[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6957492B2 - ポイントツーマルチポイントネットワーク用のコスト最適化されたアグリゲータベースの通信トポロジ - Google Patents

ポイントツーマルチポイントネットワーク用のコスト最適化されたアグリゲータベースの通信トポロジ Download PDF

Info

Publication number
JP6957492B2
JP6957492B2 JP2018546021A JP2018546021A JP6957492B2 JP 6957492 B2 JP6957492 B2 JP 6957492B2 JP 2018546021 A JP2018546021 A JP 2018546021A JP 2018546021 A JP2018546021 A JP 2018546021A JP 6957492 B2 JP6957492 B2 JP 6957492B2
Authority
JP
Japan
Prior art keywords
splitter
signal
headend
amplifier
combiner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018546021A
Other languages
English (en)
Other versions
JP2019512924A (ja
Inventor
マリセビック、ゾーラン
エフ. スヘンマーン、マルセル
ジー. ムタリク、ベンカテッシュ
サン、ジジアン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arris Enterprises LLC
Original Assignee
Arris Enterprises LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arris Enterprises LLC filed Critical Arris Enterprises LLC
Publication of JP2019512924A publication Critical patent/JP2019512924A/ja
Application granted granted Critical
Publication of JP6957492B2 publication Critical patent/JP6957492B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2575Radio-over-fibre, e.g. radio frequency signal modulated onto an optical carrier
    • H04B10/25751Optical arrangements for CATV or video distribution
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Multimedia (AREA)
  • Computing Systems (AREA)
  • Optical Communication System (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)

Description

本開示は、ケーブル伝送ネットワークを通じて信号を処理するシステムおよび方法に関する。
ケーブルテレビ(CATV)ネットワークは、当初は排他的なRF伝送システムを用いて遠距離にわたってコンテンツをサブスクライバに配信するものであったが、現代のCATV伝送システムでは、RF伝送経路の大部分をより効率的な光ネットワークに置き換えられており、ハイブリッド伝送システムを構成している。ハイブリッド伝送システムでは、ケーブルコンテンツは同軸ケーブルを通じるRF信号として開始および終端されるが、コンテンツプロバイダとサブスクライバとの間に介在する距離の大部分にわたる伝送用に光信号に変換される。詳細には、CATVネットワークは、コンテンツの多くのチャンネルに相当するRF信号を受信するために、コンテンツプロバイダにヘッドエンドを備える。ヘッドエンドはそれぞれのRFコンテンツ信号を受信し、RF結合ネットワークを用いてそれらの信号を多重化し、この結合されたRF信号を光信号に変換し(典型的にはRF信号を用いてレーザを変調することにより)、光信号をファイバ光学ネットワークに出力する。ファイバ光学ネットワークは、サブスクライバのグループの直前に各々ある1つまたは複数のノードに信号を通信する。ノードは、次に、RF信号が視聴者によって受信されるように、受信した光信号を逆多重化し、それをRF信号に戻すよう変換することによって、変換処理を反転する。
ケーブルテレビ(CATV)ネットワークは、最初にコンテンツプロバイダから一方的にビデオチャネルを配信する比較的単純なシステムとして配置されたときから継続的に発展している。初期のシステムは、各々約6MHzの分離している複数の周波数帯に複数のCATVチャネルを割り当てる送信機を備えていた。続く進歩によって、いずれも同軸ネットワーク上に伝搬する専用の小さな低周波数信号による、サブスクライバからコンテンツプロバイダに戻る限定された戻り通信が可能となった。しかしながら、現代のCATVネットワークは、非常に多くの数のコンテンツのチャンネルを提供するだけでなく、往路および復路の両方に割り当てられる非常に大きな帯域幅を必要とするデータサービス(インターネットアクセスなど)も提供する。明細書、図面および特許請求の範囲において、「往路」および「下り」という用語は、ヘッドエンドからノードへの、ノードからエンドユーザへの、またはヘッドエンドからエンドユーザへの経路を参照して互換可能に用いられ得る。反対に、「復路」「逆方向経路」および「上り」という用語は、エンドユーザからノードへの、ノードからヘッドエンドへの、またはエンドユーザからヘッドエンドへの経路を参照して互換可能に用いられ得る。
コンテンツの配信におけるさらなる改良を提供するCATVアーキテクチャにおける近年の改良は、ノードとサブスクライバの家屋との間の同軸ネットワークをファイバ光学ネットワークに置き換えるファイバ・ツー・ザ・プレミス(FTTP)アーキテクチャを含む。そうしたアーキテクチャはRFoG(Radio Frequency over Glass)アーキテクチャとも呼ばれる。RFoGの主な利益は、現在の同軸伝送経路が配信可能であるより高速な接続速度と、より大きな帯域幅とを提供することである。例えば、1つの銅同軸ツイストペア導体が6つの同時の電話呼を搬送することができる一方、1つのファイバペアは250万個以上の電話呼を同時に搬送することができる。さらに同軸ケーブルは型/大きさ/導体に応じて、数百フィートごとに数十dBの損失を(また、より高いRF周波数が所望されると、より高い同軸ケーブル損失を)有する。HFCネットワークでは、これらの損失によって、インラインのRF増幅器の配置が必要とされる。反対に、光FTTPは損失がほとんど無く、インライン増幅器を必要としない。また、FTTPは消費者が、電話、ビデオ、オーディオ、テレビ、任意の他のデジタルデータ製品またはサービスを同時に受信するように、自信の通信サービスを束ねることを可能とする。
1つの既存のRFoG通信チャネルの欠点は、旧来のRFoGネットワークの問題となっている光ビート干渉(OBI)である。OBIは2つ以上の逆方向経路送信機の電源が入っており、それらの送信機の波長が互いに非常に近いときに生じる。OBIは上りトラフィックを制限するだけでなく、下りトラフィックも制限し得る。OBIを軽減する既存の努力では、顧客の敷地(プレミス)における光ネットワークユニット(ONU)に、またはそのヘッドエンドにおけるCMTSに焦点を合わせられている。例えば、OBIを軽減するいくつかの試みではONU波長を特定する一方、他の試みでは、CMTSにRFoGを認識するスケジューラを生成する。さらに他の試みには、オンザフライでONU波長を変更することが含まれる。レーザおよびDOCSISトラフィックの基本的な性質に起因して、波長衝突が依然として生じるかコストが高いので、上記の技術のうち満足な結果を与えるものはない。このように、RFoG配備においてはOBIのさらなる低減または除去が所望され得る。
既存のRFoGアーキテクチャを示す図。 改良されたRFoGアーキテクチャを示す図。 図1および図2のアーキテクチャの性能を比較する図。 EDFAのないスプリッタ/コンバイナユニットに先立つEDFAからなるアグリゲータアレイを有する代替アーキテクチャを示す図。 図4のアーキテクチャについて電力計算を示す図。 図4のシステムに基づくAAMトポロジを示す図。 図6のトポロジについて電力計算を示す図。 図4のシステムの、ユーザあたりの相対コストを示す図。 本開示に係る方法例のフローチャート。
図1は例としての既存のRFoGシステム10を示す。このシステム10では、ヘッドエンド12はノード16を通じて顧客の敷地におけるONU14にコンテンツを配信する。RFoGトポロジはヘッドエンド12からフィールドノードまたは光ネットワークユニット(ONU)への全ファイバ型のサービスを備え、ONUは典型的にはユーザの敷地に、またはその近傍に設けられる。ヘッドエンド12において、下りレーザは、光学的に複数回分割される放送信号を送信する。光ネットワークユニットすなわちONUはRF放送信号を復元し、それをサブスクライバの同軸ネットワークの中に伝える。
ヘッドエンド12は典型的には送信機18を備え、送信機18は1つまたは複数の1x32パッシブスプリッタ20に下り信号を配信し、パッシブスプリッタ20は32個の出力ポートを備え、各々の出力ポートは、ファイバ伝送部分24を通じてノード16に下りコンテンツを配信する波長分割マルチプレクサ(WDM)スプリッタ28に接続されており、ノード16は同様に別の1x32スプリッタ22を備える。ここでスプリッタ22の各々の出力ポートは、別のファイバ部分26を通じてサブスクライバの敷地における特定のONU14に接続される。
RFoG環境における光ネットワークユニット(ONU)は、サブスクライバ側のインターフェースにおいてファイバ接続を終端させ、また、顧客の敷地における家屋内のネットワークを通じて配信するためにトラフィックを変換する。同軸ケーブルがRFoGネットワークのONUを1つまたは複数のユーザデバイスに接続するように用いられることが可能であり、ここでHFCネットワークのユーザデバイスと同様に、RFoGユーザデバイスはケーブルモデム、EMTAまたはセットトップボックスを含み得る。例えばONU14は同軸ケーブルを通じてセットトップボックス、ケーブルモデム、または同様のネットワーク要素に接続されてよく、また、ケーブルモデムの1つまたは複数はイーサネット(登録商標)またはWi−Fi接続を通じてサブスクライバの内部電話配線に、パーソナルコンピュータまたは同様のデバイスに、またはその両方に接続されてよい。
当業者は、上述のアーキテクチャが例示に過ぎないことを認識する。例えばスプリッタ20および22のポートの数は所望に応じて変更されてよい。ヘッドエンド12は、各々のスプリッタが多数のサブスクライバに対応するようにそれぞれのノードに接続されている出力を有する、より多くのスプリッタ20を備えてよいということも理解される。
サブスクライバのONU14からヘッドエンド12への復路に沿って、スプリッタ22はコンバイナとして動作する。すなわち最大32個のONUが、ファイバ長24に沿う上り伝送のために復路信号を結合するノード16に、復路信号を配信してよい。それぞれのONU14からの信号の各々は、次にWDM28により他の信号から分離され、ヘッドエンド12における受信機30により受信される。それぞれの受信機からの信号は、次にヘッドエンド12におけるケーブルモデム終端サービス(CMTS)への伝送用にコンバイナ32により結合される。信号はCMTS上りポートに接続される前に、ヘッドエンド12においてコンバイナ32によりRF領域で結合される。
順方向において、電力を分配する高電力マルチポート増幅器に対し、順方向送信機が提供される。例えばヘッドエンド12において送信機18は、内部でコンバイナ20の32個の出力に対して電力を分配するエルビウム添加ファイバ増幅器(EDFA)34に出力を提供し、各々の出力が例えば約18デシベルミリワット(dBm)といった比較的高電力で動作される。WDM28は典型的には順方向においてEDFA34からの1550nmの光を通過させ、また、典型的には1610nmあるいは1310nmにおける戻り光を逆方向において受信機30に向ける。WDM28は、ノード16におけるスプリッタ22に送られる、長さL1のファイバに接続されてよい。スプリッタ22の出力は各々、サブスクライバの家屋におけるONU14にそれぞれ接続されている長さL2の第2のファイバに提供される。典型的にはL1+L2は最大25kmであってよい。ONU14は順方向に伝送される光を、家屋内の同軸ネットワークのためのRF信号に変換する。ONU14はまた、家屋内のネットワークからのRF信号を受信し、これらの信号を例えば1610nmにおいて動作するレーザ上に変調し、レーザの出力はファイバL2の中に上り側に送信される。上り信号はコンバイナ22において他の上り信号と結合され、ファイバL1によりさらに上り側に伝送される。WDM28において上り信号はヘッドエンド受信機30の方に向けられる。
32個のサブスクライバおよび25kmのファイバについてのロスバジェットは32個のサブスクライバからなるサブスクライバのグループごとに、ヘッドエンド12内に、3dBmの上り伝送電力が与えられる1つの受信機を必要とし、受信機30およびWDM28は、帯域制限受信機が容認可能な性能のために通常必要とされるように、優れた信号対雑音比を困難なものとする−18dBmと−21dBmとの間の電力において典型的には動作してよい。さらに、当然のこととして複数の光入力を単一の出力に結合するパッシブ光コンバイナ22は、前述のようにこれらの入力同士の間にOBIを生じ、それ故にヘッドエンド受信機30においてRF領域における雑音を生じる。さらに、往路において約24dBの損失もまた想定されるに違いなく、すなわち、このことはポートあたりの18dBmのEDFA出力電力に対して−6dBの電力を受信機に供給する。これは1GHzまでのONUにおける容認可能な性能に対しては十分であり、低い雑音を提供し、高利得受信機が用いられる。
OBIを除去するための開示される技術が望ましく、OBIを除去するための開示される方法が上りおよび下りにおける、より高い容量を可能とする。開示される光コンバイナシステムを組み込むアーキテクチャについての実施形態が、本明細書において、より詳細に記載される。
図2は、RFoGネットワークを通じてCATVコンテンツを複数のサブスクライバに配信するための改良されたシステム100を示す。このアーキテクチャでは、WDMスプリッタ116に各々接続されている送信機112および受信機114を有する、ヘッドエンド110を示す。WDMスプリッタ116は、L1kmのファイバリンク118に信号を出力し、該ファイバリンク118から信号を受信する。ファイバリンク118はアクティブスプリッタ/コンバイナユニット120に接続されている。スプリッタ/コンバイナユニット120は好適には往路信号を逆方向経路信号から分離するWDM122を備えてよい。WDM122からの往路信号はEDFA124に提供され、EDFA124は増幅された光信号を、各々がそれぞれ第2のファイバリンク128に向かう32個の出力ポートを有するアクティブ1x32スプリッタ126に出力する。各々のポートにおいて、電力レベルは高まる(例えば18dBm範囲に)だけでなく、適度に(例えば0−10dBm範囲に)もなることが可能である。
逆方向において、1x32ポートスプリッタ126はアクティブコンバイナ126として動作し、また、ポートにおけるフォトディテクタに上り光を向けるWDMを各々のポートに備え、ポートは受信した光信号を電気信号に変換し、それらをRF領域において増幅し、電気信号を送信機129に提供する。送信機129は例えば1610nm、1310nm、またはいくつかの他の適切な波長において光を出力し、同様にファイバ118の中に上り光を向けるWDM122に提供する。ヘッドエンド110においてファイバ118は、上り光を受信機114に向けるWDM116に接続されている。
スプリッタ/コンバイナ126の32個のポートの各々は、それぞれのファイバ128を通じて、それぞれの信号をスプリッタ/コンバイナユニット120と同じ型および構成の第2のアクティブスプリッタ/コンバイナユニット130に出力する。ファイバ128の長さは互いに異なってよい。スプリッタポートあたりの出力電力は低く、約0dBmである。スプリッタポートは例えば集合住宅住戸(MDU)または近辺において、長さL3のファイバ132を通じてONU140に接続される。基本的なRFoGシステムにおいて、ファイバ長L1+L2+L3の合計は最大25kmである。しかしながら、以下にさらに記載するようにシステム100は高いSN比損失を許容することができるので、システム100は40kmといった、ヘッドエンド110とONU140との間の、より高いファイバの全長を可能とする。
ONU140からの上り信号は、アクティブスプリッタ/コンバイナユニット130において直ちに、個々に終端する。すなわち、ONUが0dBmで動作することを考慮に入れても、フォトディテクタに達する電力は約−2dBmである(ファイバ132は最大数kmの短いファイバであり、アクティブコンバイナ内のWDM損失は小さい)。これは既存のRFoGシステムにおけるものより約20dB高く、スプリッタ134におけるフォトディテクタの後のRFレベルは既存のRFoGシステムにおけるものより約40dB高いことを意味する。結果として、受信機の雑音指数は重大ではなく、高帯域幅受信機が比較的少ない雑音性能で用いられることが可能である。受信されるRF信号は送信機136により逆方向経路に沿ってファイバ128の中に再伝送され、前にあるアクティブスプリッタ/コンバイナユニット120により受信および再伝送され、その後ヘッドエンド110に向かう。繰り返される再伝送はいくらか増した、SN比の減少を生じるが、アクティブアーキテクチャからのSN比の改良は旧来のRFoGシステムに対してはるかに優れた全般的な性能を提供する。さらに重要なことには、全ての逆方向光信号は分離しているフォトディテクタにおいて個々に終端するので、異なる逆方向信号同士の間の光ビート干渉(OBI)が存在し得ない。逆方向信号は光学的には結合されず、従ってOBIは生じ得ない。
順方向において、スプリッタ/コンバイナユニット120内のEFDA124などの複数のEDFAがあってよく、これらのEDFAは低い電力散逸、典型的には2ワット以下であるためにコスト効率が高い1段のデバイスである。EDFAの縦続接続は、EDFAの有限の雑音指数に起因する雑音の蓄積を生じる。アクティブスプリッタアーキテクチャはEDFAを必要としない一方、高電力ヘッドエンド110内のEFDA(示されていない)は依然として電力をONU140に提供するように用いられ得るので、EFDA124などのアクティブスプリッタユニット内のEDFAの使用はいくらかの利点を提供する。例えば、ヘッドエンド110からファイバ心線は生ずるので、ヘッドエンド110内の機器の複雑性および電力散逸は大幅に減少する。ONU140に配信される電力量は旧来のRFoGシステムにおける−6dBmから約0dBmに容易に増加する。結果として、ONU受信機はそれらのフォトディテクタから12dB大きなRFレベルを得、高い利得または低い受信機の雑音寄与を必要としない。ONU受信機において緩和された雑音の必要があるにも関わらず、EDFAの雑音に起因するSN比の影響は、より高い受信電力によって容易に克服される。さらに、より多くのスペクトルが順方向において、現在のRFoGにおける1GHzに代えて4GHzといった、現在のアーキテクチャに関して容認可能なSN比でサポートされることが可能である。従って、例えば40Gbpsのダウンロード速度および10Gpsのアップロード速度を提供するサービスを可能とする動作の変更なしに、合計のデータスループットレートは著しく増加することが可能である。
RFoGコンバイナの実施形態は、ネットワークの端部(ネットワークのヘッドエンド側におけるCMTSスケジューラまたはネットワークのサブスクライバ側の端における波長特定ONUの使用など)においてOBIを扱うこととは対照的に、コンバイナにおけるOBIを防止または除去することを含む。実施形態は、OBIの除去を可能とすることが記載される。開示される光コンバイナはFTTHネットワークのケーブル版であるRFoGにおいて、OBIを除去するか、容量を向上するか、複数のサービスを可能とするかのうちの1つ以上を行うように用いられてよい。
いくつかの実施形態において、開示される光コンバイナ(図2におけるコンバイナ120、130の一方または両方といったもの)は約2ワットの電力を必要とするアクティブデバイスであってよい。光コンバイナは、RFoGシステムにおいて容易に利用可能な電力源により電力を供給されてよく、または電力が光コンバイナに供給されることができる。電力源はバッテリバックアップまたはソーラ/ファイバ電力代替物を含んでよい。電力が消費され、電池も消耗されている場合、全体の相互的なPON伝送は変化を起こさない。しかしながら、上りRFoG伝送は停止する。従来のRFoGシステムにおいては、システムがパッシブコンバイナを備える旧来のRFoGシステムであった場合には、いずれにしても大半のOBIがシステムを激しく弱めていたので、RFoGシステムもまた停止していた。電力損失の場合もまた、システムがRFoGシステムであろうとPONシステムであろうと、本明細書に開示されるアクティブコンバイナを備えていようがいまいが、電力のバックアップがないためにそうしたシステムが機能しなくなるように、家屋におけるONU(光ネットワークユニット)は機能しなくなる。ヘッドエンドの光レシーバ114は、RFコンバイナが存在しないことに起因して、0..−3dBmからの範囲の入力電力を必要するだけでよく、15dB低いRF出力電力を必要とするだけでよいので、そうした高い光入力電力および低いRF出力電力の必要性により利得が低くなることが可能である。
開示される光コンバイナは好適にはOBIを除去し、OBIのないシステムを構築することができる。光コンバイナは、例えば最大40kmおよび1024分割といった長距離および大量分割を可能にし、さらにいっそう拡張される。開示される光コンバイナにより可能となる高い上りおよび下り容量は10G DS/1G USまで、また40G DS/10G US程度の高さまでを含む。
実施形態において、以前の試みが失敗しているかまたは法外な費用がかかることを示されているONUにおいて取られている措置を用いて干渉を防止するというよりも、むしろ、開示される光コンバイナはコンバイナにおけるRFOGの配置において干渉を防止する。
旧来のRFoGアーキテクチャは固定のパワーバジェットを有する。これは、下部の曲線が既存のアーキテクチャを表し、上部の曲線が本明細書において開示されるアクティブアーキテクチャを表す図3において見られるように、ヘッドエンドとONUとの間のファイバ長が増加するにつれて、より少数の分割が用いられてよいことを意味する。反対に、所望される、より多くの分割となるほど、より小さなファイバ長が配置されてよい。しかしながら、開示されるアクティブアーキテクチャは、用いられる分割の数に関わらず最大約40kmのファイバ長を可能とし、開示されるアクティブアーキテクチャが例えば1024といった多数の分割に加えて40km以上のファイバ長を可能とすることを意味し、従ってFTTPトポロジおよび配置を前進させる。
図2に示されるアクティブスプリッタアーキテクチャの全般的なコストは、旧来のRFoGの解決策のものと同様である。アクティブアーキテクチャにおけるアクティブスプリッタのEDFA利得ブロックおよびWDMおよびディテクタコンポーネントのコストは、受信機、高電力EDFAおよびコンバイナなどのヘッドエンド装置の除去により埋め合わせられる。低い出力電力により動作可能であるONUのコスト削減は、アクティブスプリッタアーキテクチャをさらに支持する。アクティブスプリッタアーキテクチャのさらなる利点は、ヘッドエンドから出るファイバ心線の削減を含んでよく、このことは、コストをさらに削減することができる典型的なSN比ロスバジェット以内のままでありながら1310nmの逆方向ONUを用いる選択肢と同様、システムのコストに大きな影響を与えることができる。また、図2に示されるシステムは、既存のRFOGアーキテクチャが提供する可能性のあるものに対して増加した帯域幅を表し、サービスグループの大きさの限定および付随する、より多くのCMTS戻りポートの必要を回避する。最終的に、既存のRFoGアーキテクチャにおけるOBI緩和技術とは異なり、図2に示されるシステムは、追加のONU情報を必要とする、冷却または温度制御される光および双方向通信リンクを必要としない。
これらの要因の各々は、既存のRFoGアーキテクチャにわたるアクティブスプリッタの解決策のさらなるコストの利点を提供する。ヘッドエンドにおける必要な空間および電力もまた削減され、つまりアクティブスプリッタの解決策は1つの伝送ポート、1つの受信ポート、および1つのWDMコンポーネントを必要とする。一方で既存のRFoGアーキテクチャは、複数の伝送ポート、マルチポート高電力EDFA、32個のWDM、32個の受信ポート、および32ポートRFコンバイナを必要とする。既存のRFoGアーキテクチャは非常に低い雑音、高い利得、およびRFコンバイナにおける電力損失および雑音の追加を克服するように実施されるスケルチ方法による出力電力受信機を必要とする。図2に示されるシステム100は、反対に通常0−3dBmの範囲内の入力電力により動作し、小さな利得が必要とされ、CTMSの前のRFコンバイナが存在しないことに起因して15dB低い電力出力を必要とする。
好適には、開示される光コンバイナユニットは、単一の光受信機における複数の光フォトディテクタを結合する伝送線アプローチを実装する。これは一方向または双方向構成において達成されてよい。一方向システムはアクティブ光スプリッタからONUへの制御通信信号を提供せず、すなわち制御通信信号はONUからアクティブスプリッタに通過するのみである。このように、一方向システムにおいては、アクティブ光スプリッタは単にONUからある出力レベルを受け取り、その出力レベルで動作する。双方向システムは、アクティブ光スプリッタからONUに制御信号を通過させ、ONUは制御信号の出力電力を調整するよう制御信号に対し命令する。すなわち、この型のシステムは各々のONUからアクティブ光スプリッタへの入力レベルの正確な一致を可能とする。
いくつかのアクティブスプリッタ/コンバイナシステムは好適には、アクティブ光スプリッタが高電力状態と低電力状態との間でそのシステムの戻りレーザの電力(アクティブ光スプリッタに接続されているONUの結合されている情報を運ぶ戻りレーザ)を切り替えるといった代理機能性を備えてよく、またはこのレーザをCWモードにおいて動作させる。その場合には、上り側ヘッドエンドまたはアクティブ光スプリッタは、入力ポートにおいて電力の損失を容易に検出することができ、別のファイバルートに接続されている第2の入力ポートに対して情報を受信することを可能とさせる。すなわち、順方向および逆方向の光は一般に同一のファイバを共有するので、往路においては他のファイバルートがこの場合ではアクティブである。また、いくつかのアクティブスプリッタ/コンバイナシステムは、アクティブ光スプリッタにおいて逆方向レーザを備えてよく、アクティブ光スプリッタは、アクティブ光スプリッタに対するONU送信器の数およびこれらのONUから受信する光電流に応じてレーザの電力出力を調整する。依然として、他のアクティブスプリッタ/コンバイナシステムは、利得要因および固定値に設定されるアクティブ光スプリッタの逆方向レーザ電力を有する。
好適には、開示される光コンバイナユニットは変化する環境下において自身を構成することができる。実例は、たとえ伝送されるデータがなくとも、ONUにおけるケーブルモデムがCMTSと通信するために必要とされるところにおいて行われる。しかしながら通常、ONUとCMTSとの間で伝送されるデータがない期間にはONUは止められ、ケーブルモデムはデータを受信または送信する数時間前に動作可能である。このように、いくつかの実施形態において、開示されるコンバイナユニットはCMTSと通信している状態のままであるように構成されてよい。ケーブルモデムは30秒に1度、またはいくつかの他の適切な間隔で、CMTSに戻って通信するように要求されてよい。
パッシブ光ネットワーク(PON)トポロジは典型的には32ポートおよび64ポート分割ネットワークを備え、主にこれらのスプリッタの17dB/20dBの損失でそれぞれ抑制される。典型的なPONリンクの信号対雑音比(SN比)バジェットは24dB程度であるので、バジェットの残りは次に、典型的には1x32(1 by 32)分割比について最大20kmのファイバリンクおよび1x64(1 by 64)分割比について最大10kmのファイバリンクといった組み合わせで、ファイバ損失を許容するように捧げられる。ファイバ・ツー・ザ・プレミス(FTTP)ネットワークアーキテクチャに対するRFoG(Radio Frequency over Glass)アプローチと同様に、この制限はEPONおよびGPONに等しく適用される。図1および図2において見られるように、このロスバジェットが与えられるPONトポロジの設計は、典型的には消費者の小さなグループにまでもサービスを提供するように多数のEDFAを用いる。例えば、256個の消費者に供給するために、図2に示されるアーキテクチャは9つの+17dBmのEDFAを必要とする。同様に、512個のユーザに供給するためには17個の+17dBmのEDFAが必要とされ、1024個のユーザに供給するためには33個の+17dBmのEDFAが必要とされる。EDFAはコストがかかり、それ故に、前に記述したロスバジェット以内、すなわち信号の質を低下させないままの状態であるにも関わらず、与えられる数の消費者にサービスを提供するために用いられるEDFAの数を最小化することができるアーキテクチャを設計することは、大きな利益となる。
図4を参照すると、代替システム200は、CATVコンテンツを1つまたは複数のONU212に配信するヘッドエンド210を備えてよい。ヘッドエンド210は、コンバイナ/スプリッタユニット222に接続されているファイバリンク220に下りコンテンツを伝送する送信器214を備えてよい。ヘッドエンド210は、上り信号および下り信号を分離するWDM218と同様に、スプリッタ/コンバイナユニット222に接続されているファイバリンク220から上り信号を受信する受信機216を備えてもよい。
アクティブコンバイナユニット222は、それぞれの第2のファイバリンク230により1つまたは複数の第2のスプリッタ/コンバイナユニット232に同様に接続されてよく、第2のスプリッタ/コンバイナユニット232自身は第3のファイバリンク240を通じてONU212にコンテンツを配信する。図2に示されるシステムのように、ファイバ長220,230,および240により提供される総距離は、好適には約0kmと約40kmとの間であってよい。図4に示されるトポロジにおいて、スプリッタ/コンバイナユニット222はスプリッタ/コンバイナネットワーク228を通じて複数のスプリッタコンバイナユニット232に接続されていることと、スプリッタ/コンバイナユニットはスプリッタ/コンバイナ/ネットワーク238を通じて複数のONUに同様に接続されているユニット232により例示されることとが理解される。
スプリッタ/コンバイナユニット222は、好適には、ヘッドエンド210からの下り経路信号を受信するとともにそうした信号をそれぞれのONU212により送信される上り信号から分離するWDM224を備える。スプリッタ/コンバイナユニット222もまた、好適には、スプリッタ/コンバイナネットワーク228の上りポートからのそれぞれの上り信号を受信することとそれぞれの上り信号をWDM224に向けることとを行う1つ以上の送信機229を備える。
ところが図2に示されるシステムとは異なり、スプリッタ/コンバイナネットワーク222はEFDA227のアレイ226を備え、ここで各々のEFDA227は下り信号を受信し、それをスプリッタ/コンバイナネットワーク228の複数の下りポートの各々に提供する。例えば1つの好適な実施形態において、図2のシステムにおける各々のEFDAはスプリッタ/コンバイナネットワーク228の4つのポートの各々に下り信号を提供する。いくつかの実施形態において、これはスプリッタを用いて達成されてよいが、他の実施形態はスプリッタ/コンバイナネットワーク228のポートのグループの各々に対する入力として下り信号を配信する任意の他のデバイスを用いてよい。好適には、EFDA227の各々は、例えば約+23dBmなどの可能な限り高い出力電力のEDFAを用いる。この文脈において「約」という用語はプラスまたはマイナス5%を意味する。これは、上述のロスバジェット以内を依然として保ちながら、下りスプリッタ/コンバイナユニット232に対してEFDAを有しないことを可能とする。例えば、図5を参照して、スプリッタ/コンバイナユニット222が4つの+23dBmのEFDAを利用し、ここで各々のEFDAがスプリッタ/コンバイナユニット222の4つの出力および下りスプリッタ/コンバイナユニット232の32個の出力の間で分割される信号を増幅されるように用いられることを想定すると、512個の消費者は約0dbmの順方向の光レベルで供給されることが可能である。この文脈において、約という言葉はプラスまたはマイナス1dBmを意味する。
言い換えると、スプリッタ/コンバイナユニット222は、EDFAアレイとそれが対応するONUとの間の全経路に沿って増幅器を集合させるEDFAアレイを有し、このように、下り方向に沿う複数のEDFAの必要性を除去する。図2のシステムは例えば、512個の消費者に供給するために17個の+17dBmのEFDAを必要とする一方で、図4のシステムは同数の消費者に供給するために4つの+23dBmのEFDAを必要とするのみであり、従って高電力EFDAの使用に関わらず相当なコスト節約を達成する。
再び図5を参照すると、本発明者は、ONU212の下り入力/フォトディテクタの中に約0dBmレベルが到達するように、EDFAの後の損失が合計のEDFA出力以内を保つ必要があることを理解する。しかしながら、EDFAの前の損失は、EDFAに送られるリンクに影響するが、ONUへの電力レベルには変化を及ぼさない。このように当業者は、図4に示されるシステムが(1)最大512個のユーザを集合させるように各々の出力が下りの1x32ポートスプリッタに接続されている、1x4スプリッタが各々に続く4つの+23dBmのEDFAブロックに続く1x4スプリッタを備え、(2)最大256個のユーザを集合させるように各々の出力が下りの1x32ポートスプリッタに接続されている、1x4スプリッタが各々に続く2つの+23dBmのEDFAブロックに続く1x2スプリッタを備え、(3)最大128個のユーザが同一のサービスグループ内に集合させられる必要がある場合にのみ、ただ1つの+23dBmのEDFAの「通過」を含み、(4)4つの下りの送信機からの信号を逆多重化するための、最大128個のユーザのサービスグループであって各々のEDFAごとに1つのグループに各々が送られる、単一ファイバ入力および4つのITU DWDM出力を備えてよいということを認識する。
さらに当業者は、このアプローチは32ポートスプリッタ/コンバイナ下りユニットに限定されないことを認識する、例えば16ポート、64ポート、または128ポート下りスプリッタ/コンバイナまでもが用いられてよい。同様に当業者は、図4におけるスプリッタ/コンバイナユニット222が、供給を受ける消費者の数応じてアレイ226の任意の所望の数のEDFA227を利用してよいことを理解し、+23dBmより高い電力を供給されるEDFAが所望に応じて用いられてよいことも理解する。
図6はAAMベースのトポロジを示し、ここで4つの+23dBmのEDFAからなるアグリゲータアレイは各々が64ポートの2つのスプリッタ/コンバイナユニットに接続されている。図7はこの構成についての電力計算を示し、ここでONUにおける電力損失は0dBmである。
一般に図4に開示されるアーキテクチャのコストは1次の(線形)近似によりモデル化されることが可能であり、
Cost=BNB+C_EDFA+N*PP
ここでBNBは「箱および土台」のコストを意味し、C_EDFAはEDFAのコストを意味し、ユニットに存在する場合、NはAAMまたはAMモジュールどちらかのポートの数を意味し、PPは「ポートあたりの」コストを意味する。このように、たとえば
AM3200_Cost=BNB+32*PP
AM3217_Cost=BNB+C_EDFA+32*PP
AM6400_Cost=BNB+64*PP
AAM08x4_Cost=BNB+4*C_EDFA+8*PP
などである。図8は一般にこれらのコストを示す。この図に見られるように、スプリッタ/コンバイナ232についてのポートの数が大きくなるほどコストが低くなることが一般に当てはまるが、このコスト節約はあるポイントまでのみ、および、いくらか最適に選択されるユーザの数(すなわち128より大きく、典型的には256および512といった2の累乗)に対してのみに生じる。全般的には、最低のユーザあたりコストに対して、ほとんどのサービスグループあたりユーザの値について、最も推奨される構成は、図6に示されるように、AM6400が後に続くAAM08x4の利用である。
図9を参照すると、好適にはヘッドエンド、複数のスプリッタ/コンバイナユニット、およびONUを備えるシステムにより実施される好適な方法300が示される。第1ステップ310は好適には、スプリッタコンバイナユニット内の複数の増幅器の各々に対する入力として下り光信号を提供するヘッドエンドを備える。第2ステップ320は好適には、増幅器のそれぞれの出力に存在する各々の増幅された信号をスプリッタコンバイナユニットのそれぞれの下り出力ポートに提供することを備える。第3ステップ330は好適には、各々の増幅された下り信号をそれぞれの上り信号と多重化することを含む。
好適には各々の増幅器は上述したようにEDFAであり、増幅された下り信号はいくつかの実施形態において、増幅器を備えない第2のスプリッタ/コンバイナユニットに対する入力として提供され、このように、好適には約0dBmであってよい所望のロスバジェット以内のまま優れたコスト効率を達成する。いくつかのそうした実施形態では、下り光信号は第1のスプリッタ/コンバイナユニット内の4つの+23dBmのEDFAにより別々に増幅されてよく、ここで各々のEDFAからの増幅された出力は64ポートの2つの分離した第2のスプリッタ/コンバイナユニットに提供される。
上述の明細書において使用されている用語および表現は、限定の用語ではなく記載の用語として明細書中で用いられ、そうした用語および表現の使用においては、示され記述される特徴の均等物またはそれらの部分を除外する意図はなく、請求される発明の主題の範囲は後に続く請求項によってのみ定義され限定されることが理解される。

Claims (14)

  1. ヘッドエンドと前記ヘッドエンドから遠隔の複数のサブスクライバとの間でコンテンツを中継するためのデバイスであって、ヘッドエンドからの下り光信号を受信し、前記信号を複数のユーザのグループの各々に配信し、
    (a)ヘッドエンドから前記下り光信号を受信するとともに、受信した前記下り光信号を同じ波長を有する複数の第1の入力に分割する第1のユニットと、
    (b)複数の増幅器からなる増幅器のアレイであって、各々の増幅器は前記第1の入力のそれぞれの1つを受信し、各々の増幅器はスプリッタ/コンバイナユニット内のそれぞれの複数のポートに接続され、前記スプリッタ/コンバイナユニットはそれぞれの上り信号を受信し結合し、結合された上り光信号を形成する、アレイと、
    (c)前記結合された上り光信号を前記ヘッドエンドからの前記下り光信号と多重化するマルチプレクサと、を備えるデバイス。
  2. 第2のデバイスに動作可能に接続されており、前記第2のデバイスは、下り信号を同じ波長を有する複数の信号に分割するとともに上り信号を結合するスプリッタ/コンバイナユニットを有し、前記第2のデバイスは前記下り信号を増幅する増幅器を備える必要がない、請求項1に記載のデバイス。
  3. 前記第1のユニットは4つの増幅器からなるアレイを備え、各々の増幅器は64ポートの2つの第2のデバイスに接続されている、請求項2に記載のデバイス。
  4. 前記増幅器のアレイの各々の増幅器はEDFAである、請求項1に記載のデバイス。
  5. 前記ヘッドエンドからの前記光信号を受信するとともに、前記光信号を前記増幅器のうちの複数の間で分割するスプリッタを備える、請求項1に記載のデバイス。
  6. 各々の増幅器は前記光信号を約23dBm以上増幅する、請求項1に記載のデバイス。
  7. 前記サブスクライバの各々は前記ヘッドエンドからの前記光信号を約0dBmの損失で提供される、請求項1に記載のデバイス。
  8. ヘッドエンドから、前記ヘッドエンドから遠隔の複数のサブスクライバの各々に下り光信号を中継する方法であって、
    (a)前記ヘッドエンドから前記下り光信号を受信するとともに、受信した前記下り光信号を同じ波長を有する複数の入力に分割し、前記複数の入力のそれぞれを複数の増幅器からなる増幅器のアレイの各々の増幅器に提供する工程と、
    (b)前記アレイの前記増幅器の各々の出力からの増幅された前記光信号をスプリッタ/コンバイナユニット内のポートの一部のそれぞれに提供する工程であって、前記スプリッタ/コンバイナユニットはそれぞれの上り信号を受信および結合し、結合された上り光信号を形成する、工程と、
    (c)前記結合された上り光信号を前記ヘッドエンドからの前記下り光信号と多重化する工程と、を備える方法。
  9. 前記スプリッタ/コンバイナユニットはそれぞれの増幅された下り光信号をそれぞれの第2のスプリッタ/コンバイナユニットに提供し、各々の第2のスプリッタ/コンバイナユニットは受信した前記下り光信号を同じ波長を有する複数の信号に分割するとともに上り信号を結合し、前記第2のスプリッタ/コンバイナユニットは前記下り光信号を増幅する増幅器を備える必要がない、請求項8に記載の方法。
  10. 前記下り光信号は4つの増幅器からなる増幅器のアレイに提供され、各々の増幅器は増幅された出力信号を64ポートの2つの第2のスプリッタ/コンバイナユニットに提供する、請求項9に記載の方法。
  11. 前記増幅器のアレイの各々の増幅器はEDFAである、請求項8に記載の方法。
  12. 前記ヘッドエンドからの前記下り光信号は、前記増幅器のアレイの各々の増幅器の入力に前記光信号を出力するスプリッタに対し提供される、請求項8に記載の方法。
  13. 前記下り光信号は約23dBm以上増幅される、請求項8に記載の方法。
  14. 前記サブスクライバの各々は前記ヘッドエンドからの前記光信号を約0dBmの損失で提供される、請求項8に記載の方法。
JP2018546021A 2016-03-01 2017-02-23 ポイントツーマルチポイントネットワーク用のコスト最適化されたアグリゲータベースの通信トポロジ Active JP6957492B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US15/057,292 US9847836B2 (en) 2016-03-01 2016-03-01 Agrregator-based cost-optimized communications topology for a point-to-multipoint network
US15/057,292 2016-03-01
PCT/US2017/019196 WO2017151395A1 (en) 2016-03-01 2017-02-23 Agrregator-based cost-optimized communications topology for a point-to-multipoint network

Publications (2)

Publication Number Publication Date
JP2019512924A JP2019512924A (ja) 2019-05-16
JP6957492B2 true JP6957492B2 (ja) 2021-11-02

Family

ID=58261757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018546021A Active JP6957492B2 (ja) 2016-03-01 2017-02-23 ポイントツーマルチポイントネットワーク用のコスト最適化されたアグリゲータベースの通信トポロジ

Country Status (8)

Country Link
US (1) US9847836B2 (ja)
EP (1) EP3424159B1 (ja)
JP (1) JP6957492B2 (ja)
AU (1) AU2017225642B2 (ja)
BR (1) BR112018067560A2 (ja)
CA (1) CA3017061C (ja)
MX (1) MX2018010444A (ja)
WO (1) WO2017151395A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10516481B2 (en) * 2016-12-22 2019-12-24 Arris Enterprises Llc Upstream failure recovery in an RFoG FFTP network

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2774164B2 (ja) * 1989-11-15 1998-07-09 富士通株式会社 光増幅装置
US5262883A (en) 1989-12-01 1993-11-16 Scientific-Atlanta, Inc. CATV distribution networks using light wave transmission lines
US5210631A (en) 1989-12-22 1993-05-11 General Instrument Corporation Transmission of AM-VSB video signals over an optical fiber
US5684799A (en) 1995-03-28 1997-11-04 Bell Atlantic Network Services, Inc. Full service network having distributed architecture
NL1001209C2 (nl) 1995-09-15 1997-03-20 Nederland Ptt Optisch netwerk.
JPH1187812A (ja) * 1997-09-12 1999-03-30 Fujitsu Ltd 利得等化器及び該利得等化器を備えた光伝送システム
KR100318919B1 (ko) 1998-07-07 2002-07-12 윤종용 자동이득조절회로를구비한전치보상기및이를이용한전치보상방법
JP2001156364A (ja) * 1999-11-29 2001-06-08 Sumitomo Electric Ind Ltd 広帯域光増幅器
US6606430B2 (en) 2000-09-05 2003-08-12 Optical Zonu Corporation Passive optical network with analog distribution
CH701742B1 (it) 2000-12-07 2011-03-15 Emc Electronic Media Comm Sa Apparecchio per la distribuzione dei segnali CATV a casa mediante fibra ottica.
US6509994B2 (en) 2001-04-23 2003-01-21 Scientific-Atlanta, Inc. Burst-mode analog transmitter
US6775433B2 (en) * 2001-07-20 2004-08-10 Marconi Communications, Inc. Deep fiber network with high speed data and video on demand
KR100516663B1 (ko) * 2003-01-02 2005-09-22 삼성전자주식회사 방송형-서비스와 데이터-서비스를 동시에 제공하는 수동형광 가입자 망 시스템
US7899334B2 (en) * 2003-01-31 2011-03-01 Ciena Corporation Signal distribution module for a directionless reconfigurable optical add/drop multiplexer
JP2004247466A (ja) * 2003-02-13 2004-09-02 Nippon Telegr & Teleph Corp <Ntt> ハイブリッド光ファイバ増幅器
EP1519502A1 (en) * 2003-09-25 2005-03-30 Alcatel Passive optical WDM network with individual channel amplification
JP4261514B2 (ja) 2005-06-22 2009-04-30 日本電信電話株式会社 バースト先頭検出回路
US7941022B1 (en) 2008-05-06 2011-05-10 Hrl Laboratories, Llc Single fiber optical links for simultaneous data and power transmission
US8666260B2 (en) 2009-06-02 2014-03-04 General Instrument Corporation Burst mode laser transmitter having an extremely fast response time when triggered from a totally off state
US8983308B2 (en) 2009-09-22 2015-03-17 Calix, Inc. Optical network device with multi-transport support
US8897651B2 (en) 2009-09-25 2014-11-25 Futurewei Technologies, Inc Passive optical network data over cable service interface specification upstream proxy architecture over the next generation hybrid fiber-coaxial networks
US8837953B2 (en) 2011-06-01 2014-09-16 Arris Enterprises, Inc. Mitigating noise and OBI in RFoG networks
US8598673B2 (en) 2010-08-23 2013-12-03 Discovery Semiconductors, Inc. Low-noise large-area photoreceivers with low capacitance photodiodes
US20130188954A1 (en) 2011-07-25 2013-07-25 Joseph P. Lanza RFoG CPE Devices with Wavelength Collision Avoidance Using Laser Transmitter Local and/or Remote Tunability
JP5899866B2 (ja) * 2011-11-25 2016-04-06 Kddi株式会社 光中継増幅装置及び方法
US20140010555A1 (en) 2012-07-06 2014-01-09 Alcatel-Lucent Usa Inc. PON Video Overlay Amplifier Circuit
CN202841136U (zh) 2012-07-18 2013-03-27 浙江省广电科技股份有限公司 一种应用于三网融合网络的RFoG光节点
EP3008836B1 (en) 2013-05-14 2019-07-24 Aurora Networks, Inc. Dynamic wavelength management using bi-directional communication for the prevention of optical beat interference
JP6233100B2 (ja) * 2014-03-03 2017-11-22 富士通株式会社 光増幅中継器及び光送信局
EP3134986B1 (en) 2014-04-21 2021-03-17 ARRIS Enterprises LLC Apparatus and system for managing wavelengths in optical networks
CA2946397C (en) 2014-04-21 2023-10-17 Arris Enterprises Llc Optical and rf techniques for aggregation of photo diode arrays

Also Published As

Publication number Publication date
CA3017061C (en) 2020-03-10
BR112018067560A2 (pt) 2019-01-08
CA3017061A1 (en) 2017-09-08
EP3424159B1 (en) 2024-02-14
US9847836B2 (en) 2017-12-19
AU2017225642B2 (en) 2019-11-21
MX2018010444A (es) 2018-11-09
WO2017151395A1 (en) 2017-09-08
US20170257166A1 (en) 2017-09-07
JP2019512924A (ja) 2019-05-16
EP3424159A1 (en) 2019-01-09
AU2017225642A1 (en) 2018-09-20

Similar Documents

Publication Publication Date Title
US7949256B2 (en) Method and system for increasing downstream bandwidth in an optical network
Song et al. Long-reach optical access networks: A survey of research challenges, demonstrations, and bandwidth assignment mechanisms
US20170317778A1 (en) TWDM Passive Network with Extended Reach and Capacity
US8958694B2 (en) Architecture to communicate with standard hybrid fiber coaxial RF signals over a passive optical network (HFC PON)
US20100226649A1 (en) Multi-Fiber Ten Gigabit Passive Optical network Optical Line Terminal for Optical Distribution Network Coexistence with Gigabit Passive Optical Network
TWI589132B (zh) 以射頻光纖傳輸之無縫頻寬成長
US20070280690A1 (en) System and Method for Managing Power in an Optical Network
US20210226718A1 (en) System and methods for coherent pon architecture and burst-mode reception
CN101098206A (zh) 一种无源光网络系统及其光路处理方法
US9686014B2 (en) Optical and RF techniques for aggregation of photo diode arrays
US7953325B2 (en) System and method for communicating optical signals between a data service provider and subscribers
TWI765346B (zh) 用於光通信之方法及光電光轉換器
US8761611B2 (en) Wavelength assignment for multiple operator support
JP6957492B2 (ja) ポイントツーマルチポイントネットワーク用のコスト最適化されたアグリゲータベースの通信トポロジ
US8098426B2 (en) Two-way amplifier for passive optical network (PON)
US10291970B2 (en) Trunk and drop RFOG architecture
US10263702B2 (en) RFoG ONU upstream signal optimization
US11894876B2 (en) Dynamic mode control of upstream ONU transmitters in an RFoG network
Song et al. Long-reach optical access
US10299021B2 (en) Optical signal amplification
JP6120383B2 (ja) 光通信システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200407

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210224

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211006

R150 Certificate of patent or registration of utility model

Ref document number: 6957492

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150