[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6962440B2 - Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal element - Google Patents

Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal element Download PDF

Info

Publication number
JP6962440B2
JP6962440B2 JP2020500281A JP2020500281A JP6962440B2 JP 6962440 B2 JP6962440 B2 JP 6962440B2 JP 2020500281 A JP2020500281 A JP 2020500281A JP 2020500281 A JP2020500281 A JP 2020500281A JP 6962440 B2 JP6962440 B2 JP 6962440B2
Authority
JP
Japan
Prior art keywords
liquid crystal
crystal alignment
compound
alignment agent
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020500281A
Other languages
Japanese (ja)
Other versions
JPWO2019159470A1 (en
Inventor
嘉崇 村上
哲 平野
恵 中西
幸志 樫下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
JSR Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSR Corp filed Critical JSR Corp
Publication of JPWO2019159470A1 publication Critical patent/JPWO2019159470A1/en
Application granted granted Critical
Publication of JP6962440B2 publication Critical patent/JP6962440B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)

Description

関連出願の相互参照Cross-reference of related applications

本出願は、2018年2月13日に出願された日本出願番号2018−23423号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Application No. 2018-23423 filed on February 13, 2018, the contents of which are incorporated herein by reference.

本開示は、液晶配向剤、液晶配向膜及び液晶素子に関する。 The present disclosure relates to a liquid crystal alignment agent, a liquid crystal alignment film, and a liquid crystal element.

液晶素子は、テレビやパーソナルコンピュータ、スマートフォンなどの表示装置をはじめとする各種用途に用いられている。これら液晶素子は、液晶分子を一定の方向に配向させる機能を有する液晶配向膜を具備している。液晶配向膜は一般に、重合体成分が有機溶媒に溶解されてなる液晶配向剤を基板上に塗布し、好ましくは加熱することにより基板上に形成される。液晶配向剤の重合体成分としては、機械的強度や液晶配向性、液晶との親和性に優れていることから、ポリアミック酸や可溶性ポリイミドが広く使用されている。また、液晶配向剤の溶剤成分としては、ポリアミック酸や可溶性ポリイミド等の重合体に対する溶解性が高い溶媒(例えば、N−メチル−2−ピロリドンやγ−ブチロラクトン等の良溶媒)と、基板に対する濡れ広がり性が高い溶媒(例えば、ブチルセロソルブ等の貧溶媒)との混合溶媒が一般に使用されている(例えば、特許文献1、2参照)。 Liquid crystal elements are used in various applications such as display devices such as televisions, personal computers, and smartphones. These liquid crystal elements include a liquid crystal alignment film having a function of orienting liquid crystal molecules in a certain direction. The liquid crystal alignment film is generally formed on the substrate by applying a liquid crystal alignment agent in which the polymer component is dissolved in an organic solvent onto the substrate and preferably heating the substrate. As the polymer component of the liquid crystal alignment agent, polyamic acid and soluble polyimide are widely used because they are excellent in mechanical strength, liquid crystal orientation, and affinity with liquid crystal. Further, as the solvent component of the liquid crystal alignment agent, a solvent having high solubility in a polymer such as polyamic acid or soluble polyimide (for example, a good solvent such as N-methyl-2-pyrrolidone or γ-butyrolactone) and wetness to the substrate are used. A mixed solvent with a solvent having high spreadability (for example, a poor solvent such as butyl cellosolve) is generally used (see, for example, Patent Documents 1 and 2).

特開2017−198975号公報Japanese Unexamined Patent Publication No. 2017-198975 特開2016−206645号公報Japanese Unexamined Patent Publication No. 2016-206645

液晶テレビとしては、近年、さらなる表示品位の向上による臨場感を得るべく、4K(例えば3840画素×2160画素)や8K(例えば7680画素×4320画素)といった、画素数を増やした表示装置の規格が作られている。表示装置の画素数が増えて画素サイズが小さくなると、画素電極はさらに微細な構造となり、画素電極の形成面は、単位面積当たりの凹凸密度がより高くなる。この場合、画素電極の形成面に液晶配向剤を塗布して配向膜を形成する際に、画素電極の微細な凹凸構造に対して液晶配向剤が濡れ広がりにくく、基板に対する塗布性を十分に確保できないことが懸念される。微細な凹凸構造に液晶配向剤を塗布する場合にも良好な塗布性が得られるようにするためには、基板に対する濡れ広がり性が高い液晶配向剤とする必要がある。 As for LCD TVs, in recent years, there have been standards for display devices with an increased number of pixels, such as 4K (for example, 3840 pixels x 2160 pixels) and 8K (for example, 7680 pixels x 4320 pixels), in order to obtain a sense of realism by further improving the display quality. It is made. As the number of pixels in the display device increases and the pixel size decreases, the pixel electrodes have a finer structure, and the surface on which the pixel electrodes are formed has a higher uneven density per unit area. In this case, when the liquid crystal alignment agent is applied to the forming surface of the pixel electrode to form the alignment film, the liquid crystal alignment agent is difficult to wet and spread with respect to the fine uneven structure of the pixel electrode, and sufficient coatability to the substrate is ensured. There is concern that it cannot be done. In order to obtain good coatability even when the liquid crystal alignment agent is applied to a fine uneven structure, it is necessary to use a liquid crystal alignment agent having high wettability and spreadability on a substrate.

さらに近年では、大画面の液晶パネルの普及が進み、従来よりも大型のラインが稼動するようになり、基板の大型化が進んでいる。基板を大型化するメリットとしては、基板一枚から複数枚のパネルが取れるため、工程時間及びコストの低減を図ることができる点や、液晶パネル自体の大型化に対応可能である点などが挙げられる。その一方で、大型基板上に液晶配向膜を形成する場合、従来に比べてポストベーク時に温度ムラが生じやすく、この温度ムラに起因して液晶配向膜のプレチルト角にばらつきが生じ、表示品位の低下を招くことが懸念される。 Furthermore, in recent years, large-screen liquid crystal panels have become widespread, and larger lines have come into operation than before, and the size of substrates has been increasing. The merits of increasing the size of the substrate are that it is possible to reduce the process time and cost because multiple panels can be taken from one substrate, and that it is possible to cope with the increase in the size of the liquid crystal panel itself. Be done. On the other hand, when a liquid crystal alignment film is formed on a large substrate, temperature unevenness is more likely to occur during post-baking than in the past, and the pretilt angle of the liquid crystal alignment film varies due to this temperature unevenness, resulting in display quality. There is concern that it will lead to a decline.

また、液晶パネルとしては、スマートフォンやタブレットPCに代表される、タッチパネル式の小型表示パネルの開発も進められている。ここで、タッチパネル式の表示パネルにおいては、タッチパネルの可動面積をより広く、かつ液晶パネルの小型化を両立させるために狭額縁化を図ることが試みられている。また、液晶パネルの狭額縁化に伴い、経年等により、シール剤周辺で液晶配向膜に起因する表示ムラが視認されることがある。液晶パネルの高精細化、高寿命化を図るためには、こうしたシール剤周辺での表示ムラが長期に亘って視認されにくい(ベゼルムラ耐性が高い)液晶素子が求められる。 Further, as a liquid crystal panel, a touch panel type small display panel represented by a smartphone or a tablet PC is being developed. Here, in the touch panel type display panel, an attempt is made to narrow the frame in order to make the movable area of the touch panel wider and to make the liquid crystal panel smaller. Further, as the frame of the liquid crystal panel is narrowed, display unevenness due to the liquid crystal alignment film may be visually recognized around the sealant due to aging or the like. In order to achieve high definition and long life of the liquid crystal panel, a liquid crystal element is required in which display unevenness around the sealant is hard to be visually recognized for a long period of time (high resistance to bezel unevenness).

またさらに、液晶表示装置において、液晶配向膜中の残留電荷(残留DC)が大きいと、画像を切り替えた後に先に表示されていた画像の影響が残ってしまう、いわゆる残像(これをDC残像ともいう。)が発生する原因となる。また、液晶表示装置を長時間動作させた場合に、初期配向の方向が液晶表示装置の製造当初からの方向とずれてきてしまうと、AC残像と称する焼き付きが発生することがある。表示品位を確保するためには、こうしたDC残像やAC残像ができるだけ低減された液晶表示装置が求められる。 Furthermore, in a liquid crystal display device, if the residual charge (residual DC) in the liquid crystal alignment film is large, the influence of the previously displayed image remains after switching the image, so-called afterimage (this is also called DC afterimage). It causes the occurrence of.). Further, when the liquid crystal display device is operated for a long time, if the direction of the initial orientation deviates from the direction from the beginning of the manufacture of the liquid crystal display device, a burn-in called an AC afterimage may occur. In order to secure the display quality, a liquid crystal display device in which such DC afterimages and AC afterimages are reduced as much as possible is required.

本開示は上記課題に鑑みなされたものであり、微細な凹凸構造に対する塗布性が良好であり、膜形成時の加熱に際し温度ムラの影響を受けにくく、シール剤周辺の表示ムラが少なく、かつ残像特性が良好な液晶素子を得ることができる液晶配向剤を提供することを一つの目的とする。 The present disclosure has been made in view of the above problems, has good coatability for fine uneven structures, is less susceptible to temperature unevenness during heating during film formation, has less display unevenness around the sealant, and has an afterimage. One object of the present invention is to provide a liquid crystal alignment agent capable of obtaining a liquid crystal element having good characteristics.

上記課題を解決するために鋭意検討し、ベンゼン環に特定の基(部分構造)が結合した構造を有する化合物を液晶配向剤に含有させることにより上記課題を解決できることを見出した。具体的には以下の手段を採用した。 In order to solve the above problems, we have diligently studied and found that the above problems can be solved by containing a compound having a structure in which a specific group (partial structure) is bonded to a benzene ring in a liquid crystal alignment agent. Specifically, the following means were adopted.

<1> 重合体成分と、下記式(1)で表される化合物及び下記式(2)で表される化合物よりなる群から選ばれる少なくとも一種である化合物[A]と、を含有する、液晶配向剤。

Figure 0006962440
(式(1)中、Rは、炭素数1〜4のアルキル基、−CO−CH、又は−R−OH(ただし、Rは炭素数1〜4のアルカンジイル基)である。Rは、水素原子又は炭素数1〜4のアルキル基である。nは1又は2である。ただし、nが2の場合、Rは水素原子である。nが2の場合、式(1)中の複数のRは、互いに同じでも異なっていてもよい。式(2)中、Rは、炭素数1〜3のアルカンジイル基である。)
<2> 液晶配向膜を備える液晶素子の製造方法であって、上記<1>の液晶配向剤を用いて液晶配向膜を形成する、液晶素子の製造方法。
<3> 上記<1>の液晶配向剤を用いて形成された液晶配向膜。
<4> 上記<3>の液晶配向膜を備える液晶素子。<1> A liquid crystal display containing a polymer component and at least one compound [A] selected from the group consisting of a compound represented by the following formula (1) and a compound represented by the following formula (2). Aligner.
Figure 0006962440
(In the formula (1), R 1 is an alkyl group having 1 to 4 carbon atoms, -CO-CH 3 , or -R 4- OH (where R 4 is an alkanediyl group having 1 to 4 carbon atoms). R 2 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. N is 1 or 2. However, when n is 2, R 2 is a hydrogen atom. When n is 2, the formula is (1) a plurality of R 1 in during may be the same or different from each other. equation (2), R 3 is an alkanediyl group having 1 to 3 carbon atoms.)
<2> A method for manufacturing a liquid crystal element including a liquid crystal alignment film, wherein the liquid crystal alignment film is formed by using the liquid crystal alignment agent of <1> above.
<3> A liquid crystal alignment film formed by using the liquid crystal alignment agent of <1> above.
<4> A liquid crystal element provided with the liquid crystal alignment film of <3> above.

本開示の液晶配向剤は、微細な凹凸構造を有する基板面に塗布した場合にも濡れ広がり性が良好であり、基板面に対し均一に液晶配向膜を形成することができる。また、本開示の液晶配向剤は、膜形成時の加熱の際に温度ムラの影響を受けにくく、よって、温度ムラに起因する特性ばらつきが抑制された液晶配向膜を得ることができる。さらに、本開示の液晶配向剤によれば、シール剤周辺の表示ムラが少なく(ベゼルムラ耐性が良好な)、かつ残像特性に優れた液晶素子を得ることができる。 The liquid crystal alignment agent of the present disclosure has good wettability and spreadability even when applied to a substrate surface having a fine uneven structure, and can uniformly form a liquid crystal alignment film on the substrate surface. Further, the liquid crystal alignment agent of the present disclosure is not easily affected by temperature unevenness during heating at the time of film formation, and thus a liquid crystal alignment film in which characteristic variation due to temperature unevenness is suppressed can be obtained. Further, according to the liquid crystal alignment agent of the present disclosure, it is possible to obtain a liquid crystal element having less display unevenness around the sealant (good bezel unevenness resistance) and excellent afterimage characteristics.

図1は、評価用ITO電極基板の概略構成を示す図である。(a)は平面図であり、(b)は一部を拡大した断面図である。FIG. 1 is a diagram showing a schematic configuration of an ITO electrode substrate for evaluation. (A) is a plan view, and (b) is a partially enlarged cross-sectional view.

以下に、本開示の液晶配向剤に含まれる各成分、及び必要に応じて任意に配合されるその他の成分について説明する。液晶配向剤は、重合体成分と溶剤成分とを含有し、重合体成分が溶剤成分に溶解されてなる液状の重合体組成物である。 Hereinafter, each component contained in the liquid crystal alignment agent of the present disclosure, and other components optionally blended will be described. The liquid crystal alignment agent is a liquid polymer composition containing a polymer component and a solvent component, and the polymer component is dissolved in the solvent component.

≪重合体成分≫
液晶配向剤に含有される重合体成分は、その主骨格は特に限定されないが、例えばポリアミック酸、ポリアミック酸エステル、ポリイミド、ポリオルガノシロキサン、ポリエステル、ポリアミド、ポリアミドイミド、ポリベンゾオキサゾール前駆体、ポリベンゾオキサゾール、セルロース誘導体、ポリアセタール、重合性不飽和結合を有するモノマーに由来する構造単位を有する重合体(以下、「重合体(Q)」ともいう。)等の主骨格が挙げられる。液晶素子の性能を十分に確保する等の観点から、重合体成分は、ポリアミック酸、ポリアミック酸エステル、ポリイミド、ポリアミド及び重合体(Q)よりなる群から選ばれる少なくとも一種の重合体であることが好ましく、ポリアミック酸、ポリアミック酸エステル及びポリイミドよりなる群から選ばれる少なくとも一種であることが特に好ましい。
≪Polymer component≫
The main skeleton of the polymer component contained in the liquid crystal aligning agent is not particularly limited, but for example, polyamic acid, polyamic acid ester, polyimide, polyorganosiloxane, polyester, polyamide, polyamideimide, polybenzoxazole precursor, polybenzo Examples thereof include a main skeleton such as an oxazole, a cellulose derivative, a polyacetal, and a polymer having a structural unit derived from a monomer having a polymerizable unsaturated bond (hereinafter, also referred to as “polymer (Q)”). From the viewpoint of ensuring sufficient performance of the liquid crystal element, the polymer component may be at least one polymer selected from the group consisting of polyamic acid, polyamic acid ester, polyimide, polyamide and polymer (Q). It is particularly preferable that it is at least one selected from the group consisting of polyamic acid, polyamic acid ester and polyimide.

<ポリアミック酸>
ポリアミック酸は、テトラカルボン酸二無水物とジアミン化合物とを反応させることにより得ることができる。
(テトラカルボン酸二無水物)
ポリアミック酸の合成に使用するテトラカルボン酸二無水物としては、例えば脂肪族テトラカルボン酸二無水物、脂環式テトラカルボン酸二無水物、芳香族テトラカルボン酸二無水物などを挙げることができる。これらの具体例としては、脂肪族テトラカルボン酸二無水物として、例えば1,2,3,4−ブタンテトラカルボン酸二無水物などを;
脂環式テトラカルボン酸二無水物として、例えば1,2,3,4−シクロブタンテトラカルボン酸二無水物、1,3−ジメチル−1,2,3,4−シクロブタンテトラカルボン酸二無水物、2,3,5−トリカルボキシシクロペンチル酢酸二無水物、5−(2,5−ジオキソテトラヒドロフラン−3−イル)−3a,4,5,9b−テトラヒドロナフト[1,2−c]フラン−1,3−ジオン、5−(2,5−ジオキソテトラヒドロフラン−3−イル)−8−メチル−3a,4,5,9b−テトラヒドロナフト[1,2−c]フラン−1,3−ジオン、3−オキサビシクロ[3.2.1]オクタン−2,4−ジオン−6−スピロ−3’−(テトラヒドロフラン−2’,5’−ジオン)、2,4,6,8−テトラカルボキシビシクロ[3.3.0]オクタン−2:4,6:8−二無水物、4,9−ジオキサトリシクロ[5.3.1.02,6]ウンデカン−3,5,8,10−テトラオン、シクロペンタンテトラカルボン酸二無水物、シクロヘキサンテトラカルボン酸二無水物などを;芳香族テトラカルボン酸二無水物として、例えばピロメリット酸二無水物、4,4’−(ヘキサフルオロイソプロピリデン)ジフタル酸無水物、エチレングリコールビスアンヒドロトリメート、4,4’−(ヘキサフルオロイソプロピリデン)ジフタル酸無水物、4,4’−カルボニルジフタル酸無水物などを;それぞれ挙げることができるほか、特開2010−97188号公報に記載のテトラカルボン酸二無水物を用いることができる。なお、上記テトラカルボン酸二無水物は、1種を単独で又は2種以上組み合わせて使用することができる。
<Polyamic acid>
The polyamic acid can be obtained by reacting a tetracarboxylic dianhydride with a diamine compound.
(Tetracarboxylic dianhydride)
Examples of the tetracarboxylic dianhydride used for the synthesis of polyamic acid include aliphatic tetracarboxylic dianhydride, alicyclic tetracarboxylic dianhydride, and aromatic tetracarboxylic dianhydride. .. Specific examples of these include aliphatic tetracarboxylic dianhydrides such as 1,2,3,4-butanetetracarboxylic dianhydride;
As the alicyclic tetracarboxylic acid dianhydride, for example, 1,2,3,4-cyclobutanetetracarboxylic acid dianhydride, 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic acid dianhydride, 2,3,5-tricarboxycyclopentylacetic hydride, 5- (2,5-dioxo tetrahydrofuran-3-yl) -3a, 4,5,9b-tetrahydronaphtho [1,2-c] furan-1 , 3-Dione, 5- (2,5-dioxo tetrahydrofuran-3-yl) -8-methyl-3a, 4,5,9b-Tetrahydronaphtho [1,2-c] furan-1,3-dione, 3-Oxabicyclo [3.2.1] Octane-2,4-dione-6-spiro-3'-(Anhydride-2', 5'-dione), 2,4,6,8-Tetracarboxybicyclo [ 3.3.0] Octane-2: 4,6: 8-dianhydride, 4,9-dioxatricyclo [5.3.1.0 2,6 ] Undecane-3,5,8,10- Tetraone, cyclopentanetetracarboxylic acid dianhydride, cyclohexanetetracarboxylic acid dianhydride, etc .; as aromatic tetracarboxylic acid dianhydride, for example, pyromellitic acid dianhydride, 4,4'-(hexafluoroisopropylidene). Diphthalic anhydride, ethylene glycol bisanhydrotrimate, 4,4'-(hexafluoroisopropylidene) diphthalic anhydride, 4,4'-carbonyldiphthalic anhydride, etc .; The tetracarboxylic dianhydride described in JP-A-2010-97188 can be used. The tetracarboxylic dianhydride may be used alone or in combination of two or more.

(ジアミン化合物)
ポリアミック酸の合成に使用するジアミン化合物としては、例えば脂肪族ジアミン、脂環式ジアミン、芳香族ジアミン、ジアミノオルガノシロキサンなどを挙げることができる。これらジアミンの具体例としては、脂肪族ジアミンとして、例えばメタキシリレンジアミン、1,3−プロパンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミンなどを;脂環式ジアミンとして、例えば1,4−ジアミノシクロヘキサン、4,4’−メチレンビス(シクロヘキシルアミン)などを;
芳香族ジアミンとして、例えば、ドデカノキシ−2,4−ジアミノベンゼン、ペンタデカノキシ−2,4−ジアミノベンゼン、ヘキサデカノキシ−2,4−ジアミノベンゼン、オクタデカノキシ−2,4−ジアミノベンゼン、ペンタデカノキシ−2,5−ジアミノベンゼン、オクタデカノキシ−2,5−ジアミノベンゼン、コレスタニルオキシ−3,5−ジアミノベンゼン、コレステニルオキシ−3,5−ジアミノベンゼン、コレスタニルオキシ−2,4−ジアミノベンゼン、コレステニルオキシ−2,4−ジアミノベンゼン、3,5−ジアミノ安息香酸コレスタニル、3,5−ジアミノ安息香酸コレステニル、3,5−ジアミノ安息香酸ラノスタニル、3,6−ビス(4−アミノベンゾイルオキシ)コレスタン、3,6−ビス(4−アミノフェノキシ)コレスタン、2,4−ジアミノ−N,N−ジアリルアニリン、4−(4’−トリフルオロメトキシベンゾイロキシ)シクロヘキシル−3,5−ジアミノベンゾエート、1,1−ビス(4−((アミノフェニル)メチル)フェニル)−4−ブチルシクロヘキサン、3,5−ジアミノ安息香酸=5ξ−コレスタン−3−イル、下記式(E−1)

Figure 0006962440
(式(E−1)中、XI及びXIIは、それぞれ独立に、単結合、−O−、*−COO−又は*−OCO−(ただし、「*」はXとの結合手を示す。)であり、Rは炭素数1〜3のアルカンジイル基であり、RIIは単結合又は炭素数1〜3のアルカンジイル基であり、aは0又は1であり、bは0〜2の整数であり、cは1〜20の整数であり、dは0又は1である。但し、a及びbが同時に0になることはない。)
で表される化合物、桂皮酸構造を側鎖に有するジアミンなどの側鎖型ジアミン:(Diamine compound)
Examples of the diamine compound used for the synthesis of the polyamic acid include an aliphatic diamine, an alicyclic diamine, an aromatic diamine, and a diaminoorganosiloxane. Specific examples of these diamines include, for example, metaxylylenediamine, 1,3-propanediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine and the like as aliphatic diamines; for example, 1,4 as alicyclic diamines. -Diaminocyclohexane, 4,4'-methylenebis (cyclohexylamine), etc .;
As aromatic diamines, for example, dodecanoxy-2,4-diaminobenzene, pentadecanoxy-2,4-diaminobenzene, hexadecanoxy-2,4-diaminobenzene, octadecanoxy-2,4-diaminobenzene, pentadecanoxy-2,5-diamino Benzene, octadecanoxy-2,5-diaminobenzene, cholestanyloxy-3,5-diaminobenzene, cholestenyloxy-3,5-diaminobenzene, cholestanyloxy-2,4-diaminobenzene, cholestenyloxy-2, 4-Diaminobenzene, cholestanyl 3,5-diaminobenzoate, cholestenyl 3,5-diaminobenzoate, lanostannyl 3,5-diaminobenzoate, 3,6-bis (4-aminobenzoyloxy) cholestan, 3,6- Bis (4-aminophenoxy) cholesterol, 2,4-diamino-N, N-diallylaniline, 4- (4'-trifluoromethoxybenzoyloxy) cyclohexyl-3,5-diaminobenzoate, 1,1-bis ( 4-((Aminophenyl) methyl) phenyl) -4-butylcyclohexane, 3,5-diaminobenzoic acid = 5ξ-cholestane-3-yl, the following formula (E-1)
Figure 0006962440
(In the formula (E-1), X I and X II are independently single-bonded, -O-, * -COO- or * -OCO- (where "*" is a bond with X I. shown.), and, R I is an alkanediyl group having 1 to 3 carbon atoms, R II is a single bond or an alkanediyl group having 1 to 3 carbon atoms, a is 0 or 1, b is 0 It is an integer of ~ 2, c is an integer of 1 to 20, d is 0 or 1. However, a and b cannot be 0 at the same time.)
Side chain diamines such as compounds represented by, diamines having a cinnamic acid structure in the side chain:

p−フェニレンジアミン、4,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルスルフィド、4−アミノフェニル−4−アミノベンゾエート、4,4’−ジアミノアゾベンゼン、3,5−ジアミノ安息香酸、1,5−ビス(4−アミノフェノキシ)ペンタン、1,2−ビス(4−アミノフェノキシ)エタン、1,3−ビス(4−アミノフェノキシ)プロパン、1,4−ビス(4−アミノフェノキシ)ブタン、1,5−ビス(4−アミノフェノキシ)ペンタン、1,6−ビス(4−アミノフェノキシ)ヘキサン、1,7−ビス(4−アミノフェノキシ)ヘプタン、1,10−ビス(4−アミノフェノキシ)デカン、1,2−ビス(4−アミノフェニル)エタン、1,5−ビス(4−アミノフェニル)ペンタン、1,6−ビス(4−アミノフェニル)ヘキサン、1,4−ビス(4−アミノフェニルスルファニル)ブタン、ビス[2−(4−アミノフェニル)エチル]ヘキサン二酸、N,N−ビス(4−アミノフェニル)メチルアミン、2,6−ジアミノピリジン、1,4−ビス−(4−アミノフェニル)−ピペラジン、N,N’−ビス(4−アミノフェニル)−ベンジジン、2,2’−ジメチル−4,4’−ジアミノビフェニル、2,2’−ビス(トリフルオロメチル)−4,4’−ジアミノビフェニル、4,4’−ジアミノジフェニルエーテル、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、2,2−ビス(4−アミノフェニル)ヘキサフルオロプロパン、4,4’−(フェニレンジイソプロピリデン)ビスアニリン、1,4−ビス(4−アミノフェノキシ)ベンゼン、4,4’−ビス(4−アミノフェノキシ)ビフェニル、4,4’−[4,4’−プロパン−1,3−ジイルビス(ピペリジン−1,4−ジイル)]ジアニリン、4,4’−ジアミノベンズアニリド、4,4’−ジアミノスチルベンゼン、4,4’−ジアミノジフェニルアミン、1,3−ビス(4−アミノフェネチル)ウレア、1,3−ビス(4−アミノベンジル)ウレア、1,4−ビス(4−アミノフェニル)−ピペラジン、N−(4−アミノフェニルエチル)−N−メチルアミン、N,N’−ビス(4−アミノフェニル)−N,N’−ジメチルベンジジン等の主鎖型ジアミンなどを;ジアミノオルガノシロキサンとして、例えば、1,3−ビス(3−アミノプロピル)−テトラメチルジシロキサンなどを;それぞれ挙げることができるほか、特開2010−97188号公報に記載のジアミンを用いることができる。 p-phenylenediamine, 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylsulfide, 4-aminophenyl-4-aminobenzoate, 4,4'-diaminoazobenzene, 3,5-diaminobenzoic acid, 1, 5-bis (4-aminophenoxy) pentane, 1,2-bis (4-aminophenoxy) ethane, 1,3-bis (4-aminophenoxy) propane, 1,4-bis (4-aminophenoxy) butane, 1,5-bis (4-aminophenoxy) pentane, 1,6-bis (4-aminophenoxy) hexane, 1,7-bis (4-aminophenoxy) heptane, 1,10-bis (4-aminophenoxy) Decane, 1,2-bis (4-aminophenyl) ethane, 1,5-bis (4-aminophenyl) pentane, 1,6-bis (4-aminophenyl) hexane, 1,4-bis (4-amino) Phenylsulfanyl) butane, bis [2- (4-aminophenyl) ethyl] hexanedioic acid, N, N-bis (4-aminophenyl) methylamine, 2,6-diaminopyridine, 1,4-bis- (4) -Aminophenyl) -piperazin, N, N'-bis (4-aminophenyl) -benzidine, 2,2'-dimethyl-4,4'-diaminobiphenyl, 2,2'-bis (trifluoromethyl) -4 , 4'-diaminobiphenyl, 4,4'-diaminodiphenyl ether, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, 2,2-bis (4-aminophenyl) hexafluoropropane, 4, 4'-(phenylenediisopropylidene) bisaniline, 1,4-bis (4-aminophenoxy) benzene, 4,4'-bis (4-aminophenoxy) biphenyl, 4,4'-[4,4'-propane -1,3-diylbis (piperidin-1,4-diyl)] dianiline, 4,4'-diaminobenzanilide, 4,4'-diaminostillbenzene, 4,4'-diaminodiphenylamine, 1,3-bis ( 4-Aminophenethyl) urea, 1,3-bis (4-aminobenzyl) urea, 1,4-bis (4-aminophenyl) -piperazin, N- (4-aminophenylethyl) -N-methylamine, N , N'-bis (4-aminophenyl) -N, N'-dimethylbenzidine and other main chain diamines; as diaminoorganosiloxane, for example, 1,3-bis (3-aminopropyl) -tetramethyldi Siloxane etc .; In addition to the above, the diamine described in JP-A-2010-97188 can be used.

(ポリアミック酸の合成)
ポリアミック酸は、上記のようなテトラカルボン酸二無水物とジアミン化合物とを、必要に応じて分子量調整剤とともに反応させることにより得ることができる。ポリアミック酸の合成反応に供されるテトラカルボン酸二無水物とジアミン化合物との使用割合は、ジアミン化合物のアミノ基1当量に対して、テトラカルボン酸二無水物の酸無水物基が0.2〜2当量となる割合が好ましい。分子量調整剤としては、例えば無水マレイン酸、無水フタル酸、無水イタコン酸などの酸一無水物、アニリン、シクロヘキシルアミン、n−ブチルアミンなどのモノアミン化合物、フェニルイソシアネート、ナフチルイソシアネートなどのモノイソシアネート化合物等を挙げることができる。分子量調整剤の使用割合は、使用するテトラカルボン酸二無水物及びジアミン化合物の合計100質量部に対して、20質量部以下とすることが好ましい。
(Synthesis of polyamic acid)
The polyamic acid can be obtained by reacting the tetracarboxylic dianhydride as described above with a diamine compound, if necessary, with a molecular weight modifier. The ratio of the tetracarboxylic acid dianhydride used in the polyamic acid synthesis reaction to the diamine compound is 0.2 for the acid anhydride group of the tetracarboxylic acid dianhydride with respect to 1 equivalent of the amino group of the diamine compound. A ratio of about 2 equivalents is preferable. Examples of the molecular weight adjusting agent include acid monoanhydrides such as maleic anhydride, phthalic anhydride and itaconic anhydride, monoamine compounds such as aniline, cyclohexylamine and n-butylamine, and monoisocyanate compounds such as phenylisocyanate and naphthylisocyanate. Can be mentioned. The ratio of the molecular weight adjusting agent used is preferably 20 parts by mass or less with respect to 100 parts by mass in total of the tetracarboxylic dianhydride and the diamine compound used.

ポリアミック酸の合成反応は、好ましくは有機溶媒中において行われる。このときの反応温度は−20℃〜150℃が好ましく、反応時間は0.1〜24時間が好ましい。
反応に使用する有機溶媒としては、例えば非プロトン性極性溶媒、フェノール系溶媒、アルコール、ケトン、エステル、エーテル、ハロゲン化炭化水素、炭化水素などを挙げることができる。特に好ましい有機溶媒は、N−メチル−2−ピロリドン、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、ジメチルスルホキシド、γ−ブチロラクトン、テトラメチル尿素、ヘキサメチルホスホルトリアミド、m−クレゾール、キシレノール及びハロゲン化フェノールよりなる群から選択される1種以上を溶媒として使用するか、あるいはこれらの1種以上と、他の有機溶媒(例えばブチルセロソルブ、ジエチレングリコールジエチルエーテルなど)との混合物を使用することが好ましい。有機溶媒の使用量(a)は、テトラカルボン酸二無水物及びジアミンの合計量(b)が、反応溶液の全量(a+b)に対して、0.1〜50質量%になる量とすることが好ましい。ポリアミック酸を溶解してなる反応溶液はそのまま液晶配向剤の調製に供してもよく、反応溶液中に含まれるポリアミック酸を単離したうえで液晶配向剤の調製に供してもよい。
The polyamic acid synthesis reaction is preferably carried out in an organic solvent. The reaction temperature at this time is preferably −20 ° C. to 150 ° C., and the reaction time is preferably 0.1 to 24 hours.
Examples of the organic solvent used in the reaction include aprotonic polar solvents, phenolic solvents, alcohols, ketones, esters, ethers, halogenated hydrocarbons, and hydrocarbons. Particularly preferred organic solvents are N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, dimethyl sulfoxide, γ-butyrolactone, tetramethylurea, hexamethylphosphortriamide, m-cresol, xylenol. And one or more selected from the group consisting of halogenated phenol can be used as a solvent, or a mixture of one or more of these with another organic solvent (for example, butyl cellosolve, diethylene glycol diethyl ether, etc.) can be used. preferable. The amount of the organic solvent used (a) shall be such that the total amount (b) of the tetracarboxylic dianhydride and the diamine is 0.1 to 50% by mass with respect to the total amount (a + b) of the reaction solution. Is preferable. The reaction solution obtained by dissolving the polyamic acid may be used as it is for the preparation of the liquid crystal alignment agent, or the polyamic acid contained in the reaction solution may be isolated and then used for the preparation of the liquid crystal alignment agent.

<ポリアミック酸エステル>
ポリアミック酸エステルは、例えば、[I]上記合成反応により得られたポリアミック酸とエステル化剤とを反応させる方法、[II]テトラカルボン酸ジエステルとジアミン化合物とを反応させる方法、[III]テトラカルボン酸ジエステルジハロゲン化物とジアミン化合物とを反応させる方法、などによって得ることができる。液晶配向剤に含有させるポリアミック酸エステルは、アミック酸エステル構造のみを有していてもよく、アミック酸構造とアミック酸エステル構造とが併存する部分エステル化物であってもよい。なお、ポリアミック酸エステルを溶解してなる反応溶液は、そのまま液晶配向剤の調製に供してもよく、反応溶液中に含まれるポリアミック酸エステルを単離したうえで液晶配向剤の調製に供してもよい。
<Polyamic acid ester>
The polyamic acid ester is, for example, [I] a method of reacting the polyamic acid obtained by the above synthetic reaction with an esterifying agent, [II] a method of reacting a tetracarboxylic acid diester with a diamine compound, and [III] a tetracarboxylic. It can be obtained by a method of reacting an acid diester dihalide with a diamine compound, or the like. The polyamic acid ester contained in the liquid crystal aligning agent may have only an amic acid ester structure, or may be a partial esterified product in which the amic acid structure and the amic acid ester structure coexist. The reaction solution obtained by dissolving the polyamic acid ester may be used as it is for the preparation of the liquid crystal alignment agent, or the polyamic acid ester contained in the reaction solution may be isolated and then used for the preparation of the liquid crystal alignment agent. good.

<ポリイミド>
ポリイミドは、例えば上記の如くして合成されたポリアミック酸を脱水閉環してイミド化することにより得ることができる。ポリイミドは、その前駆体であるポリアミック酸が有していたアミック酸構造のすべてを脱水閉環した完全イミド化物であってもよく、アミック酸構造の一部のみを脱水閉環し、アミック酸構造とイミド環構造とが併存する部分イミド化物であってもよい。ポリイミドは、そのイミド化率が20〜99%であることが好ましく、30〜90%であることがより好ましい。このイミド化率は、ポリイミドのアミック酸構造の数とイミド環構造の数との合計に対するイミド環構造の数の占める割合を百分率で表したものである。ここで、イミド環の一部がイソイミド環であってもよい。
<Polyimide>
The polyimide can be obtained, for example, by dehydrating and ring-closing the polyamic acid synthesized as described above to imidize it. The polyimide may be a completely imidized product obtained by dehydrating and ring-closing all of the amic acid structure possessed by the polyamic acid that is the precursor thereof, or by dehydrating and ring-closing only a part of the amic acid structure, and the amic acid structure and the imide. It may be a partially imidized product in which a ring structure coexists. The imidization ratio of polyimide is preferably 20 to 99%, more preferably 30 to 90%. This imidization ratio is expressed as a percentage of the ratio of the number of imide ring structures to the total of the number of amic acid structures and the number of imide ring structures of polyimide. Here, a part of the imide ring may be an isoimide ring.

ポリアミック酸の脱水閉環は、好ましくはポリアミック酸を有機溶媒に溶解し、この溶液中に脱水剤及び脱水閉環触媒を添加し必要に応じて加熱する方法により行われる。この方法において、脱水剤としては、例えば無水酢酸、無水プロピオン酸、無水トリフルオロ酢酸などの酸無水物を用いることができる。脱水剤の使用量は、ポリアミック酸のアミック酸構造の1モルに対して0.01〜20モルとすることが好ましい。脱水閉環触媒としては、例えばピリジン、コリジン、ルチジン、トリエチルアミン等の3級アミンを用いることができる。脱水閉環触媒の使用量は、使用する脱水剤1モルに対して0.01〜10モルとすることが好ましい。脱水閉環反応に用いられる有機溶媒としては、ポリアミック酸の合成に用いられるものとして例示した有機溶媒を挙げることができる。脱水閉環反応の反応温度は、好ましくは0〜180℃である。反応時間は、好ましくは1.0〜120時間である。ポリイミドを含有する反応溶液は、そのまま液晶配向剤の調製に供してもよく、ポリイミドを単離したうえで液晶配向剤の調製に供してもよい。ポリイミドは、ポリアミック酸エステルのイミド化により得ることもできる。 The dehydration ring closure of the polyamic acid is preferably carried out by dissolving the polyamic acid in an organic solvent, adding a dehydrating agent and a dehydration ring closure catalyst to the solution, and heating as necessary. In this method, as the dehydrating agent, acid anhydrides such as acetic anhydride, propionic anhydride, and trifluoroacetic anhydride can be used. The amount of the dehydrating agent used is preferably 0.01 to 20 mol with respect to 1 mol of the amic acid structure of the polyamic acid. As the dehydration ring closure catalyst, for example, tertiary amines such as pyridine, colidin, lutidine, and triethylamine can be used. The amount of the dehydration ring closure catalyst used is preferably 0.01 to 10 mol with respect to 1 mol of the dehydrating agent used. Examples of the organic solvent used in the dehydration ring closure reaction include organic solvents exemplified as those used in the synthesis of polyamic acids. The reaction temperature of the dehydration ring closure reaction is preferably 0 to 180 ° C. The reaction time is preferably 1.0 to 120 hours. The reaction solution containing the polyimide may be used as it is for the preparation of the liquid crystal alignment agent, or the polyimide may be isolated and then used for the preparation of the liquid crystal alignment agent. Polyimide can also be obtained by imidization of polyamic acid esters.

<ポリアミド>
ポリアミドは、ジカルボン酸とジアミン化合物とを反応させる方法等によって得ることができる。ジカルボン酸は、塩化チオニル等の適当な塩素化剤を用いて酸クロリド化した後にジアミン化合物との反応に供することが好ましい。
<Polyamide>
Polyamide can be obtained by a method of reacting a dicarboxylic acid with a diamine compound or the like. The dicarboxylic acid is preferably acid chlorided with an appropriate chlorinating agent such as thionyl chloride and then subjected to a reaction with a diamine compound.

ポリアミドの合成に使用するジカルボン酸は特に制限されないが、例えばシュウ酸、マロン酸、ジメチルマロン酸、コハク酸、グルタル酸、アジピン酸、2−メチルアジピン酸、フマル酸等の脂肪族ジカルボン酸;シクロブタンジカルボン酸、1−シクロブテンジカルボン酸、シクロヘキサンジカルボン酸等の脂環式ジカルボン酸;フタル酸、イソフタル酸、テレフタル酸、5−メチルイソフタル酸、2,5−ジメチルテレフタル酸、4−カルボキシ桂皮酸、3,3’−[4,4’−(メチレンジ−p−フェニレン)]ジプロピオン酸、4,4’−[4,4’−(オキシジ−p−フェニレン)]二酪酸等の芳香族ジカルボン酸;等が挙げられる。合成に使用するジアミン化合物としては、例えばポリアミック酸の説明で例示したジアミン化合物等が挙げられる。ジカルボン酸及びジアミン化合物は、それぞれ1種を単独で使用してもよく、2種以上を組み合わせて使用することができる。 The dicarboxylic acid used for the synthesis of polyamide is not particularly limited, and for example, an aliphatic dicarboxylic acid such as oxalic acid, malonic acid, dimethylmalonic acid, succinic acid, glutaric acid, adipic acid, 2-methyladipic acid, and fumaric acid; cyclobutane. Alicyclic dicarboxylic acids such as dicarboxylic acid, 1-cyclobutenedicarboxylic acid, cyclohexanedicarboxylic acid; phthalic acid, isophthalic acid, terephthalic acid, 5-methylisophthalic acid, 2,5-dimethylterephthalic acid, 4-carboxycatephotic acid, Aromatic dicarboxylic acids such as 3,3'-[4,4'-(methylenedi-p-phenylene)] dipropionic acid, 4,4'-[4,4'-(oxydi-p-phenylene)] dibutyric acid ; Etc. can be mentioned. Examples of the diamine compound used for the synthesis include the diamine compound exemplified in the description of the polyamic acid. One type of each of the dicarboxylic acid and the diamine compound may be used alone, or two or more types may be used in combination.

ジカルボン酸とジアミン化合物との反応は、好ましくは塩基の存在下、有機溶媒中において行われる。このとき、ジカルボン酸とジアミン化合物との使用割合は、ジアミン化合物のアミノ基1当量に対して、ジカルボン酸のカルボキシル基が0.2〜2当量となる割合が好ましい。反応温度は0℃〜200℃とすることが好ましく、反応時間は0.5〜48時間とすることが好ましい。有機溶媒としては、例えばテトラヒドロフラン、ジオキサン、トルエン、クロロホルム、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、N−メチル−2−ピロリドン等を好ましく使用することができる。塩基としては、例えばピリジン、トリエチルアミン、N−エチル−N,N−ジイソプロピルアミン等の3級アミンを好ましく使用することができる。塩基の使用割合は、ジアミン化合物1モルに対して2〜4モルとすることが好ましい。上記反応により得られる溶液は、そのまま液晶配向剤の調製に供してもよく、反応溶液中に含まれるポリアミドを単離したうえで液晶配向剤の調製に供してもよい。 The reaction of the dicarboxylic acid with the diamine compound is preferably carried out in the presence of a base in an organic solvent. At this time, the ratio of the dicarboxylic acid to the diamine compound is preferably 0.2 to 2 equivalents of the carboxyl group of the dicarboxylic acid with respect to 1 equivalent of the amino group of the diamine compound. The reaction temperature is preferably 0 ° C. to 200 ° C., and the reaction time is preferably 0.5 to 48 hours. As the organic solvent, for example, tetrahydrofuran, dioxane, toluene, chloroform, dimethylformamide, dimethylacetamide, dimethyl sulfoxide, N-methyl-2-pyrrolidone and the like can be preferably used. As the base, for example, tertiary amines such as pyridine, triethylamine, N-ethyl-N, and N-diisopropylamine can be preferably used. The ratio of the base used is preferably 2 to 4 mol with respect to 1 mol of the diamine compound. The solution obtained by the above reaction may be used as it is for the preparation of the liquid crystal alignment agent, or the polyamide contained in the reaction solution may be isolated and then used for the preparation of the liquid crystal alignment agent.

<重合性不飽和結合を有するモノマーに由来する構造単位を有する重合体(重合体(Q))>
重合性不飽和結合を有するモノマーとしては、例えば、(メタ)アクリロイル基、ビニル基、スチリル基、マレイミド基等を有する化合物が挙げられる。こうした化合物の具体例としては、(メタ)アクリル酸、α−エチルアクリル酸、マレイン酸、フマル酸、ビニル安息香酸等の不飽和カルボン酸:(メタ)アクリル酸アルキル、(メタ)アクリル酸シクロアルキル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸−2−エチルヘキシル、(メタ)アクリル酸トリメトキシシリルプロピル、(メタ)アクリル酸2−ヒドロキシエチル、(メタ)アクリル酸グリシジル、(メタ)アクリル酸3,4−エポキシシクロヘキシルメチル、(メタ)アクリル酸3,4−エポキシブチル、アクリル酸4−ヒドロキシブチルグリシジルエーテル等の不飽和カルボン酸エステル:無水マレイン酸等の不飽和多価カルボン酸無水物:などの(メタ)アクリル系化合物;スチレン、メチルスチレン、ジビニルベンゼン等の芳香族ビニル化合物;1,3−ブタジエン、2−メチル−1,3−ブタジエン等の共役ジエン化合物;N−メチルマレイミド、N−シクロヘキシルマレイミド、N−フェニルマレイミド等のマレイミド基含有化合物;などが挙げられる。なお、重合性不飽和結合を有するモノマーは、1種を単独で又は2種以上を組み合わせて使用することができる。本明細書において「(メタ)アクリル」は「アクリル」及び「メタクリル」を含むことを意味する。
<Polymer having a structural unit derived from a monomer having a polymerizable unsaturated bond (polymer (Q))>
Examples of the monomer having a polymerizable unsaturated bond include a compound having a (meth) acryloyl group, a vinyl group, a styryl group, a maleimide group and the like. Specific examples of such compounds include unsaturated carboxylic acids such as (meth) acrylic acid, α-ethylacrylic acid, maleic acid, fumaric acid, and vinyl benzoic acid: alkyl (meth) acrylic acid, cycloalkyl (meth) acrylic acid. , (Meta) benzyl acrylate, (meth) -2-ethylhexyl acrylate, (meth) trimethoxysilylpropyl acrylate, 2-hydroxyethyl (meth) acrylate, glycidyl (meth) acrylate, (meth) acrylate Unsaturated carboxylic acid esters such as 3,4-epoxycyclohexylmethyl, (meth) acrylic acid 3,4-epoxybutyl, 4-hydroxybutylglycidyl ether acrylate: unsaturated polyvalent carboxylic acid anhydrides such as maleic anhydride: (Meta) acrylic compounds such as; aromatic vinyl compounds such as styrene, methylstyrene and divinylbenzene; conjugated diene compounds such as 1,3-butadiene, 2-methyl-1,3-butadiene; N-methylmaleimide, N. -Maleimide group-containing compounds such as cyclohexyl maleimide and N-phenyl maleimide; and the like. As the monomer having a polymerizable unsaturated bond, one type can be used alone or two or more types can be used in combination. As used herein, "(meth) acrylic" means to include "acrylic" and "methacryl".

重合体(Q)は、重合性不飽和結合を有するモノマーを重合開始剤の存在下で重合することにより得ることができる。使用する重合開始剤としては、例えば2,2’−アゾビス(イソブチロニトリル)、2,2’−アゾビス(2,4−ジメチルバレロニトリル)、2,2’−アゾビス(4−メトキシ−2,4−ジメチルバレロニトリル)等のアゾ化合物が好ましい。重合開始剤の使用割合は、反応に使用する全モノマー100質量部に対して、0.01〜30質量部とすることが好ましい。上記重合反応は、好ましくは有機溶媒中で行われる。反応に使用する有機溶媒としては、例えばアルコール、エーテル、ケトン、アミド、エステル、炭化水素化合物などが挙げられ、ジエチレングリコールエチルメチルエーテル、プロピレングリコールモノメチルエーテルアセテートなどが好ましい。反応温度は30℃〜120℃とすることが好ましく、反応時間は、1〜36時間とすることが好ましい。有機溶媒の使用量(a)は、反応に使用するモノマーの合計量(b)が、反応溶液の全体量(a+b)に対して、0.1〜60質量%になるような量にすることが好ましい。上記反応により得られる重合体溶液は、そのまま液晶配向剤の調製に供してもよく、反応溶液中に含まれる重合体(Q)を単離したうえで液晶配向剤の調製に供してもよい。 The polymer (Q) can be obtained by polymerizing a monomer having a polymerizable unsaturated bond in the presence of a polymerization initiator. Examples of the polymerization initiator used include 2,2'-azobis (isobutyronitrile), 2,2'-azobis (2,4-dimethylvaleronitrile), and 2,2'-azobis (4-methoxy-2). , 4-Dimethylvaleronitrile) and other azo compounds are preferred. The ratio of the polymerization initiator used is preferably 0.01 to 30 parts by mass with respect to 100 parts by mass of all the monomers used in the reaction. The polymerization reaction is preferably carried out in an organic solvent. Examples of the organic solvent used in the reaction include alcohols, ethers, ketones, amides, esters, hydrocarbon compounds and the like, and diethylene glycol ethyl methyl ether, propylene glycol monomethyl ether acetate and the like are preferable. The reaction temperature is preferably 30 ° C. to 120 ° C., and the reaction time is preferably 1 to 36 hours. The amount (a) of the organic solvent used should be such that the total amount (b) of the monomers used in the reaction is 0.1 to 60% by mass with respect to the total amount (a + b) of the reaction solution. Is preferable. The polymer solution obtained by the above reaction may be used as it is for the preparation of the liquid crystal alignment agent, or the polymer (Q) contained in the reaction solution may be isolated and then used for the preparation of the liquid crystal alignment agent.

液晶配向剤の調製に使用する重合体は、後述する条件で調製及び測定した溶液粘度が10〜800mPa・sであることが好ましく、15〜500mPa・sであることがより好ましい。なお、上記溶液粘度(mPa・s)は、重合体の良溶媒(ポリアミック酸、ポリアミック酸エステル及びポリイミドの場合、γ−ブチロラクトン、N−メチル−2−ピロリドン等)を用いて調製した濃度10質量%の重合体溶液につき、E型回転粘度計を用いて25℃において測定した値である。 The polymer used for preparing the liquid crystal alignment agent preferably has a solution viscosity of 10 to 800 mPa · s, which is prepared and measured under the conditions described later, and more preferably 15 to 500 mPa · s. The solution viscosity (mPa · s) is 10 mass by mass prepared by using a good solvent of the polymer (in the case of polyamic acid, polyamic acid ester and polyimide, γ-butyrolactone, N-methyl-2-pyrrolidone, etc.). It is a value measured at 25 ° C. using an E-type rotational viscometer with respect to the% polymer solution.

重合体のゲルパーミエーションクロマトグラフィー(GPC)により測定したポリスチレン換算の重量平均分子量(Mw)は、重合体の種類に応じて適宜設定される。例えば、ポリアミック酸、ポリアミック酸エステル及びポリイミドの場合、好ましくは1,000〜500,000であり、より好ましくは2,000〜300,000である。また、Mwと、GPCにより測定したポリスチレン換算の数平均分子量(Mn)との比で表される分子量分布(Mw/Mn)は、好ましくは7以下であり、より好ましくは5以下である。なお、液晶配向剤の調製に使用する重合体は、1種のみでもよく、又は2種以上を組み合わせてもよい。 The polystyrene-equivalent weight average molecular weight (Mw) measured by gel permeation chromatography (GPC) of the polymer is appropriately set according to the type of the polymer. For example, in the case of polyamic acid, polyamic acid ester and polyimide, it is preferably 1,000 to 500,000, more preferably 2,000 to 300,000. The molecular weight distribution (Mw / Mn) represented by the ratio of Mw to the polystyrene-equivalent number average molecular weight (Mn) measured by GPC is preferably 7 or less, more preferably 5 or less. The polymer used for preparing the liquid crystal alignment agent may be only one type or a combination of two or more types.

≪化合物[A]≫
本開示の液晶配向剤は、重合体成分と共に、上記式(1)で表される化合物及び上記式(2)で表される化合物よりなる群から選ばれる少なくとも一種の化合物[A]を含有する。化合物[A]は、重合体成分の溶剤に対する溶解性を良好にすることができ、しかも表面張力が適度に低いという性質を有する。こうした化合物[A]を液晶配向剤の成分に用いることにより、微細な凹凸構造を有する良好な塗布性や、膜形成時の加熱の際の温度ムラに起因する特性ばらつきの抑制、シール剤周辺の表示ムラの低減(ベゼルムラ耐性の向上)、残像の低減といった効果をバランス良く得ることができる。
≪Compound [A] ≫
The liquid crystal alignment agent of the present disclosure contains at least one compound [A] selected from the group consisting of the compound represented by the above formula (1) and the compound represented by the above formula (2) together with the polymer component. .. Compound [A] has the property that the solubility of the polymer component in a solvent can be improved and the surface tension is moderately low. By using such compound [A] as a component of the liquid crystal alignment agent, good coatability having a fine uneven structure, suppression of characteristic variation due to temperature unevenness during heating at the time of film formation, suppression of characteristic variation due to temperature unevenness, and peripheral sealant The effects of reducing display unevenness (improving bezel unevenness resistance) and reducing afterimages can be obtained in a well-balanced manner.

上記式(1)において、R,Rの炭素数1〜4のアルキル基は、直鎖状でも分岐状でもよく、例えばメチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基等が挙げられる。これらのうち、R,Rの炭素数1〜4のアルキル基は、直鎖状であることが好ましく、メチル基又はエチル基がより好ましい。Rの炭素数1〜4のアルカンジイルは、直鎖状でも分岐状でもよく、例えばメチレン基、エチレン基、プロパン−1,3−ジイル基、プロパン−1,2−ジイル基、ブタン−1,4−ジイル、ブタン−1,2−ジイル基等が挙げられる。Rは、メチレン基又はエチレン基が好ましい。Rは、ベゼルムラ耐性をより良好にできる点で、メチル基、エチル基又は−CO−CHであることが好ましい。In the above formula (1), the alkyl groups having 1 to 4 carbon atoms of R 1 and R 2 may be linear or branched, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl. Groups, isobutyl groups, sec-butyl groups, tert-butyl groups and the like can be mentioned. Of these, the alkyl groups having 1 to 4 carbon atoms of R 1 and R 2 are preferably linear, and more preferably a methyl group or an ethyl group. The alkanediyl having 1 to 4 carbon atoms of R4 may be linear or branched, for example, methylene group, ethylene group, propane-1,3-diyl group, propane-1,2-diyl group, butane-1. , 4-Diyl, butane-1,2-Diyl group and the like. R 4 is a methylene group or an ethylene group is preferred. R 1 is preferably a methyl group, an ethyl group or -CO-CH 3 in that the resistance to bezel unevenness can be improved.

上記式(1)で表される化合物は、ベゼルムラ耐性をより良好にできる点で、n=2であるか、又はn=1であってRが炭素数1〜4のアルキル基であることが好ましい。この場合、ベンゼン環に結合する2個の基は、一方の基に対して他方の基がオルト位又はメタ位にあることがより好ましい。上記式(1)で表される化合物は、これらの中でも、n=2であることが好ましく、n=2であって且つRがメチル基、エチル基又は−CO−CHであることがより好ましく、ベンゼン環に結合する2個の「−O−R」のうち一方の基が他方の基に対してオルト位又はメタ位であることが特に好ましい。
上記式(2)において、Rは、メチレン基又はエチレン基であることが好ましい。上記式(2)で表される化合物によると、微細な凹凸構造に対する塗布性の改善効果を高くでき好適である。
The compound represented by the above formula (1) has n = 2 or n = 1 and R 2 is an alkyl group having 1 to 4 carbon atoms in that the bezel unevenness resistance can be improved. Is preferable. In this case, it is more preferable that the two groups bonded to the benzene ring have the other group at the ortho-position or the meta-position with respect to one group. Among these, the compound represented by the above formula (1) preferably has n = 2, n = 2, and R 1 has a methyl group, an ethyl group, or -CO-CH 3. More preferably, one group of the two "-OR 1 " bonded to the benzene ring is in the ortho or meta position with respect to the other group.
In the above formula (2), R 3 is preferably a methylene group or an ethylene group. According to the compound represented by the above formula (2), the effect of improving the coatability on a fine uneven structure can be enhanced, which is preferable.

化合物[A]は、微細な凹凸構造を有する基板に対する塗布性や、ベゼルムラ耐性の改善効果を好適に得ることができる点で、1気圧での融点が25℃以下であって且つ沸点が150℃以上であることが好ましい。化合物[A]の1気圧での沸点は、好ましくは160℃以上であり、より好ましくは165℃以上であり、さらに好ましくは170℃以上である。また、沸点は、より好ましくは250℃以下であり、さらに好ましくは245℃以下である。化合物[A]の1気圧での融点は、好ましくは20℃以下であり、より好ましくは15℃以下であり、さらに好ましくは10℃以下である。なお、化合物[A]が常温で液体の化合物である場合、重合体の重合に際し、重合溶媒の少なくとも一部に化合物[A]を使用し、得られた重合体溶液をそのまま液晶配向剤の調製に供してもよい。 Compound [A] has a melting point of 25 ° C. or lower and a boiling point of 150 ° C. at 1 atm in that the coating property on a substrate having a fine uneven structure and the effect of improving bezel unevenness resistance can be suitably obtained. The above is preferable. The boiling point of compound [A] at 1 atm is preferably 160 ° C. or higher, more preferably 165 ° C. or higher, and even more preferably 170 ° C. or higher. The boiling point is more preferably 250 ° C. or lower, still more preferably 245 ° C. or lower. The melting point of compound [A] at 1 atm is preferably 20 ° C. or lower, more preferably 15 ° C. or lower, and even more preferably 10 ° C. or lower. When the compound [A] is a compound that is liquid at room temperature, the compound [A] is used as at least a part of the polymerization solvent when the polymer is polymerized, and the obtained polymer solution is used as it is to prepare a liquid crystal alignment agent. May be offered to.

化合物[A]の具体例としては、上記式(1)で表される化合物として、例えば下記式(1−1)〜式(1−23)のそれぞれで表される化合物等を;上記式(2)で表される化合物として、例えば下記式(2−1)及び式(2−2)のそれぞれで表される化合物等を、挙げることができる。これらのうち、下記式(1−1)〜式(1−5)、式(1−7)〜式(1−11)、式(1−13)、式(1−15)、式(1−17)〜式(1−20)、式(1−22)、式(2−1)及び式(2−2)よりなる群から選ばれる少なくとも一種がより好ましい。なお、化合物[A]としては、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。

Figure 0006962440
As a specific example of the compound [A], as the compound represented by the above formula (1), for example, a compound represented by each of the following formulas (1-1) to (1-23); Examples of the compound represented by 2) include compounds represented by the following formulas (2-1) and (2-2). Of these, the following equations (1-1) to (1-5), equations (1-7) to (1-11), equations (1-13), equations (1-15), equations (1) -17) ~ At least one selected from the group consisting of formula (1-20), formula (1-22), formula (2-1) and formula (2-2) is more preferable. As the compound [A], one type may be used alone, or two or more types may be used in combination.
Figure 0006962440

化合物[A]の含有割合は、液晶配向剤に含有される重合体成分の合計量100質量部に対し、好ましくは100質量部以上であり、より好ましくは300質量部以上であり、さらに好ましくは600質量部以上である。また、化合物[A]の含有割合の上限について、好ましくは5000質量部以下であり、より好ましくは4000質量部以下である。 The content ratio of the compound [A] is preferably 100 parts by mass or more, more preferably 300 parts by mass or more, still more preferably 300 parts by mass or more, based on 100 parts by mass of the total amount of the polymer components contained in the liquid crystal alignment agent. It is 600 parts by mass or more. The upper limit of the content ratio of compound [A] is preferably 5000 parts by mass or less, and more preferably 4000 parts by mass or less.

≪その他の成分≫
液晶配向剤は、重合体成分及び化合物[A]を含有するが、必要に応じて、重合体成分及び化合物[A]とは異なる成分(以下、「その他の成分」ともいう。)を含有していてもよい。
≪Other ingredients≫
The liquid crystal alignment agent contains a polymer component and compound [A], but if necessary, contains a component different from the polymer component and compound [A] (hereinafter, also referred to as “other component”). May be.

<溶剤[B]>
液晶配向剤は、液晶素子の残像特性をより良好にする目的で、重合体成分及び化合物[A]と共に、アルコール系溶剤、鎖状エステル系溶剤、エーテル系溶剤、及びケトン系溶剤よりなる群から選ばれる少なくとも一種の溶剤(以下、「溶剤[B]」ともいう。)を更に含んでいてもよい。
<Solvent [B]>
The liquid crystal aligning agent is composed of a group consisting of an alcohol solvent, a chain ester solvent, an ether solvent, and a ketone solvent together with the polymer component and the compound [A] for the purpose of improving the afterimage characteristics of the liquid crystal element. It may further contain at least one selected solvent (hereinafter, also referred to as “solvent [B]”).

溶剤[B]の具体例としては、アルコール系溶剤として、例えばメチルアルコール、エチルアルコール、イソプロピルアルコール、シクロヘキサノール、エチレングリコール、プロピレングリコール、1,4−ブタンジオール、トリエチレングリコール、ダイアセトンアルコール、3−メトキシ−3−メチルブタノール、ベンジルアルコール等を;鎖状エステル系溶剤として、例えば乳酸エチル、乳酸ブチル、酢酸メチル、酢酸エチル、酢酸ブチル、メチルメトキシプロピオネ−ト、エチルエトキシプロピオネ−ト、シュウ酸ジエチル、マロン酸ジエチル、イソアミルプロピオネート、イソアミルイソブチレート等を;
エーテル系溶剤として、例えばジエチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコール−i−プロピルエーテル、エチレングリコールモノブチルエーテル(ブチルセロソルブ)、エチレングリコールジメチルエーテル、エチレングリコールエチルエーテルアセテート、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、3−メトキシ−1−ブタノール、テトラヒドロフラン、ジイソペンチルエーテル等を;ケトン系溶剤として、例えばアセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、シクロヘプタノン、シクロペンタノン、3−メチルシクロヘキサノン、4−メチルシクロヘキサノン、ジイソブチルケトン等を、それぞれ挙げることができる。
Specific examples of the solvent [B] include, as alcohol-based solvents, for example, methyl alcohol, ethyl alcohol, isopropyl alcohol, cyclohexanol, ethylene glycol, propylene glycol, 1,4-butanediol, triethylene glycol, diacetone alcohol, 3 −methoxy-3-methylbutanol, benzyl alcohol, etc .; as chain ester solvents, for example, ethyl lactate, butyl lactate, methyl acetate, ethyl acetate, butyl acetate, methylmethoxypropionate, ethylethoxypropionate, etc. Diethyl oxalate, diethyl malonate, isoamyl propionate, isoamyl isobutyrate, etc.;
Examples of ether-based solvents include diethyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol-i-propyl ether, ethylene glycol monobutyl ether (butyl cellosolve), ethylene glycol dimethyl ether, and ethylene glycol ethyl ether. Acetate, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol methyl ethyl ether, diethylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether (PGME), propylene glycol monomethyl ether acetate (PGMEA) , 3-methoxy-1-butanol, tetrahydrofuran, diisopentyl ether, etc .; as ketone solvents, for example, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, cycloheptanone, cyclopentanone, 3-methylcyclohexanone, 4-methyl Cyclohexanone, diisobutylketone and the like can be mentioned respectively.

溶剤[B]としては、塗布性の改善効果をより高くできる点で、上記のうち、エーテル系溶剤及びケトン系溶剤よりなる群から選ばれる少なくとも一種が好ましく、炭素数8以下のエーテル系溶剤及び環状のケトン系溶剤よりなる群から選ばれる少なくとも一種がより好ましい。具体的には、溶剤[B]は、エチレングリコールモノブチルエーテル(ブチルセロソルブ)、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、ダイアセトンアルコール、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールメチルエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、3−メトキシ−1−ブタノール及びシクロペンタノンよりなる群から選ばれる一種が特に好ましい。なお、溶剤[B]としては、1種を単独で又は2種以上を組み合わせて使用することができる。 As the solvent [B], at least one selected from the group consisting of an ether solvent and a ketone solvent is preferable, and an ether solvent having 8 or less carbon atoms and an ether solvent having 8 or less carbon atoms are preferable because the effect of improving the coatability can be further enhanced. At least one selected from the group consisting of cyclic ketone solvents is more preferable. Specifically, the solvent [B] is ethylene glycol monobutyl ether (butyl cellosolve), ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, diacetone alcohol, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methyl ethyl. One selected from the group consisting of ether, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, 3-methoxy-1-butanol and cyclopentanone is particularly preferable. As the solvent [B], one type can be used alone or two or more types can be used in combination.

液晶配向剤は、その他の成分として、溶剤[B]とは異なる溶剤(以下、「他の溶剤」ともいう。)を更に含んでいてもよい。他の溶剤としては、例えば、非プロトン性極性溶媒、フェノール類、ハロゲン化炭化水素系溶剤、炭化水素系溶剤等が挙げられる。他の溶剤の具体例としては、非プロトン性極性溶媒として、例えばN−メチル−2−ピロリドン、N−エチル−2−ピロリドン、1,3−ジメチル−2−イミダゾリジノン、ガンマブチロラクトン、プロピレンカーボネート、3−ブトキシ−N,N−ジメチルプロパンアミド、3−メトキシ−N,N−ジメチルプロパンアミド、3−ヘキシルオキシ−N,N−ジメチルプロパンアミド、イソプロポキシ−N−イソプロピル−プロピオンアミド、n−ブトキシ−N−イソプロピル−プロピオンアミド等を;フェノール類として、例えばフェノール、m−クレゾール、キシレノール等を;ハロゲン化炭化水素系溶剤として、例えばジクロロメタン、1,2−ジクロロエタン、1,4−ジクロロブタン、トリクロロエタン、クロルベンゼン等を;炭化水素系溶剤として、例えばヘキサン、ヘプタン、オクタン、ベンゼン、トルエン、キシレン等を、それぞれ挙げることができる。他の溶剤としては、1種を単独で又は2種以上を組み合わせて使用できる。 The liquid crystal alignment agent may further contain a solvent different from the solvent [B] (hereinafter, also referred to as “another solvent”) as another component. Examples of other solvents include aprotonic polar solvents, phenols, halogenated hydrocarbon solvents, hydrocarbon solvents and the like. Specific examples of other solvents include aprotic polar solvents such as N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone, gamma butyrolactone, and propylene carbonate. , 3-Butoxy-N, N-dimethylpropanamide, 3-methoxy-N, N-dimethylpropanamide, 3-Hexyloxy-N, N-dimethylpropanamide, Isopropoxy-N-isopropyl-propionamide, n- Butoxy-N-isopropyl-propionamide and the like; as phenols such as phenol, m-cresol, xylenol and the like; as halogenated hydrocarbon solvents such as dichloromethane, 1,2-dichloroethane, 1,4-dichlorobutane, etc. Trichloroethane, chlorobenzene and the like; examples of the hydrocarbon solvent include hexane, heptane, octane, benzene, toluene, xylene and the like. As other solvents, one type can be used alone or two or more types can be used in combination.

化合物[A]の含有割合は、液晶配向剤に含有される化合物[A]と溶剤[B]との全量に対して、10質量%以上とすることが好ましい。10質量%以上とした場合、液晶配向剤の塗布性、ベゼルムラ耐性、膜形成時の温度ムラに起因する特性ばらつきの抑制、及び残像の低減といった効果を十分に得ることができる点で好適である。液晶配向剤の濡れ広がり性及びベゼルムラ耐性をより良好にできる点で、化合物[A]の含有割合は、化合物[A]と溶剤[B]との全量に対し、より好ましくは15質量%以上であり、さらに好ましくは20質量%以上である。また、化合物[A]の含有割合は、化合物[A]と溶剤[B]との全量に対し、好ましくは95質量%以下であり、より好ましくは90質量%以下であり、さらに好ましくは80質量%以下である。
液晶配向剤が溶剤[B]を含有する場合、溶剤[B]の含有割合は、液晶配向剤に含有される化合物[A]と溶剤[B]との全量に対して、好ましくは5質量%以上であり、より好ましくは20質量%以上である。また、溶剤[B]の含有割合は、化合物[A]と溶剤[B]との全量に対し、好ましくは90質量%以下であり、より好ましくは85質量%以下であり、さらに好ましくは80質量%以下である。
他の溶剤の含有割合は、液晶配向剤に含有される化合物[A]と溶剤[B]との全量に対して、5質量%以下とすることが好ましく、3質量%以下とすることがより好ましく、1質量%以下とすることがさらに好ましく、0.05質量%以下が特に好ましい。
The content ratio of the compound [A] is preferably 10% by mass or more with respect to the total amount of the compound [A] and the solvent [B] contained in the liquid crystal alignment agent. When it is set to 10% by mass or more, it is preferable in that effects such as coatability of the liquid crystal alignment agent, resistance to bezel unevenness, suppression of characteristic variation due to temperature unevenness during film formation, and reduction of afterimage can be sufficiently obtained. .. The content ratio of the compound [A] is more preferably 15% by mass or more with respect to the total amount of the compound [A] and the solvent [B] in that the wettability and spreadability of the liquid crystal aligning agent and the resistance to bezel unevenness can be improved. Yes, more preferably 20% by mass or more. The content ratio of the compound [A] is preferably 95% by mass or less, more preferably 90% by mass or less, still more preferably 80% by mass, based on the total amount of the compound [A] and the solvent [B]. % Or less.
When the liquid crystal aligning agent contains the solvent [B], the content ratio of the solvent [B] is preferably 5% by mass with respect to the total amount of the compound [A] and the solvent [B] contained in the liquid crystal aligning agent. The above is more preferably 20% by mass or more. The content ratio of the solvent [B] is preferably 90% by mass or less, more preferably 85% by mass or less, still more preferably 80% by mass, based on the total amount of the compound [A] and the solvent [B]. % Or less.
The content ratio of the other solvent is preferably 5% by mass or less, and more preferably 3% by mass or less, based on the total amount of the compound [A] and the solvent [B] contained in the liquid crystal alignment agent. It is preferably 1% by mass or less, more preferably 0.05% by mass or less.

液晶配向剤に含有させてもよいその他の成分としては、上記のほか、例えばエポキシ基含有化合物(例えば、N,N,N’,N’−テトラグリシジル−m−キシレンジアミン、N,N,N’,N’−テトラグリシジル−4,4’−ジアミノジフェニルメタン等)、官能性シラン化合物(例えば、3−アミノプロピルトリエトキシシラン、N−(2−アミノエチル)−3−アミノプロピルメチルジメトキシシラン等)、酸化防止剤、金属キレート化合物、硬化触媒、硬化促進剤、界面活性剤、充填剤、分散剤、光増感剤等の各種添加剤が挙げられる。これら添加剤の配合割合は、本開示の効果を損なわない範囲で、各化合物に応じて適宜選択することができる。 In addition to the above, other components that may be contained in the liquid crystal aligning agent include, for example, epoxy group-containing compounds (for example, N, N, N', N'-tetraglycidyl-m-xylene diamine, N, N, N. ', N'-tetraglycidyl-4,4'-diaminodiphenylmethane, etc.), functional silane compounds (eg, 3-aminopropyltriethoxysilane, N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, etc.) ), Antioxidants, metal chelate compounds, curing catalysts, curing accelerators, surfactants, fillers, dispersants, photosensitizers and other additives. The blending ratio of these additives can be appropriately selected according to each compound as long as the effects of the present disclosure are not impaired.

液晶配向剤中の成分のうち化合物(A)及び溶剤以外の合計質量が液晶配向剤の全質量に占める割合Dは、粘性、揮発性などを考慮して適宜に選択されるが、好ましくは1〜10質量%の範囲である。割合Dが1質量%未満である場合には、塗膜の膜厚が過小となって良好な液晶配向膜が得にくくなる。一方、割合Dが10質量%を超える場合には、塗膜の膜厚が過大となって良好な液晶配向膜が得にくく、また、液晶配向剤の粘性が増大して塗布性が低下する傾向にある。 The ratio D of the total mass of the components in the liquid crystal aligning agent other than the compound (A) and the solvent to the total mass of the liquid crystal aligning agent is appropriately selected in consideration of viscosity, volatility, etc., but is preferably 1. It is in the range of 10% by mass. When the ratio D is less than 1% by mass, the film thickness of the coating film becomes too small and it becomes difficult to obtain a good liquid crystal alignment film. On the other hand, when the ratio D exceeds 10% by mass, the film thickness of the coating film becomes excessive and it is difficult to obtain a good liquid crystal alignment film, and the viscosity of the liquid crystal alignment agent increases and the coatability tends to decrease. It is in.

≪液晶配向膜及び液晶素子≫
本開示の液晶素子は、上記で説明した液晶配向剤を用いて形成された液晶配向膜を具備する。液晶素子は種々の用途に有効に適用することができ、例えば、時計、携帯型ゲーム、ワープロ、ノート型パソコン、カーナビゲーションシステム、カムコーダー、PDA、デジタルカメラ、携帯電話、スマートフォン、各種モニター、液晶テレビ、インフォメーションディスプレイなどの各種表示装置や、調光フィルム、位相差フィルム等として用いることができる。液晶表示装置として用いる場合、液晶の動作モードは特に限定されず、例えばTN型、STN型、垂直配向型(VA−MVA型、VA−PVA型などを含む。)、IPS型、FFS型、OCB(Optically Compensated Bend)型など種々の動作モードに適用することができる。
≪Liquid crystal alignment film and liquid crystal element≫
The liquid crystal element of the present disclosure includes a liquid crystal alignment film formed by using the liquid crystal alignment agent described above. The liquid crystal element can be effectively applied to various applications, for example, a clock, a portable game, a word processor, a notebook computer, a car navigation system, a camcorder, a PDA, a digital camera, a mobile phone, a smartphone, various monitors, and a liquid crystal television. , It can be used as various display devices such as information displays, dimming films, retardation films, and the like. When used as a liquid crystal display device, the operation mode of the liquid crystal is not particularly limited, and for example, TN type, STN type, vertically oriented type (including VA-MVA type, VA-PVA type, etc.), IPS type, FFS type, OCB. It can be applied to various operation modes such as (Optically Compensated Bend) type.

液晶素子の製造方法について、液晶表示素子を一例に挙げて説明する。液晶表示素子は、例えば以下の工程1〜工程3を含む方法により製造することができる。工程1は、所望の動作モードによって使用基板が異なる。工程2及び工程3は各動作モード共通である。 A method of manufacturing a liquid crystal element will be described by taking a liquid crystal display element as an example. The liquid crystal display element can be manufactured, for example, by a method including the following steps 1 to 3. In step 1, the substrate used differs depending on the desired operation mode. Steps 2 and 3 are common to each operation mode.

(工程1:塗膜の形成)
先ず、基板上に液晶配向剤を塗布し、好ましくは塗布面を加熱することにより基板上に塗膜を形成する。基板としては、例えばフロートガラス、ソーダガラスなどのガラス;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエーテルスルホン、ポリカーボネート、ポリ(脂環式オレフィン)などのプラスチックからなる透明基板を用いることができる。基板の一方の面に設けられる透明導電膜としては、酸化スズ(SnO)からなるNESA膜(米国PPG社登録商標)、酸化インジウム−酸化スズ(In−SnO)からなるITO膜などを用いることができる。TN型、STN型又はVA型の液晶素子を製造する場合には、パターニングされた透明導電膜が設けられている基板二枚を用いる。一方、IPS型又はFFS型の液晶素子を製造する場合には、櫛歯型にパターニングされた透明導電膜又は金属膜からなる電極が設けられている基板と、電極が設けられていない対向基板とを用いる。金属膜としては、例えばクロムなどの金属からなる膜を使用することができる。基板への液晶配向剤の塗布は、電極形成面上に、好ましくはオフセット印刷法、スピンコート法、ロールコーター法、フレキソ印刷法又はインクジェット印刷法により行う。
(Step 1: Formation of coating film)
First, a liquid crystal alignment agent is applied onto the substrate, and preferably the coated surface is heated to form a coating film on the substrate. As the substrate, for example, glass such as float glass and soda glass; a transparent substrate made of plastic such as polyethylene terephthalate, polybutylene terephthalate, polyether sulfone, polycarbonate, and poly (aliphatic olefin) can be used. As the transparent conductive film provided on one surface of the substrate, NESA film (US PPG registered trademark) made of tin oxide (SnO 2), indium oxide - ITO made of tin oxide (In 2 O 3 -SnO 2) film Etc. can be used. When manufacturing a TN type, STN type or VA type liquid crystal element, two substrates provided with a patterned transparent conductive film are used. On the other hand, in the case of manufacturing an IPS type or FFS type liquid crystal element, a substrate provided with an electrode made of a transparent conductive film or a metal film patterned in a comb-teeth shape and an opposing substrate not provided with an electrode. Is used. As the metal film, a film made of a metal such as chromium can be used. The liquid crystal alignment agent is applied to the substrate by an offset printing method, a spin coating method, a roll coater method, a flexographic printing method or an inkjet printing method, preferably on the electrode forming surface.

液晶配向剤を塗布した後、塗布した液晶配向剤の液垂れ防止などの目的で、好ましくは予備加熱(プレベーク)が実施される。プレベーク温度は、好ましくは30〜200℃であり、プレベーク時間は、好ましくは0.25〜10分である。その後、溶剤を完全に除去し、必要に応じて、重合体が有するアミック酸構造を熱イミド化することを目的として焼成(ポストベーク)工程が実施される。焼成温度(ポストベーク温度)は、好ましくは80〜300℃であり、ポストベーク時間は、好ましくは5〜200分である。このようにして形成される膜の膜厚は、好ましくは0.001〜1μmである。基板上に液晶配向剤を塗布した後、有機溶媒を除去することによって、液晶配向膜又は液晶配向膜となる塗膜が形成される。 After the liquid crystal alignment agent is applied, preheating is preferably performed for the purpose of preventing the applied liquid crystal alignment agent from dripping. The pre-baking temperature is preferably 30 to 200 ° C., and the pre-baking time is preferably 0.25 to 10 minutes. Then, a firing (post-baking) step is carried out for the purpose of completely removing the solvent and, if necessary, thermally imidizing the amic acid structure of the polymer. The firing temperature (post-baking temperature) is preferably 80 to 300 ° C., and the post-baking time is preferably 5 to 200 minutes. The film thickness of the film thus formed is preferably 0.001 to 1 μm. By applying the liquid crystal alignment agent on the substrate and then removing the organic solvent, a liquid crystal alignment film or a coating film to be a liquid crystal alignment film is formed.

(工程2:配向処理)
TN型、STN型、IPS型又はFFS型の液晶表示素子を製造する場合、上記工程1で形成した塗膜に液晶配向能を付与する処理(配向処理)を実施する。これにより、液晶分子の配向能が塗膜に付与されて液晶配向膜となる。配向処理としては、例えばナイロン、レーヨン、コットンなどの繊維からなる布を巻き付けたロールで塗膜を一定方向に擦るラビング処理や、液晶配向剤を用いて基板上に形成した塗膜に光照射を行って塗膜に液晶配向能を付与する光配向処理等が挙げられる。一方、垂直配向型の液晶素子を製造する場合には、上記工程1で形成した塗膜をそのまま液晶配向膜として使用することができるが、該塗膜に対し配向処理(ラビング処理、光配向処理等)を施してもよい。垂直配向型の液晶表示素子に好適な液晶配向剤は、PSA(Polymer sustained alignment)型の液晶表示素子にも好適に用いることができる。
(Step 2: Orientation treatment)
When manufacturing a TN type, STN type, IPS type or FFS type liquid crystal display element, a treatment (alignment treatment) for imparting a liquid crystal alignment ability to the coating film formed in the above step 1 is performed. As a result, the alignment ability of the liquid crystal molecules is imparted to the coating film to form a liquid crystal alignment film. As the orientation treatment, for example, a rubbing treatment in which the coating film is rubbed in a certain direction with a roll wrapped with a cloth made of fibers such as nylon, rayon, and cotton, or a coating film formed on a substrate using a liquid crystal alignment agent is irradiated with light. Examples thereof include a photo-alignment treatment for imparting a liquid crystal alignment ability to the coating film. On the other hand, in the case of manufacturing a vertically oriented liquid crystal element, the coating film formed in the above step 1 can be used as it is as a liquid crystal alignment film, but the coating film is subjected to alignment treatment (rubbing treatment, photoalignment treatment). Etc.) may be applied. A liquid crystal alignment agent suitable for a vertically oriented liquid crystal display element can also be suitably used for a PSA (Polymer sustained alignment) type liquid crystal display element.

(工程3:液晶セルの構築)
上記のようにして液晶配向膜が形成された基板を2枚準備し、対向配置した2枚の基板間に液晶を配置することにより液晶セルを製造する。液晶セルを製造するには、例えば、(1)液晶配向膜が対向するように間隙(スペーサー)を介して2枚の基板を対向配置し、2枚の基板の周辺部をシール剤を用いて貼り合わせ、基板表面及びシール剤により区画されたセルギャップ内に液晶を注入充填した後、注入孔を封止する方法、(2)液晶配向膜を形成した一方の基板上の所定の場所にシール剤を塗布し、さらに液晶配向膜面上の所定の数箇所に液晶を滴下した後、液晶配向膜が対向するように他方の基板を貼り合わせるとともに液晶を基板の全面に押し広げる方法(ODF方式)等が挙げられる。製造した液晶セルにつき、さらに、用いた液晶が等方相をとる温度まで加熱した後、室温まで徐冷することにより、液晶充填時の流動配向を除去することが望ましい。
(Step 3: Construction of liquid crystal cell)
A liquid crystal cell is manufactured by preparing two substrates on which a liquid crystal alignment film is formed as described above and arranging the liquid crystal between the two substrates arranged opposite to each other. In order to manufacture a liquid crystal cell, for example, (1) two substrates are arranged facing each other through a gap (spacer) so that the liquid crystal alignment films face each other, and the peripheral portion of the two substrates is covered with a sealant. A method of sealing the injection holes after laminating, injecting and filling the liquid crystal in the substrate surface and the cell gap partitioned by the sealant, (2) sealing at a predetermined place on one substrate on which the liquid crystal alignment film is formed. A method in which an agent is applied, liquid crystal is dropped onto a predetermined number of places on the liquid crystal alignment film surface, the other substrate is bonded so that the liquid crystal alignment film faces each other, and the liquid crystal is spread over the entire surface of the substrate (ODF method). ) Etc. can be mentioned. It is desirable to remove the flow orientation at the time of filling the liquid crystal by further heating the manufactured liquid crystal cell to a temperature at which the used liquid crystal takes an isotropic phase and then slowly cooling it to room temperature.

シール剤としては、例えば硬化剤及びスペーサーとしての酸化アルミニウム球を含有するエポキシ樹脂などを用いることができる。スペーサーとしては、フォトスペーサー、ビーズスペーサー等を用いることができる。液晶としては、ネマチック液晶及びスメクチック液晶を挙げることができ、その中でもネマチック液晶が好ましい。また、ネマチック液晶又はスメクチック液晶に、例えばコレステリック液晶、カイラル剤、強誘電性液晶などを添加して使用してもよい。 As the sealing agent, for example, an epoxy resin containing an aluminum oxide sphere as a curing agent and a spacer can be used. As the spacer, a photo spacer, a bead spacer, or the like can be used. Examples of the liquid crystal include a nematic liquid crystal and a smectic liquid crystal, and among them, the nematic liquid crystal is preferable. Further, for example, a cholesteric liquid crystal, a chiral agent, a ferroelectric liquid crystal or the like may be added to the nematic liquid crystal or the smectic liquid crystal for use.

続いて、必要に応じて液晶セルの外側表面に偏光板を貼り合わせる。偏光板としては、ポリビニルアルコールを延伸配向させながらヨウ素を吸収させた「H膜」と称される偏光フィルムを酢酸セルロース保護膜で挟んだ偏光板、又はH膜そのものからなる偏光板が挙げられる。こうして液晶表示素子が得られる。 Subsequently, if necessary, a polarizing plate is attached to the outer surface of the liquid crystal cell. Examples of the polarizing plate include a polarizing plate in which a polarizing film called "H film" in which polyvinyl alcohol is stretch-oriented and iodine is absorbed is sandwiched between a cellulose acetate protective film, or a polarizing plate made of the H film itself. In this way, a liquid crystal display element can be obtained.

以下、実施例に基づき実施形態をより詳しく説明するが、以下の実施例によって本発明が限定的に解釈されるものではない。 Hereinafter, embodiments will be described in more detail based on the examples, but the present invention is not limitedly interpreted by the following examples.

以下の例において、重合体の重量平均分子量Mw、重合体溶液中のポリイミドのイミド化率、重合体溶液の溶液粘度、及びエポキシ当量は以下の方法により測定した。以下の実施例で用いた原料化合物及び重合体の必要量は、下記の合成例に示す合成スケールでの合成を必要に応じて繰り返すことにより確保した。 In the following examples, the weight average molecular weight Mw of the polymer, the imidization ratio of the polyimide in the polymer solution, the solution viscosity of the polymer solution, and the epoxy equivalent were measured by the following methods. The required amounts of the raw material compounds and polymers used in the following examples were secured by repeating the synthesis on the synthetic scale shown in the following synthesis examples as necessary.

[重合体の重量平均分子量Mw]
重量平均分子量Mwは、以下の条件におけるGPCにより測定したポリスチレン換算値である。
カラム:東ソー(株)製、TSKgelGRCXLII
溶剤:テトラヒドロフラン、又はリチウムブロミド及びリン酸含有のN,N−ジメチルホルムアミド溶液
温度:40℃
圧力:68kgf/cm
[ポリイミドのイミド化率]
ポリイミドの溶液を純水に投入し、得られた沈殿を室温で十分に減圧乾燥した後、重水素化ジメチルスルホキシドに溶解し、テトラメチルシランを基準物質として室温でH−NMRを測定した。得られたH−NMRスペクトルから、下記数式(1)によりイミド化率[%]を求めた。
イミド化率[%]=(1−(A/(A×α)))×100 …(1)
(数式(1)中、Aは化学シフト10ppm付近に現れるNH基のプロトン由来のピーク面積であり、Aはその他のプロトン由来のピーク面積であり、αは重合体の前駆体(ポリアミック酸)におけるNH基のプロトン1個に対するその他のプロトンの個数割合である。)
[重合体溶液の溶液粘度]
重合体溶液の溶液粘度(mPa・s)は、E型回転粘度計を用いて25℃で測定した。
[エポキシ当量]
エポキシ当量は、JIS C 2105に記載の塩酸−メチルエチルケトン法により測定した。
[Weight average molecular weight Mw of polymer]
The weight average molecular weight Mw is a polystyrene-equivalent value measured by GPC under the following conditions.
Column: Made by Tosoh Corporation, TSKgelGRCXLII
Solvent: Tetrahydrofuran or N, N-dimethylformamide solution containing lithium bromide and phosphoric acid Temperature: 40 ° C
Pressure: 68 kgf / cm 2
[Imidization rate of polyimide]
The polyimide solution was poured into pure water, the obtained precipitate was sufficiently dried under reduced pressure at room temperature, dissolved in deuterated dimethyl sulfoxide, and 1 H-NMR was measured at room temperature using tetramethylsilane as a reference substance. From the obtained 1 H-NMR spectrum, the imidization rate [%] was determined by the following mathematical formula (1).
Imidization rate [%] = (1- (A 1 / (A 2 x α))) x 100 ... (1)
(In formula (1), A 1 is the peak area derived from the proton of the NH group appearing near the chemical shift of 10 ppm, A 2 is the peak area derived from other protons, and α is the precursor of the polymer (polyamic acid). ) Is the ratio of the number of other protons to one proton of the NH group.)
[Solution viscosity of polymer solution]
The solution viscosity (mPa · s) of the polymer solution was measured at 25 ° C. using an E-type rotational viscometer.
[Epoxy equivalent]
Epoxy equivalents were measured by the hydrochloric acid-methylethylketone method described in JIS C 2105.

化合物の略号は以下の通りである。なお、以下では、式(DA−X)で表される化合物(ただし、Xは1〜8の整数)を単に「化合物(DA−X)」と示すことがある。

Figure 0006962440
Figure 0006962440
The abbreviations of the compounds are as follows. In the following, the compound represented by the formula (DA-X) (where X is an integer of 1 to 8) may be simply referred to as "compound (DA-X)".
Figure 0006962440
Figure 0006962440

<重合体の合成>
[合成例1:ポリイミド(PI−1)の合成]
テトラカルボン酸二無水物として2,3,5−トリカルボキシシクロペンチル酢酸二無水物(TCA)22.4g(0.1モル)、ジアミンとしてp−フェニレンジアミン(PDA)8.6g(0.08モル)、及び3,5−ジアミノ安息香酸コレスタニル10.5g(0.02モル)を、N−メチル−2−ピロリドン(NMP)166gに溶解し、60℃で6時間反応を行い、ポリアミック酸を20質量%含有する溶液を得た。得られたポリアミック酸溶液を少量分取し、NMPを加えてポリアミック酸濃度10質量%の溶液として測定した溶液粘度は90mPa・sであった。
次いで、得られたポリアミック酸溶液に、NMPを追加してポリアミック酸濃度7質量%の溶液とし、ピリジン11.9g及び無水酢酸15.3gを添加して110℃で4時間脱水閉環反応を行った。脱水閉環反応後、系内の溶媒を新たなNMPで溶媒置換(本操作によって脱水閉環反応に使用したピリジン及び無水酢酸を系外に除去した。以下同じ。)することにより、イミド化率約68%のポリイミド(PI−1)を26質量%含有する溶液を得た。得られたポリイミド溶液を少量分取し、NMPを加えてポリイミド濃度10質量%の溶液として測定した溶液粘度は45mPa・sであった。次いで、反応溶液を大過剰のメタノール中に注ぎ、反応生成物を沈殿させた。この沈殿物をメタノールで洗浄し、減圧下40℃で15時間乾燥させることにより、ポリイミド(PI−1)を得た。
<Synthesis of polymer>
[Synthesis Example 1: Synthesis of Polyimide (PI-1)]
22.4 g (0.1 mol) of 2,3,5-tricarboxycyclopentylacetic acid dianhydride (TCA) as tetracarboxylic dianhydride, and 8.6 g (0.08 mol) of p-phenylenediamine (PDA) as diamine. ) And 10.5 g (0.02 mol) of cholestanyl 3,5-diaminobenzoate were dissolved in 166 g of N-methyl-2-pyrrolidone (NMP) and reacted at 60 ° C. for 6 hours to add 20 polyamic acids. A solution containing mass% was obtained. A small amount of the obtained polyamic acid solution was taken, NMP was added, and the solution viscosity measured as a solution having a polyamic acid concentration of 10% by mass was 90 mPa · s.
Next, NMP was added to the obtained polyamic acid solution to prepare a solution having a polyamic acid concentration of 7% by mass, 11.9 g of pyridine and 15.3 g of acetic anhydride were added, and a dehydration ring closure reaction was carried out at 110 ° C. for 4 hours. .. After the dehydration ring closure reaction, the solvent in the system was replaced with a new NMP (the pyridine and acetic anhydride used in the dehydration ring closure reaction were removed from the system by this operation. The same applies hereinafter), so that the imidization rate was about 68. A solution containing 26% by mass of% polyimide (PI-1) was obtained. A small amount of the obtained polyimide solution was taken, NMP was added, and the solution viscosity measured as a solution having a polyimide concentration of 10% by mass was 45 mPa · s. The reaction solution was then poured into a large excess of methanol to precipitate the reaction product. The precipitate was washed with methanol and dried under reduced pressure at 40 ° C. for 15 hours to obtain polyimide (PI-1).

[合成例2:ポリイミド(PI−2)の合成]
テトラカルボン酸二無水物として、TCA110g(0.50モル)及び1,3,3a,4,5,9b−ヘキサヒドロ−8−メチル−5−(テトラヒドロ−2,5−ジオキソ−3−フラニル)ナフト[1,2−c]フラン−1,3−ジオン160g(0.50モル)、ジアミンとして、PDA91g(0.85モル)、1,3−ビス(3−アミノプロピル)テトラメチルジシロキサン25g(0.10モル)、及び3,6−ビス(4−アミノベンゾイルオキシ)コレスタン25g(0.040モル)、並びにモノアミンとしてアニリン1.4g(0.015モル)を、NMP960gに溶解し、60℃で6時間反応を行うことにより、ポリアミック酸を含有する溶液を得た。得られたポリアミック酸溶液を少量分取し、NMPを加えてポリアミック酸濃度10質量%の溶液として測定した溶液粘度は60mPa・sであった。
次いで、得られたポリアミック酸溶液にNMP2,700gを追加し、ピリジン390g及び無水酢酸410gを添加して110℃で4時間脱水閉環反応を行った。脱水閉環反応後、系内の溶媒を新たなγ−ブチロラクトン(GBL)で溶媒置換することにより、イミド化率約95%のポリイミド(PI−2)を15質量%含有する溶液約2,500gを得た。この溶液を少量分取し、NMPを加え、ポリイミド濃度10質量%の溶液として測定した溶液粘度は70mPa・sであった。次いで、反応溶液を大過剰のメタノール中に注ぎ、反応生成物を沈殿させた。この沈殿物をメタノールで洗浄し、減圧下40℃で15時間乾燥させることにより、ポリイミド(PI−2)を得た。
[Synthesis Example 2: Synthesis of Polyimide (PI-2)]
As tetracarboxylic acid dianhydride, 110 g (0.50 mol) of TCA and 1,3,3a,4,5,9b-hexahydro-8-methyl-5- (tetrahydro-2,5-dioxo-3-furanyl) naphtho [1,2-c] Furan-1,3-dione 160 g (0.50 mol), PDA 91 g (0.85 mol) as diamine, 1,3-bis (3-aminopropyl) tetramethyldisiloxane 25 g ( 0.10 mol), 25 g (0.040 mol) of 3,6-bis (4-aminobenzoyloxy) cholesterol, and 1.4 g (0.015 mol) of aniline as a monoamine were dissolved in 960 g of NMP at 60 ° C. The reaction was carried out in 1 for 6 hours to obtain a solution containing a polyamic acid. A small amount of the obtained polyamic acid solution was taken, NMP was added, and the solution viscosity measured as a solution having a polyamic acid concentration of 10% by mass was 60 mPa · s.
Next, 2,700 g of NMP was added to the obtained polyamic acid solution, 390 g of pyridine and 410 g of acetic anhydride were added, and a dehydration ring closure reaction was carried out at 110 ° C. for 4 hours. After the dehydration ring closure reaction, the solvent in the system is replaced with a new γ-butyrolactone (GBL) to obtain about 2,500 g of a solution containing 15% by mass of polyimide (PI-2) having an imidization ratio of about 95%. Obtained. A small amount of this solution was taken, NMP was added, and the solution viscosity measured as a solution having a polyimide concentration of 10% by mass was 70 mPa · s. The reaction solution was then poured into a large excess of methanol to precipitate the reaction product. The precipitate was washed with methanol and dried under reduced pressure at 40 ° C. for 15 hours to obtain polyimide (PI-2).

[合成例3:ポリイミド(PI−3)の合成]
使用するジアミンを、3,5−ジアミノ安息香酸0.08モル及びコレスタニルオキシ−2,4−ジアミノベンゼン0.02モルに変更した以外は、上記合成例1と同様の方法によりポリアミック酸溶液を得た。得られたポリアミック酸溶液を少量分取し、NMPを加えてポリアミック酸濃度10質量%の溶液として測定した溶液粘度は80mPa・sであった。次いで、上記合成例1と同様の方法によりイミド化を行い、イミド化率約65%のポリイミド(PI−3)を26質量%含有する溶液を得た。得られたポリイミド溶液を少量分取し、NMPを加えてポリイミド濃度10質量%の溶液として測定した溶液粘度は40mPa・sであった。次いで、反応溶液を大過剰のメタノール中に注ぎ、反応生成物を沈殿させた。この沈殿物をメタノールで洗浄し、減圧下40℃で15時間乾燥させることにより、ポリイミド(PI−3)を得た。
[Synthesis Example 3: Synthesis of Polyimide (PI-3)]
A polyamic acid solution was prepared by the same method as in Synthesis Example 1 above, except that the diamine used was changed to 0.08 mol of 3,5-diaminobenzoic acid and 0.02 mol of cholestanyloxy-2,4-diaminobenzene. Obtained. A small amount of the obtained polyamic acid solution was taken, NMP was added, and the solution viscosity measured as a solution having a polyamic acid concentration of 10% by mass was 80 mPa · s. Next, imidization was carried out by the same method as in Synthesis Example 1 to obtain a solution containing 26% by mass of polyimide (PI-3) having an imidization ratio of about 65%. A small amount of the obtained polyimide solution was taken, NMP was added, and the solution viscosity measured as a solution having a polyimide concentration of 10% by mass was 40 mPa · s. The reaction solution was then poured into a large excess of methanol to precipitate the reaction product. The precipitate was washed with methanol and dried under reduced pressure at 40 ° C. for 15 hours to obtain polyimide (PI-3).

[合成例4:ポリイミド(PI−4)の合成]
使用するジアミンを、4,4’−ジアミノジフェニルメタン0.06モル、化合物(DA−1) 0.02モル、及び化合物(DA−2) 0.02モルに変更した以外は、上記合成例1と同様の方法によりポリアミック酸溶液を得た。得られたポリアミック酸溶液を少量分取し、NMPを加えてポリアミック酸濃度10質量%の溶液として測定した溶液粘度は60mPa・sであった。次いで、上記合成例1と同様の方法によりイミド化を行い、イミド化率約65%のポリイミド(PI−4)を26質量%含有する溶液を得た。得られたポリイミド溶液を少量分取し、NMPを加えてポリイミド濃度10質量%の溶液として測定した溶液粘度は33mPa・sであった。次いで、反応溶液を大過剰のメタノール中に注ぎ、反応生成物を沈殿させた。この沈殿物をメタノールで洗浄し、減圧下40℃で15時間乾燥させることにより、ポリイミド(PI−4)を得た。
[Synthesis Example 4: Synthesis of Polyimide (PI-4)]
Except that the diamine used was changed to 0.06 mol of 4,4'-diaminodiphenylmethane, 0.02 mol of compound (DA-1), and 0.02 mol of compound (DA-2), the same as in Synthesis Example 1 above. A polyamic acid solution was obtained by the same method. A small amount of the obtained polyamic acid solution was taken, NMP was added, and the solution viscosity measured as a solution having a polyamic acid concentration of 10% by mass was 60 mPa · s. Next, imidization was carried out by the same method as in Synthesis Example 1 to obtain a solution containing 26% by mass of polyimide (PI-4) having an imidization ratio of about 65%. A small amount of the obtained polyimide solution was taken, NMP was added, and the solution viscosity measured as a solution having a polyimide concentration of 10% by mass was 33 mPa · s. The reaction solution was then poured into a large excess of methanol to precipitate the reaction product. The precipitate was washed with methanol and dried under reduced pressure at 40 ° C. for 15 hours to obtain polyimide (PI-4).

[合成例5:ポリイミド(PI−5)の合成]
使用するテトラカルボン酸二無水物を、1,2,3,4−シクロブタンテトラカルボン酸二無水物0.08モル及びピロメリット酸二無水物0.02モルに変更するとともに、使用するジアミンを、4−アミノフェニル−4−アミノベンゾエート(化合物(DA−3))0.098モル、及び化合物(DA−4)0.002モルに変更した以外は、上記合成例1と同様の方法によりポリアミック酸溶液を得た。得られたポリアミック酸溶液を少量分取し、NMPを加えてポリアミック酸濃度10質量%の溶液として測定した溶液粘度は80mPa・sであった。次いで、上記合成例1と同様の方法によりイミド化を行い、イミド化率約65%のポリイミド(PI−5)を26質量%含有する溶液を得た。得られたポリイミド溶液を少量分取し、NMPを加えてポリイミド濃度10質量%の溶液として測定した溶液粘度は50mPa・sであった。次いで、反応溶液を大過剰のメタノール中に注ぎ、反応生成物を沈殿させた。この沈殿物をメタノールで洗浄し、減圧下40℃で15時間乾燥させることにより、ポリイミド(PI−5)を得た。
[Synthesis Example 5: Synthesis of Polyimide (PI-5)]
The tetracarboxylic acid dianhydride used was changed to 0.08 mol of 1,2,3,4-cyclobutanetetracarboxylic acid dianhydride and 0.02 mol of pyromellitic acid dianhydride, and the diamine used was changed to 0.02 mol. Polyamic acid by the same method as in Synthesis Example 1 above, except that it was changed to 0.098 mol of 4-aminophenyl-4-aminobenzoate (compound (DA-3)) and 0.002 mol of compound (DA-4). A solution was obtained. A small amount of the obtained polyamic acid solution was taken, NMP was added, and the solution viscosity measured as a solution having a polyamic acid concentration of 10% by mass was 80 mPa · s. Next, imidization was carried out by the same method as in Synthesis Example 1 to obtain a solution containing 26% by mass of polyimide (PI-5) having an imidization ratio of about 65%. A small amount of the obtained polyimide solution was taken, NMP was added, and the solution viscosity measured as a solution having a polyimide concentration of 10% by mass was 50 mPa · s. The reaction solution was then poured into a large excess of methanol to precipitate the reaction product. The precipitate was washed with methanol and dried under reduced pressure at 40 ° C. for 15 hours to obtain polyimide (PI-5).

[合成例6:ポリアミック酸(PA−1)の合成]
テトラカルボン酸二無水物として1,2,3,4−シクロブタンテトラカルボン酸二無水物(CB)200g(1.0モル)、ジアミンとして2,2’−ジメチル−4,4’−ジアミノビフェニル210g(1.0モル)を、NMP370g及びγ−ブチロラクトン(GBL)3,300gの混合溶媒に溶解し、40℃で3時間反応を行い、固形分濃度10質量%、溶液粘度160mPa・sのポリアミック酸溶液を得た。次いで、このポリアミック酸溶液を大過剰のメタノール中に注ぎ、反応生成物を沈殿させた。この沈殿物をメタノールで洗浄し、減圧下40℃で15時間乾燥させることにより、ポリアミック酸(PA−1)を得た。
[Synthesis Example 6: Synthesis of Polyamic Acid (PA-1)]
1,2,3,4-cyclobutanetetracarboxylic acid dianhydride (CB) 200 g (1.0 mol) as tetracarboxylic acid dianhydride, 2,2'-dimethyl-4,4'-diaminobiphenyl 210 g as diamine (1.0 mol) was dissolved in a mixed solvent of 370 g of NMP and 3,300 g of γ-butyrolactone (GBL), and the reaction was carried out at 40 ° C. for 3 hours to obtain a polyamic acid having a solid content concentration of 10% by mass and a solution viscosity of 160 mPa · s. A solution was obtained. The polyamic acid solution was then poured into a large excess of methanol to precipitate the reaction product. The precipitate was washed with methanol and dried under reduced pressure at 40 ° C. for 15 hours to obtain a polyamic acid (PA-1).

[合成例7:ポリアミック酸(PA−2)の合成]
テトラカルボン酸二無水物としてTCA7.0g(0.031モル)、ジアミンとして化合物(DA−5)13g(TCA1モルに対して1モルに相当する。)を、NMP80gに溶解し、60℃で4時間反応を行うことにより、ポリアミック酸(PA−2)を20質量%含有する溶液を得た。このポリアミック酸溶液の溶液粘度は2,000mPa・sであった。なお、化合物(DA−5)は、特開2011−100099号公報の記載に従って合成した。次いで、このポリアミック酸溶液を大過剰のメタノール中に注ぎ、反応生成物を沈殿させた。この沈殿物をメタノールで洗浄し、減圧下40℃で15時間乾燥させることにより、ポリアミック酸(PA−2)を得た。
[Synthesis Example 7: Synthesis of Polyamic Acid (PA-2)]
7.0 g (0.031 mol) of TCA as tetracarboxylic dianhydride and 13 g of compound (DA-5) as diamine (corresponding to 1 mol with respect to 1 mol of TCA) were dissolved in 80 g of NMP and 4 at 60 ° C. By carrying out a time reaction, a solution containing 20% by mass of polyamic acid (PA-2) was obtained. The solution viscosity of this polyamic acid solution was 2,000 mPa · s. The compound (DA-5) was synthesized according to the description in Japanese Patent Application Laid-Open No. 2011-10099. The polyamic acid solution was then poured into a large excess of methanol to precipitate the reaction product. The precipitate was washed with methanol and dried under reduced pressure at 40 ° C. for 15 hours to obtain a polyamic acid (PA-2).

[合成例8:ポリアミック酸(PA−3)の合成]
使用するジアミンを、1,3−ビス(4−アミノフェネチル)ウレア(化合物(DA−6))0.7モル、及び化合物(DA−7)0.3モルに変更した以外は、上記合成例6と同様の方法によりポリアミック酸溶液を得た。得られたポリアミック酸溶液を少量分取し、NMPを加えてポリアミック酸濃度10質量%の溶液として測定した溶液粘度は100mPa・sであった。次いで、このポリアミック酸溶液を大過剰のメタノール中に注ぎ、反応生成物を沈殿させた。この沈殿物をメタノールで洗浄し、減圧下40℃で15時間乾燥させることにより、ポリアミック酸(PA−3)を得た。
[Synthesis Example 8: Synthesis of Polyamic Acid (PA-3)]
The above synthesis example except that the diamine used was changed to 0.7 mol of 1,3-bis (4-aminophenethyl) urea (compound (DA-6)) and 0.3 mol of compound (DA-7). A polyamic acid solution was obtained by the same method as in 6. A small amount of the obtained polyamic acid solution was taken, NMP was added, and the solution viscosity measured as a solution having a polyamic acid concentration of 10% by mass was 100 mPa · s. The polyamic acid solution was then poured into a large excess of methanol to precipitate the reaction product. The precipitate was washed with methanol and dried under reduced pressure at 40 ° C. for 15 hours to obtain a polyamic acid (PA-3).

[合成例9:ポリアミック酸(PA−4)の合成]
使用するテトラカルボン酸二無水物を、1,3−ジメチル−1,2,3,4−シクロブタンテトラカルボン酸二無水物1.0モルに変更するとともに、使用するジアミンを、p−フェニレンジアミン0.3モル、化合物(DA−7)0.2モル、及び1,2−ビス(4−アミノフェノキシ)エタン0.5モルに変更した以外は、上記合成例6と同様の方法によりポリアミック酸溶液を得た。得られたポリアミック酸溶液を少量分取し、NMPを加えてポリアミック酸濃度10質量%の溶液として測定した溶液粘度は90mPa・sであった。次いで、このポリアミック酸溶液を大過剰のメタノール中に注ぎ、反応生成物を沈殿させた。この沈殿物をメタノールで洗浄し、減圧下40℃で15時間乾燥させることにより、ポリアミック酸(PA−4)を得た。
[Synthesis Example 9: Synthesis of Polyamic Acid (PA-4)]
The tetracarboxylic acid dianhydride used was changed to 1.0 mol of 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic acid dianhydride, and the diamine used was p-phenylenediamine 0. Polyamic acid solution by the same method as in Synthesis Example 6 above, except that it was changed to 3 mol, 0.2 mol of compound (DA-7), and 0.5 mol of 1,2-bis (4-aminophenoxy) ethane. Got A small amount of the obtained polyamic acid solution was taken, NMP was added, and the solution viscosity measured as a solution having a polyamic acid concentration of 10% by mass was 90 mPa · s. The polyamic acid solution was then poured into a large excess of methanol to precipitate the reaction product. The precipitate was washed with methanol and dried under reduced pressure at 40 ° C. for 15 hours to obtain a polyamic acid (PA-4).

[合成例10:ポリアミック酸(PA−5)の合成]
使用するジアミンを、2,4−ジアミノ−N,N−ジアリルアニリン0.2モル、4,4’−ジアミノジフェニルアミン0.2モル、及び4,4’−ジアミノジフェニルメタン0.6モルに変更した以外は、上記合成例6と同様の方法によりポリアミック酸溶液を得た。得られたポリアミック酸溶液を少量分取し、NMPを加えてポリアミック酸濃度10質量%の溶液として測定した溶液粘度は95mPa・sであった。次いで、このポリアミック酸溶液を大過剰のメタノール中に注ぎ、反応生成物を沈殿させた。この沈殿物をメタノールで洗浄し、減圧下40℃で15時間乾燥させることにより、ポリアミック酸(PA−5)を得た。
[Synthesis Example 10: Synthesis of Polyamic Acid (PA-5)]
Except that the diamine used was changed to 0.2 mol of 2,4-diamino-N, N-diallylaniline, 0.2 mol of 4,4'-diaminodiphenylamine, and 0.6 mol of 4,4'-diaminodiphenylmethane. Obtained a polyamic acid solution by the same method as in Synthesis Example 6 above. A small amount of the obtained polyamic acid solution was taken, NMP was added, and the solution viscosity measured as a solution having a polyamic acid concentration of 10% by mass was 95 mPa · s. The polyamic acid solution was then poured into a large excess of methanol to precipitate the reaction product. The precipitate was washed with methanol and dried under reduced pressure at 40 ° C. for 15 hours to obtain a polyamic acid (PA-5).

[合成例11:ポリアミック酸エステル(PAE−1)の合成]
2,4−ビス(メトキシカルボニル)−1,3−ジメチルシクロブタン−1,3−ジカルボン酸0.035モルを塩化チオニル20mlに加え、N,N−ジメチルホルムアミドを触媒量添加し、その後80℃にて1時間攪拌した。その後、反応液を濃縮し、残留物をγ-ブチロラクトン(GBL)113gに溶解した(この溶液を反応液Aとした。)。別途、p−フェニレンジアミン0.01モル、1,2−ビス(4−アミノフェノキシ)エタン0.01モル、及び化合物(DA−8)0.014モルをピリジン6.9g、NMP44.5g及びGBL33.5gに加えて溶解させ、これを0℃に冷却した。次いで、この溶液へ反応液Aを1時間かけてゆっくりと滴下し、滴下終了後、室温にて4時間撹拌した。得られたポリアミック酸エステルの溶液を800mlの純水に撹拌しながら滴下し、析出した沈殿物をろ過した。続いて、400mlのイソプロピルアルコール(IPA)で5回洗浄し、乾燥することでポリマー粉末15.5gを得た。得られたポリアミック酸エステル(PAE−1)の重量平均分子量Mwは34,000であった。
[Synthesis Example 11: Synthesis of Polyamic Acid Ester (PAE-1)]
0.035 mol of 2,4-bis (methoxycarbonyl) -1,3-dimethylcyclobutane-1,3-dicarboxylic acid was added to 20 ml of thionyl chloride, N, N-dimethylformamide was added in a catalytic amount, and then the temperature was increased to 80 ° C. Stirred for 1 hour. Then, the reaction solution was concentrated, and the residue was dissolved in 113 g of γ-butyrolactone (GBL) (this solution was designated as reaction solution A). Separately, 0.01 mol of p-phenylenediamine, 0.01 mol of 1,2-bis (4-aminophenoxy) ethane, and 0.014 mol of compound (DA-8) were added to 6.9 g of pyridine, 44.5 g of NMP, and GBL33. It was dissolved in addition to 5.5 g and cooled to 0 ° C. Then, the reaction solution A was slowly added dropwise to this solution over 1 hour, and after completion of the addition, the mixture was stirred at room temperature for 4 hours. The obtained solution of polyamic acid ester was added dropwise to 800 ml of pure water with stirring, and the precipitated precipitate was filtered. Subsequently, it was washed 5 times with 400 ml of isopropyl alcohol (IPA) and dried to obtain 15.5 g of polymer powder. The weight average molecular weight Mw of the obtained polyamic acid ester (PAE-1) was 34,000.

[合成例12:ポリオルガノシロキサン(APS−1)の合成]
撹拌機、温度計、滴下漏斗及び還流冷却管を備えた反応容器に、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン100.0g、メチルイソブチルケトン500g及びトリエチルアミン10.0gを仕込み、室温で混合した。次いで、脱イオン水100gを滴下漏斗より30分かけて滴下した後、還流下で撹拌しつつ、80℃で6時間反応を行った。反応終了後、有機層を取り出し、0.2質量%硝酸アンモニウム水溶液により、洗浄後の水が中性になるまで洗浄した後、減圧下で溶媒及び水を留去することにより、反応性ポリオルガノシロキサン(EPS−1)を粘調な透明液体として得た。この反応性ポリオルガノシロキサン(EPS−1)について、H−NMR分析を行ったところ、化学シフト(δ)=3.2ppm付近にエポキシ基に基づくピークが理論強度どおりに得られ、反応中にエポキシ基の副反応が起こっていないことが確認された。得られた反応性ポリオルガノシロキサンの重量平均分子量Mwは3,500、エポキシ当量は180g/モルであった。
次いで、200mLの三口フラスコに、反応性ポリオルガノシロキサン(EPS−1)を10.0g、溶媒としてメチルイソブチルケトン30.28g、反応性化合物として4−(ドデシルオキシ)安息香酸3.98g、及び触媒としてUCAT 18X(商品名、サンアプロ(株)製)0.10gを仕込み、100℃で48時間撹拌下に反応を行った。反応終了後、反応混合物に酢酸エチルを加えて得た溶液を3回水洗し、有機層を硫酸マグネシウムを用いて乾燥した後、溶剤を留去することにより、液晶配向性ポリオルガノシロキサン(APS−1)を9.0g得た。得られた重合体の重量平均分子量Mwは9,900であった。
[Synthesis Example 12: Synthesis of Polyorganosiloxane (APS-1)]
A reaction vessel equipped with a stirrer, a thermometer, a dropping funnel and a reflux condenser was charged with 100.0 g of 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 500 g of methylisobutylketone and 10.0 g of triethylamine at room temperature. Mixed in. Then, 100 g of deionized water was added dropwise from the dropping funnel over 30 minutes, and then the reaction was carried out at 80 ° C. for 6 hours while stirring under reflux. After completion of the reaction, the organic layer was taken out, washed with a 0.2 mass% ammonium nitrate aqueous solution until the washed water became neutral, and then the solvent and water were distilled off under reduced pressure to obtain a reactive polyorganosiloxane. (EPS-1) was obtained as a viscous transparent liquid. When 1 H-NMR analysis was performed on this reactive polyorganosiloxane (EPS-1), a peak based on an epoxy group was obtained near chemical shift (δ) = 3.2 ppm according to the theoretical intensity, and during the reaction. It was confirmed that no side reaction of the epoxy group occurred. The weight average molecular weight Mw of the obtained reactive polyorganosiloxane was 3,500, and the epoxy equivalent was 180 g / mol.
Next, in a 200 mL three-necked flask, 10.0 g of reactive polyorganosiloxane (EPS-1), 30.28 g of methyl isobutyl ketone as a solvent, 3.98 g of 4- (dodecyloxy) benzoic acid as a reactive compound, and a catalyst. As a result, 0.10 g of UCAT 18X (trade name, manufactured by Sun Appro Co., Ltd.) was charged, and the reaction was carried out at 100 ° C. for 48 hours with stirring. After completion of the reaction, the solution obtained by adding ethyl acetate to the reaction mixture was washed with water three times, the organic layer was dried over magnesium sulfate, and then the solvent was distilled off to obtain a liquid crystal oriented polyorganosiloxane (APS-). 1) was obtained in 9.0 g. The weight average molecular weight Mw of the obtained polymer was 9,900.

[実施例1]
1.液晶配向剤の調製
上記合成例1で得たポリイミド(PI−1)に、アニソール(化合物a)及びブチルセロソルブ(BC)を加えて、重合体濃度3.5質量%、溶剤の混合比が、化合物a:BC=70:30(質量比)の溶液とした。この溶液を十分に撹拌した後、孔径0.2μmのフィルターで濾過することにより液晶配向剤(S−1)を調製した。なお、液晶配向剤(S−1)は、主に垂直配向型の液晶表示素子の製造用である。
[Example 1]
1. 1. Preparation of liquid crystal alignment agent Anisole (Compound a) and Butyl cellosolve (BC) were added to the polyimide (PI-1) obtained in Synthesis Example 1 above, and the polymer concentration was 3.5% by mass and the mixing ratio of the solvent was a compound. The solution was a: BC = 70:30 (mass ratio). After sufficiently stirring this solution, a liquid crystal alignment agent (S-1) was prepared by filtering through a filter having a pore size of 0.2 μm. The liquid crystal alignment agent (S-1) is mainly for manufacturing a vertically oriented liquid crystal display element.

2.塗布均一性の評価
上記1.で調製した液晶配向剤(S−1)を、ガラス基板上にスピンナーを用いて塗布し、80℃のホットプレートで1分間プレベークを行った後、庫内を窒素置換した200℃のオーブンで1時間加熱(ポストベーク)することにより平均膜厚0.1μmの塗膜を形成した。得られた塗膜の表面を原子間力顕微鏡(AFM)にて観察し、中心平均粗さ(Ra)を測定し、塗膜表面の均一性を評価した。Raが5nm以下の場合を塗布均一性「良好(○)」、5nmよりも大きく10nm未満であった場合を「可(△)」、10nm以上の場合を「不良(×)」と評価した。その結果、本実施例では「良好」の評価であった。
2. Evaluation of coating uniformity Above 1. The liquid crystal alignment agent (S-1) prepared in the above was applied onto a glass substrate using a spinner, prebaked on a hot plate at 80 ° C. for 1 minute, and then the inside of the refrigerator was replaced with nitrogen in an oven at 200 ° C. 1 A coating film having an average film thickness of 0.1 μm was formed by heating (post-baking) for a time. The surface of the obtained coating film was observed with an atomic force microscope (AFM), the center average roughness (Ra) was measured, and the uniformity of the coating film surface was evaluated. When Ra was 5 nm or less, the coating uniformity was evaluated as “good (◯)”, when it was larger than 5 nm and less than 10 nm, it was evaluated as “possible (Δ)”, and when it was 10 nm or more, it was evaluated as “poor (×)”. As a result, the evaluation was "good" in this example.

3.微細凹凸表面への塗布性評価
図1に示す評価用ITO電極基板10を用いて、微細凹凸表面に対する液晶配向剤の塗布性を評価した。評価用ITO電極基板10としては、ガラス基板11の一方の表面に、ストライプ形状のITO電極12が所定間隔をあけて複数配置されたものを使用した(図1参照)。なお、電極幅Aは50μm、電極間距離Bは2μm、電極高さCは0.2μmとした。この評価用ITO電極基板10の電極形成面に、濡れ性評価装置LSE−A100T(ニック社製)を用いて液晶配向剤(S−1)を滴下し、基板の凹凸表面への馴染みやすさを評価した。このとき、液量に対する液滴の濡れ広がり面積S(mm/μL)が大きいほど液滴の濡れ広がりが大きく、微細凹凸表面に対する液晶配向剤の塗布性が良好であるといえる。評価は、面積Sが15mm/μL以上である場合に「非常に良好(○○)」、面積Sが10mm/μL以上15mm/μL未満である場合に「良好(○)」、面積Sが5mm/μLよりも大きく10mm/μL未満である場合に「可(△)」、面積Sが5mm/μL以下である場合に「不良(×)」とした。その結果、本実施例では面積Sは10mm/μLであり、微細凹凸表面への塗布性は「良好」と判断された。
3. 3. Evaluation of Applicability to Fine Concavo-convex Surface Using the evaluation ITO electrode substrate 10 shown in FIG. 1, the applicability of the liquid crystal alignment agent to the fine concavo-convex surface was evaluated. As the evaluation ITO electrode substrate 10, a plurality of striped ITO electrodes 12 were arranged on one surface of the glass substrate 11 at predetermined intervals (see FIG. 1). The electrode width A was 50 μm, the distance between the electrodes B was 2 μm, and the electrode height C was 0.2 μm. A liquid crystal alignment agent (S-1) is dropped onto the electrode-forming surface of the evaluation ITO electrode substrate 10 using a wettability evaluation device LSE-A100T (manufactured by Nick) to improve the compatibility of the substrate with the uneven surface. evaluated. At this time, it can be said that the larger the wett spread area S (mm 2 / μL) of the droplet with respect to the amount of liquid, the larger the wet spread of the droplet, and the better the coatability of the liquid crystal aligning agent on the fine uneven surface. The evaluation is "very good (○○)" when the area S is 15 mm 2 / μL or more, “good (○)” when the area S is 10 mm 2 / μL or more and less than 15 mm 2 / μL, and the area. S has a "good (△)", "poor (×)" when the area S is less than 5 mm 2 / [mu] L if it is greater than 10 mm 2 / [mu] L than 5 mm 2 / [mu] L. As a result, in this example, the area S was 10 mm 2 / μL, and the applicability to the fine uneven surface was judged to be “good”.

4.垂直配向型液晶表示素子の製造
液晶配向剤(S−1)を、一対(2枚)のITO膜からなる透明電極付きガラス基板にスピンナーを用いて塗布し、80℃のホットプレートで1分間プレベークを行った。その後、窒素に置換したオーブン中、200℃で1時間加熱(ポストベーク)して溶媒を除去し、膜厚0.08μmの塗膜(液晶配向膜)を形成した。この塗膜に対し、レーヨン布を巻き付けたロールを有するラビングマシーンにより、ロール回転数400rpm、ステージ移動速度3cm/秒、毛足押し込み長さ0.1mmでラビング処理を行った。その後、超純水中で1分間、超音波洗浄を行い、次いで、100℃クリーンオーブン中で10分間乾燥することにより、液晶配向膜を有する基板を得た。この操作を繰り返し、液晶配向膜を有する基板を一対(2枚)得た。なお、このラビング処理は、液晶の倒れ込みを制御し、配向分割を簡易な方法で行う目的で行った弱いラビング処理である。
上記基板のうちの1枚の液晶配向膜を有する面の外周に、直径3.5μmの酸化アルミニウム球入りエポキシ樹脂接着剤をスクリーン印刷により塗布した後、一対の基板の液晶配向膜面を対向させ、重ね合わせて圧着し、150℃で1時間加熱して接着剤を熱硬化させた。次いで、液晶注入口より基板の間隙にネガ型液晶(メルク製、MLC−6608) を充填した後、エポキシ系接着剤で液晶注入口を封止し、さらに液晶注入時の流動配向を除くために、これを150℃で10分間加熱した後に室温まで徐冷した。さらに、基板の外側両面に、偏光板を2枚の偏光板の偏光方向が互いに直交するように貼り合わせることにより液晶表示素子を製造した。
4. Manufacture of vertically oriented liquid crystal display element Liquid crystal aligning agent (S-1) is applied to a glass substrate with a transparent electrode made of a pair (2 sheets) of ITO films using a spinner, and prebaked on a hot plate at 80 ° C. for 1 minute. Was done. Then, the solvent was removed by heating (post-baking) at 200 ° C. for 1 hour in an oven replaced with nitrogen to form a coating film (liquid crystal alignment film) having a film thickness of 0.08 μm. The coating film was subjected to a rubbing treatment using a rubbing machine having a roll wrapped with rayon cloth at a roll rotation speed of 400 rpm, a stage moving speed of 3 cm / sec, and a fluff pushing length of 0.1 mm. Then, ultrasonic cleaning was performed in ultrapure water for 1 minute, and then the substrate was dried in a 100 ° C. clean oven for 10 minutes to obtain a substrate having a liquid crystal alignment film. This operation was repeated to obtain a pair (two) of substrates having a liquid crystal alignment film. It should be noted that this rubbing process is a weak rubbing process performed for the purpose of controlling the collapse of the liquid crystal display and performing the orientation division by a simple method.
An epoxy resin adhesive containing aluminum oxide spheres having a diameter of 3.5 μm is applied by screen printing to the outer periphery of the surface of one of the substrates having the liquid crystal alignment film, and then the liquid crystal alignment film surfaces of the pair of substrates are opposed to each other. The adhesive was heat-cured by overlapping and crimping and heating at 150 ° C. for 1 hour. Next, after filling the gap between the substrates from the liquid crystal injection port with a negative liquid crystal display (MLC-6608 manufactured by Merck), the liquid crystal injection port is sealed with an epoxy adhesive, and further, in order to eliminate the flow orientation during liquid crystal injection. This was heated at 150 ° C. for 10 minutes and then slowly cooled to room temperature. Further, a liquid crystal display element was manufactured by laminating polarizing plates on both outer sides of the substrate so that the polarization directions of the two polarizing plates were orthogonal to each other.

5.ポストベークの温度ムラに対するプレチルト角のばらつき特性(ポストベークマージン)の評価
上記4.の方法に従い、異なるポストベーク温度(120℃、180℃及び230℃)で液晶配向膜を作製して得られた液晶表示素子のプレチルト角をそれぞれ測定した。230℃の測定値を基準プレチルト角θpとし、基準プレチルト角θpと測定値θaとの差Δθ(=|θp−θa|)により、ポストベークの温度ムラに対するプレチルト角のばらつき特性を評価した。なお、Δθが小さいほど、温度ムラに対するプレチルト角のばらつきが小さく優れていると言える。プレチルト角の測定は、非特許文献(T. J. Scheffer et.al. J.Appl.Phys. vo.19, p.2013(1980))に記載の方法に準拠して、He−Neレーザー光を用いる結晶回転法により測定した液晶分子の基板面からの傾き角の値をプレチルト角[°]とした。評価は、Δθが0.2°以下であった場合を「良好(○)」、0.2°よりも大きく0.5°未満であった場合を「可(△)」、0.5°以上であった場合を「不良(×)」とした。その結果、この実施例では、ポストベーク温度を180℃とした場合にはポストベークマージン「良好」、120℃とした場合には「可」の評価であった。
5. Evaluation of variation characteristics (post-bake margin) of pre-tilt angle with respect to post-bake temperature unevenness 4. The pretilt angles of the liquid crystal display elements obtained by preparing the liquid crystal alignment films at different post-bake temperatures (120 ° C., 180 ° C. and 230 ° C.) were measured according to the above method. The measured value at 230 ° C. was used as the reference pretilt angle θp, and the variation characteristic of the pretilt angle with respect to the temperature unevenness of the postbake was evaluated by the difference Δθ (= | θp−θa |) between the reference pretilt angle θp and the measured value θa. It can be said that the smaller Δθ is, the smaller the variation in the pretilt angle with respect to the temperature unevenness is and the better. The measurement of the pre-tilt angle is performed in accordance with the method described in the non-patent document (TJ Scheffer et. Al. J. Appl. Phys. Vo. 19, p. 2013 (1980)). The value of the inclination angle of the liquid crystal molecule from the substrate surface measured by the crystal rotation method using the above was defined as the pretilt angle [°]. The evaluation was "good (○)" when Δθ was 0.2 ° or less, "possible (Δ)" when it was greater than 0.2 ° and less than 0.5 °, 0.5 °. The case of the above was regarded as "defective (x)". As a result, in this example, the post-bake margin was evaluated as "good" when the post-bake temperature was 180 ° C., and "OK" when the post-bake temperature was 120 ° C.

6.ベゼルムラ耐性の評価
上記4.の方法に従い、液晶配向剤(S−1)を用いて垂直配向型液晶表示素子を製造した。得られた垂直配向型液晶表示素子を25℃、50%RHの条件下に30日保管し、その後、交流電圧5Vで駆動して点灯状態を観察した。評価は、シール剤周辺にて、輝度差(モアブラック又はモアホワイト)が視認されなければ「非常に良好(○○)」、視認されるが、点灯後10分以内に輝度差が消失すれば「良好(○)」、点灯後10分以内には輝度差が消失しなかったが、点灯後20分以内には輝度差が消失すれば「可(△)」、20分経過しても輝度差が視認される場合を「不良(×)」とした。その結果、この液晶表示素子は「可」と判断された。
6. Evaluation of bezel unevenness resistance 4. A vertically oriented liquid crystal display element was manufactured using the liquid crystal aligning agent (S-1) according to the above method. The obtained vertically oriented liquid crystal display element was stored under the conditions of 25 ° C. and 50% RH for 30 days, and then driven by an AC voltage of 5 V to observe the lighting state. The evaluation is "very good (○○)" if the brightness difference (more black or more white) is not visually recognized around the sealant, but if the brightness difference disappears within 10 minutes after lighting. "Good (○)", the brightness difference did not disappear within 10 minutes after lighting, but "OK (△)" if the brightness difference disappeared within 20 minutes after lighting, brightness even after 20 minutes. The case where the difference was visually recognized was defined as "defective (x)". As a result, this liquid crystal display element was judged to be "OK".

7.AC残像特性の評価
電極構造を、電圧の印加/無印加を別個に切替可能な2系統のITO電極(電極1及び電極2)とした点、及び偏光板を貼り合わせなかった点以外は、上記4.と同様の方法により評価用液晶セルを作製した。この評価用液晶セルを60℃の条件下に置き、電極2には電圧をかけずに、電極1に交流電圧10Vを300時間印加した。300時間が経過した後、直ちに電極1及び電極2の双方に交流3Vの電圧を印加して、両電極間の光透過率の差ΔT[%]を測定した。このとき、ΔTが2%未満であった場合をAC残像特性「良好(○)」、2%以上3%未満であった場合を「可(△)」、3%以上であった場合を「不良(×)」と評価した。その結果、この実施例では「良好」の評価であった。
7. Evaluation of AC afterimage characteristics Except for the fact that the electrode structure is two ITO electrodes (electrode 1 and electrode 2) that can switch voltage application / non-application separately, and that the polarizing plate is not bonded, the above 4. A liquid crystal cell for evaluation was produced by the same method as in the above. The evaluation liquid crystal cell was placed under the condition of 60 ° C., and an AC voltage of 10 V was applied to the electrode 1 for 300 hours without applying a voltage to the electrode 2. Immediately after 300 hours had passed, an AC 3V voltage was applied to both the electrode 1 and the electrode 2, and the difference ΔT [%] in the light transmittance between the two electrodes was measured. At this time, when ΔT is less than 2%, the AC afterimage characteristic is “good (◯)”, when it is 2% or more and less than 3%, it is “possible (Δ)”, and when it is 3% or more, it is “good”. It was evaluated as "defective (x)". As a result, it was evaluated as "good" in this example.

8.DC残像特性の評価
上記7.で作製した評価用液晶セルを60℃の条件下に置き、電極1に直流0.5Vの電圧を24時間印加し、直流電圧を切った直後の電極1に残留した電圧(残留DC電圧)をフリッカー消去法により求めた。このとき、残留DC電圧が100mV未満であった場合をDC残像特性「良好(○)」、100mV以上300mV未満であった場合を「可(△)」、300mV以上であった場合を「不良(×)」と評価した。その結果、この実施例では「良好」の評価であった。
8. Evaluation of DC afterimage characteristics 7. The evaluation liquid crystal cell produced in the above was placed under the condition of 60 ° C., a voltage of 0.5 V DC was applied to the electrode 1 for 24 hours, and the voltage remaining on the electrode 1 immediately after the DC voltage was turned off (residual DC voltage) was applied. Obtained by the flicker elimination method. At this time, when the residual DC voltage is less than 100 mV, the DC afterimage characteristic is “good (◯)”, when it is 100 mV or more and less than 300 mV, it is “possible (Δ)”, and when it is 300 mV or more, it is “defective (defective). ×) ”was evaluated. As a result, it was evaluated as "good" in this example.

[実施例2〜4及び比較例1〜5]
配合処方をそれぞれ下記表1に記載の通りとしたほかは実施例1と同様にして、液晶配向剤を調製した。また、調製した液晶配向剤を用いて実施例1と同様にして各種評価を行った。評価結果は下記表2に示した。
[Examples 2 to 4 and Comparative Examples 1 to 5]
A liquid crystal alignment agent was prepared in the same manner as in Example 1 except that the compounding formulations were as shown in Table 1 below. In addition, various evaluations were carried out in the same manner as in Example 1 using the prepared liquid crystal alignment agent. The evaluation results are shown in Table 2 below.

[実施例5]
1.液晶配向剤の調製
配合処方を下記表1に記載のとおりに変更した以外は実施例1と同様にして、液晶配向剤(S−5)を調製した。なお、液晶配向剤(S−5)は、主に水平配向型の液晶表示素子の製造用である。
2.液晶配向剤の評価
液晶配向剤(S−5)を使用した以外は実施例1と同様にして、塗布均一性及び微細凹凸表面への塗布性を評価した。それらの結果を下記表2に示した。
[Example 5]
1. 1. Preparation of liquid crystal alignment agent A liquid crystal alignment agent (S-5) was prepared in the same manner as in Example 1 except that the formulation was changed as shown in Table 1 below. The liquid crystal alignment agent (S-5) is mainly for manufacturing a horizontally oriented liquid crystal display element.
2. Evaluation of Liquid Crystal Aligning Agent The coating uniformity and the coating property on the fine uneven surface were evaluated in the same manner as in Example 1 except that the liquid crystal aligning agent (S-5) was used. The results are shown in Table 2 below.

3.ラビングFFS型液晶表示素子の製造
平板電極(ボトム電極)、絶縁層及び櫛歯状電極(トップ電極)がこの順で片面に積層されたガラス基板と、電極が設けられていない対向ガラス基板とのそれぞれの面上に、液晶配向剤(S−5)を、スピンナーを用いて塗布し、80℃のホットプレートで1分間加熱(プレベーク)した。その後、庫内を窒素置換した200℃のオーブンで1時間乾燥(ポストベーク)を行い、平均膜厚0.08μmの塗膜を形成した。次いで、塗膜表面に対し、レーヨン布を巻き付けたロールを有するラビングマシーンにより、ロール回転数500rpm、ステージ移動速度3cm/秒、毛足押し込み長さ0.4mmでラビング処理を行った。その後、超純水中で1分間超音波洗浄を行い、次いで100℃クリーンオーブン中で10分間乾燥することにより、液晶配向膜を有する基板を得た。
次いで、液晶配向膜を有する一対の基板につき、液晶配向膜を形成した面の縁に液晶注入口を残して、直径5.5μmの酸化アルミニウム球入りエポキシ樹脂接着剤をスクリーン印刷塗布した。その後、基板を重ね合わせて圧着し、150℃で1時間かけて接着剤を熱硬化させた。次いで、一対の基板間に液晶注入口よりネマチック液晶(メルク社製、MLC−6221)を充填した後、エポキシ系接着剤で液晶注入口を封止した。さらに、液晶注入時の流動配向を除くために、これを120℃で加熱してから室温まで徐冷し、液晶セルを製造した。なお、一対の基板を重ねあわせる際には、それぞれの基板のラビング方法が反平行となるようにした。また、2枚の偏光板の偏光方向が各々、ラビング方向と平行及び直交方向となるように偏光板を貼り合わせた。なお、トップ電極については、電極の線幅を4μm、電極間の距離を6μmとした。また、トップ電極としては、電極A、電極B、電極C及び電極Dの4系統の駆動電極を用いた。この場合、ボトム電極は、4系統の駆動電極のすべてに作用する共通電極として働き、4系統の駆動電極の領域のそれぞれが画素領域となる。
4.ラビングFFS型液晶表示素子の評価
上記3.の方法に従い作製したラビングFFS型の液晶表示素子又は液晶セルを使用した以外は実施例1と同様にして、ポストベークマージン、AC残像特性及びDC残像特性を評価した。また、液晶配向剤(S−5)を用いて、上記3.に記載の方法に従ってラビングFFS型液晶表示素子を製造し、実施例1と同様にしてベゼルムラ耐性を評価した。それらの結果を下記表2に示した。
3. 3. Manufacture of rubbing FFS type liquid crystal display element A glass substrate in which a flat plate electrode (bottom electrode), an insulating layer and a comb-shaped electrode (top electrode) are laminated on one side in this order, and a counter glass substrate on which no electrode is provided. A liquid crystal aligning agent (S-5) was applied onto each surface using a spinner, and heated (prebaked) on a hot plate at 80 ° C. for 1 minute. Then, the inside of the chamber was dried (post-baked) for 1 hour in a nitrogen-substituted oven at 200 ° C. to form a coating film having an average film thickness of 0.08 μm. Next, the surface of the coating film was subjected to a rubbing treatment using a rubbing machine having a roll wrapped with rayon cloth at a roll rotation speed of 500 rpm, a stage moving speed of 3 cm / sec, and a fluff pushing length of 0.4 mm. Then, it was ultrasonically cleaned in ultrapure water for 1 minute and then dried in a clean oven at 100 ° C. for 10 minutes to obtain a substrate having a liquid crystal alignment film.
Next, an epoxy resin adhesive containing aluminum oxide spheres having a diameter of 5.5 μm was screen-printed on the pair of substrates having the liquid crystal alignment film, leaving the liquid crystal injection port on the edge of the surface on which the liquid crystal alignment film was formed. Then, the substrates were overlapped and crimped, and the adhesive was thermoset at 150 ° C. for 1 hour. Next, a nematic liquid crystal (MLC-6221, manufactured by Merck & Co., Inc.) was filled between the pair of substrates from the liquid crystal injection port, and then the liquid crystal injection port was sealed with an epoxy adhesive. Further, in order to eliminate the flow orientation at the time of liquid crystal injection, this was heated at 120 ° C. and then slowly cooled to room temperature to produce a liquid crystal cell. When stacking a pair of substrates, the rubbing method of each substrate was set to be antiparallel. Further, the polarizing plates were attached so that the polarization directions of the two polarizing plates were parallel and orthogonal to the rubbing direction, respectively. For the top electrode, the line width of the electrode was set to 4 μm, and the distance between the electrodes was set to 6 μm. As the top electrode, four types of driving electrodes, electrode A, electrode B, electrode C, and electrode D, were used. In this case, the bottom electrode acts as a common electrode that acts on all of the four drive electrodes, and each of the regions of the four drive electrodes becomes a pixel region.
4. Evaluation of rubbing FFS type liquid crystal display element 3. The post-bake margin, AC afterimage characteristic, and DC afterimage characteristic were evaluated in the same manner as in Example 1 except that the rubbing FFS type liquid crystal display element or liquid crystal cell produced according to the above method was used. Further, using the liquid crystal alignment agent (S-5), the above 3. A rubbing FFS type liquid crystal display element was manufactured according to the method described in the above, and the bezel unevenness resistance was evaluated in the same manner as in Example 1. The results are shown in Table 2 below.

[実施例6,7]
配合処方を下記表1に記載のとおりに変更した以外は実施例1と同様にして、液晶配向剤(S−6)、(S−7)をそれぞれ調製した。また、液晶配向剤(S−6)、(S−7)をそれぞれ使用した以外は、実施例1と同様にして塗布均一性及び微細凹凸表面への塗布性を評価するとともに、実施例5と同様にしてラビングFFS型の液晶表示素子又は液晶セルを製造して各種評価を行った。それらの結果を下記表2に示した。
[Examples 6 and 7]
Liquid crystal alignment agents (S-6) and (S-7) were prepared in the same manner as in Example 1 except that the formulation was changed as shown in Table 1 below. Further, except that the liquid crystal aligning agents (S-6) and (S-7) were used, the coating uniformity and the coating property on the finely uneven surface were evaluated in the same manner as in Example 1, and the same as in Example 5. In the same manner, a rubbing FFS type liquid crystal display element or a liquid crystal cell was manufactured and various evaluations were performed. The results are shown in Table 2 below.

[実施例8]
1.液晶配向剤の調製
配合処方を下記表1に記載のとおりに変更した以外は実施例1と同様にして、液晶配向剤(S−8)を調製した。なお、液晶配向剤(S−8)は、主にPSA型の液晶表示素子の製造用である。
2.液晶配向剤の評価
液晶配向剤(S−8)を使用した以外は実施例1と同様にして、塗布均一性及び微細凹凸表面への塗布性を評価した。それらの結果を下記表2に示した。
[Example 8]
1. 1. Preparation of liquid crystal alignment agent A liquid crystal alignment agent (S-8) was prepared in the same manner as in Example 1 except that the formulation was changed as shown in Table 1 below. The liquid crystal alignment agent (S-8) is mainly used for manufacturing a PSA type liquid crystal display element.
2. Evaluation of Liquid Crystal Aligning Agent The coating uniformity and the coating property on the fine uneven surface were evaluated in the same manner as in Example 1 except that the liquid crystal aligning agent (S-8) was used. The results are shown in Table 2 below.

3.液晶組成物の調製
ネマチック液晶(メルク社製、MLC−6608)10gに対し、下記式(L1−1) で表される液晶性化合物を5質量%、及び下記式(L2−1)で表される光重合性化合物 を0.3質量%添加して混合することにより液晶組成物LC1を得た。

Figure 0006962440
3. 3. Preparation of liquid crystal composition With respect to 10 g of nematic liquid crystal (MLC-6608 manufactured by Merck Co., Ltd.), 5% by mass of the liquid crystal compound represented by the following formula (L1-1) and the following formula (L2-1) are represented. The liquid crystal composition LC1 was obtained by adding 0.3% by mass of the photopolymerizable compound and mixing the compounds.
Figure 0006962440

4.PSA型液晶表示素子の製造
液晶配向剤(S−8)を用いたほかは、実施例1の「4.垂直配向型液晶表示素子の製造」に記載の方法と同様にして、液晶配向膜を有する基板を一対(2枚) 得た。次いで、MLC−6608に代えて、上記で調製した液晶組成物LC1を用いた点、及び偏光板を貼り合わせなかった点以外は実施例1と同様にして液晶セルを製造した。次いで、上記で得た液晶セルに対し、電極間に周波数60Hzの交流10Vを印加し、液晶が駆動している状態で、光源にメタルハライドランプを使用した紫外線照射装置を用いて、紫外線を50,000J/mの照射量にて照射した。なお、この照射量は、波長365nm基準で計測される光量計を用いて計測した値である。さらに、基板の外側両面に、偏光板を2枚の偏光板の偏光方向が互いに直交するように貼り合わせることにより液晶表示素子を製造した。
5.PSA型液晶表示素子の評価
上記4.に記載の方法に従って作製したPSA型の液晶表示素子又は液晶セルを使用した以外は実施例1と同様にして、ポストベークマージン、AC残像特性及びDC残像特性を評価した。また、液晶配向剤(S−8)を用いて、上記4.に記載の方法に従ってPSA型液晶表示素子を製造し、実施例1と同様にしてベゼルムラ耐性を評価した。それらの結果を下記表2に示した。
4. Manufacture of PSA-type liquid crystal display element A liquid crystal alignment film is formed in the same manner as in the method described in "4. Manufacture of vertical alignment type liquid crystal display element" of Example 1 except that the liquid crystal alignment agent (S-8) is used. A pair (two) of substrates having the same was obtained. Next, a liquid crystal cell was produced in the same manner as in Example 1 except that the liquid crystal composition LC1 prepared above was used instead of MLC-6608 and that the polarizing plate was not bonded. Next, an AC 10V having a frequency of 60 Hz was applied between the electrodes to the liquid crystal cell obtained above, and in a state where the liquid crystal was driven, 50 ultraviolet rays were emitted using an ultraviolet irradiation device using a metal halide lamp as a light source. The irradiation was performed at an irradiation rate of 000 J / m 2. The irradiation amount is a value measured using a photometer measured based on a wavelength of 365 nm. Further, a liquid crystal display element was manufactured by laminating polarizing plates on both outer sides of the substrate so that the polarization directions of the two polarizing plates were orthogonal to each other.
5. Evaluation of PSA type liquid crystal display element 4. The post-bake margin, AC afterimage characteristic, and DC afterimage characteristic were evaluated in the same manner as in Example 1 except that the PSA type liquid crystal display element or liquid crystal cell produced according to the method described in the above was used. Further, using the liquid crystal alignment agent (S-8), the above 4. A PSA type liquid crystal display element was manufactured according to the method described in the above, and the bezel unevenness resistance was evaluated in the same manner as in Example 1. The results are shown in Table 2 below.

[実施例9〜11,21,22及び比較例6]
配合処方を下記表1に記載のとおりに変更した以外は実施例1と同様にして、液晶配向剤をそれぞれ調製した。また、各液晶配向剤を使用した以外は、実施例1と同様にして塗布均一性及び微細凹凸表面への塗布性を評価するとともに、実施例8と同様にしてPSA型の液晶表示素子又は液晶セルを製造して各種評価を行った。それらの結果を下記表2に示した。
[Examples 9 to 11, 12, 22, and Comparative Example 6]
Liquid crystal alignment agents were prepared in the same manner as in Example 1 except that the formulation was changed as shown in Table 1 below. Further, except that each liquid crystal alignment agent was used, the coating uniformity and the coating property on the fine uneven surface were evaluated in the same manner as in Example 1, and the PSA type liquid crystal display element or liquid crystal was evaluated in the same manner as in Example 8. The cell was manufactured and various evaluations were performed. The results are shown in Table 2 below.

[実施例12]
1.液晶配向剤の調製
配合処方を下記表1に記載のとおりに変更した以外は実施例1と同様にして、液晶配向剤(S−12)を調製した。なお、液晶配向剤(S−12)は、主に光垂直配向型の液晶表示素子の製造用である。
2.液晶配向剤の評価
液晶配向剤(S−12)を使用した以外は実施例1と同様にして、塗布均一性及び微細凹凸表面への塗布性を評価した。それらの結果を下記表2に示した。
[Example 12]
1. 1. Preparation of liquid crystal alignment agent A liquid crystal alignment agent (S-12) was prepared in the same manner as in Example 1 except that the formulation was changed as shown in Table 1 below. The liquid crystal alignment agent (S-12) is mainly for manufacturing an optical vertical alignment type liquid crystal display element.
2. Evaluation of Liquid Crystal Aligning Agent The coating uniformity and the coating property on a finely uneven surface were evaluated in the same manner as in Example 1 except that the liquid crystal alignment agent (S-12) was used. The results are shown in Table 2 below.

3.光垂直配向型液晶表示素子の製造
液晶配向剤(S−12)を用い、ラビング処理に代えて、Hg−Xeランプ及びグランテーラープリズムを用いて膜に偏光紫外線を照射する処理を行ったほかは、実施例1の「4.垂直配向型液晶表示素子の製造」に記載の方法と同様にして、光垂直配向型液晶表示素子を製造した。なお、偏光紫外線の照射は、基板法線から40°傾いた方向から行い、照射量は200J/mとし、偏光方向はp−偏光とした。この照射量は、波長313nm基準で計測される光量計を用いて計測した値である。
4.光垂直配向型液晶表示素子の評価
上記3.に記載の方法に従って作製した光垂直配向型の液晶表示素子又は液晶セルを使用した以外は実施例1と同様にして、ポストベークマージン、AC残像特性及びDC残像特性を評価した。また、液晶配向剤(S−12)を用いて、上記3.に記載の方法に従って光垂直型液晶表示素子を製造し、実施例1と同様にしてベゼルムラ耐性を評価した。それらの結果を下記表2に示した。
3. 3. Manufacture of optical vertical alignment type liquid crystal display element A liquid crystal alignment agent (S-12) was used, and instead of the rubbing treatment, the film was irradiated with polarized ultraviolet rays using an Hg-Xe lamp and a Gran Tailor prism. , An optical vertical alignment type liquid crystal display element was manufactured in the same manner as described in "4. Manufacture of a vertically oriented liquid crystal display element" of Example 1. The irradiation of polarized ultraviolet rays was performed from a direction inclined by 40 ° from the normal of the substrate, the irradiation amount was 200 J / m 2 , and the polarization direction was p-polarized light. This irradiation amount is a value measured using a photometer measured based on a wavelength of 313 nm.
4. Evaluation of optical vertical alignment type liquid crystal display element 3. The post-bake margin, AC afterimage characteristic, and DC afterimage characteristic were evaluated in the same manner as in Example 1 except that the optical vertical alignment type liquid crystal display element or liquid crystal cell produced according to the method described in the above was used. Further, using the liquid crystal alignment agent (S-12), the above 3. An optical vertical liquid crystal display element was manufactured according to the method described in the above, and the bezel unevenness resistance was evaluated in the same manner as in Example 1. The results are shown in Table 2 below.

[実施例13及び14]
配合処方を下記表1に記載のとおりに変更した以外は実施例1と同様にして、液晶配向剤をそれぞれ調製した。また、各液晶配向剤を使用した以外は実施例1と同様にして、塗布均一性及び微細凹凸表面への塗布性を評価するとともに、実施例12と同様にして光垂直配向型の液晶表示素子又は液晶セルを製造してポストベークマージン、ベゼルムラ耐性、AC残像特性及びDC残像特性を評価した。それらの結果を下記表2に示した。
[Examples 13 and 14]
Liquid crystal alignment agents were prepared in the same manner as in Example 1 except that the formulation was changed as shown in Table 1 below. Further, the coating uniformity and the coating property on the fine uneven surface were evaluated in the same manner as in Example 1 except that each liquid crystal alignment agent was used, and the optical vertical alignment type liquid crystal display element was evaluated in the same manner as in Example 12. Alternatively, a liquid crystal cell was manufactured and the post-bake margin, bezel unevenness resistance, AC afterimage characteristics and DC afterimage characteristics were evaluated. The results are shown in Table 2 below.

[実施例15]
1.液晶配向剤の調製
配合処方を下記表1に記載のとおりに変更した以外は実施例1と同様にして、液晶配向剤(S−15)を調製した。なお、液晶配向剤(S−15)は、主に光水平型の液晶表示素子の製造用である。
2.液晶配向剤の評価
液晶配向剤(S−15)を使用した以外は実施例1と同様にして、塗布均一性及び微細凹凸表面への塗布性を評価した。それらの結果を下記表2に示した。
[Example 15]
1. 1. Preparation of liquid crystal alignment agent A liquid crystal alignment agent (S-15) was prepared in the same manner as in Example 1 except that the formulation was changed as shown in Table 1 below. The liquid crystal alignment agent (S-15) is mainly used for manufacturing an optical horizontal type liquid crystal display element.
2. Evaluation of Liquid Crystal Aligning Agent The coating uniformity and the coating property on the fine uneven surface were evaluated in the same manner as in Example 1 except that the liquid crystal aligning agent (S-15) was used. The results are shown in Table 2 below.

3.光FFS型液晶表示素子の製造
液晶配向剤(S−15)を用い、ラビング処理に代えて、Hg−Xeランプ及びグランテーラープリズムを用いて膜に偏光紫外線を照射する処理を行ったほかは、実施例5の「3.ラビングFFS型液晶表示素子の製造」に記載の方法と同様にして、光FFS型液晶表示素子を製造した。なお、偏光紫外線の照射は、基板から垂直方向から行い、照射量は10,000J/mとし、偏光方向は、実施例5におけるラビング処理の方向と直交する方向とした。この照射量は、波長254nm基準で計測される光量計を用いて計測した値である。
4.光FFS型液晶表示素子の評価
上記3.に記載の方法に従って作製した光FFS型の液晶表示素子又は液晶セルを使用した以外は、実施例1と同様にして、ポストベークマージン、AC残像特性及びDC残像特性を評価した。また、液晶配向剤(S−15)を用いて、上記3.に記載の方法に従って光FFS型液晶表示素子を製造し、実施例1と同様にしてベゼルムラ耐性を評価した。それらの結果を下記表2に示した。
3. 3. Manufacture of optical FFS type liquid crystal display element A liquid crystal alignment agent (S-15) was used, and instead of the rubbing treatment, the film was irradiated with polarized ultraviolet rays using an Hg-Xe lamp and a Grantailer prism. An optical FFS type liquid crystal display element was manufactured in the same manner as described in "3. Manufacture of rubbing FFS type liquid crystal display element" of Example 5. The irradiation of polarized ultraviolet rays was performed from the vertical direction from the substrate, the irradiation amount was 10,000 J / m 2 , and the polarization direction was a direction orthogonal to the direction of the rubbing treatment in Example 5. This irradiation amount is a value measured using a photometer measured based on a wavelength of 254 nm.
4. Evaluation of optical FFS type liquid crystal display element 3. The post-bake margin, AC afterimage characteristic, and DC afterimage characteristic were evaluated in the same manner as in Example 1 except that the optical FFS type liquid crystal display element or liquid crystal cell produced according to the method described in the above was used. Further, using the liquid crystal alignment agent (S-15), the above 3. An optical FFS type liquid crystal display element was manufactured according to the method described in the above, and the bezel unevenness resistance was evaluated in the same manner as in Example 1. The results are shown in Table 2 below.

[実施例16〜20]
配合処方を下記表1に記載のとおりに変更した以外は実施例1と同様にして、液晶配向剤をそれぞれ調製した。また、各液晶配向剤を使用した以外は実施例1と同様にして、塗布均一性及び微細凹凸表面への塗布性を評価するとともに、実施例15と同様にして光FFS型の液晶表示素子又は液晶セルを製造して各種評価を行った。それらの結果を下記表2に示した。
[Examples 16 to 20]
Liquid crystal alignment agents were prepared in the same manner as in Example 1 except that the formulation was changed as shown in Table 1 below. Further, the coating uniformity and the coating property on the fine uneven surface were evaluated in the same manner as in Example 1 except that each liquid crystal alignment agent was used, and the optical FFS type liquid crystal display element or the optical FFS type liquid crystal display element or in the same manner as in Example 15. A liquid crystal cell was manufactured and various evaluations were performed. The results are shown in Table 2 below.

[実施例23]
1.液晶配向剤の調製
配合処方を下記表1に記載のとおりに変更した以外は実施例1と同様にして、液晶配向剤(S−23)を調製した。なお、液晶配向剤(S−23)は、主にTNモード型の液晶表示素子の製造用である。
2.液晶配向剤の評価
液晶配向剤(S−23)を使用した以外は実施例1と同様にして、塗布均一性及び微細凹凸表面への塗布性を評価した。それらの結果を下記表2に示した。
[Example 23]
1. 1. Preparation of liquid crystal alignment agent A liquid crystal alignment agent (S-23) was prepared in the same manner as in Example 1 except that the formulation was changed as shown in Table 1 below. The liquid crystal alignment agent (S-23) is mainly used for manufacturing a TN mode type liquid crystal display element.
2. Evaluation of Liquid Crystal Aligning Agent The coating uniformity and the coating property on the fine uneven surface were evaluated in the same manner as in Example 1 except that the liquid crystal aligning agent (S-23) was used. The results are shown in Table 2 below.

3.TN型液晶表示素子の製造
液晶配向剤(S−23)を用い、ラビング処理を、レーヨン布を巻き付けたロールを有するラビングマシーンにより、ロール回転数500rpm 、ステージ移動速度3cm/秒、毛足押しこみ長さ0.4mmの条件で行ったほかは、実施例1の「4.垂直配向型液晶表示素子の製造」に記載の方法と同様にして、液晶配向膜を有する基板を一対(2枚)得た。次に、MLC−6608に代えて、ポジ型液晶(メルク製、MLC−6221)を用い、一対の基板を重ね合わせる際にそれぞれの基板のラビング方法が直交するようにし、2枚の偏光板の偏光方向が各々の基板のラビング方向と平行方向となるようにしたほかは実施例1と同様にして、TN型液晶表示素子を製造した。
4.TN型液晶表示素子の評価
上記3.に記載の方法に従って作製したTN型の液晶表示素子又は液晶セルを使用した以外は、実施例1と同様にして、ポストベークマージン、AC残像特性及びDC残像特性を評価した。また、液晶配向剤(S−23)を用いて、上記3.に記載の方法に従ってTN型液晶表示素子を製造し、実施例1と同様にしてベゼルムラ耐性を評価した。それらの結果を下記表2に示した。
3. 3. Manufacture of TN type liquid crystal display element Using a liquid crystal alignment agent (S-23), the rubbing process is performed by a rubbing machine having a roll wrapped with rayon cloth, a roll rotation speed of 500 rpm, a stage moving speed of 3 cm / sec, and a fluff pushing. A pair (two sheets) of substrates having a liquid crystal alignment film are provided in the same manner as in the method described in "4. Manufacture of a vertically oriented liquid crystal display element" of Example 1 except that the length is 0.4 mm. Obtained. Next, instead of MLC-6608, a positive liquid crystal display (MLC-6221 made by Merck) was used so that the rubbing methods of the respective substrates were orthogonal to each other when the pair of substrates were overlapped, and the two polarizing plates were used. A TN type liquid crystal display element was manufactured in the same manner as in Example 1 except that the polarization direction was parallel to the rubbing direction of each substrate.
4. Evaluation of TN type liquid crystal display element 3. The post-bake margin, AC afterimage characteristic, and DC afterimage characteristic were evaluated in the same manner as in Example 1 except that the TN type liquid crystal display element or liquid crystal cell produced according to the method described in the above was used. Further, using the liquid crystal alignment agent (S-23), the above 3. A TN type liquid crystal display element was manufactured according to the method described in the above, and the bezel unevenness resistance was evaluated in the same manner as in Example 1. The results are shown in Table 2 below.

Figure 0006962440
Figure 0006962440

表1中、重合体成分の数値は、液晶配向剤の調製に使用した重合体成分の合計100質量部に対する各重合体の配合割合(質量部)を示す。化合物[A]、「溶剤[B]及び他の溶剤」の比率欄の数値は、液晶配向剤の調製に使用した化合物[A]、溶剤[B]及び他の溶剤の合計100質量部に対する各化合物の配合割合(質量部)を示す。「−」は、その化合物を使用しなかったことを表す。化合物の略号は以下の通りである。
(化合物[A])
a:アニソール(bp:154℃、mp:−38℃)
b:2−メトキシトルエン(bp:177℃、mp:−47℃)
c:o−エトキシアニソール(bp:217℃、mp:−1℃)
d:1,3−ジエトキシベンゼン(bp:235℃、mp:10℃)
e:酢酸m−トリル(bp:212℃、mp:12℃)
f:1,2−メチレンジオキシベンゼン(bp:172℃、mp:−10℃)
(溶剤[B]及び他の溶剤)
g:N−メチル−2−ピロリドン
h:o−キシレン
i:m−クレゾール
j:2−エトキシフェノール
k:ブチルセロソルブ
m:3−メトキシ−1−ブタノール
n:シクロペンタノン
In Table 1, the numerical values of the polymer components indicate the blending ratio (parts by mass) of each polymer with respect to the total 100 parts by mass of the polymer components used for preparing the liquid crystal alignment agent. The numerical values in the ratio column of compound [A], "solvent [B] and other solvents" are for 100 parts by mass of the total of compound [A], solvent [B] and other solvents used in the preparation of the liquid crystal alignment agent. The compounding ratio (part by mass) of the compound is shown. "-" Indicates that the compound was not used. The abbreviations of the compounds are as follows.
(Compound [A])
a: Anisole (bp: 154 ° C, mp: -38 ° C)
b: 2-Methoxytoluene (bp: 177 ° C, mp: -47 ° C)
c: o-ethoxyanisole (bp: 217 ° C, mp: -1 ° C)
d: 1,3-diethoxybenzene (bp: 235 ° C, mp: 10 ° C)
e: m-tolyl acetate (bp: 212 ° C, mp: 12 ° C)
f: 1,2-Methylenedioxybenzene (bp: 172 ° C, mp: -10 ° C)
(Solvent [B] and other solvents)
g: N-methyl-2-pyrrolidone h: o-xylene i: m-cresol j: 2-ethoxyphenol k: butyl cellosolve m: 3-methoxy-1-butanol n: cyclopentanone

Figure 0006962440
Figure 0006962440

表2から分かるように、化合物[A]を含む実施例1〜23は、塗布均一性、凹凸塗布性、ポストベークマージン、ベゼルムラ耐性及び残像特性のいずれも、「非常に良好」、「良好」又は「可」の評価であり、各種特性がバランス良く改善された。特に、ベンゼン環に2個の置換基を有する化合物b〜eを用いた実施例では、ベゼルムラ耐性の改善効果が高く、化合物d,eを用いた実施例では更に、微細凹凸表面に対する塗布性の改善効果も高かった。また、縮合環を有する化合物fを用いた実施例では、微細凹凸表面に対する塗布性の改善効果が高かった。これに対し、化合物[A]を含まない比較例1〜6は、微細凹凸表面に対する塗布性が実施例よりも劣っていた。また、比較例1、3〜6は、塗膜表面の均一性が実施例よりも劣り、比較例4,5は、ベゼルムラ耐性が実施例よりも劣っていた。 As can be seen from Table 2, Examples 1 to 23 containing the compound [A] are "very good" and "good" in all of the coating uniformity, the uneven coating property, the post-bake margin, the bezel unevenness resistance and the afterimage property. Or, the evaluation was "OK", and various characteristics were improved in a well-balanced manner. In particular, in the examples using the compounds b to e having two substituents on the benzene ring, the effect of improving the bezel unevenness resistance is high, and in the examples using the compounds d and e, the coating property on the fine uneven surface is further improved. The improvement effect was also high. Further, in the example using the compound f having a condensed ring, the effect of improving the coatability on the fine uneven surface was high. On the other hand, Comparative Examples 1 to 6 containing no compound [A] were inferior in coatability to the fine uneven surface as compared with Examples. Further, Comparative Examples 1, 3 to 6 were inferior in uniformity of the coating film surface to Examples, and Comparative Examples 4 and 5 were inferior in bezel unevenness resistance to Examples.

10…評価用ITO電極基板、11…ガラス基板、12…ITO電極 10 ... Evaluation ITO electrode substrate, 11 ... Glass substrate, 12 ... ITO electrode

Claims (8)

重合体成分と、下記式(1)で表される化合物及び下記式(2)で表される化合物よりなる群から選ばれる少なくとも一種である化合物[A]と、を含有する、液晶配向剤。
Figure 0006962440
(式(1)中、Rは、炭素数1〜4のアルキル基、−CO−CH、又は−R−OH(ただし、Rは炭素数1〜4のアルカンジイル基)である。Rは、水素原子又は炭素数1〜4のアルキル基である。nは1又は2である。ただし、nが1の場合、R は炭素数1〜4のアルキル基である。nが2の場合、Rは水素原子である。nが2の場合、式(1)中の複数のRは、互いに同じでも異なっていてもよい。式(2)中、Rは、炭素数1〜3のアルカンジイル基である。)
A liquid crystal alignment agent containing a polymer component and at least one compound [A] selected from the group consisting of a compound represented by the following formula (1) and a compound represented by the following formula (2).
Figure 0006962440
(In the formula (1), R 1 is an alkyl group having 1 to 4 carbon atoms, -CO-CH 3 , or -R 4- OH (where R 4 is an alkanediyl group having 1 to 4 carbon atoms). . R 2 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. N is 1 or 2. However, when n is 1, R 2 is an alkyl group having 1 to 4 carbon atoms. If is 2, if .n R 2 is a hydrogen atom is 2, a plurality of R 1 in the formula (1) may be the same or different from each other. formula in (2), R 3 is, It is an alcoholic group having 1 to 3 carbon atoms.)
前記化合物[A]は、1気圧での融点が25℃以下であって沸点が150℃以上である、請求項1に記載の液晶配向剤。 The liquid crystal alignment agent according to claim 1, wherein the compound [A] has a melting point of 25 ° C. or lower and a boiling point of 150 ° C. or higher at 1 atm. アルコール系溶剤、鎖状エステル系溶剤、エーテル系溶剤及びケトン系溶剤よりなる群から選ばれる少なくとも一種である溶剤[B]を更に含有する、請求項1又は2に記載の液晶配向剤。 The liquid crystal alignment agent according to claim 1 or 2, further containing a solvent [B] which is at least one selected from the group consisting of an alcohol solvent, a chain ester solvent, an ether solvent and a ketone solvent. 前記化合物[A]の含有割合は、前記化合物[A]と前記溶剤[B]との合計量に対して10質量%以上である、請求項3に記載の液晶配向剤。 The liquid crystal alignment agent according to claim 3, wherein the content ratio of the compound [A] is 10% by mass or more with respect to the total amount of the compound [A] and the solvent [B]. 前記重合体成分として、ポリアミック酸、ポリアミック酸エステル、ポリイミド、ポリアミド、及び重合性不飽和結合を有するモノマーに由来する構造単位を有する重合体よりなる群から選ばれる少なくとも一種を含む、請求項1〜4のいずれか一項に記載の液晶配向剤。 Claims 1 to 1, wherein the polymer component includes at least one selected from the group consisting of a polymer having a structural unit derived from a polyamic acid, a polyamic acid ester, a polyimide, a polyamide, and a monomer having a polymerizable unsaturated bond. The liquid crystal aligning agent according to any one of 4. 液晶配向膜を備える液晶素子の製造方法であって、
請求項1〜5のいずれか一項に記載の液晶配向剤を用いて前記液晶配向膜を形成する、液晶素子の製造方法。
A method for manufacturing a liquid crystal element provided with a liquid crystal alignment film.
A method for manufacturing a liquid crystal element, which forms the liquid crystal alignment film using the liquid crystal alignment agent according to any one of claims 1 to 5.
請求項1〜5のいずれか一項に記載の液晶配向剤を用いて形成された液晶配向膜。 A liquid crystal alignment film formed by using the liquid crystal alignment agent according to any one of claims 1 to 5. 請求項7に記載の液晶配向膜を備える液晶素子。 A liquid crystal element including the liquid crystal alignment film according to claim 7.
JP2020500281A 2018-02-13 2018-11-21 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal element Active JP6962440B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018023423 2018-02-13
JP2018023423 2018-02-13
PCT/JP2018/043026 WO2019159470A1 (en) 2018-02-13 2018-11-21 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal element

Publications (2)

Publication Number Publication Date
JPWO2019159470A1 JPWO2019159470A1 (en) 2020-12-03
JP6962440B2 true JP6962440B2 (en) 2021-11-05

Family

ID=67620022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020500281A Active JP6962440B2 (en) 2018-02-13 2018-11-21 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal element

Country Status (4)

Country Link
JP (1) JP6962440B2 (en)
CN (1) CN111566553B (en)
TW (1) TWI791731B (en)
WO (1) WO2019159470A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI819102B (en) * 2019-01-17 2023-10-21 日商Jsr股份有限公司 Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal element and manufacturing method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09302225A (en) * 1996-03-14 1997-11-25 Toshiba Corp Polyimide precursor composition, method of forming polyimide film, electronic part and liquid crystal element
JP3582074B2 (en) * 1996-03-27 2004-10-27 Jsr株式会社 Liquid crystal alignment agent and liquid crystal display device
JP3931581B2 (en) * 2001-04-26 2007-06-20 日立電線株式会社 Polyimide varnish for liquid crystal alignment film
JP2012007025A (en) * 2010-06-23 2012-01-12 Toyo Ink Sc Holdings Co Ltd Carboxy group-containing modified phenol resin and colored composition for color filter, containing the same
KR101071401B1 (en) * 2010-07-07 2011-10-07 주식회사 엘지화학 Photoreactive norbornene polymer, its preparation method and alignment layer comprising the same
JP6120072B2 (en) * 2012-10-17 2017-04-26 Jsr株式会社 Liquid crystal alignment agent
JP6672815B2 (en) * 2015-04-14 2020-03-25 Jsr株式会社 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal element

Also Published As

Publication number Publication date
JPWO2019159470A1 (en) 2020-12-03
WO2019159470A1 (en) 2019-08-22
TWI791731B (en) 2023-02-11
CN111566553A (en) 2020-08-21
TW201934663A (en) 2019-09-01
CN111566553B (en) 2023-04-11

Similar Documents

Publication Publication Date Title
JP6911885B2 (en) Manufacturing method of liquid crystal alignment film and manufacturing method of liquid crystal element
CN107338058B (en) Liquid crystal aligning agent, liquid crystal alignment film and method for producing same, liquid crystal element, polymer and compound
CN105838388B (en) Liquid crystal aligning agent, liquid crystal alignment film, method for producing liquid crystal alignment film, liquid crystal element, polymer, diamine, and acid dianhydride
TWI691526B (en) Liquid crystal alignment agent, liquid crystal alignment film, method for manufacturing liquid crystal alignment film, liquid crystal display element, polymer, diamine compound and carboxylic acid
JP6447209B2 (en) Polymer composition, liquid crystal aligning agent, liquid crystal aligning film, liquid crystal display element, and method for producing liquid crystal display element
JP6561475B2 (en) Liquid crystal aligning agent, liquid crystal aligning film and method for producing the same, liquid crystal display element, retardation film and method for producing the same
JP2017040721A (en) Liquid crystal aligning agent, liquid crystal alignment film, production method of liquid crystal alignment film, liquid crystal display element, polymer and compound
JP7409325B2 (en) Liquid crystal aligning agent and method for manufacturing liquid crystal elements
JP6897791B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal element
JP6424609B2 (en) Liquid crystal alignment agent, method of manufacturing liquid crystal display element, liquid crystal alignment film and liquid crystal display element
JP6962440B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal element
JP7517208B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal element, and method for producing liquid crystal element
JP2022173076A (en) Liquid crystal alignment agent, liquid crystal alignment film and manufacturing method for the same, liquid crystal device, liquid crystal display, and polymer
JP2017126060A (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal element, and liquid crystal alignment film and method for manufacturing liquid crystal element
JP6617529B2 (en) Liquid crystal aligning agent, liquid crystal aligning film, liquid crystal element, and method for producing liquid crystal aligning film
JP6962449B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal element
JP7310823B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal element, and method for manufacturing liquid crystal element
JP2022188740A (en) Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal element, polymer and method for producing the same, and method for producing compound
JP2023107736A (en) Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal element and method for producing liquid crystal element
JP2023170991A (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal element
JP2023071157A (en) Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal element and polymer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210927

R150 Certificate of patent or registration of utility model

Ref document number: 6962440

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250