[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6834532B2 - Hollow fiber membrane module repair method and hollow fiber membrane module - Google Patents

Hollow fiber membrane module repair method and hollow fiber membrane module Download PDF

Info

Publication number
JP6834532B2
JP6834532B2 JP2017012704A JP2017012704A JP6834532B2 JP 6834532 B2 JP6834532 B2 JP 6834532B2 JP 2017012704 A JP2017012704 A JP 2017012704A JP 2017012704 A JP2017012704 A JP 2017012704A JP 6834532 B2 JP6834532 B2 JP 6834532B2
Authority
JP
Japan
Prior art keywords
hollow fiber
fiber membrane
resin
repair
hollow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017012704A
Other languages
Japanese (ja)
Other versions
JP2018118226A (en
Inventor
充 日根野谷
充 日根野谷
井手口 誠
誠 井手口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2017012704A priority Critical patent/JP6834532B2/en
Publication of JP2018118226A publication Critical patent/JP2018118226A/en
Application granted granted Critical
Publication of JP6834532B2 publication Critical patent/JP6834532B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

本発明は、中空糸膜モジュールの補修方法及び本発明の方法によって補修された中空糸膜モジュールに関する。 The present invention relates to a method for repairing a hollow fiber membrane module and a hollow fiber membrane module repaired by the method of the present invention.

下水・浄水処理、再生水の精製等の水処理に、複数本の中空糸膜と集水部とを備えた中空糸膜モジュールが広く使用されている。これを用いて各種の水処理を行うと、被処理水に含まれる異物等が、中空糸膜の表面に閉塞するため、エアスクラビングを用いた洗浄、濾過方向と逆方向に通液することによる洗浄、化学薬品を用いた洗浄等が定期的に実施される。 Hollow fiber membrane modules having a plurality of hollow fiber membranes and a water collecting portion are widely used for water treatment such as sewage / purification treatment and purification of reclaimed water. When various water treatments are performed using this, foreign substances and the like contained in the water to be treated are blocked on the surface of the hollow fiber membrane, so that the cleaning using air scrubbing and the liquid passing in the direction opposite to the filtration direction are performed. Cleaning, cleaning with chemicals, etc. are carried out regularly.

ところでこれらの洗浄が長期間にわたって繰り返されると、中空糸膜の表面が、物理的及び/又は化学的な耐久性が劣化する。耐久性が劣化した中空糸膜の表面上には破損部が生じることがあり、そこから、被処理水中の微粒子が濾過水側に混入してしまう。
そこで、中空糸膜モジュールの分離・濾過性能を維持するために、破損部がある場合は補修を行う。補修方法として、例えば、破損部に直接樹脂を塗布して硬化する方法(特許文献1)や、破損が生じた中空糸膜の開口端部に樹脂を塗布する方法(特許文献2)、中空糸膜の中空部に樹脂を注入して硬化させる方法(特許文献3)、破損が生じた中空糸膜を切除して、切除によって開口した端部を覆うように樹脂を塗布する方法(特許文献4)、破損が生じた中空糸膜を切断し、切断した糸を結紮する方法等がある。
By the way, when these washings are repeated for a long period of time, the surface of the hollow fiber membrane deteriorates in physical and / or chemical durability. Damaged portions may occur on the surface of the hollow fiber membrane having deteriorated durability, and fine particles in the water to be treated are mixed into the filtered water side from there.
Therefore, in order to maintain the separation / filtration performance of the hollow fiber membrane module, if there is a damaged part, repair it. As a repair method, for example, a method of directly applying a resin to a damaged portion and curing (Patent Document 1), a method of applying a resin to an open end of a damaged hollow fiber membrane (Patent Document 2), and a hollow fiber. A method of injecting resin into the hollow portion of the membrane to cure it (Patent Document 3), and a method of excising the damaged hollow fiber membrane and applying the resin so as to cover the end opened by the excision (Patent Document 4). ), There is a method of cutting the broken hollow fiber membrane and ligating the cut thread.

特許第5637214号公報Japanese Patent No. 5637214 国際公開第2006/037234号International Publication No. 2006/037234 特許第5811738号公報Japanese Patent No. 581738 国際公開第2012/147932号International Publication No. 2012/147932

特許文献1及び特許文献3に開示されている補修方法では、中空糸膜1本あたりに生じた破損部の数が多い場合に、そのすべての破損部に樹脂を一つずつ塗布又は注入しなければならず、作業性に劣る。
また、特許文献2に開示されている補修方法は、破損が生じた中空糸膜の開口端部が封止できるような構造の中空糸膜モジュールでなければそもそも適用できない。開口端部が封止できるような構造に中空糸膜モジュールを設計するには、中空糸膜モジュールの形状が複雑になるため、実際には特許文献2の補修方法が適用される中空糸膜モジュールはその形状・構造に制限がある。
また、特許文献4に開示されている補修方法は、補修後の中空糸膜モジュールにエアスクラビング洗浄を実施すると、中空糸膜の先端に塗布されて硬化した樹脂が、中空糸膜より硬いため、そのような樹脂が隣接する中空糸膜と擦れあい、中空糸膜の破損の再発原因となっていた。また特許文献4の方法により補修された中空糸膜は、塗布された樹脂の分だけ表面積が大きくなるので、エアスクラビング洗浄を行うと、中空糸膜モジュールの集水部に固定されている部分で折れ曲がりやすく、補修された中空糸膜が破損の再発原因となっていた。
In the repair methods disclosed in Patent Document 1 and Patent Document 3, when the number of damaged parts generated per hollow fiber membrane is large, resin must be applied or injected one by one to all the damaged parts. It must be inferior in workability.
Further, the repair method disclosed in Patent Document 2 cannot be applied in the first place unless it is a hollow fiber membrane module having a structure capable of sealing the open end portion of the damaged hollow fiber membrane. In order to design a hollow fiber membrane module so that the open end can be sealed, the shape of the hollow fiber membrane module becomes complicated. Therefore, the repair method of Patent Document 2 is actually applied to the hollow fiber membrane module. Has restrictions on its shape and structure.
Further, in the repair method disclosed in Patent Document 4, when the hollow fiber membrane module after repair is subjected to air scrubbing cleaning, the resin applied to the tip of the hollow fiber membrane and cured is harder than the hollow fiber membrane. Such resin rubbed against the adjacent hollow fiber membrane, causing the recurrence of damage to the hollow fiber membrane. Further, since the surface area of the hollow fiber membrane repaired by the method of Patent Document 4 is increased by the amount of the applied resin, when air scrubbing cleaning is performed, the portion fixed to the water collecting portion of the hollow fiber membrane module It was easily bent, and the repaired hollow fiber membrane was the cause of the recurrence of the breakage.

本発明は上記背景に鑑みてなされたものであり、作業性に優れ、適用される中空糸膜モジュールに制限がない中空糸膜モジュールの補修方法であって、当該補修方法によって補修された中空糸膜モジュールにエアスクラビング洗浄を実施しても、補修された中空糸膜及び隣接する中空糸膜が破損しにくい、中空糸膜モジュールの補修方法並びに当該補修方法によって補修された中空糸膜モジュールを提供する。 The present invention has been made in view of the above background, and is a method for repairing a hollow fiber membrane module which is excellent in workability and has no limitation on the applicable hollow fiber membrane module, and the hollow fiber repaired by the repair method. Provided are a method for repairing a hollow fiber membrane module and a hollow fiber membrane module repaired by the repair method, in which the repaired hollow fiber membrane and the adjacent hollow fiber membrane are not easily damaged even if the membrane module is subjected to air scrubbing cleaning. To do.

本発明は下記の態様を有する。
すなわち、本発明は以下に関する。
[1] 複数本の中空糸膜と、前記中空糸膜を固定するポッティング樹脂とを備えた中空糸膜モジュールを補修する方法であって、前記中空糸膜に生じた破損部を含む、前記中空糸膜の長さ方向の一部分を切除して、切除により開口した前記中空糸膜の端部から、樹脂注入ノズルを挿入して、硬化前の粘度が室温で10mPa・s以上6,000mPa・s以下の補修用樹脂を、前記樹脂注入ノズルから注入して、前記補修用樹脂が、前記中空糸膜の中空部を塞いだ状態で、前記補修用樹脂を硬化させる、中空糸膜モジュールの補修方法。
[2] 前記樹脂注入ノズルの先端が少なくともポッティング樹脂に到達するまで、前記樹脂注入ノズルを挿入する、[1]に記載の中空糸膜モジュールの補修方法。
[3] 前記中空糸膜の中空部に、硬化前の粘度が室温で10mPa・s以上50mPa・s以下の前記補修用樹脂を、前記樹脂注入ノズルから注入して、前記中空糸膜に前記補修用樹脂を含浸させた後に、再び前記補修用樹脂を注入する、[1]又は[2]に記載の中空糸膜モジュールの補修方法。
[4] 複数本の中空糸膜と、前記中空糸膜を固定するポッティング樹脂とを備え、前記中空糸膜の少なくとも一本の、長さ方向の一部分が切除され、切除により開口した前記中空糸膜の中空部が、補修用樹脂で塞がれた中空糸膜モジュールであって、
前記中空部のうち、前記中空糸膜の外周が前記ポッティング樹脂と接する部分の少なくとも一部が、前記補修用樹脂で塞がれ、
前記中空部のうち、前記中空糸膜の外周がポッティング樹脂と接していない部分の、前記補修用樹脂で閉塞された部分の長さが、30mm以下である、中空糸膜モジュール。
The present invention has the following aspects.
That is, the present invention relates to the following.
[1] A method for repairing a hollow fiber membrane module including a plurality of hollow fiber membranes and a potting resin for fixing the hollow fiber membrane, the hollow fiber membrane including a damaged portion generated in the hollow fiber membrane. A part of the filament membrane in the length direction is excised, and a resin injection nozzle is inserted from the end of the hollow fiber membrane opened by excision, and the viscosity before curing is 10 mPa · s or more and 6,000 mPa · s at room temperature. A method for repairing a hollow fiber membrane module, in which the following repair resin is injected from the resin injection nozzle to cure the repair resin in a state where the repair resin closes a hollow portion of the hollow fiber membrane. ..
[2] The method for repairing a hollow fiber membrane module according to [1], wherein the resin injection nozzle is inserted until the tip of the resin injection nozzle reaches at least the potting resin.
[3] The repair resin having a viscosity before curing of 10 mPa · s or more and 50 mPa · s or less at room temperature is injected into the hollow portion of the hollow fiber membrane from the resin injection nozzle to repair the hollow fiber membrane. The method for repairing a hollow fiber membrane module according to [1] or [2], wherein the repair resin is injected again after impregnating the resin for use.
[4] The hollow fiber is provided with a plurality of hollow fiber membranes and a potting resin for fixing the hollow fiber membrane, and at least one part of the hollow fiber membrane in the length direction is cut off and opened by cutting. The hollow fiber membrane module is a hollow fiber membrane module in which the hollow part of the membrane is closed with a repair resin.
Of the hollow portion, at least a part of the portion where the outer circumference of the hollow fiber membrane is in contact with the potting resin is closed with the repair resin.
A hollow fiber membrane module in which the length of a portion of the hollow portion in which the outer periphery of the hollow fiber membrane is not in contact with the potting resin and which is closed by the repair resin is 30 mm or less.

本発明の中空糸膜モジュールの補修方法は、作業性に優れ、種々の形状・構造の中空糸膜モジュールに適用できる。また当該補修方法によって補修された中空糸膜ジュールに対してエアスクラビング洗浄を実施しても、補修された中空糸膜及び隣接する中空糸膜が破損しにくくなる。 The method for repairing a hollow fiber membrane module of the present invention is excellent in workability and can be applied to hollow fiber membrane modules having various shapes and structures. Further, even if the hollow fiber membrane joule repaired by the repair method is subjected to air scrubbing cleaning, the repaired hollow fiber membrane and the adjacent hollow fiber membrane are less likely to be damaged.

本発明の中空糸膜モジュールの一例を示す斜視図である。It is a perspective view which shows an example of the hollow fiber membrane module of this invention. 図2(a)は図1中(I)の部分を、図2(b)は図1中(II)の部分を拡大した図である。FIG. 2A is an enlarged view of the portion (I) in FIG. 1, and FIG. 2B is an enlarged view of the portion (II) in FIG. 本発明の補修方法を説明する図である。It is a figure explaining the repair method of this invention. 図4(a)及び図4(b)は本発明の補修方法を、図4(c)は本発明の補修方法で補修された補修部を説明する断面図である。4 (a) and 4 (b) are cross-sectional views illustrating the repair method of the present invention, and FIG. 4 (c) is a cross-sectional view illustrating the repaired portion repaired by the repair method of the present invention. 本発明のより好ましい補修方法を説明する断面図である。It is sectional drawing explaining the more preferable repair method of this invention. 本発明の許容する補修方法で補修された補修部の断面図である。It is sectional drawing of the repair part repaired by the repair method permitted by this invention. 本発明の中空糸膜モジュールの他の一例を示す斜視図である。It is a perspective view which shows another example of the hollow fiber membrane module of this invention. 図8(a)は図7中(III)の部分を、図8(b)は図7中(IV)の部分を拡大した図である。FIG. 8 (a) is an enlarged view of the portion (III) in FIG. 7, and FIG. 8 (b) is an enlarged view of the portion (IV) in FIG.

以下、図面を用いて本発明を詳細に説明するが、本発明はこれらの実施形態に限定して解釈されるものではない。
図1は、本発明の中空糸膜モジュールの一例を示す斜視図である。この中空糸膜モジュール10Aは、シート状に配列された複数本の中空糸膜11と、中空糸膜11の長さ方向の両端部に設けられた2本の集水部20a、20bとを備えている。各中空糸膜11の両端部は、ポッティング樹脂21a、21bによって集水部20a、20bに接着固定されている。また、中空糸膜11の両端部は開口した状態で、集水部20a、20bの内部に設けられた流水路22a、22bと連通している。
Hereinafter, the present invention will be described in detail with reference to the drawings, but the present invention is not construed as being limited to these embodiments.
FIG. 1 is a perspective view showing an example of the hollow fiber membrane module of the present invention. The hollow fiber membrane module 10A includes a plurality of hollow fiber membranes 11 arranged in a sheet shape, and two water collecting portions 20a and 20b provided at both ends of the hollow fiber membrane 11 in the length direction. ing. Both ends of each hollow fiber membrane 11 are adhesively fixed to the water collecting portions 20a and 20b by the potting resins 21a and 21b. Further, both ends of the hollow fiber membrane 11 are open and communicate with the water flow channels 22a and 22b provided inside the water collecting portions 20a and 20b.

また、この例の中空糸膜モジュール10Aは、2本の集水部20a、20bを連通する2本の導水管30a、30bを備えていて、一方の集水部(上側集水部)20aの長さ方向の端部に、濾過水を得る取水口24が形成されている。そのため、この中空糸膜モジュール10Aで被処理水を吸引濾過した際には、他方の集水部(下側集水部)20bに集められた濾過水が導水管30a、30bを通って上側集水部20aへと集められ、取水口24からは、上側集水部20aと下側集水部20bに集められた濾過水が取り出せるようになっている。 Further, the hollow fiber membrane module 10A of this example includes two water pipes 30a and 30b that communicate with the two water collecting portions 20a and 20b, and is provided with one of the water collecting portions (upper water collecting portion) 20a. An intake port 24 for obtaining filtered water is formed at the end in the length direction. Therefore, when the water to be treated is suction-filtered by the hollow fiber membrane module 10A, the filtered water collected in the other water collecting portion (lower water collecting portion) 20b passes through the water guide pipes 30a and 30b and collects in the upper side. It is collected in the water part 20a, and the filtered water collected in the upper water collecting part 20a and the lower water collecting part 20b can be taken out from the water intake port 24.

中空糸膜11の材質は、特に限定されない。具体例としては例えば、ポリエチレンやポリプロピレンなどのポリオレフィン、ポリフッ化ビニリデン(PVDF)やポリテトラフルオロエチレンなどのフッ素系樹脂、ポリスルホン系樹脂、ポリアクリロニトリル、セルロース誘導体、ポリアミド、ポリエステル、ポリメタクリレート、ポリアクリレートなども挙げられる。これらのうち1種以上を含む樹脂を使用できる。また、これらの樹脂の共重合体や一部に置換基を導入したものであってもよい。 The material of the hollow fiber membrane 11 is not particularly limited. Specific examples include polyolefins such as polyethylene and polypropylene, fluororesins such as polyvinylidene fluoride (PVDF) and polytetrafluoroethylene, polysulfone resins, polyacrylonitrile, cellulose derivatives, polyamides, polyesters, polymethacrylates, and polyacrylates. Can also be mentioned. A resin containing one or more of these can be used. Further, a copolymer of these resins or one in which a substituent is partially introduced may be used.

ポッティング樹脂21a、21bは、濾過水側と被処理水側とを隔てられれば、特に限定されず、公知のものでよい。ポッティング樹脂21a、21bの材質としては、例えばポリウレタン樹脂、エポキシ樹脂などの熱硬化性樹脂が挙げられ、これらのうち1種以上を含む樹脂を使用できる。 The potting resins 21a and 21b are not particularly limited as long as they are separated from the filtered water side and the water to be treated side, and may be known. Examples of the material of the potting resins 21a and 21b include thermosetting resins such as polyurethane resin and epoxy resin, and a resin containing at least one of these can be used.

集水部20a、20b及び導水管30a、30bは、濾過水側と被処理水側とを隔てられれば、特に限定されず、公知のものでよい。集水部20a、20b及び導水管30a、30bの材質としては、機械的強度及び耐久性を有するものが好適に用いられ、例えばポリカーボネート、ポリスルホン、ポリオレフィン、PVC(ポリ塩化ビニル)、アクリル樹脂、ABS樹脂、エポキシ樹脂、変成PPE(ポリフェニレンエーテル)などが挙げられ、これらのうち1種以上を含む樹脂を使用できる。あるいは、ステンレス、チタンなどの耐腐食性金属を用いてもよい。 The water collecting portions 20a and 20b and the water pipes 30a and 30b are not particularly limited as long as they are separated from the filtered water side and the water to be treated side, and may be known. As the materials of the water collecting portions 20a and 20b and the headrace pipes 30a and 30b, those having mechanical strength and durability are preferably used, for example, polycarbonate, polysulfone, polyolefin, PVC (polyvinyl chloride), acrylic resin, ABS. Examples thereof include resins, epoxy resins, and modified PPE (polyphenylene ether), and resins containing one or more of these can be used. Alternatively, a corrosion resistant metal such as stainless steel or titanium may be used.

このような中空糸膜モジュールに生じる破損部の特定は、例えば破損部位が特定可能なリーク検査方法、例えば、水や界面活性剤などの液体中に浸漬した膜内部に気体を送り込み、気泡の発生状況により破損部を特定する方法や、着色液などの着色流体を流し込み、着色の有無で破損部を特定する方法などにより行われる。 To identify the damaged portion generated in such a hollow fiber membrane module, for example, a leak inspection method capable of identifying the damaged portion, for example, a gas is sent into the membrane immersed in a liquid such as water or a surfactant to generate bubbles. It is performed by a method of identifying a damaged part depending on the situation, or a method of pouring a coloring fluid such as a coloring liquid and identifying the damaged part by the presence or absence of coloring.

本発明の中空糸膜モジュールの補修方法(以下、「本法」とも記す。)は、例えば図3及び図4に示すように行う。
まず、図3に示すように、破損部12が生じた中空糸膜11から、破損部12を含む長さ方向の一部分を切除する。図3中、符号Mが切除された中空糸膜である。これにより中空糸膜11に2つの開口した端部11a、11bが生じ、中空部13a、13bが開口する。
ついで樹脂注入器60に、中空糸膜11の内径よりも小さな外径を備えた樹脂注入ノズル40を接続し、図4(a)に示すように、切除により開口した端部11a(11b)から、樹脂注入ノズル40を挿入する。
そして、図4(b)に示すように、硬化前の粘度が室温で10mPa・s以上6,000mPa・s以下の補修用樹脂50を、樹脂注入ノズル40から中空部13a(13b)に注入する。注入後、樹脂注入ノズル40を中空糸膜11から引き抜いて、注入された補修用樹脂50が、中空部13a(13b)を塞いだ状態で、補修用樹脂50を硬化させる。こうして図4(c)に示すように、破損部12を含む中空糸膜Mが切除されて開口した中空糸膜11の中空部13a(13b)が硬化した補修用樹脂52で閉塞され、中空糸膜モジュールの補修がなされる。
The method for repairing the hollow fiber membrane module of the present invention (hereinafter, also referred to as “the present method”) is performed as shown in FIGS. 3 and 4, for example.
First, as shown in FIG. 3, a part in the length direction including the broken portion 12 is cut off from the hollow fiber membrane 11 in which the broken portion 12 is generated. In FIG. 3, it is a hollow fiber membrane from which the symbol M has been cut off. As a result, two open ends 11a and 11b are formed in the hollow fiber membrane 11, and the hollow portions 13a and 13b are opened.
Next, a resin injection nozzle 40 having an outer diameter smaller than the inner diameter of the hollow fiber membrane 11 is connected to the resin injector 60, and as shown in FIG. 4A, from the end portion 11a (11b) opened by excision. , Insert the resin injection nozzle 40.
Then, as shown in FIG. 4B, the repair resin 50 having a viscosity before curing of 10 mPa · s or more and 6,000 mPa · s or less at room temperature is injected from the resin injection nozzle 40 into the hollow portion 13a (13b). .. After the injection, the resin injection nozzle 40 is pulled out from the hollow fiber membrane 11, and the repair resin 50 is cured in a state where the injected repair resin 50 closes the hollow portion 13a (13b). In this way, as shown in FIG. 4C, the hollow fiber membrane M including the damaged portion 12 is cut off and the hollow portion 13a (13b) of the hollow fiber membrane 11 opened is closed by the cured repair resin 52, and the hollow fiber is formed. The membrane module is repaired.

ここで図3に示すように、中空糸膜11から、破損部12を含む中空糸膜Mを切除する際には、切除により新たに開口する端部11a、11bから、各ポッティング樹脂21a、21bに至るまでの中空糸膜の長さLが、20〜100mmの範囲内であることが好ましい。Lが20mm以上であると、補修用樹脂50で中空部13a、13bを封止する作業中に、この中空糸膜11の根元の屈曲を抑制して補修を行えるので、中空糸膜11の根元が損傷するなどのトラブルが起こりにくい。一方、Lが100mm未満であると、樹脂注入ノズル40の挿入が容易となる。さらに、補修後の中空糸膜モジュール10Aを、例えば被処理水槽に浸漬してエアスクラビング洗浄を行った際には、補修した中空糸膜11が過度に揺動しにくい。そのため、過度な揺動による他の中空糸膜11との擦れが抑制され、根元の大きな屈曲に起因する中空糸膜11の損傷も低減される。破損部12を含む長さ方向の一部分を切除する際には、以上の点を考慮して、Lが20〜100mmの範囲内となるように切除位置を決定することが好ましい。 Here, as shown in FIG. 3, when the hollow fiber membrane M including the damaged portion 12 is cut from the hollow fiber membrane 11, the potting resins 21a and 21b are newly opened from the ends 11a and 11b by the cutting. It is preferable that the length L 1 of the hollow fiber membrane up to the above is in the range of 20 to 100 mm. When L 1 is 20 mm or more, the hollow fiber membrane 11 can be repaired by suppressing bending of the root of the hollow fiber membrane 11 during the work of sealing the hollow fibers 13a and 13b with the repair resin 50. Trouble such as damage to the root is unlikely to occur. On the other hand, when L 1 is less than 100 mm, the resin injection nozzle 40 can be easily inserted. Further, when the repaired hollow fiber membrane module 10A is immersed in, for example, a water tank to be treated and air scrubbing cleaning is performed, the repaired hollow fiber membrane 11 is less likely to swing excessively. Therefore, rubbing against other hollow fiber membranes 11 due to excessive rocking is suppressed, and damage to the hollow fiber membrane 11 due to large bending at the root is also reduced. When cutting a part in the length direction including the damaged portion 12, it is preferable to determine the cutting position so that L 1 is within the range of 20 to 100 mm in consideration of the above points.

また、図4(a)に示すように、切除により開口した中空糸膜の端部11a(11b)から、樹脂注入ノズル40を挿入する際は、樹脂注入ノズル40の先端が、少なくともポッティング樹脂21a(21b)に到達するまで、樹脂注入ノズル40を挿入することが好ましい。樹脂注入ノズル40の先端が少なくともポッティング樹脂21a(21b)に到達していれば、補修用樹脂50を注入する際における中空糸膜11の破裂を防止でき、補修用樹脂50が中空糸膜11の内膜面を透過して、膜外へ漏れることも防止できる。 Further, as shown in FIG. 4A, when the resin injection nozzle 40 is inserted from the end 11a (11b) of the hollow fiber membrane opened by excision, the tip of the resin injection nozzle 40 is at least the potting resin 21a. It is preferable to insert the resin injection nozzle 40 until it reaches (21b). If the tip of the resin injection nozzle 40 reaches at least the potting resin 21a (21b), the hollow fiber membrane 11 can be prevented from bursting when the repair resin 50 is injected, and the repair resin 50 is the hollow fiber membrane 11. It is also possible to prevent leakage through the inner membrane surface to the outside of the membrane.

図4(a)に示す樹脂注入ノズル40の外径は、0.2mm以上であることが好ましく、中空糸膜11の内径よりも0.1〜0.5mm程度小さいことが好ましい。樹脂注入ノズル40の外径が0.2mm以上であると、樹脂注入ノズル40が折れることなく端部11a、11bからスムーズに挿入される。また、樹脂注入ノズル40の外径が中空糸膜11の内径より大きいと、中空部13a、13bへの挿入が困難となり、中空糸膜11を破損する恐れがある。
樹脂注入ノズル40の内径は0.5mm以上2.0mm以下であることが望ましい。樹脂注入ノズル40の内径が0.5mm以上であると、補修用樹脂50を注入する際に、より低い圧力を加えても注入ができる。一方、樹脂注入ノズル40の内径が2.0mm以下であると、より高い圧力を加えても、急激な補修用樹脂50の注入が起こりにくく、補修用樹脂の急激な注入によって、中空糸膜11が内部から破裂する恐れがなくなる。また、樹脂注入ノズル40の内・外径が上記の範囲であれば、注入時に、樹脂注入ノズル40と中空糸膜11の隙間から補修用樹脂50が漏れにくい。
樹脂注入ノズル40の先端は中空糸膜を傷つけないよう鋭利でないものが好ましい。例としては注射針の先端を金鑢で平滑にしたものが挙げられる。
樹脂注入器60としては、公知の樹脂注入器でよく、補修用樹脂50が注入可能であれば特に限定はされない。
The outer diameter of the resin injection nozzle 40 shown in FIG. 4A is preferably 0.2 mm or more, and is preferably 0.1 to 0.5 mm smaller than the inner diameter of the hollow fiber membrane 11. When the outer diameter of the resin injection nozzle 40 is 0.2 mm or more, the resin injection nozzle 40 is smoothly inserted from the ends 11a and 11b without breaking. Further, if the outer diameter of the resin injection nozzle 40 is larger than the inner diameter of the hollow fiber membrane 11, it becomes difficult to insert the resin injection nozzle 40 into the hollow portions 13a and 13b, and the hollow fiber membrane 11 may be damaged.
The inner diameter of the resin injection nozzle 40 is preferably 0.5 mm or more and 2.0 mm or less. When the inner diameter of the resin injection nozzle 40 is 0.5 mm or more, the repair resin 50 can be injected even if a lower pressure is applied. On the other hand, when the inner diameter of the resin injection nozzle 40 is 2.0 mm or less, sudden injection of the repair resin 50 is unlikely to occur even if a higher pressure is applied, and the hollow fiber membrane 11 is caused by the rapid injection of the repair resin. Eliminates the risk of bursting from the inside. Further, when the inner and outer diameters of the resin injection nozzle 40 are within the above range, the repair resin 50 is less likely to leak from the gap between the resin injection nozzle 40 and the hollow fiber membrane 11 during injection.
The tip of the resin injection nozzle 40 is preferably not sharp so as not to damage the hollow fiber membrane. An example is one in which the tip of an injection needle is smoothed with a gold file.
The resin injector 60 may be a known resin injector, and is not particularly limited as long as the repair resin 50 can be injected.

補修用樹脂50として用いられる樹脂は特に限定されないが、具体的には、溶剤揮散型、湿気硬化型、加熱硬化型、硬化剤混合型、紫外線硬化型及び熱溶融型の各樹脂が用いられ、補修用樹脂50はこれらの各樹脂から選ばれる少なくとも一つを含むことが好ましい。 The resin used as the repair resin 50 is not particularly limited, but specifically, solvent volatilization type, moisture curing type, heat curing type, curing agent mixed type, ultraviolet curing type, and heat melting type resins are used. The repair resin 50 preferably contains at least one selected from each of these resins.

硬化前の補修用樹脂50の粘度は室温(℃)で10mPa・s以上6,000mPa・s以下であるが、15mPa・s以上5,000mPa・s以下であることがより好ましく、20mPa・s以上2,000mPa・s以下であることがさらに好ましい。硬化前の粘度が室温で10mPa・s以上であると、注入した補修用樹脂50が、中空糸膜11の中空部13a、13bに保持されるため、補修用樹脂50が重力方向に流出して、目的外の部分に垂れて付着するなどのトラブルが生じにくい。また、6,000mPa・s以下であると、樹脂注入ノズル40によってスムーズに注入でき、さらには中空糸膜11の内層に含浸しやすくなるため、補修部の十分な耐圧強度が得られる。
なお、本明細書において、粘度とは、JIS Z 8803:2011に準拠して測定される値である。
The viscosity of the repair resin 50 before curing is 10 mPa · s or more and 6,000 mPa · s or less at room temperature (° C.), but more preferably 15 mPa · s or more and 5,000 mPa · s or less, and 20 mPa · s or more. It is more preferably 2,000 mPa · s or less. When the viscosity before curing is 10 mPa · s or more at room temperature, the injected repair resin 50 is held in the hollow portions 13a and 13b of the hollow fiber membrane 11, so that the repair resin 50 flows out in the direction of gravity. , Trouble such as dripping and adhering to unintended parts is unlikely to occur. Further, when it is 6,000 mPa · s or less, it can be smoothly injected by the resin injection nozzle 40, and further, it becomes easy to impregnate the inner layer of the hollow fiber membrane 11, so that sufficient pressure resistance strength of the repaired portion can be obtained.
In addition, in this specification, a viscosity is a value measured in accordance with JIS Z 8803: 2011.

ところで、図5(a)に示すように、中空部13a(13b)に、硬化前の粘度が室温で10mPa・s以上50mPa・s以下の補修用樹脂50を、樹脂注入ノズル40から注入すると、中空糸膜11に補修用樹脂50が含浸して、中空部13a(13b)が流水路22a(22b)と連通することがある。また、粘度のみならず、中空糸膜11の膜構造、補修用樹脂50の物性、又は温度・湿度等の使用条件によっても、中空部13a(13b)が流水路22a(22b)と連通することがある。
この場合、中空糸膜11に補修用樹脂50を含浸させた後に、再び補修用樹脂50を注入して、中空部13a(13b)を塞いだ状態で補修用樹脂50を硬化させると、封止性及び補修部の耐圧強度が優れるため好ましい。
By the way, as shown in FIG. 5A, when the repair resin 50 having a viscosity before curing of 10 mPa · s or more and 50 mPa · s or less at room temperature is injected into the hollow portion 13a (13b) from the resin injection nozzle 40, The hollow fiber membrane 11 is impregnated with the repair resin 50, and the hollow portion 13a (13b) may communicate with the water flow channel 22a (22b). Further, the hollow portion 13a (13b) communicates with the water flow channel 22a (22b) depending not only on the viscosity but also on the film structure of the hollow fiber membrane 11, the physical properties of the repair resin 50, or the usage conditions such as temperature and humidity. There is.
In this case, after the hollow fiber membrane 11 is impregnated with the repair resin 50, the repair resin 50 is injected again, and the repair resin 50 is cured while the hollow portions 13a (13b) are closed. It is preferable because it has excellent properties and pressure resistance of the repaired part.

図5(b)に示すように、樹脂注入ノズルを中空部13a(13b)に挿入する際には、樹脂注入ノズル40の少なくとも先端が、ポッティング樹脂21a(21b)に到達しているか、又は先に注入された補修用樹脂50に到達していることが好ましい。樹脂注入ノズル40が上記のいずれかを満たす位置に到達するまで中空部13a(13b)に挿入されていれば、補修用樹脂50を注入する際における中空糸膜11の破裂を防止でき、さらに補修用樹脂50が中空糸膜11の内膜面を透過して膜外へ漏れることを防止できる。 As shown in FIG. 5B, when the resin injection nozzle is inserted into the hollow portion 13a (13b), at least the tip of the resin injection nozzle 40 reaches or ends the potting resin 21a (21b). It is preferable that the repair resin 50 injected into the water is reached. If the resin injection nozzle 40 is inserted into the hollow portion 13a (13b) until it reaches a position satisfying any of the above, the hollow fiber membrane 11 can be prevented from bursting when the repair resin 50 is injected, and further repair can be performed. It is possible to prevent the resin 50 for permeating the inner membrane surface of the hollow fiber membrane 11 and leaking out of the membrane.

図1に示すように、本法によって補修された中空糸膜モジュールは、複数本の中空糸膜11と、中空糸膜11を集水部20a、20bに固定するポッティング樹脂21a、21bとを備え、中空糸膜11の少なくとも一本の、長さ方向の一部分が切除されている。さらに、図1中(I)及び(II)の部分を図2に拡大して示すように、切除により開口した中空部13a、13bは硬化した補修用樹脂52でそれぞれ塞がれている。 As shown in FIG. 1, the hollow fiber membrane module repaired by this method includes a plurality of hollow fiber membranes 11 and potting resins 21a and 21b for fixing the hollow fiber membranes 11 to the water collecting portions 20a and 20b. , At least one part of the hollow fiber membrane 11 in the length direction is cut off. Further, as shown by enlarging the portions (I) and (II) in FIG. 1 in FIG. 2, the hollow portions 13a and 13b opened by excision are closed with the cured repair resin 52, respectively.

また図4(c)に示すように、本法によって補修された中空糸膜モジュールの中空糸膜は、破損部12を含む中空糸膜Mが切除されて開口した中空部13a(13b)のうち、中空糸膜11の外周がポッティング樹脂21a(21b)と接する部分の少なくとも一部が、硬化した補修用樹脂52で塞がれている。すなわち、中空部13a(13b)のうち、ポッティング界面23a(23b)よりもポッティング樹脂21a(21b)側の中空部13a(13b)の少なくとも一部が、硬化した補修用樹脂52によって塞がれている。このように中空部13a、13bが硬化した補修用樹脂52によって閉塞されれば、濾過水側と被処理水側が隔てられ、中空糸膜の分離・濾過性能が維持される。 Further, as shown in FIG. 4C, the hollow fiber membrane of the hollow fiber membrane module repaired by this method is among the hollow fiber portions 13a (13b) in which the hollow fiber membrane M including the damaged portion 12 is cut off and opened. At least a part of the portion where the outer periphery of the hollow fiber membrane 11 is in contact with the potting resin 21a (21b) is closed with the cured repair resin 52. That is, of the hollow portions 13a (13b), at least a part of the hollow portions 13a (13b) on the potting resin 21a (21b) side of the potting interface 23a (23b) is blocked by the cured repair resin 52. There is. When the hollow portions 13a and 13b are closed by the cured repair resin 52 in this way, the filtered water side and the water to be treated side are separated, and the separation / filtering performance of the hollow fiber membrane is maintained.

本法によって補修された中空糸膜モジュール10Aは、図4(c)に示すように、中空部13a(13b)のうち、中空糸膜11の外周がポッティング樹脂21a(21b)と接していない部分の、硬化した補修用樹脂52で閉塞された部分の長さLは30mm以下であることが好ましく、10mm以下であることがより好ましい。硬化した補修用樹脂52によって閉塞された部分の中空糸膜は、隣接する未補修の中空糸膜よりも物理的に硬くなるが、Lの長さが30mm以下であれば、エアスクラビング洗浄を実施した際に、閉塞された部分の中空糸膜が周囲の隣接する他の中空糸膜と擦れ合いにくくなるため好ましく、また中空糸膜モジュールの集水部に固定されている部分で折れ曲がりにくくなるため好ましい。 As shown in FIG. 4C, the hollow fiber membrane module 10A repaired by this method is a portion of the hollow portion 13a (13b) where the outer periphery of the hollow fiber membrane 11 is not in contact with the potting resin 21a (21b). The length L 2 of the portion closed by the cured repair resin 52 is preferably 30 mm or less, and more preferably 10 mm or less. The hollow fiber membrane of the portion blocked by the cured repair resin 52 is physically harder than the adjacent unrepaired hollow fiber membrane, but if the length of L 2 is 30 mm or less, air scrubbing cleaning is performed. When carried out, it is preferable because the hollow fiber membrane of the closed portion is less likely to rub against other adjacent hollow fiber membranes around it, and it is less likely to bend at the portion fixed to the water collecting portion of the hollow fiber membrane module. Therefore, it is preferable.

図6に示すように、本法によって補修された中空糸膜モジュール10Aは、中空部13a(13b)のうち、中空糸膜11の外周がポッティング樹脂21a(21b)と接している部分でのみ補修用樹脂が注入・硬化されていてもよい。すなわち中空部13a(13b)は、ポッティング界面23a(23b)よりもポッティング樹脂21a(21b)側の中空部13a(13b)でのみ、硬化した補修用樹脂52によって塞がれてもよい。この場合も、中空部13a、13bが硬化した補修用樹脂52によって閉塞されているため、濾過水側と被処理水側が隔てられ、中空糸膜の分離・濾過性能が維持される。また、エアスクラビング洗浄を実施した際も、閉塞された部分の中空糸膜が、周囲の隣接する他の中空糸膜と擦れにくい。 As shown in FIG. 6, the hollow fiber membrane module 10A repaired by this method repairs only the portion of the hollow portion 13a (13b) where the outer circumference of the hollow fiber membrane 11 is in contact with the potting resin 21a (21b). The resin for use may be injected and cured. That is, the hollow portion 13a (13b) may be closed by the cured repair resin 52 only at the hollow portion 13a (13b) on the potting resin 21a (21b) side of the potting interface 23a (23b). Also in this case, since the hollow portions 13a and 13b are closed by the cured repair resin 52, the filtered water side and the water to be treated side are separated, and the separation / filtering performance of the hollow fiber membrane is maintained. Further, even when the air scrubbing cleaning is performed, the hollow fiber membrane of the closed portion is less likely to rub against other adjacent hollow fiber membranes around it.

なお、補修対象の中空糸膜モジュールの形態には制限はなく、例えば、図7及び図8に示すように、導水管30a,30bを具備せず、上側集水部20aに集められた濾過水のみを取水口24から取り出す形態の中空糸膜モジュール10Bも例示できる。この場合には、破損部12を含む中空糸膜Mを切除した後、濾過水が集水される上側の集水部20aに連通した方の中空部13aのみを補修用樹脂50で閉塞すればよく、上側の集水部20aに連通していない下側の集水部20b側の中空部13bは閉塞されなくてもよい。この形態の中空糸膜モジュール10Bの場合には、中空部13bが開放していても、被処理水が濾過水側に混入することはない。このように被処理水が端部から濾過水側に混入しない限りは、切除により開口した2つの端部のうちの一方のみを閉塞して、他方を開放しておいてもよく、中空糸膜モジュールの形態に応じて適宜選択できる。 The form of the hollow fiber membrane module to be repaired is not limited. For example, as shown in FIGS. 7 and 8, the filtered water collected in the upper water collecting portion 20a without providing the water pipes 30a and 30b. An example thereof is a hollow fiber membrane module 10B in which only the water intake port 24 is taken out. In this case, after cutting the hollow fiber membrane M including the damaged portion 12, only the hollow portion 13a communicating with the upper water collecting portion 20a where the filtered water is collected is closed with the repair resin 50. Often, the hollow portion 13b on the lower water collecting portion 20b side that does not communicate with the upper water collecting portion 20a does not have to be closed. In the case of the hollow fiber membrane module 10B of this form, even if the hollow portion 13b is open, the water to be treated does not mix with the filtered water side. As long as the water to be treated does not mix from the end to the filtered water side in this way, only one of the two ends opened by excision may be closed and the other may be left open. It can be appropriately selected according to the form of the module.

(作用効果)
以上説明したように、本発明の中空糸膜モジュールの補修方法によれば、中空糸膜11に生じた破損部12を含む長さ方向の一部分が切除され、切除により開口した中空糸膜の中空部に補修用樹脂50が注入され、中空部内で補修用樹脂50が硬化することで、切除により開口した中空部が閉塞される。よって、本法により補修された中空糸膜モジュールは、エアスクラビング洗浄が実施されても、中空糸膜の中空内で硬化した補修用樹脂が他の中空糸膜と直接触れ合うことがなく、補修用樹脂で補修された中空糸膜は他の中空糸膜と擦れ合いにくくなるので、中空糸膜の破損の再発を低減することができる。
本法によって補修された中空糸膜モジュールの中空糸膜は、切断した中空糸膜の端部を覆うように樹脂を塗布して補修した場合と比べて、中空糸膜モジュールの集水部20a、20bに固定されている部分で折れ曲がりにくいので、中空糸膜の折れ曲がった箇所に新たな破損部が生じることを低減できる。
本法は、補修用樹脂50を中空部13a、13bで硬化させるため、作業中に補修用樹脂50が補修対象でない他の中空糸膜11に付着する恐れがなく、他の中空糸膜11を補修対象の中空糸膜11と隔離しておく必要もないため、作業性に優れる。さらに本法は適用される中空糸膜モジュールの形状や構造によって適用が制限されない。
(Action effect)
As described above, according to the method for repairing the hollow fiber membrane module of the present invention, a part in the length direction including the damaged portion 12 generated in the hollow fiber membrane 11 is excised, and the hollow fiber membrane is hollow and opened by excision. The repair resin 50 is injected into the portion, and the repair resin 50 is cured in the hollow portion, so that the hollow portion opened by excision is closed. Therefore, even if the hollow fiber membrane module repaired by this method is subjected to air scrubbing cleaning, the repair resin cured in the hollow fiber membrane does not come into direct contact with other hollow fiber membranes for repair. Since the hollow fiber membrane repaired with the resin is less likely to rub against other hollow fiber membranes, recurrence of breakage of the hollow fiber membrane can be reduced.
The hollow fiber membrane of the hollow fiber membrane module repaired by this method has a water collecting portion 20a of the hollow fiber membrane module, as compared with the case where the hollow fiber membrane is repaired by applying resin so as to cover the end of the cut hollow fiber membrane. Since it is difficult to bend at the portion fixed to 20b, it is possible to reduce the occurrence of a new damaged portion at the bent portion of the hollow fiber membrane.
In this method, since the repair resin 50 is cured in the hollow portions 13a and 13b, there is no possibility that the repair resin 50 adheres to other hollow fiber membranes 11 that are not to be repaired during the work, and the other hollow fiber membranes 11 are used. Since it is not necessary to separate the hollow fiber membrane 11 to be repaired, the workability is excellent. Furthermore, the application of this method is not limited by the shape and structure of the hollow fiber membrane module to which it is applied.

以下、本発明を実施例により具体的に説明するが、本発明はこれらに限定されない。 Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited thereto.

[実施例1]
孔径0.05μm、外径1.65mm、内径1.00mm、膜面積40mのPVDF製中空糸膜モジュール10A(三菱レイヨン製、品名「ステラポアー7600」)を用いた。中空糸膜11は各ポッティング樹脂21a、21bによって固定され、集水部20a、20bと連通している。導水管30a,30bには、角パイプを用いた。中空糸膜モジュール10Aの外径寸法は、幅W1250mm、高さH2000mm、奥行きD30mmである。まず、中空糸膜モジュール10Aを水中に浸漬した状態で中空糸膜内部に気体を送り込み、気泡の発生状況により中空糸膜11に生じた破損部12の位置を特定したところ、ポッティング樹脂21aから900mmの位置にあることが分かった。
ついで、図2に示す方法に沿って、補修を行った。
まず両側のポッティング樹脂21a、21bからの長さLがそれぞれ50mmの位置、2箇所で各中空糸膜11を切断し、破損部12を含む中空糸膜11の長さ方向の一部分を取り除いた。
ついで、樹脂注入器60(テルモシリンジ(登録商標)、容量1mL、テルモ株式会社製)に外径0.80mmの樹脂注入ノズル40(テルモ注射針(21G、テルモ株式会社製)の先端を金鑢で平滑にしたもの)を接続し、これを用いて、補修用樹脂50(ロックタイト(登録商標)4305、粘度900mPa・s、紫外線・湿気硬化型、ヘンケル社製)を、上記の切断により生じた端部11a(11b)から、中空部13a(13b)に注入した。ここで樹脂注入ノズル40の先端は少なくともポッティング樹脂21a(21b)に到達するまで挿入した。
補修用樹脂50がポッティング樹脂21a(21b)にまで到達し、中空部13a(13b)が塞がれているのを目視によって確認してから、湿気存在環境(温度:20℃、湿度50%)下で2時間静置して補修用樹脂50を硬化させた。
このように補修を行った図1の中空糸膜モジュール10Aを水中に移し、取水口24から中空糸膜モジュール10Aの内圧が100kPaとなるように空気を供給し、破損検査を行った。破損検査において、端部11a、11bからはエア漏れが確認されず、中空糸膜11の中空部13a、13bが確実に閉塞されていることが確認できた。
なお、本実施例で粘度は、JIS Z 8803:2011に準拠して測定を行った。
[Example 1]
A PVDF hollow fiber membrane module 10A (manufactured by Mitsubishi Rayon, product name "Stellapore 7600") having a pore diameter of 0.05 μm, an outer diameter of 1.65 mm, an inner diameter of 1.00 mm, and a membrane area of 40 m 2 was used. The hollow fiber membrane 11 is fixed by the potting resins 21a and 21b and communicates with the water collecting portions 20a and 20b. Square pipes were used for the water pipes 30a and 30b. The outer diameter of the hollow fiber membrane module 10A is a width W1250 mm, a height H2000 mm, and a depth D30 mm. First, when the hollow fiber membrane module 10A was immersed in water, gas was sent into the hollow fiber membrane, and the position of the damaged portion 12 generated in the hollow fiber membrane 11 was specified according to the generation of air bubbles. As a result, 900 mm from the potting resin 21a. It turned out to be in the position of.
Then, the repair was carried out according to the method shown in FIG.
First sides of the potting resin 21a, the length L 1 is the position of 50mm each from 21b, by cutting the respective hollow fiber membranes 11 in two places, removing the portion of the length direction of the hollow fiber membrane 11 including the damaged portion 12 ..
Next, the tip of the resin injection nozzle 40 (Terumo injection needle (21G, manufactured by Terumo Corporation)) with an outer diameter of 0.80 mm is attached to the resin injector 60 (Terumo syringe (registered trademark), capacity 1 mL, manufactured by Terumo Corporation). The repair resin 50 (Rocktite (registered trademark) 4305, viscosity 900 mPa · s, ultraviolet / moisture curable type, manufactured by Henkel) was produced by the above-mentioned cutting. Injection was performed from the end portion 11a (11b) into the hollow portion 13a (13b). Here, the tip of the resin injection nozzle 40 was inserted until it reached at least the potting resin 21a (21b).
After visually confirming that the repair resin 50 reaches the potting resin 21a (21b) and the hollow portion 13a (13b) is closed, the humidity existing environment (temperature: 20 ° C., humidity 50%) The repair resin 50 was cured by allowing it to stand underneath for 2 hours.
The hollow fiber membrane module 10A of FIG. 1 repaired in this way was transferred into water, and air was supplied from the water intake port 24 so that the internal pressure of the hollow fiber membrane module 10A was 100 kPa, and a damage inspection was performed. In the damage inspection, no air leakage was confirmed from the ends 11a and 11b, and it was confirmed that the hollow portions 13a and 13b of the hollow fiber membrane 11 were securely closed.
In this example, the viscosity was measured in accordance with JIS Z 8803: 2011.

[実施例2]
補修用樹脂50として、ロックタイト(登録商標)4304(粘度20mPa・s、紫外線・湿気硬化型、ヘンケル社製)を用いた以外は、実施例1と同様の方法で補修用樹脂50を中空部13a(13b)に注入した。補修用樹脂50を注入した後、湿気存在環境(温度:20℃、湿度50%)下で10分静置し、中空糸膜に補修用樹脂50を含浸させた。その後、補修用樹脂50を再び注入し、中空部13a(13b)を閉塞し、実施例1と同様の方法で硬化させた。ここで樹脂注入ノズル40の先端が少なくとも補修用樹脂50に到達するまで挿入した。
このように補修を行った中空糸膜モジュール10Aを実施例1と同様の破損検査をしたところ、端部11a、11bからはエア漏れが確認されず、中空糸膜11の中空部13a,13bが確実に閉塞されていることが確認できた。
[Example 2]
The repair resin 50 was formed in the hollow portion 13a by the same method as in Example 1 except that Loctite (registered trademark) 4304 (viscosity 20 mPa · s, ultraviolet / moisture curable type, manufactured by Henkel) was used as the repair resin 50. It was injected into (13b). After injecting the repair resin 50, the hollow fiber membrane was impregnated with the repair resin 50 by allowing it to stand for 10 minutes in a humidity-existing environment (temperature: 20 ° C., humidity 50%). Then, the repair resin 50 was injected again, the hollow portion 13a (13b) was closed, and the resin 50 was cured in the same manner as in Example 1. Here, the resin injection nozzle 40 was inserted until the tip of the resin injection nozzle 40 reached at least the repair resin 50.
When the hollow fiber membrane module 10A repaired in this way was inspected for damage in the same manner as in Example 1, no air leakage was confirmed from the ends 11a and 11b, and the hollow fiber membranes 13a and 13b of the hollow fiber membrane 11 were found. It was confirmed that it was definitely blocked.

[実施例3、4、比較例1〜3]
表1に示すように補修用樹脂50を変更し、本発明の中空糸膜モジュールの補修方法を実施した。表1中、注入回数(回)が「1」である実施例・比較例は、補修用樹脂50を変更した以外は実施例1と同様に実施し、注入回数が「2」である実施例・比較例は、補修用樹脂50を変更した以外は実施例2と同様に実施した。
なお、実施例4で補修を行った中空糸膜モジュール10Aについては、1年間、活性汚泥に、線速度100m/hrの条件下で曝気(エアスクラビング)した後、内圧が100kPaの条件で空気を供給して破損検査をした。端部11a、11b及びそれらと隣接する周辺の中空糸膜からはエア漏れが確認されず、新たな破損部は検出されなかった。
破損検査でエア漏れが確認された場合は、表1中に「○」と表記し、エア漏れが検出された場合は、表1中「×」と表記した。
[Examples 3 and 4, Comparative Examples 1 to 3]
As shown in Table 1, the repair resin 50 was changed, and the method for repairing the hollow fiber membrane module of the present invention was carried out. In Table 1, Examples / Comparative Examples in which the number of injections (times) is “1” are the same as in Example 1 except that the repair resin 50 is changed, and the number of injections is “2”. -The comparative example was carried out in the same manner as in Example 2 except that the repair resin 50 was changed.
The hollow fiber membrane module 10A repaired in Example 4 was aerated (air scrubbing) on activated sludge under the condition of a linear velocity of 100 m / hr for one year, and then air was blown under the condition of an internal pressure of 100 kPa. It was supplied and inspected for damage. No air leakage was confirmed from the end portions 11a and 11b and the hollow fiber membranes adjacent to them, and no new damaged portion was detected.
When air leakage was confirmed by the damage inspection, it was indicated by "○" in Table 1, and when air leakage was detected, it was indicated by "x" in Table 1.

Figure 0006834532
Figure 0006834532

[比較例4]
中空糸膜11の破損部を切除した後、補修用樹脂50としてScotch−Weld Hot Melt Adhesive 3748‐Q(スリーエム社製)を用いて、該樹脂を加熱により溶融して、中空糸膜の切断面を覆うように塗布して補修を実施した。補修後、実施例1と同条件で破損検査をしたところ、補修部からのエア漏れが確認されなかった。次に、補修された中空糸膜モジュールを、1年間、活性汚泥に、線速度100m/hrで曝気(エアスクラビング)した後、中空糸膜の内部から100kPaの圧縮空気で破損検査をしたところ、補修部周辺の中空糸膜、並びに補修部よりもポッティング樹脂側の中空糸膜からエア漏れが確認された。
[Comparative Example 4]
After excising the damaged portion of the hollow fiber membrane 11, the resin is melted by heating using Scotch-Weld Hot Melt Adhesive 3748-Q (manufactured by 3M Ltd.) as the repair resin 50, and the cut surface of the hollow fiber membrane is melted. It was applied so as to cover the surface and repaired. After the repair, a damage inspection was conducted under the same conditions as in Example 1, and no air leakage from the repaired portion was confirmed. Next, the repaired hollow fiber membrane module was aerated (air scrubbing) on activated sludge at a linear velocity of 100 m / hr for one year, and then a damage inspection was performed from the inside of the hollow fiber membrane with 100 kPa of compressed air. Air leakage was confirmed from the hollow fiber membrane around the repaired part and the hollow fiber membrane on the potting resin side of the repaired part.

表1に示すように、粘度が10mPa・s以上6,000mPa・s以下の補修用樹脂を用いて補修した実施例1〜4の中空糸膜モジュールは、本法により適切に補修され、十分な耐圧強度を有していた。
1度目の補修用樹脂の注入後に補修用樹脂を中空糸膜に含浸させて、再び補修用樹脂を注入して硬化した実施例2、及び実施例3の中空糸膜モジュールも、適切に補修され、十分な耐圧強度を有していた。
実施例4の中空糸膜モジュールは、1年間、活性汚泥に曝気した後でも、十分な耐圧強度を有していたので、補修された中空糸膜が集水部に固定されている部分で折れ曲がったり、中空糸膜が周囲の中空糸膜と擦れたりすることによって、新たな破損部が生じていなかった。
粘度が6,000mPa・sより大きい補修用樹脂を用いた比較例1の中空糸膜モジュールは、中空糸膜の内層に補修用樹脂が含浸しなかったため、耐圧強度が不十分であったと考えられる。
粘度が10mPa・sより小さい補修用樹脂を用いた比較例2の中空糸膜モジュールは、中空糸膜の内層に補修用樹脂が過度に含浸し、中空部がポッティング樹脂と連通していた。
粘度が10mPa・sより小さい補修用樹脂を用いた比較例3の中空糸膜モジュールは、中空糸膜の内層に補修用樹脂が過度に含浸し、1度目の補修用樹脂の注入後に再び補修用樹脂を注入して硬化させても、中空部がポッティング樹脂と連通していた。
切断面に直接溶融樹脂を塗布した比較例4の中空糸膜モジュールは、エアスクラビング中に補修用樹脂と中空糸膜の表面が擦れあい、補修部よりもポッティング樹脂側を起点として中空糸膜が折れ曲がっていたと考えられる。
As shown in Table 1, the hollow fiber membrane modules of Examples 1 to 4 repaired using a repair resin having a viscosity of 10 mPa · s or more and 6,000 mPa · s or less are appropriately repaired by this method and are sufficient. It had pressure resistance.
The hollow fiber membrane modules of Example 2 and Example 3 in which the hollow fiber membrane was impregnated with the repair resin after the first injection of the repair resin and then the repair resin was injected again and cured were also appropriately repaired. , Had sufficient pressure resistance.
Since the hollow fiber membrane module of Example 4 had sufficient pressure resistance even after being aerated by activated sludge for one year, the repaired hollow fiber membrane was bent at the portion fixed to the water collecting portion. Or, the hollow fiber membrane rubbed against the surrounding hollow fiber membrane, so that no new damaged portion was generated.
It is probable that the hollow fiber membrane module of Comparative Example 1 using the repair resin having a viscosity higher than 6,000 mPa · s had insufficient pressure resistance because the inner layer of the hollow fiber membrane was not impregnated with the repair resin. ..
In the hollow fiber membrane module of Comparative Example 2 using a repair resin having a viscosity of less than 10 mPa · s, the inner layer of the hollow fiber membrane was excessively impregnated with the repair resin, and the hollow portion communicated with the potting resin.
In the hollow fiber membrane module of Comparative Example 3 using a repair resin having a viscosity of less than 10 mPa · s, the inner layer of the hollow fiber membrane was excessively impregnated with the repair resin, and after the first injection of the repair resin, the hollow fiber membrane module was repaired again. Even when the resin was injected and cured, the hollow portion communicated with the potting resin.
In the hollow fiber membrane module of Comparative Example 4 in which the molten resin was directly applied to the cut surface, the repair resin and the surface of the hollow fiber membrane rubbed against each other during air scrubbing, and the hollow fiber membrane was formed starting from the potting resin side of the repaired portion. It is probable that it was bent.

11 中空糸膜
11a、11b 切断により生じた中空糸膜の端部
12 破損部
13a、13b 切断により開口した中空糸膜の中空部
20a、20b 集水部
21a、21b ポッティング樹脂
22a、22b 流水路
23a、23b ポッティング界面
24 取水口
40 樹脂注入ノズル
50 補修用樹脂
52 硬化した補修用樹脂
60 樹脂注入器
11 Hollow fiber membranes 11a, 11b Ends of hollow fiber membranes caused by cutting 12 Broken parts 13a, 13b Hollow fiber membranes opened by cutting 20a, 20b Water collecting parts 21a, 21b Potting resin 22a, 22b Flow channel 23a , 23b Potting interface 24 Intake port 40 Resin injection nozzle 50 Repair resin 52 Hardened repair resin 60 Resin injector

Claims (3)

複数本の中空糸膜と、前記中空糸膜を固定するポッティング樹脂とを備えた中空糸膜モジュールを補修する方法であって、
前記中空糸膜に生じた破損部を含む、前記中空糸膜の長さ方向の一部分を切除して、
切除により開口した前記中空糸膜の端部から、樹脂注入ノズルを挿入して、
硬化前の粘度が室温で10mPa・s以上6,000mPa・s以下の補修用樹脂を、前記樹脂注入ノズルから注入して、
前記補修用樹脂が、前記中空糸膜の中空部を塞いだ状態で、前記補修用樹脂を硬化させる方法であり、
前記樹脂注入ノズルの先端が少なくともポッティング樹脂に到達するまで、前記樹脂注入ノズルを挿入する、中空糸膜モジュールの補修方法。
A method of repairing a hollow fiber membrane module including a plurality of hollow fiber membranes and a potting resin for fixing the hollow fiber membranes.
A part of the hollow fiber membrane in the length direction including the damaged portion generated in the hollow fiber membrane is cut off.
A resin injection nozzle is inserted from the end of the hollow fiber membrane opened by excision.
A repair resin having a viscosity before curing of 10 mPa · s or more and 6,000 mPa · s or less at room temperature is injected from the resin injection nozzle.
A method of curing the repair resin while the repair resin closes the hollow portion of the hollow fiber membrane.
A method for repairing a hollow fiber membrane module in which the resin injection nozzle is inserted until the tip of the resin injection nozzle reaches at least the potting resin.
前記中空糸膜の中空部に、硬化前の粘度が室温で10mPa・s以上50mPa・s以下の前記補修用樹脂を、前記樹脂注入ノズルから注入して、前記中空糸膜に前記補修用樹脂を含浸させた後に、再び前記補修用樹脂を注入する、請求項1に記載の中空糸膜モジュールの補修方法。 The repair resin having a viscosity before curing of 10 mPa · s or more and 50 mPa · s or less at room temperature is injected into the hollow portion of the hollow fiber membrane from the resin injection nozzle, and the repair resin is applied to the hollow fiber membrane. The method for repairing a hollow fiber membrane module according to claim 1, wherein the repair resin is injected again after impregnation. 複数本の中空糸膜と、前記中空糸膜を固定するポッティング樹脂とを備え、前記中空糸膜の少なくとも一本の、長さ方向の一部分が切除され、切除により開口した前記中空糸膜の中空部が、補修用樹脂で塞がれた中空糸膜モジュールであって、
前記中空部のうち、前記中空糸膜の外周が前記ポッティング樹脂と接する部分の少なくとも一部が、前記補修用樹脂で塞がれ、
前記中空部のうち、前記中空糸膜の外周がポッティング樹脂と接していない部分の、前記補修用樹脂で閉塞された部分の長さが、30mm以下である、中空糸膜モジュール。
The hollow fiber membrane is provided with a plurality of hollow fiber membranes and a potting resin for fixing the hollow fiber membrane, and at least one part of the hollow fiber membrane in the length direction is excised and opened by excision. The part is a hollow fiber membrane module that is closed with repair resin.
Of the hollow portion, at least a part of the portion where the outer circumference of the hollow fiber membrane is in contact with the potting resin is closed with the repair resin.
A hollow fiber membrane module in which the length of a portion of the hollow portion in which the outer periphery of the hollow fiber membrane is not in contact with the potting resin and which is closed by the repair resin is 30 mm or less.
JP2017012704A 2017-01-27 2017-01-27 Hollow fiber membrane module repair method and hollow fiber membrane module Active JP6834532B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017012704A JP6834532B2 (en) 2017-01-27 2017-01-27 Hollow fiber membrane module repair method and hollow fiber membrane module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017012704A JP6834532B2 (en) 2017-01-27 2017-01-27 Hollow fiber membrane module repair method and hollow fiber membrane module

Publications (2)

Publication Number Publication Date
JP2018118226A JP2018118226A (en) 2018-08-02
JP6834532B2 true JP6834532B2 (en) 2021-02-24

Family

ID=63042889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017012704A Active JP6834532B2 (en) 2017-01-27 2017-01-27 Hollow fiber membrane module repair method and hollow fiber membrane module

Country Status (1)

Country Link
JP (1) JP6834532B2 (en)

Also Published As

Publication number Publication date
JP2018118226A (en) 2018-08-02

Similar Documents

Publication Publication Date Title
JP4167222B2 (en) A method for minimizing the impact of integrity loss on hollow fiber membrane modules.
JP6278541B2 (en) Hollow fiber membrane module and manufacturing method thereof
KR102332901B1 (en) Hollow fiber membrane module and method for manufacturing hollow fiber membrane module
JP5609975B2 (en) Method for repairing leaked portion of hollow fiber membrane module and hollow fiber membrane module
JP5811738B2 (en) Method for repairing hollow fiber membrane module and hollow fiber membrane module
JP7197260B2 (en) Hollow fiber membrane module, seawater desalination system, method for desalinating seawater, method for producing freshwater from seawater, method for operating hollow fiber membrane module, method for filtration, and method for manufacturing hollow fiber membrane module
JP2012245428A (en) Pleated filter, ballast water treatment apparatus using the same and method for manufacturing pleated filter
JP6834532B2 (en) Hollow fiber membrane module repair method and hollow fiber membrane module
JP5935808B2 (en) Method for hydrophilizing hollow fiber membrane module
JP2009018283A (en) Hollow fiber membrane module and manufacturing method thereof
JP4620731B2 (en) Membrane module for immersion work
JP2006061816A (en) Hollow fiber membrane module and its manufacturing method
JP6079871B2 (en) Hollow fiber membrane module and manufacturing method thereof
JP2006247540A (en) Hollow fiber membrane module and its operation method
JP2009160561A (en) Filtration module
JP2020138123A (en) Repair method of hollow fiber membrane module, repair needle for hollow fiber membrane module and repair needle set for hollow fiber membrane module
JP4675062B2 (en) Hollow fiber membrane cartridge
JP5674609B2 (en) Dust collector and dust collector cleaning method
KR102597942B1 (en) Filtration method, method of desalinating seawater, method of producing fresh water, hollow fiber membrane module, and seawater desalination system
JP2008080262A (en) Manufacturing method of hollow fiber membrane module
JP6731820B2 (en) Hollow fiber membrane module and filtration method using the same
JP3873247B2 (en) Hollow fiber bundle end fixing method
JP4362432B2 (en) Hollow fiber type module
JP2006102739A (en) Hollow fiber membrane module and manufacturing method of the same
JP2020182896A (en) Repair method of hollow fiber membrane module

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181102

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210118

R151 Written notification of patent or utility model registration

Ref document number: 6834532

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151