[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6958235B2 - How to separate copper from nickel and cobalt - Google Patents

How to separate copper from nickel and cobalt Download PDF

Info

Publication number
JP6958235B2
JP6958235B2 JP2017208524A JP2017208524A JP6958235B2 JP 6958235 B2 JP6958235 B2 JP 6958235B2 JP 2017208524 A JP2017208524 A JP 2017208524A JP 2017208524 A JP2017208524 A JP 2017208524A JP 6958235 B2 JP6958235 B2 JP 6958235B2
Authority
JP
Japan
Prior art keywords
nickel
cobalt
copper
alloy
sulfide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017208524A
Other languages
Japanese (ja)
Other versions
JP2019081915A (en
Inventor
達也 檜垣
宏 竹之内
小林 宙
浅野 聡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2017208524A priority Critical patent/JP6958235B2/en
Publication of JP2019081915A publication Critical patent/JP2019081915A/en
Application granted granted Critical
Publication of JP6958235B2 publication Critical patent/JP6958235B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、銅とニッケルとコバルトとを含む合金から銅とニッケルおよびコバルトとを分離する方法に関する。 The present invention relates to a method for separating copper, nickel and cobalt from an alloy containing copper, nickel and cobalt.

電気自動車やハイブリット自動車などの車両および携帯電話、スマートフォンや、パソコンなどの電子機器には、軽量で大出力であるという特徴を有するリチウムイオン電池(以下「LIB」とも称する。)が搭載されている。 Vehicles such as electric vehicles and hybrid vehicles and electronic devices such as mobile phones, smartphones, and personal computers are equipped with lithium-ion batteries (hereinafter, also referred to as "LIB"), which are characterized by being lightweight and having high output. ..

LIBは、アルミニウムや鉄等の金属製あるいは塩化ビニルなどのプラスチック製の外装缶の内部に、銅箔を負極集電体に用いて表面に黒鉛等の負極活物質を固着させた負極材と、アルミニウム箔からなる正極集電体にニッケル酸リチウムやコバルト酸リチウム等の正極活物質を固着させた正極材を、ポリプロピレンの多孔質樹脂フィルム等からなるセパレータとともに装入し、六フッ化リン酸リチウム(LiPF)等の電解質を含んだ有機溶媒を電解液として含浸させた構造を有する。 The LIB is a negative electrode material in which a negative electrode active material such as graphite is fixed to the surface of a metal outer can such as aluminum or iron or a plastic outer can such as vinyl chloride using a copper foil as a negative electrode current collector. A positive electrode material in which a positive electrode active material such as lithium nickelate or lithium cobaltate is fixed to a positive electrode current collector made of aluminum foil is charged together with a separator made of a porous resin film of polypropylene or the like, and lithium hexafluoride phosphate is charged. It has a structure in which an organic solvent containing an electrolyte such as (LiPF 6) is impregnated as an electrolytic solution.

LIBは上記のような車両や電子機器等の中に組み込まれて使用されると、やがて自動車や電子機器等の劣化あるいはLIBの寿命などで使用できなくなり、廃リチウムイオン電池(廃LIB)となる。また廃LIBは、最初から製造工程内で不良品として発生することもある。 If the LIB is incorporated into a vehicle or electronic device as described above and used, it will eventually become unusable due to deterioration of the automobile or electronic device or the life of the LIB, resulting in a waste lithium ion battery (waste LIB). .. In addition, waste LIB may be generated as a defective product in the manufacturing process from the beginning.

これらの廃LIBには、ニッケル、コバルトや銅などの有価成分が含まれており、資源の有効活用のためにも、有価成分を回収して再利用することが望まれる。 These waste LIBs contain valuable components such as nickel, cobalt and copper, and it is desired to recover and reuse the valuable components in order to effectively utilize the resources.

一般に金属で作られた装置、部材や材料から有価成分を効率よく回収しようとする場合、炉などに投入して高温下ですべて熔解し、有価物のメタルと廃棄処分等するスラグとに分離する乾式製錬の技術を用いた乾式処理が手っ取り早いと考えられる。 Generally, when trying to efficiently recover valuable components from equipment, members and materials made of metal, they are put into a furnace, etc., all melted at high temperature, and separated into valuable metal and slag for disposal. It is considered that the dry process using the pyrometallurgical technique is quick.

例えば特許文献1には、乾式処理を用いて有価金属の回収を行う方法が開示されている。特許文献1の方法を廃LIBに適用することで、ニッケル、コバルトを含む銅合金を得ることができる。 For example, Patent Document 1 discloses a method of recovering a valuable metal by using a dry treatment. By applying the method of Patent Document 1 to waste LIB, a copper alloy containing nickel and cobalt can be obtained.

この乾式処理は、高温に加熱するためのエネルギーを要するという課題はあるものの、様々な不純物を簡単な工程で処理し、一括して分離できる利点がある。また、得られるスラグは化学的に比較的安定な性状であるので、環境問題を引き起こす懸念がなく、廃棄処分しやすい利点もある。 Although this dry treatment has a problem that it requires energy for heating to a high temperature, it has an advantage that various impurities can be treated in a simple process and separated at once. In addition, since the obtained slag has relatively stable chemical properties, there is no concern about causing environmental problems, and there is an advantage that it is easy to dispose of.

しかしながら、乾式処理で廃LIBを処理した場合、一部の有価成分、特にコバルトのほとんどがスラグに分配され、コバルトの回収ロスとなることが避けられないという課題があった。 However, when the waste LIB is treated by the dry treatment, there is a problem that a part of valuable components, particularly most of cobalt, is distributed to the slag, resulting in a loss of cobalt recovery.

また、乾式処理で得たメタルは、有価成分が共存した合金であり、再利用するためには、この合金から成分ごとに分離し、不純物を除去する精製が必要となる。 Further, the metal obtained by the dry treatment is an alloy in which valuable components coexist, and in order to reuse it, it is necessary to separate each component from this alloy and purify it to remove impurities.

乾式法で一般的に用いられてきた元素分離の方法として、高温の熔解状態から徐冷することで、例えば銅と鉛との分離や鉛と亜鉛との分離を行う方法がある。しかしながら、廃LIBのように銅とニッケルが主な成分である場合、銅とニッケルは全組成範囲で均一熔融する性質を持つため、徐冷しても銅とニッケルが層状に混合固化するのみで分離はできない。 As a method of element separation generally used in the dry method, there is a method of separating copper and lead or lead and zinc by slowly cooling from a high-temperature molten state. However, when copper and nickel are the main components as in waste LIB, copper and nickel have the property of uniformly melting over the entire composition range, so even if they are slowly cooled, copper and nickel are only mixed and solidified in layers. It cannot be separated.

さらに、一酸化炭素(CO)ガスを用いてニッケルを不均化反応させ銅やコバルトから揮発させて分離する精製もあるが、猛毒性のCOガスを用いるため安全性の確保が難しい。 Further, there is a purification method in which nickel is disproportionated using carbon monoxide (CO) gas to volatilize and separate it from copper or cobalt, but it is difficult to ensure safety because highly toxic CO gas is used.

また、工業的に行われてきた銅とニッケルを分離する方法として混合マット(硫化物)を粗分離する方法がある。この方法は、製錬工程で銅とニッケルを含むマットを生成させ、これを上述の場合と同様に徐冷することで、銅を多く含む硫化物とニッケルを多く含む硫化物とに分離するものである。しかしながらこの方法でも銅とニッケルの分離は粗分離程度にとどまるので、純度の高いニッケルや銅を得るためには、別途電解精製などの工程が必要となる課題がある。 Further, as a method for separating copper and nickel, which has been industrially performed, there is a method for coarsely separating a mixed mat (sulfide). In this method, a mat containing copper and nickel is produced in the smelting process, and the mat is slowly cooled in the same manner as described above to separate the sulfide containing a large amount of copper and the sulfide containing a large amount of nickel. Is. However, even with this method, the separation of copper and nickel is limited to a crude separation level, so there is a problem that a separate step such as electrolytic refining is required to obtain high-purity nickel or copper.

その他の方法として、塩化物を経て蒸気圧差を利用する方法も検討されてきたが、有毒な塩素を大量に取り扱うプロセスとなるので、装置腐食対策や安全対策等で工業的に適した方法とは言い難いという課題があった。 As another method, a method of utilizing the vapor pressure difference via chloride has been considered, but since it is a process of handling a large amount of toxic chlorine, it is an industrially suitable method for equipment corrosion countermeasures and safety measures. There was a problem that it was hard to say.

また、銅とコバルトの分離、コバルトとニッケルの分離に関しても同様である。 The same applies to the separation of copper and cobalt and the separation of cobalt and nickel.

このように、湿式法と比して乾式法での各元素分離精製は、粗分離レベルに留まるかあるいは高コストという欠点を有している。 As described above, the separation and purification of each element by the dry method as compared with the wet method has a drawback that the separation level remains at the crude separation level or the cost is high.

一方で、酸や中和や溶媒抽出などの方法を用いる湿式製錬の方法を用いた湿式処理は、消費するエネルギーが少なく、混在する有価成分を個々に分離し、直接高純度な品位で回収できるというメリットがある。 On the other hand, wet treatment using hydrometallurgy methods such as acid, neutralization, and solvent extraction consumes less energy, separates mixed valuable components individually, and directly recovers them with high-purity quality. There is a merit that it can be done.

しかしながら、湿式処理を用いて廃LIBを処理する場合、廃LIBに含有される電解液成分の六フッ化リン酸アニオンは、高温、高濃度の硫酸でも完全に分解させることができない難処理物であり、有価成分を浸出した酸溶液に混入することになる。さらに、この六フッ化リン酸アニオンは水溶性の炭酸エステルであることから、有価物を回収した後の水溶液からリンやフッ素を回収することも困難で、排水処理によって公共海域等に放出するのを抑制し難くなるという課題がある。 However, when the waste LIB is treated by a wet treatment, the hexafluorophosphate anion contained in the waste LIB is a difficult-to-treat product that cannot be completely decomposed even with high-temperature and high-concentration sulfuric acid. Yes, the valuable components will be mixed in the leached acid solution. Furthermore, since this hexafluorophosphate anion is a water-soluble carbonic acid ester, it is difficult to recover phosphorus and fluorine from the aqueous solution after recovering valuable resources, and they are released to public sea areas by wastewater treatment. There is a problem that it becomes difficult to suppress.

また、酸のみで廃LIBから有価成分を効率的に浸出して精製に供することができる溶液を得ることは容易でない。廃LIBそのものは浸出し難くて有価成分の浸出率が不足したり、酸化力の強い酸を用いるなどして強引に浸出すると、有価成分とともに回収の対象でないアルミニウム、鉄やマンガンなどの成分までもが大量に浸出され、これらを処理するための中和剤添加量や取り扱う排水量が増加したりするという課題がある。 In addition, it is not easy to obtain a solution capable of efficiently leaching valuable components from waste LIB and using it for purification with only an acid. The waste LIB itself is difficult to leached and the leaching rate of valuable components is insufficient, or if it is forcibly leached by using an acid with strong oxidizing power, not only the valuable components but also the components such as aluminum, iron and manganese that are not subject to recovery Is leached out in large quantities, and there is a problem that the amount of neutralizing agent added to treat these and the amount of wastewater to be handled increase.

さらに酸性の浸出液から溶媒抽出やイオン交換などの分離手段を経るために液のpHを調整したり、不純物を中和して澱物に固定したりする場合、中和澱物の発生量も増加するので、処理場所の確保や安定性の確保などの面で多くの課題がある。 Furthermore, when the pH of the liquid is adjusted to pass through separation means such as solvent extraction and ion exchange from the acidic leachate, or when impurities are neutralized and fixed to the starch, the amount of neutralized starch generated also increases. Therefore, there are many problems in terms of securing a processing place and ensuring stability.

さらに廃LIBには電荷が残留していることがあり、そのまま処理しようとすると発熱や爆発等を引き起こす恐れがあり、塩水に浸漬して放電するなどの手間のかかる処置も必要となる。 Further, electric charges may remain in the waste LIB, and if it is treated as it is, it may cause heat generation or explosion, and it is necessary to take time-consuming measures such as immersing it in salt water and discharging it.

このように湿式処理だけを用いて廃LIBを処理することも、必ずしも有利な方法とは言えなかった。 It is not always an advantageous method to treat the waste LIB using only the wet treatment as described above.

そこで、上述の乾式処理や湿式処理単独では処理が困難な廃LIBを乾式処理と湿式処理を組み合わせた方法、つまり廃LIBを焙焼するなど乾式処理により不純物をできるだけ除去して均一な廃LIB処理物とし、この処理物を湿式処理して有価成分とそれ以外の成分とに分けようとする試みが行われてきた。 Therefore, a method of combining dry treatment and wet treatment for waste LIB, which is difficult to treat by the above-mentioned dry treatment or wet treatment alone, that is, a uniform waste LIB treatment in which impurities are removed as much as possible by dry treatment such as roasting waste LIB. Attempts have been made to make a product and wet-treat this treated product to separate it into valuable components and other components.

この乾式処理と湿式処理を組み合わせた方法では、電解液のフッ素やリンは乾式処理によって揮発するなどして除去され、廃LIBの構造部品であるプラスチックやセパレータ等の有機物による部材は分解される。 In the method combining the dry treatment and the wet treatment, fluorine and phosphorus in the electrolytic solution are removed by volatilizing by the dry treatment, and the organic members such as plastics and separators, which are the structural parts of the waste LIB, are decomposed.

しかしながら、上述のように乾式処理を経ると、廃LIBに含有されるコバルトがスラグに分配されることにより生じる回収ロスの問題は依然として残る。 However, after the dry treatment as described above, the problem of recovery loss caused by the distribution of cobalt contained in the waste LIB to the slag still remains.

乾式処理における雰囲気、温度や還元度等を調整することで、コバルトをメタルとして分配させ、スラグへの分配を減じるように還元熔融する方法も考えられるが、今度はそのような方法で得られるメタルは銅をベースとしてニッケル・コバルトを含有する難溶性の耐蝕合金を形成してしまい、有価成分を分離して回収するために酸で溶解しようにも溶解が難しくなるという課題が生じてしまう。 A method of distributing cobalt as a metal by adjusting the atmosphere, temperature, degree of reduction, etc. in the dry treatment and reducing and melting the cobalt so as to reduce the distribution to the slag can be considered, but this time, the metal obtained by such a method. Will form a poorly soluble corrosion-resistant alloy containing nickel and cobalt based on copper, and there will be a problem that it will be difficult to dissolve even if it is dissolved with an acid in order to separate and recover valuable components.

また、例えば塩素ガスを用いて、上記の耐蝕合金を酸溶解しても、得られる溶解液(浸出液)は高濃度の銅と比較的低濃度のニッケルやコバルトを含有するようになる。この中でニッケルとコバルトは溶媒抽出など公知の方法を用いて分離することはそれほど難しくない。しかし、大量の銅をニッケルやコバルトと容易かつ低コストに分離することは容易でなかった。 Further, even if the above corrosion-resistant alloy is acid-dissolved using chlorine gas, for example, the obtained solution (leaching solution) contains a high concentration of copper and a relatively low concentration of nickel or cobalt. Of these, nickel and cobalt are not so difficult to separate using a known method such as solvent extraction. However, it has not been easy to separate a large amount of copper from nickel and cobalt at low cost.

このように有価成分である銅、ニッケルやコバルトの他に様々な回収対象でない成分を含有する廃LIBから、効率的に銅、ニッケル、コバルトだけを分離することは難しかった。 As described above, it has been difficult to efficiently separate only copper, nickel, and cobalt from waste LIB containing various non-recoverable components in addition to the valuable components copper, nickel, and cobalt.

なお、上述した課題は、廃LIB以外の銅とニッケルとコバルトとを含む廃電池から銅、ニッケル及びコバルトを分離する場合においても同様に存在し、また、廃電池以外に由来する銅とニッケルとコバルトとを含む合金から銅、ニッケル及びコバルトを分離する場合においても、同様に存在する。 The above-mentioned problems also exist in the case of separating copper, nickel and cobalt from a waste battery containing copper, nickel and cobalt other than waste LIB, and copper and nickel derived from other than waste battery. The same is true when copper, nickel and cobalt are separated from an alloy containing cobalt.

特開2012−172169号公報Japanese Unexamined Patent Publication No. 2012-172169 特開昭63−259033号公報Japanese Unexamined Patent Publication No. 63-259033

本発明は、このような実情に鑑みてなされたものであり、廃リチウムイオン電池を乾式処理して得られる銅とニッケルとコバルトとを含む耐食性の高い合金等の、銅とニッケルとコバルトとを含む合金から、効率よく選択的に銅と、ニッケル及びコバルトとを分離することができる銅とニッケルおよびコバルトの分離方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and copper, nickel, and cobalt, such as an alloy having high corrosion resistance containing copper, nickel, and cobalt, which are obtained by dry-treating a waste lithium ion battery, are used. It is an object of the present invention to provide a method for separating copper, nickel and cobalt, which can efficiently and selectively separate copper and nickel and cobalt from the containing alloy.

本発明者らは、上述した課題を解決するために鋭意検討を重ねた。その結果、銅とニッケルとコバルトとを含む合金を硫化剤が共存する条件下で塩化物を含有する硫酸溶液と接触させることにより、銅とニッケルとコバルトとを含む合金から浸出した銅を硫化銅(固体)として析出させ且つ浸出したニッケルおよびコバルトを浸出液中に残留させることができるため、効率よく選択的に、銅とニッケルとコバルトとを含む合金から、銅と、ニッケル及びコバルトとを分離できることを見出し、本発明を完成するに至った。すなわち、本発明は、以下のものを提供する。 The present inventors have made extensive studies to solve the above-mentioned problems. As a result, by contacting an alloy containing copper, nickel and cobalt with a sulfuric acid solution containing chloride under the condition that a sulfide agent coexists, copper leached from the alloy containing copper, nickel and cobalt is copper sulfide. Since nickel and cobalt that have been precipitated as (solid) and leached can remain in the leachate, copper, nickel, and cobalt can be efficiently and selectively separated from the alloy containing copper, nickel, and cobalt. The present invention has been completed. That is, the present invention provides the following.

(1)本発明の第1の発明は、銅とニッケルとコバルトとを含む合金を、硫化剤が共存する条件下で塩化物を含有する硫酸溶液と接触させて、銅を含有する固体とニッケル及びコバルトを含有する浸出液とを得る銅とニッケルおよびコバルトの分離方法である。 (1) In the first invention of the present invention, an alloy containing copper, nickel and cobalt is brought into contact with a chloride-containing sulfuric acid solution under the condition that a sulfide agent coexists, and the copper-containing solid and nickel are brought into contact with each other. And a method for separating copper, nickel and cobalt to obtain a leachate containing cobalt.

(2)本発明の第2の発明は、前記硫化剤が、硫黄、硫化水素ガス、硫化水素ナトリウムおよび硫化ナトリウムから選ばれる1種類以上である第1の発明に記載の銅とニッケルおよびコバルトの分離方法である。 (2) In the second invention of the present invention, the sulfurizing agent is one or more selected from sulfur, hydrogen sulfide gas, sodium hydrogen sulfide and sodium sulfide. It is a separation method.

(3)本発明の第3の発明は、前記銅とニッケルとコバルトとを含む合金に対して、前記塩化物を含有する硫酸溶液と前記硫化剤を同時に接触させるか、もしくは前記硫化剤を接触させた後に前記塩化物を含有する硫酸溶液を接触させる第1又は第2の発明に記載の銅とニッケルおよびコバルトの分離方法である。 (3) In the third aspect of the present invention, the chloride-containing sulfuric acid solution and the sulfide agent are brought into contact with the alloy containing copper, nickel, and cobalt at the same time, or the sulfide agent is brought into contact with the alloy. The method for separating copper, nickel, and cobalt according to the first or second invention, wherein the sulfuric acid solution containing the chloride is brought into contact with the copper.

(4)本発明の第4の発明は、前記銅とニッケルとコバルトとを含む合金が、リチウムイオン電池のスクラップを加熱熔融し、還元して得た合金である第1〜第3の発明のいずれかに記載の銅とニッケルおよびコバルトの分離方法である。 (4) The fourth invention of the present invention is the first to third inventions, wherein the alloy containing copper, nickel and cobalt is an alloy obtained by heating and melting scraps of a lithium ion battery and reducing them. The method for separating copper, nickel and cobalt according to any one of them.

(5)本発明の第5の発明は、前記銅とニッケルとコバルトとを含む合金が粉状物であり、前記銅とニッケルとコバルトとを含む合金の粒径は、300μm以下である第1〜第4の発明のいずれかに記載の銅とニッケルおよびコバルトの分離方法である。 (5) In the fifth invention of the present invention, the alloy containing copper, nickel and cobalt is a powder, and the particle size of the alloy containing copper, nickel and cobalt is 300 μm or less. The method for separating copper, nickel and cobalt according to any one of the fourth inventions.

(6)本発明の第6の発明は、前記銅を含有する固体と前記ニッケル及びコバルトを含有する浸出液とを分離した後、前記ニッケル及びコバルトを含有する浸出液に残存する銅を除去する第1〜第5の発明のいずれかに記載の銅とニッケルとコバルトの分離方法である。 (6) In the sixth aspect of the present invention, the copper-containing solid and the nickel-cobalt-containing leachate are separated, and then the copper remaining in the nickel-cobalt-containing leachate is removed. The method for separating copper, nickel, and cobalt according to any one of the fifth inventions.

(7)本発明の第7の発明は、硫化、電解採取および中和沈殿から選ばれる1種以上の方法によって、前記ニッケル及びコバルトを含有する浸出液に残存する銅を除去する第6の発明に記載の銅とニッケルとコバルトの分離方法である。 (7) The seventh invention of the present invention is the sixth invention of removing copper remaining in the leachate containing nickel and cobalt by one or more methods selected from sulfurization, electrowinning and neutralization precipitation. The method for separating copper, nickel and cobalt according to the above.

本発明によれば、銅とニッケルとコバルトとを含有する合金から、効率よく選択的に銅とニッケル及びコバルトを分離することができ、例えば、廃リチウムイオン電池を加熱熔融して還元して得られるニッケルとコバルトとを含有し難溶性である銅合金から、選択的にニッケルとコバルトを、銅から効率よく選択的に分離できる。 According to the present invention, copper, nickel and cobalt can be efficiently and selectively separated from an alloy containing copper, nickel and cobalt. For example, a waste lithium ion battery is obtained by heating and melting and reducing it. Nickel and cobalt can be selectively separated from copper efficiently and selectively from the poorly soluble copper alloy containing nickel and cobalt.

そして、本発明により合金から分離されたニッケルとコバルトは公知の方法で分離し、それぞれ有効に高純度なニッケルやコバルトのメタルや塩類として再利用できる。また、合金から分離された銅は銅製煉に適した硫化物の形態であり、そのまま銅製煉炉の転炉等に投入し電解精製等の手段に付すことで高純度な銅を回収することができる。 Then, nickel and cobalt separated from the alloy according to the present invention can be separated by a known method and can be effectively reused as metals and salts of high-purity nickel and cobalt, respectively. In addition, copper separated from the alloy is in the form of a sulfide suitable for copper bricks, and high-purity copper can be recovered by directly putting it into a converter of a copper brick furnace or the like and subjecting it to means such as electrolytic refining. can.

反応時間とニッケルの浸出率との関係を示す図である。It is a figure which shows the relationship between the reaction time and the leaching rate of nickel. 反応時間とコバルトの浸出率との関係を示す図である。It is a figure which shows the relationship between the reaction time and the leaching rate of cobalt. 反応時間と銅の浸出率との関係を示す図である。It is a figure which shows the relationship between the reaction time and the leaching rate of copper. 硫酸に含有させた塩化物中のCl量と、ニッケル、コバルト、銅の浸出率との関係を示す図である。It is a figure which shows the relationship between the amount of Cl in chloride contained in sulfuric acid, and the leaching rate of nickel, cobalt, and copper.

以下、本発明の実施形態について説明する。なお、本明細書において、「X〜Y」(X、Yは任意の数値)との表記は、「X以上Y以下」の意味である。 Hereinafter, embodiments of the present invention will be described. In this specification, the notation "X to Y" (X and Y are arbitrary numerical values) means "X or more and Y or less".

本実施の形態に係る銅とニッケルおよびコバルトの分離方法(以下、単に「分離方法」という)は、銅とニッケルとコバルトとを含む合金(以下、単に「合金」ともいう)から、銅と、ニッケル及びコバルトとを分離する方法である。具体的に、この分離方法は、銅とニッケルとコバルトとを含む合金を、硫化剤が共存する条件下で、塩化物を含有する硫酸溶液と接触させて、銅を含有する固体とニッケル及びコバルトを含有する浸出液とを得る。 The method for separating copper, nickel and cobalt according to the present embodiment (hereinafter, simply referred to as “separation method”) is derived from an alloy containing copper, nickel and cobalt (hereinafter, also simply referred to as “alloy”), and copper and copper. This is a method for separating nickel and cobalt. Specifically, in this separation method, an alloy containing copper, nickel, and cobalt is brought into contact with a sulfuric acid solution containing chloride under the condition that a sulfide agent coexists, and the copper-containing solid, nickel, and cobalt are brought into contact with each other. To obtain a leachate containing.

本実施の形態に係る分離方法の処理対象は、銅とニッケルとコバルトとを含む合金である。該合金としては、例えば、自動車や電子機器等の劣化による廃棄や、リチウムイオン電池の寿命に伴い発生したリチウムイオン電池のスクラップ(「廃リチウムイオン電池」とも称する。)等の廃電池を、加熱熔融し還元して得られる合金、すなわち、廃電池を乾式処理して得られる合金が挙げられる。なお、乾式処理を行うことにより、有機溶媒、アルミニウム、鉄、マンガン、リン、フッ素、カーボン等の成分を除去することができる。 The processing target of the separation method according to the present embodiment is an alloy containing copper, nickel, and cobalt. As the alloy, for example, waste batteries such as scraps of lithium ion batteries (also referred to as "waste lithium ion batteries") generated during the life of lithium ion batteries or discarded due to deterioration of automobiles and electronic devices are heated. Examples thereof include alloys obtained by melting and reducing, that is, alloys obtained by dry-treating a waste battery. By performing the dry treatment, components such as an organic solvent, aluminum, iron, manganese, phosphorus, fluorine, and carbon can be removed.

また、廃電池を加熱溶融し還元して得られる合金を、例えば板状に鋳造したものを、本実施の形態の分離方法の処理対象としてもよい。また、この廃電池を加熱溶融し還元して得られた合金の熔湯に、アトマイズ法を適用して得られる合金粉等の粉状物を、処理対象としてもよい。なお、アトマイズ法とは、高圧のガスや水を接触させ、熔湯を飛散および急冷(凝固)させて粉末を得る方法である。その他、線状に引き抜き適宜切断して棒材としたものを、処理対象としてもよい。 Further, an alloy obtained by heating and melting a waste battery and reducing it, for example, cast into a plate shape may be used as a processing target of the separation method of the present embodiment. Further, a powdery substance such as an alloy powder obtained by applying an atomizing method to a molten alloy obtained by heating and melting this waste battery and reducing it may be treated. The atomizing method is a method in which high-pressure gas or water is brought into contact with the molten metal to scatter and quench (solidify) the molten metal to obtain powder. In addition, a rod material that is linearly drawn and appropriately cut may be used as a processing target.

粉状物とする際には、合金の粒径は、概ね300μm以下であると、処理しやすいため好ましい。一方、細かすぎるとコストがかかる上に、発塵や発火の原因にもなるので、合金の粒径は、概ね10μm以上が好ましい。 When it is made into a powder, it is preferable that the particle size of the alloy is about 300 μm or less because it is easy to treat. On the other hand, if it is too fine, it is costly and causes dust generation and ignition. Therefore, the particle size of the alloy is preferably about 10 μm or more.

リチウムイオン電池を乾式処理して得られる合金は、難溶性の耐食性に富む銅合金であり従来銅、ニッケル、コバルトを効率よく選択的に分離し難かったが、本実施の形態に係る分離方法により、効率よく選択的に分離することができる。 The alloy obtained by dry-treating a lithium-ion battery is a copper alloy having poor solubility and excellent corrosion resistance, and conventionally it was difficult to efficiently and selectively separate copper, nickel, and cobalt. However, according to the separation method according to the present embodiment. , Can be efficiently and selectively separated.

なお、本明細書における廃電池とは、使用済み電池のみならず、製造工程内の不良品等も含む意味である。また、処理対象に廃電池を含んでいればよく、廃電池以外のその他の金属や樹脂等を適宜加えることを排除するものではない。その場合にはその他の金属や樹脂を含めて本明細書における廃電池である。 The term "waste battery" as used herein means not only a used battery but also a defective product in the manufacturing process. Further, it suffices that the waste battery is included in the processing target, and it does not exclude the addition of other metals, resins, etc. other than the waste battery as appropriate. In that case, it is a waste battery in the present specification including other metals and resins.

本実施の形態においては、このような合金を、硫化剤が共存する条件下で、塩化物を含有する硫酸溶液と接触させる。これにより、合金から浸出された銅を硫化銅として析出させることができ、銅を含む固体が得られる。一方、浸出したニッケルおよびコバルトは浸出液中に残留する。これにより、実施例に示すように、効率よく選択的に銅と、ニッケル及びコバルトとを分離することができる。銅は硫化物として析出するため、浸出液中にはほとんど存在しないようにすることができ、また、ニッケルおよびコバルトを非常に高い割合で酸性溶液(浸出液)に存在させることができる。したがって、本発明によれば、非常に選択性が高く、銅と、ニッケル及びコバルトとを分離することができる。 In this embodiment, such an alloy is brought into contact with a chloride-containing sulfuric acid solution under conditions in which a sulfurizing agent coexists. As a result, the copper leached from the alloy can be precipitated as copper sulfide, and a solid containing copper can be obtained. On the other hand, the leached nickel and cobalt remain in the leachate. Thereby, as shown in Examples, copper can be efficiently and selectively separated from nickel and cobalt. Since copper precipitates as a sulfide, it can be made to be almost absent in the leachate, and nickel and cobalt can be present in a very high proportion in the acidic solution (leachate). Therefore, according to the present invention, the selectivity is very high, and copper can be separated from nickel and cobalt.

また、本実施の形態のように塩化物を含有する硫酸溶液を使用することにより、塩化物を含有しない硫酸を使用する場合に比べて、ニッケルやコバルトの反応速度、すなわち、ニッケルやコバルトの浸出液への浸出速度を大きくすることができる。 Further, by using the sulfuric acid solution containing chloride as in the present embodiment, the reaction rate of nickel or cobalt, that is, the leachate of nickel or cobalt is compared with the case of using sulfuric acid containing no chloride. The rate of leaching into can be increased.

硫化剤および塩化物を含有する硫酸溶液を合金に接触させることにより生じる反応を下記反応式に示す。下記式においては、硫化剤として固体硫黄(S)を用い、塩化物を含有する硫酸溶液として塩酸を含有する硫酸溶液を用いた例を示す。下記式(1)に示すように、合金を硫化剤と接触させて反応させることで、浸出した銅の硫化物が生成する。また、下記式(2)や式(3)に示すように、ニッケルやコバルトは塩化物を含有する硫酸溶液の硫酸で浸出され、浸出液中にイオンとして存在する。そして、硫酸溶液に含有される塩化物により、上記ニッケルやコバルトの浸出が促進される。なお、浸出したニッケルやコバルトが硫化剤と反応して硫化物が生成した場合であっても、硫酸が存在するため、ニッケルやコバルトの硫化物は分解されて、ニッケルやコバルトは浸出液中に存在することになる。
反応式
Cu+S→CuS (1)
Ni+HSO→NiSO+H (2)
NiS+HSO→NiSO+HS (2)’
Co+HSO→CoSO+H (3)
CoS+HSO→CoSO+HS (3)’
The reaction generated by contacting a sulfuric acid solution containing a sulfide agent and chloride with an alloy is shown in the following reaction formula. In the following formula, an example is shown in which solid sulfur (S) is used as the sulfurizing agent and a sulfuric acid solution containing hydrochloric acid is used as the sulfuric acid solution containing chloride. As shown in the following formula (1), by contacting the alloy with a sulfide agent and reacting it, leached copper sulfide is produced. Further, as shown in the following formulas (2) and (3), nickel and cobalt are leached with sulfuric acid of a sulfuric acid solution containing chloride and exist as ions in the leaching solution. Then, the chloride contained in the sulfuric acid solution promotes the leaching of nickel and cobalt. Even when the leached nickel or cobalt reacts with the sulfide agent to generate sulfide, the sulfide of nickel or cobalt is decomposed due to the presence of sulfuric acid, and the nickel or cobalt is present in the leachate. Will be done.
Reaction equation Cu + S → CuS (1)
Ni + H 2 SO 4 → NiSO 4 + H 2 (2)
NiS + H 2 SO 4 → NiSO 4 + H 2 S (2)'
Co + H 2 SO 4 → CoSO 4 + H 2 (3)
CoS + H 2 SO 4 → CoSO 4 + H 2 S (3)'

硫化剤として、単体の硫黄を用いることができるが、硫化水素ナトリウム(水素化硫化ナトリウム)、硫化ナトリウム、硫化水素ガスのような液体や気体の硫化剤を用いてもよい。 As the sulfurizing agent, sulfur alone can be used, but liquid or gaseous sulfurizing agents such as sodium hydrogen sulfide (sodium sulfide sulfide), sodium sulfide, and hydrogen sulfide gas may be used.

本実施形態で使用する塩化物を含有する硫酸溶液は、硫酸に塩化物を溶解させた溶液である。このように、本実施形態においては、塩化物を硫酸に溶解させた溶液をあらかじめ作成し、これを硫化剤の共存する条件下で合金に接触させる。 The chloride-containing sulfuric acid solution used in this embodiment is a solution in which chloride is dissolved in sulfuric acid. As described above, in the present embodiment, a solution in which chloride is dissolved in sulfuric acid is prepared in advance, and the solution is brought into contact with the alloy under the condition of coexistence of a sulfide agent.

硫酸が含有する塩化物として、塩酸や化合物塩等を用いることができる。塩化物として塩酸を用いる場合は、硫酸溶液に硫酸濃度よりも低い濃度の塩酸を添加することが好ましい。また、化合物塩としては、塩化ニッケル(NiCl)、塩化コバルト(CoCl)、塩化ナトリウム、塩化カリウム等が挙げられる。ただし、塩化物は浸出液に残存するので、後工程のニッケル・コバルト分離工程に影響しない化合物塩を用いることが好ましい。具体的には、化合物塩として、後工程でニッケルやコバルトを分離したり、あるいは分離後に製品として精製する際に影響したりする恐れがある塩化ナトリウム、塩化カリウムよりも、塩化ニッケルや塩化コバルト等を用いることが好ましい。 As the chloride contained in sulfuric acid, hydrochloric acid, compound salts and the like can be used. When hydrochloric acid is used as the chloride, it is preferable to add hydrochloric acid having a concentration lower than the sulfuric acid concentration to the sulfuric acid solution. Examples of the compound salt include nickel chloride (NiCl 2 ), cobalt chloride (CoCl 2 ), sodium chloride, potassium chloride and the like. However, since chloride remains in the leachate, it is preferable to use a compound salt that does not affect the nickel-cobalt separation step in the subsequent step. Specifically, as a compound salt, nickel or cobalt chloride, etc., rather than sodium chloride or potassium chloride, which may be affected when nickel or cobalt is separated in a subsequent step or purified as a product after separation. Is preferably used.

硫酸(硫酸溶液)に加える塩化物の濃度は、Cl量で概ね0.1g/l以上あれば十分であり、上限は2〜3g/l以下とすることが好ましい。塩化物濃度が高すぎても浸出の促進にはあまり効果がなく、一方で長時間浸出を継続した場合に銅の浸出が見られたり、あるいは得られるニッケルやコバルトを含む溶液(浸出液)を精製する際に、過剰な塩化物濃度は精製工程の負荷を増加させたりニッケルやコバルトの製品品質への影響が懸念されるためである。 The concentration of chloride added to sulfuric acid (sulfuric acid solution) is sufficient if the amount of Cl is approximately 0.1 g / l or more, and the upper limit is preferably 2 to 3 g / l or less. If the chloride concentration is too high, it is not very effective in promoting leaching, while copper leaching is observed when leaching is continued for a long time, or the resulting solution containing nickel or cobalt (leaching solution) is purified. This is because excessive chloride concentration may increase the load on the refining process and affect the product quality of nickel and cobalt.

酸素、エアー、過酸化水素などの酸化剤を添加すると、浸出が促進されるので好ましい。 Addition of an oxidizing agent such as oxygen, air, or hydrogen peroxide is preferable because leaching is promoted.

合金と接触させる塩化物を含有する硫酸の量は、例えば、合金中に含まれるニッケル及びコバルトの合計量に対して、例えば、硫酸が上記式(2)〜(3)で求められる1当量以上、好ましくは1.2当量以上、より好ましくは1.2当量以上11当量以下となる量を用いる。なお、酸濃度を高くすることにより反応速度を大きくすることができる。 The amount of sulfuric acid containing chloride to be brought into contact with the alloy is, for example, 1 equivalent or more of sulfuric acid calculated by the above formulas (2) to (3) with respect to the total amount of nickel and cobalt contained in the alloy. , Preferably 1.2 equivalents or more, more preferably 1.2 equivalents or more and 11 equivalents or less. The reaction rate can be increased by increasing the acid concentration.

また、硫化剤の量は、合金中に含まれる銅量に対して、上記(1)式で求められる1当量以上を用いることが好ましい。 Further, the amount of the sulfurizing agent is preferably 1 equivalent or more obtained by the above formula (1) with respect to the amount of copper contained in the alloy.

合金に塩化物を含有する硫酸溶液および硫化剤を添加等して得られるスラリー濃度、すなわち、スラリーの体積に対する合金の質量の割合(銅とニッケルとコバルトとを含む合金の質量/スラリーの体積)は、好ましくは20g/l以上である。 Slurry concentration obtained by adding a sulfuric acid solution containing chloride and a sulfide agent to the alloy, that is, the ratio of the mass of the alloy to the volume of the slurry (mass of the alloy containing copper, nickel and cobalt / volume of the slurry) Is preferably 20 g / l or more.

反応温度は、例えば50℃以上、好ましくは75℃以上、より好ましくは95℃以上であり、これを反応中維持することが好ましい。95℃以上では、例えば75℃未満での反応と比較して、反応速度を著しく増加できる。また、反応時間は、例えば1〜6時間である。 The reaction temperature is, for example, 50 ° C. or higher, preferably 75 ° C. or higher, more preferably 95 ° C. or higher, and it is preferable to maintain this during the reaction. Above 95 ° C, the reaction rate can be significantly increased as compared to, for example, below 75 ° C. The reaction time is, for example, 1 to 6 hours.

なお、合金に対して塩化物を含有する硫酸溶液と硫化剤を同時に接触させるか、もしくは硫化剤を先に合金に接触させた後に塩化物を含有する硫酸溶液を接触させることが好ましい。硫化剤が存在しない状態で合金に塩化物を含有する硫酸溶液を接触させると、従来のように、有価成分の浸出率が不十分な上に合金に一部含有される鉄などの回収対象でない成分までも浸出する場合があり、後の精製工程での負荷が増加してしまうという不都合が生じる。 It is preferable that the sulfuric acid solution containing chloride and the sulfurizing agent are brought into contact with the alloy at the same time, or the sulfuric acid solution containing chloride is brought into contact with the alloy first after the sulfurizing agent is brought into contact with the alloy. When a sulfuric acid solution containing chloride is brought into contact with the alloy in the absence of a sulfide agent, the leaching rate of valuable components is insufficient and iron and the like partially contained in the alloy are not recovered as in the past. Even the components may be leached, which causes an inconvenience that the load in the subsequent purification process increases.

合金に、塩化物を含有する硫酸溶液や硫化剤を接触させる方法は特に限定されず、例えば、塩化物を含有する硫酸溶液に合金や硫化剤を添加する等して混合し必要に応じて撹拌すればよい。また、硫化剤を合金に接触させるために、乾式処理において合金に固体の硫化剤を含有又は塗布する手段を用いてもよい。 The method of contacting the sulfuric acid solution containing chloride or the sulfurizing agent with the alloy is not particularly limited. For example, the alloy or the sulfurizing agent is added to the sulfuric acid solution containing chloride to mix and stir as necessary. do it. Further, in order to bring the sulfurizing agent into contact with the alloy, a means for containing or applying a solid sulfurizing agent to the alloy in the dry treatment may be used.

本実施の形態によれば、銅とニッケルおよびコバルトとを分離できるが、合金から浸出された銅が一部浸出液に残存した場合にこの銅が浸出設備等からそのまま排出されると、ニッケルとコバルトを分離する工程での負荷が増すことになり好ましくない。 According to this embodiment, copper can be separated from nickel and cobalt, but if copper leached from the alloy remains in the leachate and the copper is discharged as it is from the leaching facility or the like, nickel and cobalt can be separated. This is not preferable because the load in the process of separating the copper increases.

このため、本実施の形態の分離方法を行う反応槽の出口に、浸出液に残存する銅を除去する脱銅設備を設けて、脱銅を完全に行い、ニッケル・コバルトの分離工程に供給するようにしてもよい。浸出液に残存する銅を除去する方法としては、硫化剤の添加、電解採取や、中和剤の添加による中和澱物の生成等が挙げられる。 Therefore, a copper removal facility for removing copper remaining in the leachate is provided at the outlet of the reaction vessel where the separation method of the present embodiment is performed, and the copper is completely removed and supplied to the nickel-cobalt separation step. It may be. Examples of the method for removing the copper remaining in the leachate include addition of a sulfide agent, electrowinning, and formation of a neutralized starch by the addition of a neutralizing agent.

以上説明したように、本実施の形態の銅とニッケルおよびコバルトの分離方法により、銅とニッケルとコバルトとを含有する合金中の銅を硫化して硫化銅として浸出残渣を形成し、浸出液中に残留するニッケルおよびコバルトと効率よく選択的に分離できる。 As described above, according to the method for separating copper, nickel, and cobalt of the present embodiment, copper in an alloy containing copper, nickel, and cobalt is sulfided to form a leachate residue as copper sulfide, which is contained in the leachate. It can be efficiently and selectively separated from residual nickel and cobalt.

なお、本実施の形態の銅とニッケルおよびコバルトの分離方法で得られた硫化銅は、そのまま既存の銅製錬工程の原料として供給してアノードを得、このアノードを電解精製して高純度な銅を得ることができる。 The copper sulfide obtained by the method for separating copper, nickel and cobalt of the present embodiment is directly supplied as a raw material for an existing copper smelting process to obtain an anode, and this anode is electrolytically purified to obtain high-purity copper. Can be obtained.

また、浸出液に浸出されたニッケルとコバルトは、既存のニッケル製錬工程に供給し、溶媒抽出等の手段を用いてニッケルとコバルトを分離し、電解採取してニッケルメタルやコバルトメタルを得たり、ニッケル塩やコバルト塩として精製し、再度リチウムイオン電池の原料としてリサイクルすることができる。 In addition, nickel and cobalt leached into the leachate are supplied to the existing nickel smelting process, and nickel and cobalt are separated by means such as solvent extraction and electrowinned to obtain nickel metal or cobalt metal. It can be purified as a nickel salt or cobalt salt and recycled again as a raw material for lithium-ion batteries.

以下に、本発明について実施例を示して具体的に説明するが、本発明は下記の実施例に何ら限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to the following examples.

(実施例1〜12)塩化物を含有する硫酸溶液
廃リチウムイオン電池(廃LIB)を加熱熔融して還元する乾式処理に付して、銅とニッケルとコバルトとを含有する合金の熔湯を得、これを底面に穴を開けた小さなルツボに流し込み、穴から流れ出た熔湯に、高圧のガスや水を吹き付けて、溶湯を飛散、凝固させ、篩別し、粒径が300μm以下の粉状の合金粉(以下便宜的にこの合金粉を「アトマイズ粉」とも称する。)を得た。得られた合金粉について、ICP分析装置を用いて分析した結果を表1に示す。
(Examples 1 to 12) Sulfate solution containing chloride A molten alloy containing copper, nickel, and cobalt is subjected to a dry treatment in which a waste lithium ion battery (waste LIB) is heated and melted to reduce it. Obtained, poured this into a small rutsubo with a hole in the bottom, and sprayed high-pressure gas or water on the molten metal that flowed out of the hole to scatter, solidify, and sieve the molten metal, and powder with a particle size of 300 μm or less. An alloy powder (hereinafter, for convenience, this alloy powder is also referred to as "atomize powder") was obtained. Table 1 shows the results of analysis of the obtained alloy powder using an ICP analyzer.

次に上記の合金粉を1.0g採取した。また、合金粉での銅品位に対して上記(1)式で示した硫化銅を形成する1当量となる0.35gの単体硫黄(硫黄の固体)を用意した。 Next, 1.0 g of the above alloy powder was collected. Further, 0.35 g of elemental sulfur (solid sulfur), which is one equivalent of forming copper sulfide represented by the above formula (1), was prepared with respect to the copper grade of the alloy powder.

また、Cl量が0.006g、0.01g又は0.1gになるNiClをそれぞれ分取した。 Further, NiCl 2 having a Cl amount of 0.006 g, 0.01 g or 0.1 g was separated, respectively.

また、合金粉に含有されるニッケルとコバルトの合計量に対して上記(2)式および(3)式で計算する2当量となる量の硫酸と上記で分取したNiClを添加し、純水で50mlに希釈して、NiClが溶解した溶解液(NiClを含有する硫酸溶液)を作成した。 Further, to the total amount of nickel and cobalt contained in the alloy powder, 2 equivalents of sulfuric acid calculated by the above formulas (2) and (3) and NiCl 2 fractionated above were added to make a pure solution. diluted to 50ml with water to prepare lysates NiCl 2 was dissolved (sulfuric acid solution containing NiCl 2).

得られた溶解液を95℃に昇温し、上記の1.0gの合金粉と0.35gの硫黄を同時に添加し、1時間から6時間攪拌した。各時間攪拌後、ろ過を行い固液分離し、濾液をICP分析装置を用いて分析し、銅、ニッケル、コバルト、鉄、硫黄の各成分の濃度を求めた。各実施例の上記浸出条件およびICP測定結果を表2に示す。表2において、撹拌時間(反応時間)を「時間」と、昇温温度を「温度」と記載する。濾過残渣の質量、及び、濾過後の液量、pH、酸化還元電位ORP(銀/塩化銀電極基準)を測定した結果も表2に示す。また、銅、ニッケル、コバルト、鉄の各元素の浸出率を求めた。浸出率は、ろ液中の対象元素の質量をアトマイズ粉中の対象元素の質量で除すことで求めた。ただし、ニッケルの浸出率を求める場合には、実際に測定されたろ液中のNiの質量から硫酸に添加したNiClに由来するNiの質量を引いた値を、上記「ろ液中の対象元素の質量」とした。浸出温度95℃で、NiClを含有する2当量の硫酸50mlでの、反応時間とニッケル、コバルト、銅の浸出率との関係をそれぞれ図1〜3に示す。また、浸出温度95℃で、NiClを含有する2当量の硫酸50mlでの、硫酸に含有させた塩化物中のCl量と、ニッケル、コバルト、銅の浸出率との関係を図4に示す。 The temperature of the obtained solution was raised to 95 ° C., 1.0 g of the above alloy powder and 0.35 g of sulfur were added at the same time, and the mixture was stirred for 1 to 6 hours. After stirring for each time, filtration was performed for solid-liquid separation, and the filtrate was analyzed using an ICP analyzer to determine the concentrations of each component of copper, nickel, cobalt, iron, and sulfur. Table 2 shows the leaching conditions and ICP measurement results of each example. In Table 2, the stirring time (reaction time) is referred to as “time” and the temperature rise temperature is referred to as “temperature”. Table 2 also shows the results of measuring the mass of the filtration residue, the amount of liquid after filtration, the pH, and the redox potential ORP (based on the silver / silver chloride electrode). In addition, the leaching rate of each element of copper, nickel, cobalt, and iron was determined. The leaching rate was determined by dividing the mass of the target element in the filtrate by the mass of the target element in the atomized powder. However, when determining the nickel leaching rate, the value obtained by subtracting the mass of Ni derived from NiCl 2 added to sulfuric acid from the actually measured mass of Ni in the filtrate is calculated as the above-mentioned "target element in the filtrate". Mass of. " The relationship between the reaction time and the leaching rate of nickel, cobalt, and copper at a leaching temperature of 95 ° C. and 50 ml of 2 equivalents of sulfuric acid containing NiCl 2 is shown in FIGS. Further, FIG. 4 shows the relationship between the amount of Cl in the chloride contained in sulfuric acid and the leaching rate of nickel, cobalt, and copper in 50 ml of 2 equivalents of sulfuric acid containing NiCl 2 at a leaching temperature of 95 ° C. ..

Figure 0006958235
Figure 0006958235

Figure 0006958235
Figure 0006958235

Figure 0006958235
Figure 0006958235

(試験例1〜3)硫酸
NiClを使用しなかったこと以外は、実施例と同様にした。結果を表2〜3及び図1〜4に示す。
(Test Examples 1 to 3) The same procedure as in Example was carried out except that NiCl 2 sulfate was not used. The results are shown in Tables 2-3 and FIGS. 1-4.

(比較例1)塩酸
実施例と同様にして得た粒径300μm以下の合金粉を1.0g採取した。次に、合金粉に含有されるニッケルとコバルトの合計量に対して3.7当量となる塩酸を15mlに希釈した溶液を用意し、この溶液を75℃に昇温した。
(Comparative Example 1) Hydrochloric Acid 1.0 g of an alloy powder having a particle size of 300 μm or less obtained in the same manner as in Example was collected. Next, a solution prepared by diluting 3.7 equivalents of hydrochloric acid with respect to the total amount of nickel and cobalt contained in the alloy powder to 15 ml was prepared, and the temperature of this solution was raised to 75 ° C.

次いで1.0gの上記合金粉を添加して、2時間攪拌した。その後、ろ過を行い固液分離し、実施例と同様にして、濾液をICP分析装置を用いて分析して各成分の濃度を求めた。比較例1の上記浸出条件およびICP測定結果を表2に示す。濾過後の液量を測定した結果も表2に示す。また、銅、ニッケル、コバルト、鉄の各元素の浸出率を、実施例と同様にして求めた結果を表3に示す。 Then, 1.0 g of the above alloy powder was added, and the mixture was stirred for 2 hours. Then, filtration was performed to separate the solid and liquid, and the filtrate was analyzed using an ICP analyzer in the same manner as in Examples to determine the concentration of each component. Table 2 shows the leaching conditions and ICP measurement results of Comparative Example 1. Table 2 also shows the results of measuring the amount of liquid after filtration. Table 3 shows the results of determining the leaching rates of each element of copper, nickel, cobalt, and iron in the same manner as in Examples.

(比較例2)硫酸
実施例と同様にして得た粒径300μm以下の合金粉を1.1g採取した。次に、合金粉に含有されるニッケルとコバルトの合計量に対して、23.8当量となる硫酸を分取し、これを50mlに希釈したものを用意し、この溶液を75℃に昇温した。
(Comparative Example 2) Sulfuric acid 1.1 g of an alloy powder having a particle size of 300 μm or less obtained in the same manner as in Example was collected. Next, 23.8 equivalents of sulfuric acid was fractionated with respect to the total amount of nickel and cobalt contained in the alloy powder, diluted to 50 ml, and the solution was heated to 75 ° C. bottom.

次いで上記合金粉を添加して、4時間攪拌した。このとき、硫化剤は添加しなかった。その後、ろ過を行い固液分離し、実施例と同様にして、濾液をICP分析装置を用いて分析し、各成分の濃度を求めた。上記浸出条件およびICP測定結果を表2に示す。濾過後の液量、pH、ORPを測定した結果も表2に示す。また、銅、ニッケル、コバルト、鉄の各元素の浸出率を、実施例と同様にして求めた結果を表3に示す。 Then, the above alloy powder was added, and the mixture was stirred for 4 hours. At this time, no sulfurizing agent was added. Then, filtration was performed to separate the solid and liquid, and the filtrate was analyzed using an ICP analyzer in the same manner as in Examples to determine the concentration of each component. Table 2 shows the above leaching conditions and ICP measurement results. Table 2 also shows the results of measuring the liquid volume, pH, and ORP after filtration. Table 3 shows the results of determining the leaching rates of each element of copper, nickel, cobalt, and iron in the same manner as in Examples.

(比較例3)
実施例と同様にして得た粒径300μm以下の合金粉を0.17g採取した。次に、合金粉に含有されるニッケルとコバルトの合計量に対して、70当量となる硫酸を分取し、これを20mlに希釈したものを用意し、この溶液を75℃に昇温した。
(Comparative Example 3)
0.17 g of an alloy powder having a particle size of 300 μm or less obtained in the same manner as in the examples was collected. Next, 70 equivalents of sulfuric acid was fractionated with respect to the total amount of nickel and cobalt contained in the alloy powder, and a solution obtained by diluting this to 20 ml was prepared, and the temperature of this solution was raised to 75 ° C.

次いで上記合金粉を添加して、4時間攪拌した。なお、その間、70当量の硫酸で溶解中の溶液にORPが1000mV以上になるまで過硫酸Naを加えた。その後、ろ過を行い固液分離し、実施例と同様にして、濾液をICP分析装置を用いて分析し、各成分の濃度を求めた。上記浸出条件およびICP測定結果を表2に示す。濾過後の液量、ORPを測定した結果も表2に示す。また、銅、ニッケル、コバルト、鉄の各元素の浸出率を、実施例と同様にして求めた結果を表3に示す。 Then, the above alloy powder was added, and the mixture was stirred for 4 hours. During that time, Na persulfate was added to the solution being dissolved with 70 equivalents of sulfuric acid until the ORP became 1000 mV or more. Then, filtration was performed to separate the solid and liquid, and the filtrate was analyzed using an ICP analyzer in the same manner as in Examples to determine the concentration of each component. Table 2 shows the above leaching conditions and ICP measurement results. Table 2 also shows the results of measuring the liquid volume and ORP after filtration. Table 3 shows the results of determining the leaching rates of each element of copper, nickel, cobalt, and iron in the same manner as in Examples.

表2〜3および図1〜4に示すように、実施例1〜12では、ニッケル、コバルトの浸出が可能であり、各実施例における銅の浸出率よりも大幅に高かった。これらの結果から、銅とニッケルとコバルトとを含む合金を硫化剤が共存する条件下で塩化物を含有する硫酸溶液と接触させることで、銅を硫化銅として析出させ、浸出液に選択的にニッケルとコバルトを浸出させて、銅と、ニッケルおよびコバルトとを合金から効率よく選択的に分離できることが確認された。そして、実施例1〜12は、NiClを含有しない硫酸を用いた試験例1〜3よりも、反応速度が大きいことが確認された。 As shown in Tables 2 to 3 and FIGS. 1 to 4, nickel and cobalt could be leached in Examples 1 to 12, which were significantly higher than the copper leaching rate in each Example. From these results, by contacting an alloy containing copper, nickel and cobalt with a sulfuric acid solution containing chloride under the condition that a sulfide agent coexists, copper is precipitated as copper sulfide and nickel is selectively used in the leachate. It was confirmed that copper and nickel and cobalt can be efficiently and selectively separated from the alloy by leaching copper and nickel. Then, it was confirmed that Examples 1 to 12 had a higher reaction rate than Test Examples 1 to 3 using sulfuric acid containing no Nickel 2.

また、表2〜3および図1〜4に示すように、硫化剤が共存する条件下で塩化物を含有する硫酸溶液と接触させた実施例1〜12では、塩化物の量が増加するほど反応が促進され反応速度が大きくなることが確認された。したがって、塩化物の量を増加させることにより時間を短縮してNi、Coの選択浸出が可能であることが確認された。 Further, as shown in Tables 2 to 3 and FIGS. 1 to 4, in Examples 1 to 12 in which the mixture was brought into contact with a sulfuric acid solution containing chloride under the condition where a sulfide agent coexisted, the amount of chloride increased. It was confirmed that the reaction was promoted and the reaction rate was increased. Therefore, it was confirmed that by increasing the amount of chloride, the time can be shortened and the selective leaching of Ni and Co is possible.

なお、硫化剤を共存させずに塩化物である塩酸と接触させた比較例1では、表2〜3に示すように、銅、ニッケル、コバルト、鉄共に50%から60%程度の浸出率となり、有価成分の浸出率としては不十分な値であり、同時に一律に浸出されただけで、有価成分と回収不要成分の分離も不十分だった。 In Comparative Example 1 in which the sulfide was brought into contact with hydrochloric acid, which is a chloride, without the coexistence of a sulfide agent, as shown in Tables 2 and 3, the leaching rate of copper, nickel, cobalt, and iron was about 50% to 60%. The leaching rate of the valuable component was insufficient, and at the same time, the leaching was uniform, and the separation of the valuable component and the recovery-unnecessary component was also insufficient.

また、硫化剤を共存させずに塩酸と接触させた場合は、表2〜3に示すように、過硫酸Naを添加しなかった比較例2でも銅、ニッケル、コバルト、鉄は5%前後の浸出率となり、選択性なく浸出されることが確認された。また、硫化剤ではない過硫酸Naを添加した比較例3では、銅、ニッケル、コバルト、鉄はほぼ全量溶解し、選択性なく浸出されることが確認された。 Further, when contacting with hydrochloric acid without coexisting with a sulfide agent, as shown in Tables 2 and 3, copper, nickel, cobalt and iron were around 5% even in Comparative Example 2 in which Na persulfate was not added. The leaching rate was confirmed, and it was confirmed that leaching was performed without selectivity. Further, in Comparative Example 3 in which sodium persulfate, which is not a sulfide agent, was added, it was confirmed that almost all of copper, nickel, cobalt, and iron were dissolved and leached without selectivity.

このように、比較例1〜3では、選択性なく浸出されて、銅と、ニッケル及びコバルトとを分離し難いことが確認された。 As described above, in Comparative Examples 1 to 3, it was confirmed that it was difficult to separate copper from nickel and cobalt by leaching without selectivity.

Claims (7)

銅とニッケルとコバルトとを含む合金から、銅と、ニッケル及びコバルトと、を分離する分離方法であって、
前記合金を、硫化剤が共存する条件下で塩化物を溶解する硫酸溶液と接触させることによって、ニッケル及びコバルトを浸出させた浸出液と、該硫化剤により銅が硫化した固体の硫化銅とを得る
離方法。
A separation method for separating copper, nickel and cobalt from an alloy containing copper, nickel and cobalt.
The alloy, depending on Rukoto contacted with sulfuric acid solution to dissolve the chloride under conditions sulfiding agent coexist, the leachate obtained by leaching nickel and cobalt, the solid copper sulfide of copper was sulfided by sulfuric agent And get
Separation method.
前記硫化剤が、硫黄、硫化水素ガス、硫化水素ナトリウムおよび硫化ナトリウムから選ばれる1種類以上である
請求項1に記載の分離方法。
It said sulfurizing agent is sulfur, hydrogen sulfide gas, separation method according to claim 1 is one or more selected from sodium hydrogen sulfide and sodium sulfide.
前記銅とニッケルとコバルトとを含む合金に対して、前記塩化物を含有する硫酸溶液と前記硫化剤を同時に接触させるか、もしくは前記硫化剤を接触させた後に前記塩化物を含有する硫酸溶液を接触させる
請求項1又は2に記載の分離方法。
The chloride-containing sulfuric acid solution and the sulfide agent are brought into contact with the alloy containing copper, nickel, and cobalt at the same time, or the chloride-containing sulfuric acid solution is added after the sulfide agent is brought into contact with the alloy. separation method according to claim 1 or 2 is contacted.
前記銅とニッケルとコバルトとを含む合金が、リチウムイオン電池のスクラップを加熱熔融し、還元して得た合金である
請求項1乃至3のいずれかに記載の分離方法。
The copper, nickel and alloy containing cobalt, heat melting the scrap lithium ion batteries, separation method according to any one of claims 1 to 3 which is reduced to give the alloy.
前記銅とニッケルとコバルトとを含む合金が粉状物であり、前記銅とニッケルとコバルトとを含む合金の粒径は、300μm以下である
請求項1乃至4のいずれかに記載の分離方法。
Wherein an alloy powder comprising copper and nickel and cobalt, the particle size of the alloy containing the copper, nickel and cobalt, separation method according to any one of claims 1 to 4 is 300μm or less ..
前記銅を含有する固体と前記ニッケル及びコバルトを含有する浸出液とを分離した後、前記ニッケル及びコバルトを含有する浸出液に残存する銅を除去する
請求項1乃至5のいずれかに記載の分離方法。
After separation of the leaching solution containing nickel and cobalt and a solid containing the copper, separation method according to any one of claims 1 to 5 to remove copper remaining leaching solution containing the nickel and cobalt ..
硫化、電解採取および中和沈殿から選ばれる1種以上の方法によって、前記ニッケル及びコバルトを含有する浸出液に残存する銅を除去する
請求項6に記載の分離方法。
Sulfide, by one or more method selected from the electrowinning and neutralization precipitation separation method according to claim 6 for removing copper remaining leaching solution containing the nickel and cobalt.
JP2017208524A 2017-10-27 2017-10-27 How to separate copper from nickel and cobalt Active JP6958235B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017208524A JP6958235B2 (en) 2017-10-27 2017-10-27 How to separate copper from nickel and cobalt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017208524A JP6958235B2 (en) 2017-10-27 2017-10-27 How to separate copper from nickel and cobalt

Publications (2)

Publication Number Publication Date
JP2019081915A JP2019081915A (en) 2019-05-30
JP6958235B2 true JP6958235B2 (en) 2021-11-02

Family

ID=66670178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017208524A Active JP6958235B2 (en) 2017-10-27 2017-10-27 How to separate copper from nickel and cobalt

Country Status (1)

Country Link
JP (1) JP6958235B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4108349A4 (en) * 2020-02-21 2024-05-01 Sumitomo Metal Mining Co., Ltd. Method for treating alloy
JP7392538B2 (en) * 2020-03-23 2023-12-06 住友金属鉱山株式会社 Alloy processing method
JP7121885B2 (en) * 2020-09-03 2022-08-19 三菱マテリアル株式会社 Cobalt and nickel separation method
CN117730165A (en) * 2021-07-20 2024-03-19 住友金属矿山株式会社 Alloy treatment method
KR20240047405A (en) * 2021-09-10 2024-04-12 스미토모 긴조쿠 고잔 가부시키가이샤 How to process alloys

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107208178A (en) * 2014-09-30 2017-09-26 捷客斯金属株式会社 The leaching method of lithium ion battery waste material and come from lithium ion battery waste material metal recovery method
JP6334450B2 (en) * 2015-03-27 2018-05-30 Jx金属株式会社 Method for recovering metals from recycled lithium-ion battery materials

Also Published As

Publication number Publication date
JP2019081915A (en) 2019-05-30

Similar Documents

Publication Publication Date Title
JP6897466B2 (en) How to separate copper from nickel and cobalt
JP6915497B2 (en) How to separate copper from nickel and cobalt
KR102463488B1 (en) Separation method for copper, nickel and cobalt
KR102161042B1 (en) Separation method of copper, nickel and cobalt
JP6958235B2 (en) How to separate copper from nickel and cobalt
KR20220127893A (en) How to deal with alloys
JP7052635B2 (en) Separation method of copper, nickel and cobalt
WO2023002912A1 (en) Method for processing alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210920

R150 Certificate of patent or registration of utility model

Ref document number: 6958235

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150