方法としては、例えば日本国特許第2132327号および日本国特許第3347835号の明細書に記載の二軸押出機を用いる方法を利用することができる。溶融混練方法は公知であるので説明を省略する。
ポリオレフィン樹脂は、好ましくは高密度ポリエチレンを含む。高密度ポリエチレンを含有した場合、溶融押出特性に優れ、均一な延伸加工特性に優れる。また、ポリオレフィン樹脂は、超高分子量ポリエチレンを含むことができる。超高分子量ポリエチレンを含む場合、得られるポリオレフィン微多孔膜のMwを後述する特定の範囲に容易に制御しやすく、かつ押出し混練性などの生産性に優れる傾向がある。ポリオレフィン樹脂として用いることのできる種類及び配合量の詳細については、上記と同様であるため説明を省略する。
なお、樹脂溶液は、上記のポリオレフィン樹脂及び成膜用溶剤(溶剤)以外の成分を含んでもよく、例えば、結晶造核剤(核剤)、酸化防止剤などを含んでもよい。核剤としては、特に限定されず、公知の化合物系、微粒子系結晶造核剤などが使用できる。核剤としては、核剤を予めポリオレフィン樹脂に混合、分散したマスターバッチであってもよい。
なお、樹脂溶液は、結晶造核剤を含有しない場合、ポリオレフィン樹脂は、上記の超高分子量ポリエチレンと高密度ポリエチレンとを含有することが好ましい。また、ポリオレフィン微多孔膜は、高密度ポリエチレン、超高分子量ポリエチレン及び核剤を含んでもよい。これらを含むことにより、突刺強度をより向上させることができる。
次いで、溶融樹脂を押出し、冷却してゲル状シートを形成する。例えば、上記で調整した樹脂溶液を押出機から1つのダイに送給し、シート状に押し出し、形成体を得る。得られた成形体を冷却することにより、ゲル状シートを形成する。
ゲル状シートの形成方法として、例えば日本国特許第2132327号公報および日本国特許第3347835号公報に開示の方法を利用することができる。冷却は少なくともゲル化温度までは50℃/分以上の速度で行うのが好ましい。冷却は25℃以下まで行うのが好ましい。冷却により、成膜用溶剤によって分離されたポリオレフィンのミクロ相を固定化することができる。冷却速度が上記範囲内であると結晶化度が適度な範囲に保たれ、延伸に適したゲル状シートとなる。冷却方法としては冷風、冷却水等の冷媒に接触させる方法、冷却ロールに接触させる方法等を用いることができるが、冷媒で冷却したロールに接触させて冷却させることが好ましい。
次いで、ゲル状シートを延伸する。ゲル状シートの延伸(第一の延伸)は、湿式延伸ともいう。湿式延伸は、少なくとも一軸方向に行う。ゲル状シートは溶剤を含むので、均一に延伸できる。ゲル状シートは、加熱後、テンター法、ロール法、インフレーション法、又はこれらの組合せにより所定の倍率で延伸するのが好ましい。延伸は一軸延伸でも二軸延伸でもよいが、二軸延伸が好ましい。二軸延伸の場合、同時二軸延伸、逐次延伸及び多段延伸(例えば同時二軸延伸及び逐次延伸の組合せ)のいずれでもよい。
湿式延伸における、最終的な面積延伸倍率(面倍率)は、例えば、一軸延伸の場合、3倍以上が好ましく、4倍以上30倍以下がより好ましい。また、二軸延伸の場合、9倍以上が好ましく、16倍以上がより好ましく、25倍以上がさらに好ましい。上限は100倍以下が好ましく、64倍以下がより好ましい。また、長手方向(機械方向:MD方向)及び横手方向(幅方向:TD方向)のいずれでも3倍以上が好ましく、MD方向とTD方向での延伸倍率は、互いに同じでも異なってもよい。延伸倍率を5倍以上とすると、突刺強度の向上が期待できる。なお、本ステップにおける延伸倍率とは、本ステップ直前のゲル状シートを基準として、次ステップに供される直前のゲル状シートの延伸倍率のことをいう。また、TD方向は、微多孔膜を平面でみたときにMD方向に直交する方向である。
延伸温度は、ポリオレフィン樹脂の結晶分散温度(Tcd)〜Tcd+30℃の範囲内にするのが好ましく、結晶分散温度(Tcd)+5℃〜結晶分散温度(Tcd)+28℃の範囲内にするのがより好ましく、Tcd+10℃〜Tcd+26℃の範囲内にするのが特に好ましい。延伸温度が上記範囲内であるとポリオレフィン樹脂延伸による破膜が抑制され、高倍率の延伸ができる。ここで結晶分散温度(Tcd)とは、ASTM D4065に基づいて動的粘弾性の温度特性測定により求められる値をいう。上記の超高分子量ポリエチレン、超高分子量ポリエチレン以外のポリエチレン及びポリエチレン組成物は、約90〜100℃の結晶分散温度を有する。延伸温度は、例えば、90℃以上130℃以下とすることができる。
以上のような延伸によりポリエチレンラメラ間に開裂が起こり、ポリエチレン相が微細化し、多数のフィブリルが形成される。フィブリルは三次元的に不規則に連結した網目構造を形成する。延伸により機械的強度が向上するとともに細孔が拡大するが、適切な条件で延伸を行うと、貫通孔径を制御し、さらに薄い膜厚でも高い空孔率を有することが可能となる。このため、より安全で高性能な電池用セパレータに好適である。
次いで、上記延伸後のゲル状シートから成膜用溶剤を除去して微多孔膜(フィルム)とする。成膜用溶剤の除去は、洗浄溶媒を用いた洗浄により行う。ポリオレフィン相は成膜用溶剤相と相分離しているので、成膜用溶剤を除去すると、微細な三次元網目構造を形成するフィブリルからなり、三次元的に不規則に連通する孔(空隙)を有する多孔質の膜が得られる。洗浄溶媒およびこれを用いた成膜用溶剤の除去方法は公知であるので説明を省略する。例えば日本国特許第2132327号明細書や特開2002−256099号公報に開示の方法を利用することができる。
次いで、成膜用溶剤を除去した微多孔膜を、加熱乾燥法又は風乾法により乾燥する。乾燥温度はポリオレフィン樹脂の結晶分散温度(Tcd)以下であるのが好ましく、特にTcdより5℃以上低いのが好ましい。乾燥は、微多孔膜フィルムを100質量%(乾燥重量)として、残存洗浄溶媒が5質量%以下になるまで行うのが好ましく、3質量%以下になるまで行うのがより好ましい。残存洗浄溶媒が上記範囲内であると、後段の微多孔膜フィルムの延伸工程及び熱処理工程を行ったときにポリオレフィン微多孔膜の空孔率が維持され、透過性の悪化が抑制される。
次いで、乾燥後の微多孔膜を延伸する。乾燥後の微多孔膜の延伸(第二の延伸、第三の延伸)は、乾式延伸ともいう。乾燥後の微多孔膜フィルムを、少なくとも一軸方向に乾式延伸する。微多孔膜フィルムの乾式延伸は、加熱しながら上記と同様にテンター法等により行うことができる。延伸は一軸延伸でも二軸延伸でもよい。二軸延伸の場合、同時二軸延伸及び逐次延伸のいずれでもよいが、逐次延伸が好ましい。逐次延伸の場合、MD方向に延伸(第二の延伸)した後、連続して、TD方向に延伸(第三の延伸)することが好ましい。
乾式延伸の面倍率(面積延伸倍率)は、1.2倍以上であることが好ましく、1.2倍以上9.0倍以下であることがより好ましい。面倍率を上記範囲とすることにより、突刺強度等を所望の範囲に容易に制御することができる。一軸延伸の場合、例えば、MD方向又はTD方向に1.2倍以上、好ましくは1.2倍以上3.0倍以下とする。二軸延伸の場合、MD方向及びTD方向に各々1.0倍以上3.0倍以下とし、MD方向とTD方向での延伸倍率が互いに同じでも異なってもよいが、MD方向とTD方向での延伸倍率がほぼ同じであることが好ましい。乾式延伸は、MD方向に1倍超3倍以下で延伸(第二の延伸)した後、連続して、TD方向に1倍超3倍以下で延伸(第三の延伸)することが好ましい。なお、本ステップにおける延伸倍率とは、本ステップ直前の微多孔膜(フィルム)を基準として、次ステップに供される直前の微多孔膜の延伸倍率のことをいう。本ステップ(乾式延伸)における延伸温度は、特に限定されないが、通常90〜135℃である。
第二延伸をロール延伸する場合、多段延伸することが好ましい。高倍延伸する場合、ロール上ですべり発生により延伸点が定まらず延伸ムラが発生しやすい。延伸段数を増加させることで、延伸ムラが低減させることができる。特に延伸倍率1.5以上になる場合、4段以上延伸することが好ましく、5段以上延伸することがより好ましい。
また、乾燥後の微多孔膜は、熱処理が行われてもよい。熱処理によって結晶が安定化し、ラメラが均一化される。熱処理方法としては、熱固定処理及び/又は熱緩和処理を用いることができる。熱固定処理とは、膜のTD方向の寸法が変わらないように保持しながら加熱する熱処理である。熱緩和処理とは、膜を加熱中にMD方向やTD方向に熱収縮させる熱処理である。熱固定処理は、テンター方式又はロール方式により行うのが好ましい。例えば、熱緩和処理方法としては特開2002−256099号公報に開示の方法があげられる。熱処理温度は第2のポリオレフィン樹脂のTcd〜Tmの範囲内が好ましく、微多孔膜の延伸温度±5℃の範囲内がより好ましく、微多孔膜の第二の延伸温度±3℃の範囲内が特に好ましい。
例えば、第三の延伸後に、熱処理及び熱緩和処理をしてもよい。熱緩和処理において、緩和温度は、例えば、80℃以上135℃以下、好ましくは90℃以上133℃以下である。また、熱緩和処理を行った場合、最終乾式延伸倍率は、例えば、1.0倍以上9.0倍以下、好ましくは1.2倍以上4.0倍以下である。緩和率は、0%以上70%以下とすることができる。
また、乾式延伸後のポリオレフィン微多孔膜に対して、さらに、架橋処理および親水化処理を行うこともできる。例えば、微多孔膜に対して、α線、β線、γ線、電子線等の電離放射線の照射することに、架橋処理を行う。電子線の照射の場合、0.1〜100Mradの電子線量が好ましく、100〜300kVの加速電圧が好ましい。架橋処理により微多孔膜のメルトダウン温度が上昇する。また、親水化処理は、モノマーグラフト、界面活性剤処理、コロナ放電等により行うことができる。モノマーグラフトは架橋処理後に行うのが好ましい。
なお、ポリオレフィン微多孔膜は、単層であってもよいが、ポリオレフィン微多孔膜からなる層を1層以上積層してもよい。多層ポリオレフィン微多孔膜は、二層以上のポリオレフィン微多孔膜からなる層を有することができる。多層ポリオレフィン微多孔膜の場合、各層を構成するポリオレフィン樹脂の組成は、同一組成でもよく、異なる組成でもよい。
なお、ポリオレフィン微多孔膜は、ポリオレフィン樹脂以外の他の多孔質層を積層して積層ポリオレフィン多孔質膜としてもよい。他の多孔質層としては、特に限定されないが、例えば、バインダーと無機粒子とを含む無機粒子層などのコーティング層を積層してもよい。無機粒子層を構成するバインダー成分としては、特に限定されず、公知の成分を用いることができ、例えば、アクリル樹脂、ポリフッ化ビニリデン樹脂、ポリアミドイミド樹脂、ポリアミド樹脂、芳香族ポリアミド樹脂、ポリイミド樹脂などを用いることができる。無機粒子層を構成する無機粒子としては、特に限定されず、公知の材料を用いることができ、例えば、アルミナ、ベーマイト、硫酸バリウム、酸化マグネシウム、水酸化マグネシウム、炭酸マグネシウム、ケイ素などを用いることができる。また、積層ポリオレフィン多孔質膜としては、多孔質化した前記バインダー樹脂がポリオレフィン微多孔質膜の少なくとも一方の表面に積層されたものであってもよい。
以下、本発明を実施例によりさらに詳細に説明する。なお、本発明はこれらの例に限定されるものではない。なお、実施例4、及び実施例6〜11は、参考例4、及び参考例6〜11とする。
1.測定方法と評価方法
[膜厚]
微多孔膜の95mm×95mmの範囲内における5点の膜厚を接触厚み計(株式会社ミツトヨ製ライトマチック)により測定し、平均値を求めた。
[空孔率]
微多孔膜の重量wとそれと等価な空孔のないポリマーの重量w(幅、長さ、組成の同じポリマー)とを比較した、以下の式によって、測定した。
空孔率(%)=(w−w)/w×100
[目付]
目付は、1mの微多孔膜の重量により測定した。
[引張強度]
MD引張強度およびTD引張強度について、幅10mmの短冊状試験片を用いて、ASTM D882に準拠した方法により測定した。
[引張伸度]
MD引張強度およびTD引張強度について、ASTM D−882Aに準拠した方法により測定した。
[突刺強度]
先端が球面(曲率半径R:0.5mm)の直径1mmの針で、膜厚T(μm)の微多孔質膜を2mm/秒の速度で突刺したときの最大荷重L(N)を測定した。
[透気度(透気抵抗度;ガーレー値)]
膜厚T(μm)の微多孔膜に対して、JIS P−8117に準拠して、透気度計(旭精工株式会社製、EGO−1T)で測定した透気抵抗度P(sec/100cm)を測定した。また、式:P=(P×5)/Tにより、膜厚を5μmとしたときの透気抵抗度P(5μm換算)(sec/100cm/5μm)を算出した。
[熱収縮]
105℃8時間のMD熱収縮率およびTD熱収縮率は、次のようにして測定した。
(1)室温(25℃)におけるポリオレフィン微多孔膜の試験片の大きさをMDおよびTDの両方について測定する。
(2)ポリオレフィン微多孔膜の試験片を、荷重をかけずに8時間105℃の温度にて平衡化する。
(3)ポリオレフィン微多孔膜の大きさをMDおよびTDの両方について測定する。
(4)MD方向およびTD方向への熱収縮を、測定結果(3)を測定結果(1)で割り、得られた値を1から引き、その値を百分率(%)で表して算出した。
[耐圧縮性]
耐圧縮性は温度80℃、圧力1MPaで60分間、加熱圧縮した時のポリオレフィン微多孔膜の膜厚変化率で評価した。
10枚を積層したポリオレフィン微多孔膜を、一組の高度に水平な板の間に置き、60分間、80℃で1MPaの圧力下で圧縮機械(新東工業株式会社製、CYPT−20特)により加熱圧縮した際、圧縮した状態における膜厚を測定し、一枚あたりの平均厚さ(圧縮した状態の平均厚さ)を算出した。加熱圧縮したときのポリオレフィン微多孔膜の膜厚変化率は下記式により算出した。
[(圧縮前の平均厚さ−圧縮した状態の平均厚さ)/(圧縮前の平均厚さ)]×100
[透過率]
ポリオレフィン微多孔膜のMD方向における6.7cm/点サンプリングで20m分透過光量を測定し、平均透過率(Ave)とその標準偏差(σ)を求め、変動係数(σ/Ave)を平面性の指標とした。σ/Aveの値が小さいほど、延伸ムラが小さく、平面性が良好となる。次のようにして透過光量を測定した。
透過光量計(キーエンス社製、IB−30)を使用して、投受光間距離300mm、ポリオレフィン微多孔膜はその中央(150mm)で透過光量を測定した。6.7cm/点サンプリングで20m分透過光量を測定し、平均透過率(Ave)と標準偏差(σ)を算出した。
透過率変動係数=標準偏差σ/平均値Ave.
平面性(延伸ムラ)評価
×:透過率変動係数0.03以上。
○:透過率変動係数0.03未満。
ポリオレフィン樹脂の重量平均分子量(Mw)は以下の条件でゲルパーミエーションクロマトグラフィー(GPC)法により求めた。
・測定装置:Waters Corporation製GPC−150C
・カラム:昭和電工株式会社製Shodex UT806M
・カラム温度:135℃
・溶媒(移動相):o−ジクロルベンゼン
・溶媒流速:1.0 ml/分
・試料濃度:0.1 wt%(溶解条件:135℃/1h)
・インジェクション量:500μl
・検出器:Waters Corporation製ディファレンシャルリフラクトメーター(RI検出器)
・検量線:単分散ポリスチレン標準試料を用いて得られた検量線から、所定の換算定数(0.468)を用いて作成した。
[自己放電特性]
自己放電特性は以下の方法で評価を行った。下記の(評価用電池の作製方法)にて組み立てた試験用二次電池0.5Cの電流値で電池電圧3.85Vまで定電流充電した後、電池電圧3.85Vで0.05Cになるまで定電圧充電を行った。この電池を24時間放置した後の開回路電圧を計測し、この値をV1とした。この電池について、さらに24時間放置、つまり充電後計48時間放置した後の開回路電圧を計測し、この値をV2とした。得られたV1、V2の値からK値を下記の式により算出した。
式:K値(mV/h)=(V1−V2)/24
×:K値0.03以上。
○:K値0.02以上0.03未満。
◎:K値0.02未満。
[レート特性]
レート特性は以下の方法で評価を行った。レート特性の測定には下記の(評価用電池の作製方法)にて作製した試験用二次電池を用いた。電池電圧4.2Vまで1.0Cの電流値で定電流充電した後、電池電圧4.2Vで0.05Cの電流値になるまで定電圧充電を行った後、0.2Cの電流値で電池電圧が3.0Vになるまで放電(定電流放電)して放電容量を測定した。続いて、前述の手順にて再度4.2Vまで充電した後、5Cの電流値で電池電圧が3.0Vになるまで放電(定電流放電)して放電容量を測定した。下記の式により放電容量比を算出した。
式:放電容量比=5Cでの放電容量×100/0.2Cでの放電容量
×:放電容量比値85%未満。
○:放電容量比値85%以上90%未満。
◎:放電容量比値90%以上100%未満。
[サイクル特性]
サイクル特性は以下の方法で評価を行った。サイクル特性の測定には上記(電池の作製)にて作製した試験用二次電池を用いた。電池電圧4.2Vまで1.0Cの電流値で定電流充電した後、電池電圧4.2Vで0.05Cの電流値になるまで定電圧充電を行った。10分の休止後、1.0Cの電流値で電池電圧が3.0Vになるまで定電流放電を行い、10分休止した。この充放電を1サイクルとして、500回充放電を繰り返し行った。
下記の式により残存容量比を算出した。
式:残存容量比=500サイクル目放電容量×100/1サイクル目放電容量
×:残存容量比値80%以下。
○:残存容量比値80%超過100%以下。
(評価用電池の作製方法)
評価に用いた電池(評価用電池)は、正極活物質としてリチウムコバルト複合酸化物LiCoO、負極活物質として黒鉛、電解液としてEC/EMC/DMCの混合溶媒に調製した1mol/LのLiPFを使用し、正極、ポリオレフィン微多孔膜からなるセパレータ、及び、負極を積層した後、常法により巻回電極体を作製し、電池缶に挿入し、電解液を含浸させ、封口して、作製した。以下に、評価用電池の製造方法の詳細を説明する。
(正極の作製)
正極活物質としてリチウムコバルト複合酸化物LiCoO、導電材としてアセチレンブラック、バインダーであるポリフッ化ビニリデン(PVDF)とを93.5:4.0:2.5の質量比で混合して、溶媒N−メチルピロリドン(NMP)に混合分散させてスラリーを調製した。このスラリーを正極集電体となる厚さ12μmのアルミニウム箔の両面に塗布し、乾燥後、ロールプレス機で圧延した。圧延後のものを30mm幅にスリットして正極とした。
(負極の作製)
負極活物質として人造黒鉛、バインダーとしてカルボキシメチルセルロース、スチレン−ブタジエン共重合体ラテックスとを98:1:1の質量比となるように、精製水に混合分散させてスラリーを調製した。このスラリーを負極集電体となる厚さ10μmの銅箔の両面に塗布し、乾燥後、ロールプレス機で圧延した。圧延後のものを33mm幅にスリットして負極とした。
(非水電解液)
エチレンカーボネート:エチルメチルカーボネート:ジメチルカーボネート=3:5:2(体積比)の混合溶媒に、溶質としてLiPFを濃度1.15mol/リットルとなるように溶解させた。さらに、非水電解液100質量%に対して0.5質量%のビニレンカーボネートを添加し、非水電解液を調製した。
(電池の作製)
上記の正極、ポリオレフィン微多孔膜及び上記の負極を積層した後、扁平状の巻回電極体(高さ2.2mm×幅36mm×奥行29mm)を作製した。この扁平状の巻回電極体の各電極へ、シーラント付タブを溶接し、正極リード、負極リードとした。扁平状の巻回電極体部分をアルミラミネートフィルムで挟み、一部開口部を残してシールし、これを真空オーブンにて80℃で6時間乾燥、乾燥後は速やかに電解液を0.7mL注液し、真空シーラーでシールし、80℃、1MPaで1時間プレス成型した。続いて、充放電を実施した。充放電条件は300mA電流値で、電池電圧4.2Vまで定電流充電した後、電池電圧4.2Vで15mAになるまで定電圧充電を行った。10分の休止後、300mAの電流値で電池電圧3.0Vまで定電流放電を行い、10分休止した。以上の充放電を3サイクル実施し、電池容量300mAhの試験用二次電池を作製した。
(実施例1〜12)
表1,2に示す組成でポリオレフィン樹脂と流動パラフィンとを二軸押出機にて、溶融混練し、ポリオレフィン溶液を調製した。ポリオレフィン溶液を、二軸押出機からTダイに供給し、押し出した。押出し成形体を、冷却ロールで引き取りながら冷却し、ゲル状シートを形成した。ゲル状シートを、テンター延伸機により106℃以上112℃以下でMD方向及びTD方向ともに5倍で同時二軸延伸又は逐次二軸延伸(第一の延伸)した。延伸したゲル状シートを塩化メチレン浴中に浸漬し、流動パラフィンを除去した後、乾燥させ、乾燥膜を得た。乾燥膜をバッチ式延伸機を用いて、90℃以上113℃以下でMD方向に1.40倍以上1.90倍以下ロール延伸法で延伸(第二の延伸)した。その後、128.0℃以上133.0℃以下でTD方向に1.34倍以上2.11倍以下で延伸(第三の延伸)した。次に、得られた膜をテンター法により、129.0℃以上133.1℃以下の範囲で、2%以上10%以下の緩和率で緩和を行った。なお、緩和後におけるTD方向の延伸倍率は、1.32倍以上2.03倍以下であった。得られたポリオレフィン微多孔質膜の製造条件、評価結果等を表1,2に記載した。
(比較例1〜5)
表3に示す組成でポリオレフィン樹脂と流動パラフィンとを二軸押出機にて、溶融混練し、表3に示す製造条件でポリオレフィン微多孔膜の製造を行った。得られたポリオレフィン微多孔質膜の評価結果等を表3に記載した。
Figure 0006988881
Figure 0006988881
Figure 0006988881
(評価)
実施例1〜12のポリオレフィン微多孔膜は、膜厚3.2μm以上7.1μm以下において、熱圧縮時の膜厚変化率(1MPa、80℃、1hr)が0%以上15%以下であり、耐圧縮に優れ、自己放電特性に優れることが示された。中でも、目付が3.4g/m未満、又は、空孔率が40%以上である場合、レート特性及びサイクル特性に優れることが確認される。一方、比較例1〜5のポリオレフィン微多孔膜は、熱圧縮時の膜厚変化率(1MPa、80℃、1hr)が15%超であり、かつ、自己放電特性が不良、又は、自己放電特性及びレート特性の両方が不良であった。
以上から、熱圧縮時の膜厚変化率(1MPa、80℃、1hr)を特定の範囲としたポリオレフィン微多孔膜をセパレータとして組み入れた二次電池は、優れた自己放電特性を有することが明らかとなった。
本発明のポリオレフィン微多孔膜は、セパレータとして二次電池に組み入れた際、自己放電特性に優れる。よって、薄膜化が要求される二次電池用セパレータに好適に用いることができる。

Claims (5)

  1. 目付が3.4g/m 未満、及び、空孔率が40%以上の条件を満たし、MD方向の引張強度が230MPa以上であり、下記式により算出される温度80℃、圧力1MPaで60分間加熱圧縮した時の膜厚変化率が、加熱圧縮前のポリエチレン微多孔質膜の膜厚100%に対して、0%以上15%以下であるポリエチレン微多孔膜を含む二次電池用セパレータ
    [(圧縮前の平均厚さ−圧縮した状態の平均厚さ)/(圧縮前の平均厚さ)]×100
  2. TD方向の引張伸度が100%以上である請求項1に記載のポリエチレンを含む二次電池用セパレータ
  3. 請求項1または2に記載のポリエチレン微多孔膜を含む二次電池用セパレータを少なくとも1層有する多層ポリエチレン微多孔膜。
  4. 請求項1または2に記載のポリエチレン微多孔膜を含む二次電池用セパレータの少なくとも一方の表面に、1層以上のコーティング層を備える、積層ポリエチレン微多孔膜。
  5. 請求項1または2に記載のポリエチレン微多孔膜を含む二次電池用セパレータを用いてなる二次電池。
JP2019504575A 2017-03-08 2018-03-05 ポリエチレン微多孔膜を含む二次電池用セパレータ Active JP6988881B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017044210 2017-03-08
JP2017044210 2017-03-08
PCT/JP2018/008334 WO2018164056A1 (ja) 2017-03-08 2018-03-05 ポリオレフィン微多孔膜

Publications (2)

Publication Number Publication Date
JPWO2018164056A1 JPWO2018164056A1 (ja) 2020-01-16
JP6988881B2 true JP6988881B2 (ja) 2022-01-05

Family

ID=63448263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019504575A Active JP6988881B2 (ja) 2017-03-08 2018-03-05 ポリエチレン微多孔膜を含む二次電池用セパレータ

Country Status (7)

Country Link
US (1) US20210005860A1 (ja)
EP (1) EP3594278B1 (ja)
JP (1) JP6988881B2 (ja)
KR (1) KR102533841B1 (ja)
CN (2) CN110114397A (ja)
TW (1) TW201836852A (ja)
WO (1) WO2018164056A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111727517B (zh) * 2018-09-25 2023-12-19 旭化成株式会社 高强度分隔件
JP7470297B2 (ja) * 2019-03-26 2024-04-18 東レ株式会社 ポリオレフィン微多孔膜およびその製造方法
CN113631643B (zh) * 2019-03-29 2022-11-04 东丽株式会社 聚烯烃微多孔膜、电池用隔板及二次电池
WO2022092300A1 (ja) 2020-10-30 2022-05-05 旭化成株式会社 ポリオレフィン微多孔膜
KR20230135044A (ko) 2021-01-18 2023-09-22 도레이 카부시키가이샤 폴리올레핀 미다공막 및 적층 폴리올레핀 미다공막
WO2023004820A1 (zh) * 2021-07-30 2023-02-02 宁德时代新能源科技股份有限公司 隔离膜及其制备方法、电化学装置、电化学设备和用电装置
WO2023176876A1 (ja) * 2022-03-18 2023-09-21 東レ株式会社 ポリオレフィン微多孔膜、電池用セパレータ、非水電解液二次電池およびフィルター

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3347835B2 (ja) 1993-08-13 2002-11-20 東燃化学株式会社 ポリオレフィン微多孔膜の製造方法
JP4734520B2 (ja) 2001-03-02 2011-07-27 東レ東燃機能膜合同会社 熱可塑性樹脂微多孔膜の製造方法
JP4234392B2 (ja) * 2002-10-29 2009-03-04 東燃化学株式会社 微多孔膜及びその製造方法並びに用途
WO2006137540A1 (ja) 2005-06-24 2006-12-28 Tonen Chemical Corporation ポリエチレン多層微多孔膜並びにそれを用いた電池用セパレータ及び電池
US8778525B2 (en) * 2005-08-25 2014-07-15 Toray Battery Separator Film Co., Ltd Multi-layer, microporous polyethylene membrane, battery separator formed thereby and battery
JP5283383B2 (ja) * 2005-09-28 2013-09-04 東レバッテリーセパレータフィルム株式会社 ポリエチレン微多孔膜の製造方法及び電池用セパレータ
JP5202816B2 (ja) * 2006-04-07 2013-06-05 東レバッテリーセパレータフィルム株式会社 ポリオレフィン微多孔膜及びその製造方法
JP5312450B2 (ja) * 2007-08-31 2013-10-09 東レバッテリーセパレータフィルム株式会社 ポリオレフィン多層微多孔膜、その製造方法、電池用セパレータ及び電池
KR101143106B1 (ko) * 2007-10-05 2012-05-08 토레이 밧데리 세퍼레이터 필름 고도 가이샤 미세다공성 중합체 막
US20090226814A1 (en) * 2008-03-07 2009-09-10 Kotaro Takita Microporous membrane, battery separator and battery
JP5297114B2 (ja) 2008-08-06 2013-09-25 三菱重工業株式会社 ガスタービン
EP2159311B1 (de) 2008-09-01 2011-10-19 Groz-Beckert KG Hakennadel mit schräggestelltem Ellipsenquerschnitt des Hakens
CN102131571B (zh) * 2008-09-02 2014-03-05 东丽电池隔膜株式会社 微孔性高分子膜、该膜的制备方法及该膜作为电池隔膜的应用
CN102209751B (zh) 2008-11-19 2013-08-28 三井化学株式会社 聚烯烃树脂组合物及其用途
KR101013827B1 (ko) 2008-11-25 2011-02-14 주식회사 유니언스 열팽창성 난연 폴리올레핀수지 조성물을 이용한 난연성 복합패널
EP2410006A4 (en) 2009-03-17 2015-08-19 Toray Industries Porous polypyryl film and method for its production
US9136517B2 (en) * 2010-08-12 2015-09-15 Toray Battery Separator Film Co., Ltd. Microporous film, process for production of the film, and use of the film
US20130302696A1 (en) * 2011-01-25 2013-11-14 Toray Battery Separator Film Co., Ltd. Microporous membrane, method for producing same, and battery separator using same
JP5298247B2 (ja) * 2011-06-02 2013-09-25 三菱樹脂株式会社 積層多孔フィルム、電池用セパレータおよび電池
EP2757125A4 (en) * 2011-09-17 2015-06-17 Sekisui Chemical Co Ltd METHOD FOR PRODUCING MICROPOROUS RESIN FILM BASED ON PROPYLENE AND DESCRIPTION OF THE SAME
JP5909411B2 (ja) 2012-06-13 2016-04-26 旭化成イーマテリアルズ株式会社 ポリオレフィン微多孔膜及びその製造方法
JP6100022B2 (ja) 2013-02-25 2017-03-22 旭化成株式会社 ポリオレフィン微多孔膜の製造方法
EP3006210B1 (en) * 2013-05-31 2017-11-15 Toray Industries, Inc. Multilayer, microporous polyolefin membrane, and production method thereof
CN105246957B (zh) * 2013-05-31 2019-02-01 东丽株式会社 聚烯烃微多孔膜及其制造方法
JP5495457B1 (ja) * 2013-08-30 2014-05-21 東レバッテリーセパレータフィルム株式会社 電池用セパレータ及びその電池用セパレータの製造方法
JP6398498B2 (ja) * 2014-05-09 2018-10-03 東レ株式会社 ポリオレフィン製積層多孔質膜を用いた電池用セパレータおよびその製造方法
JP6680206B2 (ja) * 2014-06-20 2020-04-15 東レ株式会社 ポリオレフィン微多孔質膜、電池用セパレータ及び電池

Also Published As

Publication number Publication date
EP3594278B1 (en) 2024-06-12
KR102533841B1 (ko) 2023-05-18
EP3594278A1 (en) 2020-01-15
WO2018164056A1 (ja) 2018-09-13
KR20190124199A (ko) 2019-11-04
US20210005860A1 (en) 2021-01-07
CN115149204A (zh) 2022-10-04
JPWO2018164056A1 (ja) 2020-01-16
CN115149204B (zh) 2024-05-24
TW201836852A (zh) 2018-10-16
EP3594278A4 (en) 2020-11-25
CN110114397A (zh) 2019-08-09

Similar Documents

Publication Publication Date Title
JP6988881B2 (ja) ポリエチレン微多孔膜を含む二次電池用セパレータ
JP6680206B2 (ja) ポリオレフィン微多孔質膜、電池用セパレータ及び電池
JP4753446B2 (ja) ポリオレフィン製微多孔膜
CN110431176B (zh) 聚烯烃微多孔膜、非水电解液系二次电池用隔膜及非水电解液系二次电池
CN107925036B (zh) 电池用隔膜
JP2008255307A (ja) ポリオレフィン多層微多孔膜、その製造方法、電池用セパレータ及び電池
CN110249449B (zh) 电池用隔膜、电极体和非水电解质二次电池
JP6895570B2 (ja) ポリオレフィン微多孔膜及びポリオレフィン微多孔膜の製造方法
JP7088162B2 (ja) ポリオレフィン微多孔膜
JP7409301B2 (ja) ポリオレフィン微多孔膜及びポリオレフィン微多孔膜の製造方法
JP2020079426A (ja) ポリオレフィン微多孔膜
WO2019151220A1 (ja) ポリオレフィン微多孔膜、コーティングフィルム及び電池、並びにポリオレフィン微多孔膜の製造方法
JP2019102126A (ja) 電池用セパレータ及び非水電解液二次電池
JP6988880B2 (ja) ポリオレフィン微多孔膜
JP2022048518A (ja) ポリオレフィン微多孔膜、それを用いたコーティングフィルム及び二次電池
JP6741884B1 (ja) ポリオレフィン微多孔膜
WO2022059744A1 (ja) 蓄電デバイス用セパレータ及び蓄電デバイス
WO2023002818A1 (ja) ポリオレフィン多層微多孔膜、積層ポリオレフィン多層微多孔膜、電池用セパレータ
KR101103125B1 (ko) 폴리올레핀제 미다공막

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211115

R151 Written notification of patent or utility model registration

Ref document number: 6988881

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151