[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6952297B2 - Hollow fiber membrane for cell culture and cell culture method - Google Patents

Hollow fiber membrane for cell culture and cell culture method Download PDF

Info

Publication number
JP6952297B2
JP6952297B2 JP2016187781A JP2016187781A JP6952297B2 JP 6952297 B2 JP6952297 B2 JP 6952297B2 JP 2016187781 A JP2016187781 A JP 2016187781A JP 2016187781 A JP2016187781 A JP 2016187781A JP 6952297 B2 JP6952297 B2 JP 6952297B2
Authority
JP
Japan
Prior art keywords
hollow fiber
cells
fiber membrane
cell culture
polyamide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016187781A
Other languages
Japanese (ja)
Other versions
JP2018050498A (en
Inventor
小野 貴博
貴博 小野
博 水本
博 水本
智彬 赤岡
智彬 赤岡
祐輔 藤井
祐輔 藤井
稔尚 梶原
稔尚 梶原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
Unitika Ltd
Original Assignee
Kyushu University NUC
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC, Unitika Ltd filed Critical Kyushu University NUC
Priority to JP2016187781A priority Critical patent/JP6952297B2/en
Publication of JP2018050498A publication Critical patent/JP2018050498A/en
Application granted granted Critical
Publication of JP6952297B2 publication Critical patent/JP6952297B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

本発明は、細胞培養用中空糸膜に関する。更に詳しくは、本発明は、細胞の生存率、活性をほとんど低下させることなく培養することができる中空糸膜であり、製薬分野、医療分野、食品分野、化学工業分野における製造、医療、及び/又は研究開発において好適に使用される中空糸膜に関する。 The present invention relates to a hollow fiber membrane for cell culture. More specifically, the present invention is a hollow fiber membrane that can be cultured with almost no decrease in cell viability and activity, and is manufactured in the fields of pharmaceuticals, medical care, foods, chemical industry, and /. Alternatively, the present invention relates to a hollow fiber membrane preferably used in research and development.

従来、中空糸膜は、浄水分野で細菌や原虫の除去、工業分野で夾雑物の除去や蛋白質や酵素等の熱に弱い物質の分離又は濃縮、医療分野で人工透析、医薬品や医療用水製造時のウィルスや蛋白質の除去、超純水の製造、電着塗料の回収、製糸・パルプ工場の汚水処理、含油排水の処理、ビル排水の処理、果汁の清澄化、生酒の製造、チーズホエーの濃縮・脱塩、濃縮乳の製造、卵白の濃縮、バイオリアクターへの利用、気体中の微粒子除去、原子力発電所の水処理等、様々な分野で実用化されている。 Conventionally, hollow fiber membranes have been used for removing bacteria and protozoa in the water purification field, removing impurities in the industrial field, separating or concentrating heat-sensitive substances such as proteins and enzymes, artificial dialysis in the medical field, and manufacturing pharmaceuticals and medical water. Virus and protein removal, ultra-pure water production, electrodeposition paint recovery, yarn and pulp factory sewage treatment, oil-containing wastewater treatment, building wastewater treatment, fruit juice clarification, sake production, cheese whey concentration -It has been put to practical use in various fields such as desalination, production of concentrated milk, concentration of egg white, use in bioreactors, removal of fine particles in gas, and water treatment of nuclear power plants.

一方、上記の様な異物除去、分離精製を目的とした使用方法のみではなく、膜の物質透過性能を利用することにより中空糸膜を細胞培養に応用する例が報告されている。例えば特許文献1には、ガス供給用と培地供給用の2種類の中空糸膜を使用しその間に位置するナノファイバーで細胞を培養する方法が開示されている。この場合、細胞は中空糸膜の外部に位置しており中空糸膜は栄養分や酸素の供給と足場材料の一部としてのみ使用されていた。 On the other hand, there have been reports of applications of hollow fiber membranes to cell culture by utilizing the substance permeation performance of membranes, in addition to the above-mentioned usage methods for the purpose of removing foreign substances and separating and purifying. For example, Patent Document 1 discloses a method of culturing cells with nanofibers located between two types of hollow fiber membranes, one for gas supply and the other for medium supply. In this case, the cells were located outside the hollow fiber membrane, which was used only as part of the nutrient and oxygen supply and scaffolding material.

また、特許文献2には、中空糸膜の内部に肝細胞を充填し培養する方法が開示されている。この方法は、効率の良い培養方法ではあるが、培養時間の経過とともに活性が著しく低下する問題があった。特許文献3には、上記と同様の方法で幹細胞を培養する方法が開示されており、特許文献4には、iPS細胞を培養する方法が開示されている。これらは、細胞の未分化性を維持しつつ多能性細胞を大量に培養する方法となっている。 Further, Patent Document 2 discloses a method of filling and culturing hepatocytes inside a hollow fiber membrane. Although this method is an efficient culturing method, there is a problem that the activity is remarkably lowered with the lapse of culturing time. Patent Document 3 discloses a method for culturing stem cells in the same manner as described above, and Patent Document 4 discloses a method for culturing iPS cells. These are methods for culturing a large amount of pluripotent cells while maintaining the undifferentiated state of the cells.

上記の様に中空糸膜内で細胞を培養する方法は、細胞が産生する物質を中空糸膜外部に取り出せることから、中空糸膜束やモジュールの形状で人工肝臓等の人工臓器として利用することができ医療分野、工業分野で非常に有用な技術である。また、中空糸膜内で培養された細胞は円柱状の細胞集合塊として取り出すこともできる。 As described above, the method of culturing cells in the hollow fiber membrane is to use the substance produced by the cells as an artificial organ such as an artificial liver in the form of a hollow fiber membrane bundle or a module because the substance produced by the cells can be taken out from the hollow fiber membrane. It is a very useful technology in the medical and industrial fields. In addition, the cells cultured in the hollow fiber membrane can be taken out as a columnar cell aggregate.

しかしながら、上記の細胞培養に使われる中空糸膜は内径が285μmや330μmと大きいものが使われており、細胞が充填される部分の内径面積が大きいことから、中心部まで十分に酸素や栄養分が行き渡らず内部の細胞が壊死する問題があった。このような問題を解決するために、特許文献5には、中空糸膜を押しつぶして異形断面にすることで細胞生存率を上げる方法が開示されている。しかし、異形断面を作る工程によりコストアップする問題や、異形断面にすることで内部の細胞集合塊を効率よく取り出すことが困難になる問題があった。 However, the hollow fiber membrane used for the above cell culture has a large inner diameter of 285 μm or 330 μm, and since the inner diameter area of the part where the cells are filled is large, sufficient oxygen and nutrients can be supplied to the central part. There was a problem that the cells inside did not spread and died. In order to solve such a problem, Patent Document 5 discloses a method of increasing the cell viability by crushing the hollow fiber membrane to form a deformed cross section. However, there is a problem that the cost is increased by the process of making the deformed cross section, and there is a problem that it is difficult to efficiently take out the cell aggregate inside by making the deformed cross section.

さらに、このような細胞培養に使用する中空糸膜は親水性が高いものが良いとされてきたため、例えば特許文献4,5では中空糸膜の素材にはポリエチレンにエチレン・ビニルアルコール共重合体をコートしたものが使われてきた。この場合エチレン・ビニルアルコール共重合体により親水化されるものの、親水性の程度は低くコート剤の剥離や溶出といった懸念があった。 Further, it has been considered that the hollow fiber membrane used for such cell culture should have high hydrophilicity. Therefore, for example, in Patent Documents 4 and 5, polyethylene and an ethylene / vinyl alcohol copolymer are used as the material of the hollow fiber membrane. Coated ones have been used. In this case, although it is made hydrophilic by the ethylene / vinyl alcohol copolymer, the degree of hydrophilicity is low and there is a concern that the coating agent may be peeled off or eluted.

特開2010−148496号公報Japanese Unexamined Patent Publication No. 2010-148496 特開2004−166717号公報Japanese Unexamined Patent Publication No. 2004-166717 特開2014−60991号公報Japanese Unexamined Patent Publication No. 2014-60991 特開2006−7207号公報Japanese Unexamined Patent Publication No. 2006-7207 国際公開WO2004/20614号International release WO2004 / 20614

本発明は、上記のような問題点を解決し、高い細胞生存率を維持し取扱いのしやすい細胞培養用中空糸膜を提供することを技術的な課題とするものである。 An object of the present invention is to solve the above-mentioned problems and to provide a hollow fiber membrane for cell culture that maintains a high cell viability and is easy to handle.

本発明者らは、上記の課題を解決するために鋭意検討したところ、細胞を中空部分内に導入して培養するための高分子製中空糸膜であって、内径が20μm〜150μmの範囲であり、膜厚が30μm〜250μmの範囲であり、中空糸膜壁を液体が通過することのできる多孔質となっている細胞培養用中空糸膜を使用することで、好適に細胞が培養でき高い生存率を達成できることを見出した。 The present inventors have diligently studied to solve the above-mentioned problems, and found that it is a polymer hollow fiber membrane for introducing and culturing cells into a hollow portion, and has an inner diameter in the range of 20 μm to 150 μm. By using a hollow fiber membrane for cell culture, which has a film thickness in the range of 30 μm to 250 μm and is porous so that a liquid can pass through the hollow fiber membrane wall, cells can be suitably cultured and high. We found that survival rates could be achieved.

即ち、本発明は、下記に掲げる態様の細胞培養用中空糸膜及び中空糸膜モジュールを提供する。
項1. 細胞を中空部分内に導入して培養するための高分子製中空糸膜であり、内径が20μm〜150μmの範囲であり、膜厚が30μm〜250μmの範囲であり、中空糸膜壁を液体が通過することのできる多孔質となっている、細胞培養用中空糸膜。
項2. 前記中空糸膜が、孔径0.02μm〜0.5μmの範囲である、項1に記載の細胞培養用中空糸膜。
項3. 前記中空糸膜の水に対する接触角が60°以下であり、25℃の純水透水量が300L/(m2・atm・h)以上である、項1または2に記載の細胞培養用中空糸膜。
項4. 前記中空糸膜が、ポリアミド及び/又はポリアミドの共重合体である、項1〜3のいずれかに記載の細胞培養用中空糸膜。
項5. 前記中空糸膜の内径が、90μm〜150μmの範囲である、項1〜4いずれかに記載の細胞培養用中空糸膜。
項6. 項1〜5のいずれかに記載の細胞培養用中空糸膜が複数本同方向に配置されており、片方の端部又は両方の端部が接着剤によってシールされており、少なくとも一方の端部は開口した状態となっている、細胞培養用の中空糸膜モジュール。
項7. 項1〜5のいずれかに記載の細胞培養用中空糸膜の内部に細胞を充填し、前記細胞培養用中空糸膜を当該細胞の培養液に浸漬し、当該細胞にとって適切な温湿度、ガス雰囲気下に置いて培養する、細胞の培養方法。
That is, the present invention provides a hollow fiber membrane for cell culture and a hollow fiber membrane module according to the following aspects.
Item 1. A polymer hollow fiber membrane for introducing and culturing cells into a hollow portion, the inner diameter is in the range of 20 μm to 150 μm, the film thickness is in the range of 30 μm to 250 μm, and the hollow fiber membrane wall is covered with liquid. A hollow fiber membrane for cell culture that is porous and can pass through.
Item 2. Item 2. The hollow fiber membrane for cell culture according to Item 1, wherein the hollow fiber membrane has a pore size in the range of 0.02 μm to 0.5 μm.
Item 3. Item 2. The hollow fiber for cell culture according to Item 1 or 2, wherein the contact angle of the hollow fiber membrane with water is 60 ° or less, and the amount of pure water permeated at 25 ° C. is 300 L / (m 2 · atm · h) or more. film.
Item 4. Item 2. The hollow fiber membrane for cell culture according to any one of Items 1 to 3, wherein the hollow fiber membrane is a polyamide and / or a copolymer of polyamide.
Item 5. Item 2. The hollow fiber membrane for cell culture according to any one of Items 1 to 4, wherein the inner diameter of the hollow fiber membrane is in the range of 90 μm to 150 μm.
Item 6. Item 2. A plurality of hollow fiber membranes for cell culture according to any one of Items 1 to 5 are arranged in the same direction, one end or both ends are sealed with an adhesive, and at least one end. Is an open hollow fiber membrane module for cell culture.
Item 7. Item 2. The cell culture hollow filament membrane according to any one of Items 1 to 5 is filled with cells, the cell culture hollow filament membrane is immersed in the culture solution of the cells, and the temperature and humidity and gas suitable for the cells are used. A cell culture method in which cells are cultured in an atmosphere.

本発明の細胞培養用中空糸膜は、細胞の生存率、代謝活性が高いレベルで維持されることから、効率よく細胞増殖、有用物質産生等が行える。また、ヒト細胞を用いることにより例えば人工肝臓などの形態で使用でき、機能低下した臓器を補完する医療用具としても効果的に使用できる。このことから、本発明の細胞培養用中空糸膜は、製薬分野、医療分野、食品分野、化学工業分野における製造、医療、及び/又は研究開発において好適に使用されるものである。 Since the hollow fiber membrane for cell culture of the present invention maintains a high level of cell viability and metabolic activity, cell proliferation and production of useful substances can be efficiently performed. Further, by using human cells, it can be used in the form of, for example, an artificial liver, and can be effectively used as a medical device for supplementing a functionally deteriorated organ. From this, the hollow fiber membrane for cell culture of the present invention is suitably used in manufacturing, medical treatment, and / or research and development in the fields of pharmaceuticals, medical fields, food fields, and chemical industries.

本発明のポリアミド中空糸膜の純水透水量を測定する装置の概略図である。It is the schematic of the apparatus for measuring the pure water permeability of the polyamide hollow fiber membrane of this invention. 実施例1,2及び比較例1における細胞培養期間と細胞生存率との関係を示すグラフである。It is a graph which shows the relationship between the cell culture period and the cell viability in Examples 1, 2 and Comparative Example 1. 実施例1,2及び比較例1における細胞培養期間とアンモニア除去能との関係を示すグラフである。It is a graph which shows the relationship between the cell culture period and the ammonia removal ability in Examples 1 and 2 and Comparative Example 1. 実施例1,2及び比較例1における細胞培養期間とアルブミン分泌能との関係を示すグラフである。It is a graph which shows the relationship between the cell culture period and the albumin secretory ability in Examples 1 and 2 and Comparative Example 1. 実施例1において、培養7日後の中空糸膜中の細胞の低酸素誘導因子の発現を免疫蛍光染色によって確認した顕微鏡写真である。In Example 1, it is a micrograph which confirmed the expression of the hypoxia-inducing factor of the cell in the hollow fiber membrane after 7 days of culture by immunofluorescence staining. 比較例1において、培養7日後の中空糸膜中の細胞の低酸素誘導因子の発現を免疫蛍光染色によって確認した顕微鏡写真である。In Comparative Example 1, it is a micrograph which confirmed the expression of the hypoxia-inducing factor of the cell in the hollow fiber membrane after 7 days of culture by immunofluorescence staining. 実施例3及び比較例3における培養日数と細胞密度との関係を示すグラフである。It is a graph which shows the relationship between the culture days and the cell density in Example 3 and Comparative Example 3. 実施例3及び比較例3における培養日数とアンモニア除去能との関係を示すグラフである。It is a graph which shows the relationship between the culture days and the ammonia removal ability in Example 3 and Comparative Example 3. 実施例3及び比較例3における培養日数と尿素生成能との関係を示すグラフである。It is a graph which shows the relationship between the culture days and the urea-producing ability in Example 3 and Comparative Example 3.

本発明の細胞培養用中空糸膜は、細胞を中空部分内に導入して培養するための高分子製中空糸膜である。高分子としては、本発明の効果を損なわない限りいかなるものでも使用でき、例えばポリアミド、ポリエチレン、ポリアリレート、ポリスルホン、ポリエーテルスルホン、ポリエステル、ポリビニルアルコール、ポリ酢酸ビニル、エチレン・ビニルアルコール共重合体、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、酢酸セルロース、ポリアクリロニトリル等が挙げられる。これらの高分子は単独で使用しても二種類以上の共重合体であっても良いし混合使用しても良い。これらの中ではポリアミド及び/又はポリアミドの共重合体が好ましい。ポリアミドとしては、ポリアミド6、ポリアミド66、ポリアミド46、ポリアミド610、ポリアミド612、ポリアミド11、ポリアミド12、ポリアミドMXD6、ポリアミド4T、ポリアミド6T、ポリアミド9T、ポリアミド10T等が挙げられる。また、ポリアミドの共重合体としては、具体的には、ポリアミドとポリテトラメチレングリコール又はポリエチレングリコール等のポリエーテルとの共重合体等が挙げられる。また、ポリアミドの共重合体におけるポリアミド成分の比率については、特に制限されないが、例えば、ポリアミド成分が占める割合として、好ましくは70モル%以上が挙げられる。ポリアミドの共重合体においてポリアミド成分の比率が上記範囲を充足することにより、比較的強直で強度のある中空糸膜となる。これらの中でより好ましいのはポリアミド6、ポリアミド66、ポリアミド46、ポリアミド610、ポリアミド11であり、最も好ましいのはポリアミド6である。 The hollow fiber membrane for cell culture of the present invention is a polymer hollow fiber membrane for introducing and culturing cells into a hollow portion. Any polymer can be used as long as the effects of the present invention are not impaired. For example, polyamide, polyethylene, polyarylate, polysulfone, polyethersulfone, polyester, polyvinyl alcohol, polyvinyl acetate, ethylene / vinyl alcohol copolymer, etc. Examples thereof include polyvinylidene fluoride, polytetrafluoroethylene, cellulose acetate, polyacrylonitrile and the like. These polymers may be used alone, or may be two or more types of copolymers, or may be used in combination. Among these, polyamide and / or a copolymer of polyamide is preferable. Examples of the polyamide include polyamide 6, polyamide 66, polyamide 46, polyamide 610, polyamide 612, polyamide 11, polyamide 12, polyamide MXD6, polyamide 4T, polyamide 6T, polyamide 9T, and polyamide 10T. Specific examples of the polyamide copolymer include a copolymer of polyamide and a polyether such as polytetramethylene glycol or polyethylene glycol. The ratio of the polyamide component in the polyamide copolymer is not particularly limited, but for example, the ratio of the polyamide component is preferably 70 mol% or more. When the ratio of the polyamide component in the polyamide copolymer satisfies the above range, a relatively tough and strong hollow fiber membrane is obtained. Of these, polyamide 6, polyamide 66, polyamide 46, polyamide 610, and polyamide 11 are more preferred, with polyamide 6 being the most preferred.

本発明の中空糸膜の内径は、20μm〜150μmの範囲であり、好ましくは50μm〜150μmであり、さらに好ましくは80μm〜150μmであり、特に好ましくは90〜150μmである。この範囲より小さい場合には細胞の充填が困難になり、この範囲より大きい場合には酸素や栄養不足により細胞の生存率が低下する問題がある。 The inner diameter of the hollow fiber membrane of the present invention is in the range of 20 μm to 150 μm, preferably 50 μm to 150 μm, more preferably 80 μm to 150 μm, and particularly preferably 90 to 150 μm. If it is smaller than this range, it becomes difficult to fill the cells, and if it is larger than this range, there is a problem that the survival rate of cells is lowered due to lack of oxygen and nutrition.

本発明の中空糸膜の膜厚は、30μm〜250μmの範囲であり、好ましくは30μm〜150μmであり、さらに好ましくは50μm〜120μmであり、特に好ましくは80μm〜100μmである。この範囲より小さい場合には中空糸膜の強度が弱くなる問題があり、この範囲より大きい場合には中空糸膜壁の物質移動がスムーズにならないことから細胞の生存率が低下する可能性がある。 The film thickness of the hollow fiber membrane of the present invention is in the range of 30 μm to 250 μm, preferably 30 μm to 150 μm, more preferably 50 μm to 120 μm, and particularly preferably 80 μm to 100 μm. If it is smaller than this range, there is a problem that the strength of the hollow fiber membrane is weakened, and if it is larger than this range, the mass transfer of the hollow fiber membrane wall is not smooth, so that the cell viability may decrease. ..

本発明の中空糸膜は、中空糸膜壁が多孔質となっており、外側から内側、又は内側から外側に液体が透過することができる。このことにより、新鮮な培地が外側から供給され、老廃物が内側から排泄される。中空糸膜の孔径は0.02μm〜0.5μmの範囲であることが好ましく、0.05μm〜0.3μmがより好ましく、0.05μm〜0.2μmがさらに好ましく、0.08μm〜0.12μmが特に好ましい。この範囲より小さい場合は物質移動がスムーズにならない可能性があり、この範囲より大きい場合には中空糸膜の強度低下が起こる可能性がある。ここでいう孔径とは、中空糸膜の内側から外側に、ポリスチレンラテックス微粒子の水懸濁液を流した際に90%以上が阻止されるときのポリスチレンラテックス微粒子の直径である。 In the hollow fiber membrane of the present invention, the hollow fiber membrane wall is porous, and a liquid can permeate from the outside to the inside or from the inside to the outside. As a result, fresh medium is supplied from the outside and waste products are excreted from the inside. The pore size of the hollow fiber membrane is preferably in the range of 0.02 μm to 0.5 μm, more preferably 0.05 μm to 0.3 μm, further preferably 0.05 μm to 0.2 μm, and 0.08 μm to 0.12 μm. Is particularly preferable. If it is smaller than this range, mass transfer may not be smooth, and if it is larger than this range, the strength of the hollow fiber membrane may decrease. The pore diameter referred to here is the diameter of the polystyrene latex fine particles when 90% or more is blocked when the aqueous suspension of the polystyrene latex fine particles is flowed from the inside to the outside of the hollow fiber membrane.

本発明において、粒子阻止率は、0.1%TritonX−100水溶液299mlに、Duke Scientific社製の所定の孔径のポリスチレン微粒子を1ml添加して、3時間攪拌分散し、これを図1の透水量測定装置に通液し、膜を透過した液を回収し、膜透過前後の液の380nmの吸光度を測定し、下式により求めたものである。
粒子阻止率=(初期吸光度−透過液吸光度)/初期吸光度×100
In the present invention, the particle blocking rate is determined by adding 1 ml of polystyrene fine particles having a predetermined pore size manufactured by Duke Scientific Co., Ltd. to 299 ml of a 0.1% Triton X-100 aqueous solution, stirring and dispersing for 3 hours, and the amount of water permeation shown in FIG. The liquid was passed through a measuring device, the liquid that had passed through the membrane was collected, and the absorbance of the liquid before and after the membrane permeation at 380 nm was measured and calculated by the following formula.
Particle blocking rate = (initial absorbance-permeate absorbance) / initial absorbance x 100

本発明の細胞培養用中空糸膜は、素材自体が親水性に優れるものである。親水性の指標として、本発明では水に対する接触角を採用した。水に対する接触角は、膜の表面に0.1〜2.0μl量の純水の水滴を優しく接触させ、膜の表面に形成された水滴の端点における接線と膜表面とのなす角度を接触角計で測定して求めたものである。したがって、この値が小さいほど親水性が高いといえる。なお、本明細書中での接触角の測定値は、協和界面科学製の自動接触角計DM−500を使用した値である。 The material itself of the hollow fiber membrane for cell culture of the present invention is excellent in hydrophilicity. In the present invention, the contact angle with water is adopted as an index of hydrophilicity. The contact angle with water is the angle between the tangent line at the end point of the water droplet formed on the surface of the membrane and the surface of the membrane by gently contacting the surface of the membrane with water droplets of 0.1 to 2.0 μl. It was obtained by measuring with a meter. Therefore, it can be said that the smaller this value is, the higher the hydrophilicity is. The measured value of the contact angle in the present specification is a value using an automatic contact angle meter DM-500 manufactured by Kyowa Interface Science.

水に対する接触角は、通常65°以下であり、好ましくは60°以下であり、さらに好ましくは55°以下である。この値より高ければ親水性が低く、物質移動がスムーズに行かない、細胞の増殖性が悪くなる、増殖後の細胞塊の取得性が悪くなるなどの問題がある。 The contact angle with water is usually 65 ° or less, preferably 60 ° or less, and more preferably 55 ° or less. If it is higher than this value, the hydrophilicity is low, and there are problems such as not smooth mass transfer, poor cell proliferation, and poor acquisition of cell mass after proliferation.

また、本発明の細胞培養用中空糸膜は、物質移動性能のひとつとして25℃における純水の透水量が、好ましくは300L/(m2・atm・h)以上であり、より好ましくは300L/(m2・atm・h)〜2500L/(m2・atm・h)であり、さらに好ましくは800L/(m2・atm・h)〜2000L/(m2・atm・h)であり、特に好ましくは1200L/(m2・atm・h)〜1800L/(m2・atm・h)である。 Further, the hollow thread membrane for cell culture of the present invention has a water permeation amount of pure water at 25 ° C. of preferably 300 L / (m 2 · atm · h) or more, more preferably 300 L / / as one of the substance transfer performances. It is (m 2 · atm · h) to 2500 L / (m 2 · atm · h), more preferably 800 L / (m 2 · atm · h) to 2000 L / (m 2 · atm · h), and in particular. preferably from 1200L / (m 2 · atm · h) ~1800L / (m 2 · atm · h).

ここで、本発明における透水量は、内圧式ろ過によって測定した値であり、具体的には、中空糸膜を10〜20cmに切断し、両端の中空部分に内径に合う径の注射針を挿入し、図1に示すような装置にセットした後、所定時間(分)送液ポンプ13で純水を通し、膜を透過して受け皿18に貯まった水の容量(L)を透過水量とし、以下の式により求めたものである。 Here, the amount of water permeation in the present invention is a value measured by internal pressure filtration. Specifically, the hollow fiber membrane is cut to 10 to 20 cm, and injection needles having a diameter matching the inner diameter are inserted into the hollow portions at both ends. Then, after setting in the device as shown in FIG. 1, pure water is passed through the liquid feed pump 13 for a predetermined time (minutes), and the volume (L) of water that has passed through the membrane and stored in the saucer 18 is defined as the amount of permeated water. It was calculated by the following formula.

透水量=透過水量(L)/[内径(m)×3.14×長さ(m)×{(入口圧(気圧)+出口圧(気圧))/2}×時間] Permeable amount = Permeable water amount (L) / [Inner diameter (m) x 3.14 x Length (m) x {(Inlet pressure (atmospheric pressure) + Outlet pressure (atmospheric pressure)) / 2} x time]

透水量が300L/m2・atm・h未満であれば、物質移動がスムーズに行かず細胞の増殖性や活性が低下する場合がある。 If the amount of water permeation is less than 300 L / m 2 · atm · h, mass transfer may not proceed smoothly and cell proliferation and activity may decrease.

本発明の細胞培養用中空糸膜は、そのままでも使用できるが、より効率的に使用するためにはモジュール形状にすることができる。モジュールは、本発明の効果を損なわない限りどのような形状でもかまわないが、中空糸膜が複数本同方向に配置され、少なくとも片方の端部又は両方の端部が接着剤によってシールされており、少なくとも一方の端部は開口している状態となっていることが好ましい。中空糸膜の長さはその用途によって変えることができる。開口させる方の端部は、接着剤により複数の中空糸膜束を接着し、中空糸膜束を垂直方向に接着剤と共に切断することで良好に開口させることができる。この時使用する接着剤の種類は特に限定されないが、エポキシ樹脂、ウレタン樹脂、ポリエチレン樹脂等が好ましく、エポキシ樹脂、ウレタン樹脂がさらに好ましい。 The hollow fiber membrane for cell culture of the present invention can be used as it is, but it can be made into a modular shape for more efficient use. The module may have any shape as long as the effects of the present invention are not impaired, but a plurality of hollow fiber membranes are arranged in the same direction, and at least one end or both ends are sealed with an adhesive. , It is preferable that at least one end is open. The length of the hollow fiber membrane can be changed depending on the application. The end portion to be opened can be satisfactorily opened by adhering a plurality of hollow fiber membrane bundles with an adhesive and cutting the hollow fiber membrane bundles in the vertical direction together with the adhesive. The type of adhesive used at this time is not particularly limited, but epoxy resin, urethane resin, polyethylene resin and the like are preferable, and epoxy resin and urethane resin are more preferable.

開口させない方の端部は、接着剤を使用せず熱によって融着させて閉口させることもできるし、上述のような接着剤で固めることによって接着させることもできる。開口させない方の端部は複数の中空糸膜が一緒に固められていても良いし、ばらけていても構わない。 The end portion to be not opened can be fused by heat without using an adhesive to close the mouth, or can be adhered by hardening with an adhesive as described above. A plurality of hollow fiber membranes may be solidified together or separated at the end portion to be not opened.

本発明の細胞培養用の中空糸膜は、内部に細胞を導入して培養するものである。細胞の導入方法は、本発明の効果を損なわない限りいかなる方法でも用いることができる。小型モジュールの場合には、注射筒等を用いて圧入する方法を取ることができる。中型、大型のモジュールの場合、ポンプ等により培地と共に細胞を送液し圧入する方法を取ることができる。上記等の方法で細胞を中空糸膜内部に導入した後は、遠心や吸引等の方法で中空糸膜の端部に寄せることができる。 The hollow fiber membrane for cell culture of the present invention introduces cells into the hollow fiber membrane for culturing. The method for introducing cells can be any method as long as the effects of the present invention are not impaired. In the case of a small module, a method of press-fitting using a syringe or the like can be adopted. In the case of medium-sized and large-sized modules, a method can be adopted in which cells are pumped together with the medium and press-fitted. After the cells are introduced into the hollow fiber membrane by the above method or the like, the cells can be brought to the end of the hollow fiber membrane by a method such as centrifugation or suction.

細胞が導入された中空糸膜は、その細胞が好適に増殖、分化、機能発現できる環境に置いて、細胞を培養することが好ましい。その環境としては、培地の組成・種類、温度・湿度、ガス組成、振動の有無等が挙げられる。例えば、ヒト細胞の培養の場合、温度37℃、湿度90%〜95%、ガス組成5%二酸化炭素、95%空気の環境で培養することが好ましい。細胞が導入された中空糸膜は、中空糸膜を通して栄養分、ガス、老廃物のやり取りをするため、培地の中に浸った状態で培養されることが好ましい。 The hollow fiber membrane into which the cells have been introduced is preferably placed in an environment in which the cells can preferably proliferate, differentiate, and express functions, and the cells are preferably cultured. Examples of the environment include the composition / type of medium, temperature / humidity, gas composition, presence / absence of vibration, and the like. For example, in the case of culturing human cells, it is preferable to culture them in an environment of a temperature of 37 ° C., a humidity of 90% to 95%, a gas composition of 5% carbon dioxide, and 95% air. The hollow fiber membrane into which cells have been introduced exchanges nutrients, gas, and waste products through the hollow fiber membrane, and therefore is preferably cultured in a medium.

本発明の細胞培養用中空糸膜で培養される細胞は特に限定されないが、動物細胞であることが好ましい。かかる細胞としては、肝細胞、脂肪細胞、伊藤細胞等の代謝及び貯蔵細胞、腎臓傍細胞、糸球体上皮細胞、導管細胞等のバリア機能細胞、乳腺細胞、唾液腺粘液細胞、前立腺細胞等の外分泌上皮細胞、脳下垂体前葉細胞、甲状腺細胞、副腎細胞、黄体細胞等のホルモン分泌細胞、表皮基底細胞、毛管細胞等の角質化上皮細胞、各種神経細胞、角膜線維芽細胞、軟骨細胞、骨芽細胞等のマトリックス細胞、骨格筋細胞、心筋細胞、筋衛星細胞、平滑筋細胞等の筋細胞、白血球、赤血球、好中球、肥満細胞、ナチュラルキラー細胞、等の血液及び免疫系細胞、卵細胞、精母細胞等の胚細胞、ナース細胞、ES細胞、iPS細胞等の幹細胞等が挙げられる。これらの中で、肝細胞、脂肪細胞、軟骨細胞、筋細胞、幹細胞が好ましい。 The cells cultured in the hollow fiber membrane for cell culture of the present invention are not particularly limited, but are preferably animal cells. Examples of such cells include metabolic and storage cells such as hepatocytes, fat cells and Ito cells, barrier function cells such as pararenal cells, glomerular epithelial cells and conduit cells, exocrine epithelium such as mammary gland cells, salivary gland mucous cells and prostate cells. Cells, pituitary anterior lobe cells, thyroid cells, adrenal cells, luteinizing cells and other hormone-secreting cells, epidermal basal cells, capillary cells and other keratinized epithelial cells, various nerve cells, corneal fibroblasts, cartilage cells, osteoblasts Matrix cells, skeletal muscle cells, myocardial cells, muscle satellite cells, smooth muscle cells such as muscle cells, leukocytes, erythrocytes, neutrophils, obesity cells, natural killer cells, etc. Examples thereof include embryo cells such as mother cells, nurse cells, ES cells, stem cells such as iPS cells and the like. Among these, hepatocytes, adipocytes, chondrocytes, muscle cells and stem cells are preferable.

以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to these Examples.

なお、実施例中、中空糸膜の透水量は上述した方法により測定した。 In the examples, the water permeability of the hollow fiber membrane was measured by the method described above.

実施例1
熱誘起相分離法にて製膜した孔径0.1μmのポリアミド6中空糸膜(内径118μm、膜厚85μm、透水量1500L/(m2・atm・h)、水接触角51°、ユニチカ株式会社製)を9本束ね、有効長さ26mmになるようにモジュールを作製した。モジュールは両端をシリコンゴムで接着し、片端は注射筒に連結できるような構造にした。中空糸膜内部の有効培養体積は2.6mm2であった。このモジュールにラット初代肝細胞を2.2×106個導入し、遠心機にて200G×180秒遠心し細胞を充填した。これを培地中に置き温度37℃、湿度95%、二酸化炭素濃度5%の条件下45rpmで旋回培養した。その結果、細胞生存率は図2に示すように7日間培養後も40%以上と高い値を示した。また、図3に示すようにアンモニア除去速度は約400μmol/cm3/日、図4に示すようにアルブミン分泌速度は約2mg/cm3/日といずれも高い値を示し、肝細胞として高い機能を発現したことが分かった。
培養7日後の中空糸膜中の細胞において、酸素欠乏性を把握するため低酸素誘導因子の発現を免疫蛍光染色によって確認したところ、図5に示すように緑色の細胞は中心部までほとんど無く、酸素が欠乏していない様子が確認できた。
Example 1
Polyamide 6 hollow fiber membrane with a pore size of 0.1 μm (inner diameter 118 μm, film thickness 85 μm, water permeability 1500 L / (m 2 · atm · h), water contact angle 51 °, Unitika Ltd.) The module was manufactured so that the effective length was 26 mm by bundling nine of them. Both ends of the module were glued with silicone rubber, and one end was structured so that it could be connected to a syringe barrel. The effective culture volume inside the hollow fiber membrane was 2.6 mm 2 . 2.2 × 10 6 rat primary hepatocytes were introduced into this module and centrifuged at 200 G × 180 seconds with a centrifuge to fill the cells. This was placed in a medium and cultivated by swirling at 45 rpm under the conditions of a temperature of 37 ° C., a humidity of 95%, and a carbon dioxide concentration of 5%. As a result, as shown in FIG. 2, the cell viability showed a high value of 40% or more even after culturing for 7 days. In addition, as shown in FIG. 3, the ammonia removal rate was about 400 μmol / cm 3 / day, and as shown in FIG. 4, the albumin secretion rate was about 2 mg / cm 3 / day, both showing high values, and high function as hepatocytes. Was found to have been expressed.
When the expression of hypoxia-inducible factor was confirmed by immunofluorescence staining in the cells in the hollow fiber membrane 7 days after culturing in order to grasp the oxygen deficiency, as shown in FIG. 5, there were almost no green cells up to the center. It was confirmed that oxygen was not deficient.

実施例2
ポリアミド6中空糸膜に孔径0.1μm、内径148μm、膜厚94μm、透水量1500L/(m2・atm・h)、水接触角51°のものを用い、これを8本束ね、有効長さ19mmになるようにモジュールを作製した以外は実施例1と同様にラット初代肝細胞を培養した。この時のモジュールの有効培養体積は2.6mm2であった。その結果、細胞生存率は図2に示すように7日間培養後も40%以上と高い値を示した。また、図3に示すように7日間培養後のアンモニア除去速度は約350μmol/cm3/日、図4に示すように7日間培養後のアルブミン分泌速度は約2mg/cm3/日といずれも高い値を示し、肝細胞として高い機能を発現したことが分かった。
Example 2
A polyamide 6 hollow fiber membrane having a pore diameter of 0.1 μm, an inner diameter of 148 μm, a film thickness of 94 μm, a water permeability of 1500 L / (m 2 · atm · h), and a water contact angle of 51 ° was used. Rat primary hepatocytes were cultured in the same manner as in Example 1 except that the module was prepared to be 19 mm. The effective culture volume of the module at this time was 2.6 mm 2 . As a result, as shown in FIG. 2, the cell viability showed a high value of 40% or more even after culturing for 7 days. As shown in FIG. 3, the ammonia removal rate after culturing for 7 days was about 350 μmol / cm 3 / day, and as shown in FIG. 4, the albumin secretion rate after culturing for 7 days was about 2 mg / cm 3 / day. It showed a high value, and it was found that it expressed a high function as a hepatocyte.

比較例1
中空糸膜にエチレン−ビニルアルコールコートのポリエチレン製血漿分離膜(孔径0.3μm、内径330μm、膜厚50μm)を用い、これを2本束ね、有効長さ15mmになるようにモジュールを作製した以外は実施例1と同様にラット初代肝細胞を培養した。この時のモジュールの有効培養体積は2.6mm2であった。その結果、細胞生存率は図2に示すように7日間培養後には15%程度と著しく低下した。また、図3に示すように7日間培養後のアンモニア除去速度は約200μmol/cm3/日、図4に示すように7日間培養後のアルブミン分泌速度は約0.8mg/cm3/日といずれも低くなった。
培養7日後の中空糸膜中の細胞において、酸素欠乏性を把握するため低酸素誘導因子の発現を免疫蛍光染色によって確認したところ、図6に示すように中空糸膜内部の細胞はほとんどが緑色に発色しており、大部分の細胞において酸素が欠乏している様子が確認できた。
Comparative Example 1
A polyethylene plasma separation membrane (pore diameter 0.3 μm, inner diameter 330 μm, film thickness 50 μm) coated with ethylene-vinyl alcohol was used for the hollow fiber membrane, and two of these membranes were bundled to prepare a module so that the effective length was 15 mm. Cultured rat primary hepatocytes in the same manner as in Example 1. The effective culture volume of the module at this time was 2.6 mm 2 . As a result, as shown in FIG. 2, the cell viability was remarkably reduced to about 15% after culturing for 7 days. As shown in FIG. 3, the ammonia removal rate after culturing for 7 days was about 200 μmol / cm 3 / day, and as shown in FIG. 4, the albumin secretion rate after culturing for 7 days was about 0.8 mg / cm 3 / day. Both became low.
When the expression of hypoxia-inducing factor was confirmed by immunofluorescence staining in the cells in the hollow fiber membrane 7 days after culturing in order to grasp the oxygen deficiency, as shown in FIG. 6, most of the cells inside the hollow fiber membrane were green. It was confirmed that most of the cells were deficient in oxygen.

比較例2
中空糸膜にポリアミド6中空糸膜(孔径0.1μm、内径366μm、膜厚105μm、透水量4000L/(m2・atm・h)、水接触角51°、ユニチカ株式会社製)を用い、これを2本束ね、有効長さ12mmになるようにモジュールを作製した以外は実施例1と同様にラット初代肝細胞を培養した。この時のモジュールの有効培養体積は2.5mm2であった。その結果、細胞生存率は7日間培養後には20%程度と著しく低下した。
Comparative Example 2
Polyamide 6 hollow fiber membrane (pore diameter 0.1 μm, inner diameter 366 μm, film thickness 105 μm, water permeability 4000 L / (m 2 · atm · h), water contact angle 51 °, manufactured by Unitika Co., Ltd.) was used as the hollow fiber membrane. Rat primary hepatocytes were cultured in the same manner as in Example 1 except that a module was prepared so as to have an effective length of 12 mm by bundling two of them. The effective culture volume of the module at this time was 2.5 mm 2 . As a result, the cell viability was remarkably reduced to about 20% after culturing for 7 days.

実施例3
実施例1で使用した孔径0.1μmのポリアミド6中空糸膜(内径118μm、膜厚85μm、透水量1500L/(m2・atm・h)、水接触角51°、ユニチカ株式会社製)を10本束ね、有効長さ22mmになるようにモジュールを作製した。モジュールは両端をシリコンゴムで接着し、片端は注射筒に連結できるような構造にした。中空糸膜内部の有効培養体積は2.4mm2であった。このモジュールに、マウス肝がん由来ヘパトーマ細胞(Hepa1−6)に対し、薬剤誘導型遺伝子発現誘導系を用いて8つの肝転写因子を発現するよう樹立された細胞株を導入し、実施例1と同様に、遠心機にて200G×180秒遠心し細胞を充填した。細胞に導入した導入転写因子は、Hepatocyte nuclear factor(HNF)−1α、−1β、−3β、−4α、6及び、CCAAT/enhancer binding protein(C/EBP)−α、−β、−γである(Biochemical Engineering Journal 60,67-73, 2012)。このモジュールを培養5日目まではDMEM及び10%FBSの培地にて増殖培養を行い、5日目からはドキシサイクリンを0.1μg/mL添加した培地にて機能発現誘導を行った。その結果、細胞数は図7に示すように5日目まで細胞は順調に増殖し、機能発現誘導以降は徐々に低減した。またアンモニア除去速度は図8のように12日後に約700μmol/cm3/日と高い値を示し、尿素生成速度も図9のように12日後に約30mg/cm3/日と高い値を示した。このことから、遺伝子導入細胞株においても本発明の中空糸膜を用いることで効果的な増殖、機能発現ができることがわかった。
Example 3
10 of the polyamide 6 hollow fiber membranes (inner diameter 118 μm, film thickness 85 μm, water permeability 1500 L / (m 2 · atm · h), water contact angle 51 °, manufactured by Unitika Ltd.) used in Example 1 with a pore diameter of 0.1 μm. The modules were bundled and produced so as to have an effective length of 22 mm. Both ends of the module were glued with silicone rubber, and one end was structured so that it could be connected to a syringe barrel. The effective culture volume inside the hollow fiber membrane was 2.4 mm 2 . In this module, a cell line established to express eight hepatic transcription factors using a drug-induced gene expression-inducing system was introduced into mouse liver cancer-derived hepatoma cells (Hepa1-6), and Example 1 Similarly, the cells were filled by centrifuging at 200 G × 180 seconds with a centrifuge. The transfer transcription factors introduced into the cells are hepatocyte nuclear factor (HNF) -1α, -1β, -3β, -4α, 6 and CCAAT / enhancer binding protein (C / EBP) -α, -β, -γ. (Biochemical Engineering Journal 60,67-73, 2012). This module was grown and cultured in DMEM and 10% FBS medium until the 5th day of culture, and from the 5th day, functional expression was induced in a medium supplemented with 0.1 μg / mL of doxycycline. As a result, as shown in FIG. 7, the number of cells steadily proliferated until the 5th day, and gradually decreased after the induction of function expression. The ammonia removal rate showed a high value of about 700 μmol / cm 3 / day after 12 days as shown in FIG. 8, and the urea production rate also showed a high value of about 30 mg / cm 3 / day after 12 days as shown in FIG. rice field. From this, it was found that even in a transgenic cell line, effective proliferation and functional expression can be achieved by using the hollow fiber membrane of the present invention.

比較例3
中空糸膜に三酢酸セルロース製の血漿分離膜(孔径0.2μm、内径285μm、膜厚51μm)を用い、これを6本束ね、有効長さ30mmになるようにモジュールを作製した以外は実施例3と同様にマウス肝がん由来ヘパトーマ細胞(Hepa1−6)に対し、薬剤誘導型遺伝子発現誘導系を用いて8つの肝転写因子を発現するよう樹立された細胞株を増殖培養、機能発現誘導した。このモジュールの有効培養体積は11.5mm2であった。その結果、図7に示すように5日目まで細胞は順調に増殖し、機能発現誘導以降は徐々に低減した。しかし、図8、図9に示すように機能発現はほとんど認められなかった。このことから、この中空糸膜では遺伝子導入細胞株での機能発現はできないことが分かった。
Comparative Example 3
Examples except that a plasma separation membrane made of cellulose triacetate (pore size 0.2 μm, inner diameter 285 μm, film thickness 51 μm) was used as the hollow fiber membrane, and six of these were bundled to prepare a module so as to have an effective length of 30 mm. Similar to No. 3, a cell line established to express eight hepatic transcription factors using a drug-induced gene expression-inducing system was proliferated and cultured on mouse liver cancer-derived hepatoma cells (Hepa1-6) to induce functional expression. bottom. The effective culture volume of this module was 11.5 mm 2 . As a result, as shown in FIG. 7, the cells proliferated steadily until the 5th day, and gradually decreased after the induction of function expression. However, as shown in FIGS. 8 and 9, almost no functional expression was observed. From this, it was found that this hollow fiber membrane cannot express the function in the transgenic cell line.

1:送液ポンプ
2:中空糸膜
3:受け皿
4:圧力調整バルブ
5:入口圧力計
6:出口圧力計
1: Liquid feed pump 2: Hollow fiber membrane 3: Reservoir 4: Pressure adjustment valve 5: Inlet pressure gauge 6: Outlet pressure gauge

Claims (3)

細胞を中空部分内に導入して培養するための高分子製中空糸膜(但し、異形断面を有する中空糸膜を除く)であり、
前記中空糸膜は、ポリアミド及び/又はポリアミドの共重合体であり、
前記ポリアミドの共重合体は、ポリアミド成分の比率が70モル%以上であり、
内径が90μm〜150μmの範囲であり、
膜厚が30μm〜250μmの範囲であり、
孔径が0.05μm〜0.2μmであり、
中空糸膜壁を液体が通過することのできる多孔質となっており、
前記中空糸膜の水に対する接触角が60°以下であり、25℃の純水透水量が300L/(m2・atm・h)以上であることを特徴とする、細胞培養用中空糸膜。
A polymer hollow fiber membrane for introducing cells into a hollow portion and culturing them (excluding hollow fiber membranes having an irregular cross section) .
The hollow fiber membrane is a polyamide and / or a copolymer of polyamide, and is
The polyamide copolymer has a polyamide component ratio of 70 mol% or more.
The inner diameter is in the range of 90 μm to 150 μm,
The film thickness is in the range of 30 μm to 250 μm.
The pore diameter is 0.05 μm to 0.2 μm,
It is porous so that liquid can pass through the hollow fiber membrane wall.
A hollow fiber membrane for cell culture, characterized in that the contact angle of the hollow fiber membrane with water is 60 ° or less, and the amount of pure water permeated at 25 ° C. is 300 L / (m 2 · atm · h) or more.
請求項1に記載の細胞培養用中空糸膜が複数本同方向に配置されており、片方の端部又は両方の端部が接着剤によってシールされており、少なくとも一方の端部は開口した状態となっている、細胞培養用の中空糸膜モジュール。 A plurality of hollow fiber membranes for cell culture according to claim 1 are arranged in the same direction, one end or both ends are sealed with an adhesive, and at least one end is open. Hollow fiber membrane module for cell culture. 請求項1に記載の細胞培養用中空糸膜の内部に細胞を充填し、前記細胞培養用中空糸膜を当該細胞の培養液に浸漬し、当該細胞にとって適切な温湿度、ガス雰囲気下に置いて培養する、細胞の培養方法。
The hollow filament membrane for cell culture according to claim 1 is filled with cells, the hollow filament membrane for cell culture is immersed in a culture solution of the cells, and placed in a temperature and humidity suitable for the cells and a gas atmosphere. A method of culturing cells.
JP2016187781A 2016-09-27 2016-09-27 Hollow fiber membrane for cell culture and cell culture method Active JP6952297B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016187781A JP6952297B2 (en) 2016-09-27 2016-09-27 Hollow fiber membrane for cell culture and cell culture method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016187781A JP6952297B2 (en) 2016-09-27 2016-09-27 Hollow fiber membrane for cell culture and cell culture method

Publications (2)

Publication Number Publication Date
JP2018050498A JP2018050498A (en) 2018-04-05
JP6952297B2 true JP6952297B2 (en) 2021-10-20

Family

ID=61833733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016187781A Active JP6952297B2 (en) 2016-09-27 2016-09-27 Hollow fiber membrane for cell culture and cell culture method

Country Status (1)

Country Link
JP (1) JP6952297B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109679834B (en) * 2019-01-07 2020-06-05 赵涌 Hollow fiber tube and method for in vitro large-scale production of red blood cells

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3139794B2 (en) * 1991-10-24 2001-03-05 株式会社バイオマテリアル研究所 Hollow fiber membrane cell culture device
JPH1033671A (en) * 1996-07-24 1998-02-10 Jms Co Ltd Hollow fiber type artificial liver and its perfusion and cultivating system
JP3553858B2 (en) * 1999-08-25 2004-08-11 東洋紡績株式会社 Cell culture module having a vascular network-like structure
JP2002112763A (en) * 2000-10-10 2002-04-16 Nipro Corp Cell culture container
JP2004283010A (en) * 2003-03-19 2004-10-14 Toyobo Co Ltd Method for culturing cell, cell cultured product and medical biomaterial
AU2003261798A1 (en) * 2002-08-28 2004-03-19 Asahi Medical Co., Ltd. Cell-filled device of modified cross-section hollow fiber membrane type
JP2008109908A (en) * 2006-10-31 2008-05-15 Toyobo Co Ltd Cell culture method and its use
JP5727174B2 (en) * 2010-08-25 2015-06-03 野村ユニソン株式会社 Hollow fiber module for cell culture and cell culture method
JP6273982B2 (en) * 2014-04-04 2018-02-07 東レ株式会社 Hollow fiber membrane, method for producing the same, and module using the same
JP6405177B2 (en) * 2014-09-29 2018-10-17 ユニチカ株式会社 Polyamide hollow fiber membrane

Also Published As

Publication number Publication date
JP2018050498A (en) 2018-04-05

Similar Documents

Publication Publication Date Title
US12110484B2 (en) Disposable bioprocess system supporting biological activity
CN104321419B (en) Cell culture system and cell culture processes
CN201626959U (en) Microperfusion Devices for Cell Culture
US20130196375A1 (en) Biopharmaceutical process apparatuses assembled into a column
JP2777385B2 (en) Biological cell culture method, culture system and culture device
KR20100016187A (en) Improved bioreactor surfaces
WO2020250929A1 (en) Red blood cell removal device, mononuclear cell collector, cell culture device, cell culture system, cell culture method, and mononuclear cell collection method
CN112262209A (en) Cell culture system and cell culture method
Matsumoto et al. Influence of extracellular polysaccharides (EPS) produced by two different green unicellular algae on membrane filtration in an algae-based biofuel production process
US20210214668A1 (en) Cell culture bioreactor
KR100888897B1 (en) Microalgae and Microorganism Separator
JP6952297B2 (en) Hollow fiber membrane for cell culture and cell culture method
JP4668568B2 (en) Culturing container, culturing apparatus, and cell culturing method
EP4056673A1 (en) Cell culture device
EP0336966A1 (en) Cell culture method and apparatus
US20120301923A1 (en) Dialysis fermenter-bioreactor with dialysis device
JPH01281072A (en) Cell culture method and unit therefor
CN222266435U (en) Equipment for separation and extraction of plant exosomes
CN214458012U (en) Device for enriching probiotics
CN111417713A (en) Perfusion bioreactor system and perfusion cell culture method
JP2018014947A (en) Cell culture method using hollow fiber membrane module
WO2020250927A1 (en) Erythrocyte removal device, mononuclear cell collector, cell culture device, cell culture system, cell culture method, and method for collecting mononuclear cells
JPS60156378A (en) Culture medium of cell
JP2024171766A (en) Method for concentrating microalgae, membrane filtration device, control program and control method
JPS6212990B2 (en)

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20161024

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200623

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210323

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210915

R150 Certificate of patent or registration of utility model

Ref document number: 6952297

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250