[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6827672B2 - 電気化学反応セルスタック - Google Patents

電気化学反応セルスタック Download PDF

Info

Publication number
JP6827672B2
JP6827672B2 JP2016240226A JP2016240226A JP6827672B2 JP 6827672 B2 JP6827672 B2 JP 6827672B2 JP 2016240226 A JP2016240226 A JP 2016240226A JP 2016240226 A JP2016240226 A JP 2016240226A JP 6827672 B2 JP6827672 B2 JP 6827672B2
Authority
JP
Japan
Prior art keywords
gas
flow path
recess
fuel
gas flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016240226A
Other languages
English (en)
Other versions
JP2018098001A (ja
Inventor
健太 眞邉
健太 眞邉
堀田 信行
信行 堀田
山本 享史
享史 山本
洋介 伊藤
洋介 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Morimura SOFC Technology Co Ltd
Original Assignee
Morimura SOFC Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Morimura SOFC Technology Co Ltd filed Critical Morimura SOFC Technology Co Ltd
Priority to JP2016240226A priority Critical patent/JP6827672B2/ja
Publication of JP2018098001A publication Critical patent/JP2018098001A/ja
Application granted granted Critical
Publication of JP6827672B2 publication Critical patent/JP6827672B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

本明細書によって開示される技術は、電気化学反応セルスタックに関する。
水素と酸素との電気化学反応を利用して発電を行う燃料電池の種類の1つとして、固体酸化物を含む電解質層を備える固体酸化物形の燃料電池(以下、「SOFC」という)が知られている。SOFCの構成単位である燃料電池単セル(以下、単に「単セル」という)は、電解質層と、電解質層を挟んで所定の方向(以下、「第1の方向」という)に互いに対向する空気極および燃料極とを含む。
SOFCは、一般に、単セルが第1の方向に複数並べて配置された構造体(以下、「燃料電池ブロック」という)と、燃料電池ブロックを挟んで第1の方向に互いに対向する一対の平板状部材(「エンドプレート」とも呼ばれる)とを備える燃料電池スタックの形態で利用される。燃料電池スタックには、燃料電池ブロック全体にわたって延びるガス流路(「マニホールド」とも呼ばれる)が形成されている。ガス流路は、燃料電池スタックに含まれる各単セルへの反応ガス(酸化剤ガスや燃料ガス)の供給や、各単セルからのオフガスの排出のために利用される(例えば、特許文献1参照)。
特開2015−88264号公報
上記従来の燃料電池スタックの構成では、上記一対の平板状部材(エンドプレート)の一方における第1の方向視でガス流路(マニホールド)と重なる位置に、平板状部材を第1の方向に貫通するガス孔が形成されている。反応ガスは、燃料電池スタックの外部に設けられた配管等のガス供給部から、平板状部材に形成されたガス孔を介してガス流路に供給される。そのため、上記従来の燃料電池スタックの構成では、ガス流路に供給される反応ガスの温度が十分に高くならず、その結果、発電性能が十分に高くならないという問題がある。また、上記従来の燃料電池スタックの構成では、例えば、燃料電池スタックから排出されるオフガスを燃焼させるための燃焼器等を設ける場合、燃料電池スタックの外部に配置され、燃料電池スタックに形成されたガス排出口と燃焼器等の部材に形成されたガス供給口とをつなぐガス配管等が必要となる。その結果、ガス配管等の構成が大型化・複雑化し、燃料電池スタックと燃料電池スタックの外部のガス配管等とを備えるモジュールの構成が大型化・複雑化するという問題がある。
なお、このような問題は、水の電気分解反応を利用して水素の生成を行う固体酸化物形の電解セル(以下、「SOEC」という)の構成単位である電解単セルが第1の方向に複数並べて配置された電解セルブロックを備える電解セルスタックにも共通の問題である。なお、本明細書では、燃料電池スタックと電解セルスタックとをまとめて「電気化学反応セルスタック」という。また、このような問題は、SOFCやSOECに限らず、他のタイプの電気化学反応セルスタックにも共通の問題である。
本明細書では、上述した課題を解決することが可能な技術を開示する。
本明細書に開示される技術は、例えば、以下の形態として実現することが可能である。
(1)本明細書に開示される電気化学反応セルスタックは、電解質層と前記電解質層を挟んで第1の方向に互いに対向する空気極および燃料極とをそれぞれ含む電気化学反応単セルが前記第1の方向に複数並べて配置された電気化学反応ブロックと、前記電気化学反応ブロックに対して前記第1の方向の一方側の位置に、前記第1の方向に並べて配置された複数の平板状部材と、を備え、前記電気化学反応ブロックにわたって延びる複数のガス流路が形成された電気化学反応セルスタックにおいて、前記複数の平板状部材の内の前記第1の方向の前記一方側の端に位置する前記平板状部材である外側平板状部材における前記一方側の表面である外側表面には、前記第1の方向視で前記ガス流路と重ならない位置に複数のガス孔が形成されており、前記複数の平板状部材により構成される構造体の内部に、前記各ガス孔と前記各ガス流路とを連通する複数の連通ガス流路が形成されており、前記複数の平板状部材の内、前記外側平板状部材と前記電気化学反応ブロックとの間に配置された1または複数の前記平板状部材により構成された内側平板構成体における前記第1の方向の前記一方側の表面に、前記複数の連通ガス流路の内の第1の連通ガス流路を構成する第1の凹部が形成されており、前記内側平板構成体における前記第1の方向の前記他方側の表面に、前記複数の連通ガス流路の内の第2の連通ガス流路を構成する第2の凹部が形成されている。本電気化学反応セルスタックでは、外部から電気化学反応セルスタックに導入された反応ガスは、外側平板状部材に設けられたガス孔から連通ガス流路に流入し、その後にガス流路に流入する。反応ガスが連通ガス流路を通過する際には、電気化学反応単セルからの熱によって反応ガスの温度が上昇する。そのため、本電気化学反応セルスタックによれば、反応ガスが電気化学反応セルスタックの外部から直接、ガス流路に流入する構成と比較して、ガス流路に流入する反応ガスの温度を高くすることができ、発電や水素生成の反応効率を向上させることができる。その結果、電気化学反応セルスタックの性能を向上させることができる。また、本電気化学反応セルスタックでは、複数の平板状部材により構成される構造体の内部に連通ガス流路が形成されているため、電気化学反応セルスタックの外部の配管の長さを短くすることができる。その結果、電気化学反応セルスタックと電気化学反応セルスタックの外部のガス配管等とを備えるモジュールの小型化および構成の簡素化を実現することができる。また、第1の連通ガス流路を構成する第1の凹部は、内側平板構成体の第1の方向の一方側の表面に形成され、第2の連通ガス流路を構成する第2の凹部は、内側平板構成体の第1の方向の他方側の表面に形成されている。このため、第1の凹部と第2の凹部とが内側平板構成体の同一面上に形成される場合に比べて、第1の連通ガス流路と第2の連通ガス流路との間のガスのリークを抑制することができる。
(2)上記電気化学反応セルスタックにおいて、前記複数のガス流路は、酸化剤ガス供給用のガス流路と、酸化剤ガス排出用のガス流路と、燃料ガス供給用のガス流路と、燃料ガス排出用のガス流路と、を含み、前記複数のガス孔は、酸化剤ガス供給用のガス孔と、酸化剤ガス排出用のガス孔と、燃料ガス供給用のガス孔と、燃料ガス排出用のガス孔と、を含み、前記第1の連通ガス流路および前記第2の連通ガス流路の内の一方の連通ガス流路は、前記酸化剤ガス供給用のガス孔と前記酸化剤ガス供給用のガス流路とを連通する酸化剤ガス供給用の連通ガス流路と、前記酸化剤ガス排出用のガス孔と前記酸化剤ガス排出用のガス流路とを連通する酸化剤ガス排出用の連通ガス流路とを含み、前記第1の連通ガス流路および前記第2の連通ガス流路の内の他方の連通ガス流路は、前記燃料ガス供給用のガス孔と前記燃料ガス供給用のガス流路とを連通する燃料ガス供給用の連通ガス流路と、前記燃料ガス排出用のガス孔と前記燃料ガス排出用のガス流路とを連通する燃料ガス排出用の連通ガス流路とを含み、前記第1の凹部および前記第2の凹部の内、前記一方の連通ガス流路を構成する凹部は、前記酸化剤ガス供給用の連通ガス流路を構成する酸化剤ガス供給用の凹部と、前記酸化剤ガス排出用の連通ガス流路を構成する酸化剤ガス排出用の凹部と、を含み、かつ、前記酸化剤ガス供給用の凹部と前記酸化剤ガス排出用の凹部とは、前記内側平板構成体における同一の表面に形成されており、前記第1の凹部および前記第2の凹部の内、前記他方の連通ガス流路を構成する凹部は、前記燃料ガス供給用の連通ガス流路を構成する燃料ガス供給用の凹部と、前記燃料ガス排出用の連通ガス流路を構成する燃料ガス排出用の凹部と、を含み、かつ、前記燃料ガス供給用の凹部と前記燃料ガス排出用の凹部とは、前記内側平板構成体における同一の表面に形成されている構成としてもよい。本電気化学反応セルスタックによれば、酸化剤ガスと燃料ガスとの間のリークを、より確実に抑制することができる。
(3)上記電気化学反応セルスタックにおいて、前記第1の方向視で前記第1の凹部と前記第2の凹部との少なくとも一部が重なっている構成としてもよい。本電気化学反応セルスタックによれば、第1の凹部と第2の凹部とを重ならないように配置する場合に比べて、第1の凹部と第2の凹部との少なくとも一方を長く確保しつつ、レイアウトの自由度を向上させることができる。
(4)上記電気化学反応セルスタックにおいて、前記外側平板状部材の前記外側表面には、前記第1の方向視で前記第1の連通ガス流路を取り囲む仮想線に沿って溶接痕が形成されている構成としてもよい。本電気化学反応セルスタックによれば、連通ガス流路のシール性を高めることができ、連通ガス流路からのガス漏れを抑制することができる。
(5)上記電気化学反応セルスタックにおいて、前記第1の凹部および前記第2の凹部の少なくとも一方の凹部には、当該凹部の長手方向に沿って延びるリブが形成されている構成としてもよい。本電気化学反応セルスタックによれば、凹部の変形を抑制しつつ、連通ガス流路におけるガスの圧損を抑制することができる。
(6)上記電気化学反応セルスタックにおいて、前記複数の平板状部材に対して前記第1の方向の前記一方側の位置に配置されたガス燃焼部を備えることを特徴とする構成としてもよい。本電気化学反応セルスタックによれば、ガス燃料部からの熱によって第1の凹部および第2の凹部を流れるガスを加熱することができる。その結果、より効率よくガス流路に流入する反応ガスの温度を高くすることができ、発電や水素生成の反応効率を向上させることができる。
なお、本明細書に開示される技術は、種々の形態で実現することが可能であり、例えば、電気化学反応セルスタック(燃料電池スタックまたは電解セルスタック)、電気化学反応セルスタックとガス配管等とを備える電気化学反応モジュール、それらの製造方法等の形態で実現することが可能である。
本実施形態における燃料電池スタック100の外観構成を示す斜視図である。 本実施形態における燃料電池スタック100の上側のXY平面構成を示す説明図である。 図2のIII−IIIの位置における燃料電池スタック100のYZ断面構成を示す説明図である。 図2のIV−IVの位置における燃料電池スタック100のYZ断面構成を示す説明図である。 図2のV−Vの位置における燃料電池スタック100のXZ断面構成を示す説明図である。 内側カバープレート300および下側のエンドプレート106のそれぞれの外観構成を示す斜視図である。 下側のエンドプレート106の下面(XY平面)の構成を示す説明図である。 下側のエンドプレート106および外側カバープレート200のそれぞれの外観構成を示す斜視図である。 図7のIX−IXの位置における外側カバープレート200およびエンドプレート106のXZ断面構成を示す説明図である。
A.第1実施形態:
A−1.構成:
(燃料電池スタック100の構成)
図1は、本実施形態における燃料電池スタック100の外観構成を示す斜視図であり、図2は、燃料電池スタック100の上側のXY平面構成を示す説明図であり、図3は、図2のIII−IIIの位置における燃料電池スタック100のYZ断面構成を示す説明図であり、図4は、図2のIV−IVの位置における燃料電池スタック100のYZ断面構成を示す説明図であり、図5は、図2のV−Vの位置における燃料電池スタック100のXZ断面構成を示す説明図である。各図には、方向を特定するための互いに直交するXYZ軸が示されている。本明細書では、便宜的に、Z軸正方向を上方向と呼び、Z軸負方向を下方向と呼ぶものとするが、燃料電池スタック100は実際にはそのような向きとは異なる向きで設置されてもよい。また、本明細書では、Z軸に直交する方向(例えば、X方向やY方向)を面方向と呼ぶ。
図3から図5に示すように、燃料電池スタック100は、例えばステンレスにより形成された筐体の内側面に断熱材が設けられた断熱容器10内に、支柱20を介して設置される。
また、燃料電池スタック100の下側には、燃料電池スタック100への吸排気等を担う補助器40が配置されている。補助器40には、断熱容器10の外部から延びる各種の配管70が接続されており、該配管70を介して、補助器40に酸化剤ガスOGや原燃料ガス、改質水等が導入されると共に、補助器40から排ガスが排出される。補助器40の内部には、原燃料ガスを改質して燃料ガスFGを生成するための改質室(図示せず)や、燃料電池スタック100から排出されたオフガスを燃焼させる燃焼室(図示せず)が形成されている。また、補助器40と燃料電池スタック100との間には、各種の配管60が設けられており、該配管60を介して、補助器40から燃料電池スタック100に酸化剤ガスOGや燃料ガスFGが導入されると共に、燃料電池スタック100から補助器40にオフガスが排出される。なお、補助器40は、特許請求の範囲におけるガス燃焼部に相当する。
図1から図5に示すように、燃料電池スタック100は、複数の(本実施形態では7つの)燃料電池発電単位(以下、単に「発電単位」という)102と、一対のエンドプレート104,106と、外側カバープレート200と、内側カバープレート300とを備える。燃料電池スタック100に含まれる複数の発電単位102は、所定の配列方向(本実施形態では上下方向)に並べて配置されている。一対のエンドプレート104,106は、複数の発電単位102から構成される集合体(以下、「発電ブロック103」という)を上下から挟むように配置されている。また、外側カバープレート200は、下側のエンドプレート106の下に配置され、内側カバープレート300は、下側のエンドプレート106の上に配置されている。なお、上記配列方向(上下方向)は、特許請求の範囲における第1の方向に相当し、発電ブロック103は、特許請求の範囲における電気化学反応ブロックに相当する。
図1、図2および図5に示すように、各発電単位102、各エンドプレート104,106および内側カバープレート300のZ方向回りの周縁部には、上下方向に貫通する複数の(本実施形態では8つの)孔が形成されており、各発電単位102、各エンドプレート104,106および内側カバープレート300に形成され互いに対応する孔同士が上下方向に連通して、一方のエンドプレート104から他方のエンドプレート106にわたって上下方向に延びる締結用連通孔108を構成している。以下の説明では、締結用連通孔108を構成するために各部材に形成された孔も、締結用連通孔108と呼ぶ場合がある。
各締結用連通孔108には上下方向に延びるボルト22が挿通されており、ボルト22とボルト22の両端に嵌められたナット24とによって、各発電単位102および各エンドプレート104,106が一体に締結されている。なお、各ボルト22の上側に嵌められたナット24と上側のエンドプレート104の上側表面との間、および、各ボルト22の下側に嵌められたナット24と下側のエンドプレート106の下側表面との間には、絶縁シート26が介在している。絶縁シート26は、例えばマイカシートや、セラミック繊維シート、セラミック圧粉シート、ガラスシート、ガラスセラミック複合剤等により構成される。
また、図1から図4に示すように、各発電単位102のZ方向回りの周縁部には、上下方向に貫通する複数の(本実施形態では4つの)孔が形成されており、各発電単位102に形成され互いに対応する孔同士が上下方向に連通して、複数の発電単位102から構成される集合体(発電ブロック103)にわたって上下方向に延びる流路用連通孔109を構成している。以下の説明では、流路用連通孔109を構成するために各発電単位102に形成された孔も、流路用連通孔109と呼ぶ場合がある。
図1から図3に示すように、燃料電池スタック100のZ方向回りの外周における1つの辺(X軸に平行な2つの辺の内のY軸正方向側の辺)の中点付近に位置する流路用連通孔109は、燃料電池スタック100に導入された酸化剤ガスOGを各発電単位102の空気室166に供給するガス流路である酸化剤ガス導入マニホールド161として機能する。具体的には、酸化剤ガス導入マニホールド161として機能する流路用連通孔109は、上記1つの辺の中点と、該辺に平行な方向(X軸方向)において該中点の一方側(X軸負方向)に位置するナット24(ボルト22)との間に配置されている。また、該辺の反対側の辺(X軸に平行な2つの辺の内のY軸負方向側の辺)の中点付近に位置する流路用連通孔109は、各発電単位102の空気室166から排出されたガスである酸化剤オフガスOOGを燃料電池スタック100の外部へ排出するガス流路である酸化剤ガス排出マニホールド162として機能する。具体的には、酸化剤ガス排出マニホールド162として機能する流路用連通孔109は、上記反対側の辺の中点と、該辺に平行な方向(X軸方向)において該中点の一方側(X軸負方向)に位置するナット24(ボルト22)との間に配置されている。なお、本実施形態では、酸化剤ガスOGとして、例えば空気が使用される。
また、図1、図2および図4に示すように、燃料電池スタック100のZ方向回りの外周における1つの辺(X軸に平行な2つの辺の内のY軸負方向側の辺)の中点付近に位置する流路用連通孔109は、燃料電池スタック100に導入された燃料ガスFGを各発電単位102の燃料室176に供給するガス流路である燃料ガス導入マニホールド171として機能する。具体的には、燃料ガス導入マニホールド171として機能する流路用連通孔109は、上記1つの辺の中点と、該辺に平行な方向(X軸方向)において該中点の他方側(X軸正方向)に位置するナット24(ボルト22)との間に配置されている。また、該辺の反対側の辺(X軸に平行な2つの辺の内のY軸正方向側の辺)の中点付近に位置する流路用連通孔109は、各発電単位102の燃料室176から排出されたガスである燃料オフガスFOGを燃料電池スタック100の外部へ排出するガス流路である燃料ガス排出マニホールド172として機能する。具体的には、燃料ガス排出マニホールド172として機能する流路用連通孔109は、上記反対側の辺の中点と、該辺に平行な方向(X軸方向)において該中点の他方側(X軸正方向)に位置するナット24(ボルト22)との間に配置されている。なお、本実施形態では、燃料ガスFGとして、例えば都市ガスを改質した水素リッチなガスが使用される。なお、各マニホールド161,162,171,172は、特許請求の範囲におけるガス流路(酸化剤ガス供給用のガス流路、酸化剤ガス排出用のガス流路、燃料ガス供給用のガス流路、燃料ガス排出用のガス流路)に相当する。
(エンドプレート104,106およびカバープレート200,300の構成)
一対のエンドプレート104,106は、略矩形の平板形状の導電性部材であり、例えばステンレスにより形成されている。上側のエンドプレート104は、複数の発電単位102から構成される発電ブロック103の上側に配置され、下側のエンドプレート106は、発電ブロック103の下側に配置されている。一対のエンドプレート104,106によって複数の発電単位102が押圧された状態で挟持されている。本実施形態では、上側のエンドプレート104は、燃料電池スタック100のプラス側の出力端子として機能し、下側のエンドプレート106は、燃料電池スタック100のマイナス側の出力端子として機能する。
外側カバープレート200は、平板形状の導電性部材であり、例えばステンレスにより形成されている。外側カバープレート200は、下側のエンドプレート106の下側に隣接して配置されている。内側カバープレート300は、平板形状の導電性部材であり、例えばステンレスにより形成されている。内側カバープレート300は、下側のエンドプレート106の上側に隣接して配置されている。
このように、下側のエンドプレート106とカバープレート200,300とは、複数の発電単位102から構成される発電ブロック103に対してZ方向の一方側(下側)の位置に、Z方向に並べて配置された複数の平板状部材である。外側カバープレート200は、これらの複数の平板状部材の内、Z方向の上記一方側(下側)の端に位置する平板状部材であり、特許請求の範囲における外側平板状部材に相当する。また、下側のエンドプレート106は、これらの複数の平板状部材の内、外側カバープレート200と発電ブロック103との間に配置された平板状部材であり、特許請求の範囲における内側平板構成体に相当する。下側のエンドプレート106および各カバープレート200,300の構成については、後に詳述する。
(発電単位102の構成)
図3から図5に示すように、発電の最小単位である発電単位102は、燃料電池単セル(以下、単に「単セル」という)110と、セパレータ120と、空気極側フレーム130と、空気極側集電体134と、燃料極側フレーム140と、燃料極側集電体144と、発電単位102の最上層および最下層を構成する一対のインターコネクタ150とを備えている。セパレータ120、空気極側フレーム130、燃料極側フレーム140、インターコネクタ150におけるZ方向回りの周縁部には、上述した締結用連通孔108や流路用連通孔109に対応する孔が形成されている。なお、発電単位102は単セル110を備えるため、上述した発電ブロック103は、単セル110が上下方向に複数並べて配置された構造体であるとも表現できる。
インターコネクタ150は、略矩形の平板形状の導電性部材であり、例えばフェライト系ステンレスにより形成されている。インターコネクタ150は、発電単位102間の電気的導通を確保すると共に、発電単位102間での反応ガスの混合を防止する。なお、本実施形態では、2つの発電単位102が隣接して配置されている場合、1つのインターコネクタ150は、隣接する2つの発電単位102に共有されている。すなわち、ある発電単位102における上側のインターコネクタ150は、その発電単位102の上側に隣接する他の発電単位102における下側のインターコネクタ150と同一部材である。また、燃料電池スタック100は一対のエンドプレート104,106を備えているため、燃料電池スタック100において最も上に位置する発電単位102は上側のインターコネクタ150を備えておらず、最も下に位置する発電単位102は下側のインターコネクタ150を備えていない。
単セル110は、電解質層112と、電解質層112を挟んで上下方向(発電単位102が並ぶ配列方向)に互いに対向する空気極(カソード)114および燃料極(アノード)116とを備える。なお、本実施形態の単セル110は、燃料極116で電解質層112および空気極114を支持する燃料極支持形の単セルである。
電解質層112は、略矩形の平板形状部材であり、少なくともZrを含んでおり、例えば、YSZ(イットリア安定化ジルコニア)、ScSZ(スカンジア安定化ジルコニア)、CaSZ(カルシア安定化ジルコニア)等の固体酸化物により形成されている。空気極114は、略矩形の平板形状部材であり、例えば、ペロブスカイト型酸化物(例えばLSCF(ランタンストロンチウムコバルト鉄酸化物)、LSM(ランタンストロンチウムマンガン酸化物)、LNF(ランタンニッケル鉄))により形成されている。燃料極116は、略矩形の平板形状部材であり、例えば、Ni(ニッケル)、Niとセラミック粒子からなるサーメット、Ni基合金等により形成されている。このように、本実施形態の単セル110(発電単位102)は、電解質として固体酸化物を用いる固体酸化物形燃料電池(SOFC)である。
セパレータ120は、中央付近に上下方向に貫通する略矩形の孔121が形成されたフレーム状の部材であり、例えば、金属により形成されている。セパレータ120における孔121の周囲部分は、電解質層112における空気極114の側の表面の周縁部に対向している。セパレータ120は、その対向した部分に配置されたロウ材(例えばAgロウ)により形成された接合部により、単セル110と接合されている。セパレータ120により、空気極114に面する空気室166と燃料極116に面する燃料室176とが区画され、単セル110の周縁部における一方の電極側から他方の電極側へのガスのリークが抑制される。
空気極側フレーム130は、中央付近に上下方向に貫通する略矩形の孔131が形成されたフレーム状の部材であり、例えば、マイカ等の絶縁体により形成されている。空気極側フレーム130の孔131は、空気極114に面する空気室166を構成する。空気極側フレーム130は、セパレータ120における単セル110に対向する側とは反対側の表面の周縁部と、インターコネクタ150における空気極114に対向する側の表面の周縁部とに接触している。空気極側フレーム130によって、発電単位102に含まれる一対のインターコネクタ150間が電気的に絶縁される。図2に示すように、空気極側フレーム130には、酸化剤ガス導入マニホールド161と空気室166とを連通する酸化剤ガス供給連通孔132と、空気室166と酸化剤ガス排出マニホールド162とを連通する酸化剤ガス排出連通孔133とが形成されている。
燃料極側フレーム140は、中央付近に上下方向に貫通する略矩形の孔141が形成されたフレーム状の部材であり、例えば、金属により形成されている。燃料極側フレーム140の孔141は、燃料極116に面する燃料室176を構成する。燃料極側フレーム140は、セパレータ120における単セル110に対向する側の表面の周縁部と、インターコネクタ150における燃料極116に対向する側の表面の周縁部とに接触している。図3に示すように、燃料極側フレーム140には、燃料ガス導入マニホールド171と燃料室176とを連通する燃料ガス供給連通孔142と、燃料室176と燃料ガス排出マニホールド172とを連通する燃料ガス排出連通孔143とが形成されている。
燃料極側集電体144は、燃料室176内に配置されている。燃料極側集電体144は、例えば、ニッケルやニッケル合金、ステンレス等により形成されている。燃料極側集電体144は、燃料極116における電解質層112に対向する側とは反対側の表面と、インターコネクタ150における燃料極116に対向する側の表面とに接触している。ただし、上述したように、燃料電池スタック100において最も下に位置する発電単位102は下側のインターコネクタ150を備えていないため、当該発電単位102における燃料極側集電体144は、下側のエンドプレート106に接触している。燃料極側集電体144は、このような構成であるため、燃料極116とインターコネクタ150(またはエンドプレート106)とを電気的に接続する。なお、各発電単位102において、燃料極側集電体144と下側のインターコネクタ150とが一体の部材であるとしてもよい。
空気極側集電体134は、空気室166内に配置されている。空気極側集電体134は、例えば、フェライト系ステンレスにより形成されている。空気極側集電体134は、空気極114における電解質層112に対向する側とは反対側の表面と、インターコネクタ150における空気極114に対向する側の表面とに接触している。ただし、上述したように、燃料電池スタック100において最も上に位置する発電単位102は上側のインターコネクタ150を備えていないため、当該発電単位102における空気極側集電体134は、上側のエンドプレート104に接触している。空気極側集電体134は、このような構成であるため、空気極114とインターコネクタ150(またはエンドプレート104)とを電気的に接続する。なお、各発電単位102において、空気極側集電体134と上側のインターコネクタ150とが一体の部材であるとしてもよい。
(下側のエンドプレート106および各カバープレート200,300の構成)
図6は、内側カバープレート300および下側のエンドプレート106のそれぞれの外観構成を示す斜視図であり、図7は、下側のエンドプレート106の下面(XY平面)の構成を示す説明図であり、図8は、下側のエンドプレート106および外側カバープレート200のそれぞれの外観構成を示す斜視図である。なお、図7には、下側のエンドプレート106の構成に重ねて、外側カバープレート200の位置が破線で示されている。
上述したように、下側のエンドプレート106のZ方向回りの周縁部には、下側のエンドプレート106を上下方向に貫通する8つの締結用連通孔108が形成されている。また、下側のエンドプレート106の上面には、面方向に延びる2つの内側流路用凹部(溝部)107Uが形成されている。下側のエンドプレート106の上面は、特許請求の範囲における内側平板構成体における第1の方向の他方側の表面に相当し、内側流路用凹部107Uは、特許請求の範囲における第2の凹部(酸化剤ガス供給用の凹部、酸化剤ガス排出用の凹部)に相当する。
図2、図3、図5から図7に示すように、2つの内側流路用凹部107Uの内、一方の内側流路用凹部107Uについて、Z方向視の形状は、所定方向(Y方向)に沿って延びる直線状の形状である。該一方の内側流路用凹部107Uの一端部(Y軸正方向の端部)は、酸化剤ガス導入マニホールド161とZ方向視で重なる位置に配置されるとともに、酸化剤ガス導入マニホールド161と連通している。該一方の内側流路用凹部107Uの他端部(Y軸負方向の端部)には、下側のエンドプレート106を上下方向に貫通する流路用貫通孔105が形成されている。
2つの内側流路用凹部107Uの内、他方の内側流路用凹部107Uについて、Z方向視の形状は、折れ曲がりつつ、一方の内側流路用凹部107Uの長手方向と交差する方向に延びる折れ線状の形状である。該他方の内側流路用凹部107Uの一端部(Y軸負方向の端部)は、酸化剤ガス排出マニホールド162とZ方向視で重なる位置に配置されるとともに、酸化剤ガス排出マニホールド162と連通している。該他方の内側流路用凹部107Uの他端部(Y軸正方向の端部)には、下側のエンドプレート106を上下方向に貫通する流路用貫通孔105が形成されている。なお、Z方向視で、2つの内側流路用凹部107Uのそれぞれに形成された2つの流路用貫通孔105が並ぶ方向は、酸化剤ガス導入マニホールド161と酸化剤ガス排出マニホールド162とが並ぶ方向に略直交している。
さらに、各内側流路用凹部107Uには、長手方向に沿って延びるリブ178Uが形成されている。具体的には、一方の内側流路用凹部107Uに形成されたリブ178UのZ方向視の形状は、該一方の内側流路用凹部107Uの短手方向の略中央位置を通過し、かつ、該一方の内側流路用凹部107Uの長手方向に沿って直線状に延びた形状である。他方の内側流路用凹部107Uに形成されたリブ178UのZ方向視の形状は、該他方の内側流路用凹部107Uの短手方向の略中央位置を通過し、かつ、該他方の内側流路用凹部107Uの形状に対応するように折れ曲がりつつ、該他方の内側流路用凹部107Uの長手方向に沿って延びる折れ線状の形状である。なお、各リブ178UのZ軸方向の高さ寸法は、各内側流路用凹部107UのZ軸方向の深さ寸法と略同じでもよいし、各内側流路用凹部107UのZ軸方向の深さ寸法より小さくてもよい。
図6に示すように、内側カバープレート300のZ方向視の外周形状は、下側のエンドプレート106の外周形状と同様に、略矩形状の形状である。また、内側カバープレート300には、内側カバープレート300を上下方向に貫通する4つの中継孔302が形成されている。4つの中継孔302は、下側のエンドプレート106に形成された4つの流路用凹部107U,107Dに対応している。図2、図3および図6に示すように、2つの内側流路用凹部107Uに対応する2つの中継孔302は、Z方向視で、対応する内側流路用凹部107Uと重なり、かつ、各マニホールド161,162と重なる位置に配置されている。内側カバープレート300が下側のエンドプレート106の上面上に配置された状態では、各内側流路用凹部107Uにおける中継孔302と重ならない部分は、内側カバープレート300により塞がれる。そのため、内側カバープレート300と下側のエンドプレート106とで構成される構造体の内部には、各内側流路用凹部107Uにより構成される空間が確保される。2つの外側流路用凹部107Dに対応する2つの中継孔302は、Z方向視で、対応する外側流路用凹部107Dと重なり、かつ、各マニホールド171,172と重なる位置に配置されている。このため、各中継孔302は、各マニホールド171,172と連通している。なお、X軸方向に並ぶ1組の中継孔302の間には、締結用連通孔108が形成されている。
また、下側のエンドプレート106の下面には、面方向に延びる2つの外側流路用凹部(溝部)107Dが形成されている。下側のエンドプレート106の下面は、特許請求の範囲における内側平板構成体における第1の方向の一方側の表面に相当し、外側流路用凹部107Dは、特許請求の範囲における第1の凹部(燃料ガス供給用の凹部、燃料ガス排出用の凹部)に相当する。
図2、図4、図5、図7および図8に示すように、2つの外側流路用凹部107Dの内、一方の外側流路用凹部107Dについて、Z方向視の形状は、所定方向(Y方向)に沿って延びる直線状の形状である。該一方の外側流路用凹部107Dの一端部(Y軸負方向の端部)は、燃料ガス導入マニホールド171とZ方向視で重なる位置に配置されるとともに、該一端部には、下側のエンドプレート106を上下方向に貫通する流路用貫通孔105が形成されている。このため、一方の外側流路用凹部107Dに形成された流路用貫通孔105は、内側カバープレート300に形成された中継孔302を介して、燃料ガス導入マニホールド171と連通している。該一方の内側流路用凹部107Uの他端部(Y軸正方向の端部)は、外側カバープレート200に形成された後述の4つのガス孔202の内の1つとZ方向視で重なる位置に配置されている。
2つの外側流路用凹部107Dの内、他方の外側流路用凹部107Dについて、Z方向視の形状は、折れ曲がりつつ、一方の外側流路用凹部107Dの長手方向と交差する方向に延びる折れ線状の形状である。該他方の外側流路用凹部107Dの一端部(Y軸正方向の端部)は、燃料ガス排出マニホールド172とZ方向視で重なる位置に配置されるとともに、該一端部には、下側のエンドプレート106を上下方向に貫通する流路用貫通孔105が形成されている。このため、他方の外側流路用凹部107Dに形成された流路用貫通孔105は、内側カバープレート300に形成された中継孔302を介して、燃料ガス排出マニホールド172と連通している。該他方の外側流路用凹部107Dの他端部(Y軸負方向の端部)は、外側カバープレート200に形成された後述の4つのガス孔202の1つとZ方向視で重なる位置に配置されている。なお、Z方向視で、2つの外側流路用凹部107Dのそれぞれに形成された2つの流路用貫通孔105が並ぶ方向は、燃料ガス導入マニホールド171と燃料ガス排出マニホールド172とが並ぶ方向に略直交している。図2、図5および図7に示すように、レイアウトの関係上、Z方向視で、下側のエンドプレート106を透過した見た場合において、他方の内側流路用凹部107Uと他方の外側流路用凹部107Dとは、互いに一部分が重なっており、下側のエンドプレート106によって上下方向において区画されている。
図7および図8に示すように、外側カバープレート200のZ方向視の外周形状は、下側のエンドプレート106の外周形状に対し、締結用連通孔108と重なる位置、すなわち、4つの角部および各辺の略中央部の位置に、切り欠き(外形凹部Pa)が形成された形状である。また、外側カバープレート200には、外側カバープレート200を上下方向に貫通する4つのガス孔202が形成されている。4つのガス孔202は、下側のエンドプレート106に形成された4つの流路用凹部107U,107Dに対応している。4つのガス孔202は、特許請求の範囲における複数のガス孔(酸化剤ガス供給用のガス孔、酸化剤ガス排出用のガス孔、燃料ガス供給用のガス孔、燃料ガス排出用のガス孔)に相当する。
図2、図3および図7に示すように、2つの内側流路用凹部107Uに対応する2つのガス孔202は、Z方向視で、各マニホールド161,162と重ならない位置、具体的には、対応する内側流路用凹部107Uに形成された流路用貫通孔105と重なる位置に配置されている。このため、外側カバープレート200に形成された2つのガス孔202は、流路用貫通孔105を介して、各内側流路用凹部107Uにより構成される空間と連通する。
2つの外側流路用凹部107Dに対応する2つのガス孔202は、Z方向視で、各マニホールド171,172と重ならない位置、具体的には、対応する外側流路用凹部107Dの両端部の内、流路用貫通孔105が形成されていない端部と重なる位置に配置されている。外側カバープレート200が下側のエンドプレート106の下面上に配置された状態では、各外側流路用凹部107Dにおけるガス孔202と重ならない部分は、外側カバープレート200により塞がれる。そのため、外側カバープレート200と下側のエンドプレート106とで構成される構造体の内部には、各外側流路用凹部107Dにより構成される空間が確保される。各流路用凹部107U,107Dにより構成される空間は、ガス孔202を介して燃料電池スタック100の外部に開口し、かつ、流路用貫通孔105を介して対応する各マニホールド161,162,171,172に連通している。すなわち、各流路用凹部107により構成される空間により、ガス孔202と各マニホールド161,162,171,172とを連通する連通ガス流路が形成される。以下、酸化剤ガス導入マニホールド161に連通する連通ガス流路を、酸化剤ガス導入連通流路163といい、酸化剤ガス排出マニホールド162に連通する連通ガス流路を、酸化剤ガス排出連通流路164といい、燃料ガス導入マニホールド171に連通する連通ガス流路を、燃料ガス導入連通流路173といい、燃料ガス排出マニホールド172に連通する連通ガス流路を、燃料ガス排出連通流路174という。なお、燃料ガス導入連通流路173および燃料ガス排出連通流路174は、特許請求の範囲における第1の連通ガス流路(燃料ガス供給用の連通ガス流路、燃料ガス排出用の連通ガス流路)に相当し、酸化剤ガス導入連通流路163および酸化剤ガス排出連通流路164は、特許請求の範囲における第2の連通ガス流路(酸化剤ガス供給用の連通ガス流路、酸化剤ガス排出用の連通ガス流路)に相当する。
図3に示すように、酸化剤ガス導入連通流路163には、補助器40から酸化剤ガスOGを導入するための配管60が接続されており、酸化剤ガス排出連通流路164には、酸化剤オフガスOOGを補助器40に排出するための配管60が接続されている。また、図4に示すように、燃料ガス導入連通流路173には、補助器40から燃料ガスFGを導入するための配管60が接続されており、燃料ガス排出連通流路174には、燃料オフガスFOGを補助器40に排出するための配管60が接続されている。
図7および図8に示すように、外側カバープレート200は、下側のエンドプレート106に対して溶接により接合されている。より詳細には、外側カバープレート200の下面には、Z方向視で外側カバープレート200の外周線OL付近に沿って、外側カバープレート200と下側のエンドプレート106とを接合する外周溶接痕220が形成されている。さらに、外側カバープレート200の下面には、Z方向視で各流路用凹部107を取り囲む仮想線VLに沿って、外側カバープレート200と下側のエンドプレート106とを接合する流路用溶接痕210が形成されている。これにより、各流路用凹部107により形成される上記連通ガス流路(酸化剤ガス導入連通流路163、酸化剤ガス排出連通流路164、燃料ガス導入連通流路173、燃料ガス排出連通流路174)のシール性が高められる。なお、流路用溶接痕210は、特許請求の範囲における溶接痕に相当する。
図7のIX−IXの位置のXZ断面構成を表す図9に示すように、外側カバープレート200の下側(Z軸負方向側)の表面には溶接用凹部230が形成されており、外周溶接痕220および流路用溶接痕210は、溶接用凹部230内に形成されている。また、外周溶接痕220および流路用溶接痕210は、溶接用凹部230の側面から離間している。なお、図6に示すように、内側カバープレート300についても、外側カバープレート200と同様に、下側のエンドプレート106に対して溶接により接合されるとしてもよい。
A−2.燃料電池スタック100の動作:
図3に示すように、断熱容器10の外部の配管70を介して補助器40に導入された酸化剤ガスOGは、補助器40から配管60を介して燃料電池スタック100内に設けられた酸化剤ガス導入連通流路163に導入される。酸化剤ガス導入連通流路163に導入された酸化剤ガスOGは、酸化剤ガス導入連通流路163から酸化剤ガス導入マニホールド161に供給され、酸化剤ガス導入マニホールド161から各発電単位102の酸化剤ガス供給連通孔132を介して、空気室166に供給される。また、図4に示すように、断熱容器10の外部の配管70を介して補助器40に原燃料ガスや改質水が導入されると、補助器40の改質室内で原燃料ガスが改質されて燃料ガスFGが生成され、生成された燃料ガスFGが配管60を介して燃料電池スタック100内に設けられた燃料ガス導入連通流路173に導入される。燃料ガス導入連通流路173に導入された燃料ガスFGは、燃料ガス導入連通流路173から燃料ガス導入マニホールド171に供給され、燃料ガス導入マニホールド171から各発電単位102の燃料ガス供給連通孔142を介して、燃料室176に供給される。
各発電単位102の空気室166に酸化剤ガスOGが供給され、燃料室176に燃料ガスFGが供給されると、単セル110において酸化剤ガスOGに含まれる酸素と燃料ガスFGに含まれる水素との電気化学反応による発電が行われる。この発電反応は発熱反応である。各発電単位102において、単セル110の空気極114は空気極側集電体134を介して一方のインターコネクタ150(または上側のエンドプレート104)に電気的に接続され、燃料極116は燃料極側集電体144を介して他方のインターコネクタ150(または下側のエンドプレート106)に電気的に接続されている。また、燃料電池スタック100に含まれる複数の発電単位102は、電気的に直列に接続されている。そのため、燃料電池スタック100の出力端子として機能するエンドプレート104,106から、各発電単位102において生成された電気エネルギーが取り出される。なお、SOFCは、比較的高温(例えば700℃から1000℃)で発電が行われることから、起動後、発電により発生する熱で高温が維持できる状態になるまで、燃料電池スタック100が加熱器(図示せず)により加熱されてもよい。
図3に示すように、各発電単位102の酸化剤ガス排出連通孔133を介して空気室166から酸化剤ガス排出マニホールド162に排出された酸化剤オフガスOOGは、酸化剤ガス排出マニホールド162から酸化剤ガス排出連通流路164に排出され、酸化剤ガス排出連通流路164から燃料電池スタック100の外部の配管60を介して補助器40に排出される。また、図4に示すように、各発電単位102の燃料ガス排出連通孔143を介して燃料室176から燃料ガス排出マニホールド172に排出された燃料オフガスFOGは、燃料ガス排出マニホールド172から燃料ガス排出連通流路174に排出され、燃料ガス排出連通流路174から燃料電池スタック100の外部の配管60を介して補助器40に排出される。補助器40に排出された酸化剤オフガスOOGおよび燃料オフガスFOGは、補助器40に設けられた燃料室内で混合されて燃焼し、配管70を介して断熱容器10の外部に排出される。
A−3.本実施形態の効果:
以上説明したように、本実施形態の燃料電池スタック100は、単セル110(発電単位102)が上下方向に複数並べて配置された発電ブロック103と、発電ブロック103に対して上下方向の一方側(下側)の位置に、上下方向に並べて配置された複数の平板状部材であるエンドプレート106およびカバープレート200,300を備える。また、燃料電池スタック100には、発電ブロック103にわたって延びるガス流路である各マニホールド161,162,171,172が形成されている。また、上記複数の平板状部材であるエンドプレート106およびカバープレート200,300の内、上下方向の上記一方側(下側)の端に位置する平板状部材である外側カバープレート200(外側平板状部材)における上記一方側(下側)の表面(外側表面)には、Z方向視で各マニホールド161,162,171,172と重ならない位置にガス孔202が形成されている。また、上記複数の平板状部材(エンドプレート106およびカバープレート200,300)により構成される構造体の内部に、外側カバープレート200の下面に設けられたガス孔202と各マニホールド161,162,171,172とを連通する各連通ガス流路(酸化剤ガス導入連通流路163、酸化剤ガス排出連通流路164、燃料ガス導入連通流路173、燃料ガス排出連通流路174)が形成されている。そのため、本実施形態の燃料電池スタック100では、配管60を介して燃料電池スタック100に導入された酸化剤ガスOGおよび燃料ガスFGは、外側カバープレート200の下面に設けられたガス孔202から、エンドプレート106およびカバープレート200,300により構成される構造体の内部に形成された各連通ガス流路(酸化剤ガス導入連通流路163および燃料ガス導入連通流路173)に流入し、その後に各マニホールド(酸化剤ガス導入マニホールド161および燃料ガス導入マニホールド171)に流入する。上述したように、各単セル110での発電反応は発熱反応であるため、酸化剤ガスOGおよび燃料ガスFGが各連通ガス流路163,173を通過する際には、単セル110からの熱によって酸化剤ガスOGおよび燃料ガスFGの温度が上昇する。そのため、本実施形態の燃料電池スタック100によれば、酸化剤ガスOGおよび燃料ガスFGが燃料電池スタック100の外部から直接、各マニホールド161,171に流入する構成と比較して、各マニホールド161,171に流入する酸化剤ガスOGおよび燃料ガスFGの温度を高くすることができるとともに、外部から直接供給され比較的に温度が低い酸化剤ガスOGおよび燃料ガスFGによって単セル110の温度が低下することを抑制することができる。その結果、各単セル110における発電の反応効率を向上させることができ、その結果、燃料電池スタック100の発電性能を向上させることができる。
また、本実施形態の燃料電池スタック100では、エンドプレート106およびカバープレート200,300により構成される構造体の内部に各連通ガス流路163,164,173,174が形成されているため、燃料電池スタック100の外部の配管60の長さを短くすることができる。その結果、補助器40を通った酸化剤ガスOGおよび燃料ガスFGの温度が低下することも抑制することができる。さらに、燃料電池スタック100と燃料電池スタック100の外部のガス配管等とを備えるモジュールの小型化および構成の簡素化を実現することができる。また、燃料電池スタック100の外部の配管60の長さが短いため、燃料電池スタック100から排出された酸化剤オフガスOOGおよび燃料オフガスFOGの温度が低下することが抑制されるため、酸化剤オフガスOOGおよび燃料オフガスFOGを、補助器40において効率よく燃焼させることができる。
また、本実施形態の燃料電池スタック100では、上記複数の平板状部材であるエンドプレート106および外側カバープレート200の内、外側平板状部材である外側カバープレート200を除く平板状部材により構成される内側平板構成体(すなわち、エンドプレート106)の上記一方側(下側)に、各連通ガス流路163,164,173,174を構成する流路用凹部107が形成されており、外側カバープレート200のガス孔202は、Z方向視で対応する流路用凹部107と重なる位置に配置されており、流路用凹部107におけるガス孔202と重ならない部分は、外側カバープレート200により塞がれている。そのため、本実施形態の燃料電池スタック100によれば、外側カバープレート200の厚さの増大を抑制しつつ、外側カバープレート200およびエンドプレート106により構成される構造体の内部に各連通ガス流路163,164,173,174を形成することができる。
しかも、本実施形態の燃料電池スタック100では、燃料ガスFGの供給および燃料オフガスFOGの排出に利用される第1の連通ガス流路(燃料ガス導入連通流路173および燃料ガス排出連通流路174)を構成する外側流路用凹部107Dは、内側平板構成体(下側のエンドプレート106)の上記一方側の表面(下面)に形成されている。また、第1の連通ガス流路とは独立に形成され、酸化剤ガスOGの供給および酸化剤オフガスOOGの排出に利用される第2の連通ガス流路(酸化剤ガス導入連通流路163および酸化剤ガス排出連通流路164)を構成する内側流路用凹部107Uは、内側平板構成体の上記他方側の表面(上面)に形成されている。このため、第1の連通ガス流路を構成する流路用凹部と、第2の連通ガス流路を構成する流路用凹部とが内側平板構成体の同一面上に形成される場合に比べて、第1の連通ガス流路と第2の連通ガス流路との間のガスのリークを抑制することができる。
また、上述したように、本実施形態では、内側流路用凹部107Uと外側流路用凹部107Dとが、エンドプレート106において互いに反対に位置する表面(上面および下面)にそれぞれ形成されている。このため、Z方向視で、エンドプレート106を透過して見た場合において、内側流路用凹部107Uと外側流路用凹部107Dとが、互いに重なるように配置しても(図2、図5および図7参照)、内側流路用凹部107Uと外側流路用凹部107Dとの間でガスのリークが発生することを抑制することができる。したがって、内側流路用凹部107Uと外側流路用凹部107Dとを重ならないように配置する場合に比べて、内側流路用凹部107Uと外側流路用凹部107Dとの少なくとも一方を長く確保しつつ、エンドプレート106における流路用凹部107の配置レイアウトの自由度を向上させることができる。
また、本実施形態の燃料電池スタック100では、外側カバープレート200の下面に、Z方向視で各連通ガス流路173,174を取り囲む仮想線VLに沿って流路用溶接痕210が形成されている。そのため、本実施形態の燃料電池スタック100によれば、各連通ガス流路173,174のシール性を高めることができ、各連通ガス流路173,174からのガス漏れを抑制することができる。
また、本実施形態の燃料電池スタック100では、外側カバープレート200の下面に溶接用凹部230が形成されており、流路用溶接痕210は溶接用凹部230に形成されている。そのため、本実施形態の燃料電池スタック100によれば、流路用溶接痕210が外側カバープレート200の下面よりも突出することを抑制することができる。同様に、本実施形態の燃料電池スタック100では、外周溶接痕220も溶接用凹部230に形成されているため、外周溶接痕220が外側カバープレート200の下面よりも突出することを抑制することができる。
各流路用凹部107には、当該流路用凹部107の長手方向に沿って延びるリブ178U,178Dが形成されている。これにより、エンドプレート106の内、流路用凹部107が形成されることによって厚みが薄くなっている部分が補強されるため、該部分の変形を抑制しつつ、各連通ガス流路におけるガスの圧損を抑制することができる。
また、酸化剤ガス導入連通流路163、酸化剤ガス排出連通流路164、燃料ガス導入連通流路173および燃料ガス排出連通流路174は、発電ブロック103と補助器40との間に配置されている。これにより、補助器40からの熱によって各連通ガス流路163,164,173,174を流れるガスを、より効果的に加熱することができる。
B.変形例:
本明細書で開示される技術は、上述の実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の形態に変形することができ、例えば次のような変形も可能である。
上記実施形態における燃料電池スタック100の構成は、あくまで一例であり、種々変形可能である。例えば、上記実施形態では、エンドプレート106に流路用凹部107が形成されることによって各連通ガス流路163,164,173,174が形成されるとしているが、エンドプレート106に代えて、あるいは、エンドプレート106に加えて、エンドプレート106以外の平板状部材(例えば発電ブロック103とエンドプレート106との間に配置されるターミナルプレート)に同様の流路用凹部が形成されることによって各連通ガス流路163,164,173,174が形成されるとしてもよい。
また、上記実施形態では、エンドプレート106およびカバープレート200,300という3枚の平板状部材により構成される構造体の内部に各連通ガス流路163,164,173,174が形成されるとしているが、2枚または4枚以上の平板状部材により構成される構造体の内部に各連通ガス流路163,164,173,174が形成されるとしてもよい。例えば、上記実施形態において、エンドプレート106が複数の平板状部材により構成され、エンドプレート106を構成する複数の平板状部材とカバープレート200,300とにより構成される構造体の内部に各連通ガス流路163,164,173,174が形成されるとしてもよい。この場合においては、エンドプレート106を構成する複数の平板状部材の内の1枚または複数枚に上下方向の貫通孔が形成され、該貫通孔における発電ブロック103に対向する側がエンドプレート106を構成する他の平板状部材により塞がれることにより、該貫通孔が各連通ガス流路163,164,173,174として機能するとしてもよい。
また、上記実施形態では、1枚の平板状部材(エンドプレート106)の内、第1の方向の一方側の表面に外側流路用凹部107Dが形成され、第1の方向の他方側の表面に内側流路用凹部107Uが形成されるとしているが、複数の平板状部材により構成される内側平板構成体の内、上記一方側の表面に外側流路用凹部107Dが形成され、上記他方側の表面に内側流路用凹部107Uが形成されるとしてもよい。また、例えば、上記実施形態において、内側平板構成体が複数の平板状部材により構成される場合、2つの外側流路用凹部107Dが、互いに異なる平板状部材の上記一方側の表面に形成されたり、2つの内側流路用凹部107Uが、互いに異なる平板状部材の上記他方側の表面に形成されたりしているとしてもよい。
また、上記実施形態では、内側平板構成体に対して、4つのガス流路(マニホールド161,162,171,172)のそれぞれに対応する4つの流路用凹部107が形成されるとしているが、内側平板構成体の内、第1の方向の一方側の表面に、4つのガス流路の少なくとも1つのガス流路に対応する流路用凹部107が形成され、第1の方向の他方側の表面に、少なくとも他の1つのガス流路に対応する流路用凹部107が形成されていればよい。例えば、上記実施形態において、4つのガス孔202の内の1つは、酸化剤ガス排出マニホールド162とZ方向視で重なる位置に配置されており、エンドプレート106には、酸化剤ガス排出マニホールド162に対応する内側流路用凹部107Uが形成されないとしてもよい。また、4つのガス孔202の内の他の1つは、燃料ガス排出マニホールド172とZ方向視で重なる位置に配置されており、エンドプレート106には、燃料ガス排出マニホールド172に対応する内側流路用凹部107Uが形成されないとしてもよい。これらの構成によれば、各マニホールド161,171に流入する酸化剤ガスOGおよび燃料ガスFGの温度を高くすることができ、各単セル110における発電の反応効率を向上させることができ、その結果、燃料電池スタック100の発電性能を向上させることができる。また、内側平板構成体の内、上記一方側の表面に、酸化剤ガス導入マニホールド161に対応する外側流路用凹部107Dが形成され、上記他方側の表面に、酸化剤ガス排出マニホールド162に対応する内側流路用凹部107Uが形成されるとしてもよい。これにより、酸化剤ガスOG供給用のガス流路と酸化剤オフガスOOG排出用のガス流路との間のリークを抑制することができる。
上記実施形態では、一方の内側流路用凹部107Uの長さと一方の外側流路用凹部107Dの長さとは同じであったが、互いに異なる長さでもよい。また、他方の内側流路用凹部107Uの長さと他方の外側流路用凹部107Dの長さとは同じであったが、互いに異なる長さでもよい。例えば、燃料ガスFGが供給される外側流路用凹部107Dの長さを、酸化剤ガスOGが供給される内側流路用凹部107Uよりも長くして、燃料ガスFGをより暖めるようにしてもよい。
上記実施形態では、内側流路用凹部107Uと外側流路用凹部107Dとは、Z方向視で互いに一部分が重なっているとしたが、内側流路用凹部107Uと外側流路用凹部107Dとは、Z方向視で互いに重ならないとしてもよい。ただし、例えば国際公開第2016/63157号に記載されているように、発電単位同士の間に、熱交換のために酸化剤ガスを流す熱交換流路が形成された熱交換部を備える燃料電池スタックでは、複数のガス流路が複雑になる。このため、各ガス流路に連通する連通ガス流路が連通しないように、内側平板構成体に流路用凹部を形成することが難しくなる。このような場合、本発明を適用し、さらに、内側平板構成体の内、一方の面に形成された流路用凹部と他方の面に形成された流路用凹部とがZ方向視で重なるように配置することにより、内側平板構成体における流路用凹部の配置レイアウトの自由度を向上させることができる。
上記実施形態では、発電ブロック103とエンドプレート106との間に内側カバープレート300が配置されるとしているが、内側カバープレート300が無く、発電ブロック103とエンドプレート106とが隣接するように配置されるとしてもよい。この場合、例えば、発電ブロック103において上記一方側の端に位置するインターコネクタ150が、内側カバープレート300としての機能を兼ねる構成としてもよい。
また、各連通ガス流路163,164,173,174の少なくとも一部は、燃料電池スタック100の上側に形成されるとしてもよい。例えば、上側のエンドプレート104の上側表面にカバープレートが配置され、上側のエンドプレート104と該カバープレートとにより構成される構造体の内部に連通ガス流路が形成されるとしてもよい。また、燃料電池スタック100に各連通ガス流路163,164,173,174のすべてが形成される必要は無く、少なくとも1つの連通ガス流路が形成されればよい。
また、上記実施形態では、流路用連通孔109が締結用連通孔108とは別に設けられているが、燃料電池スタック100に設けられた締結用連通孔108の内の少なくとも1つが流路用連通孔109としても機能するとしてもよい。
また、上記実施形態では、流路用溶接痕210や外周溶接痕220の全体が溶接用凹部230に形成されているとしているが、流路用溶接痕210や外周溶接痕220の一部のみが溶接用凹部230に形成されているとしてもよい。
また、上記実施形態において、流路用溶接痕210や外周溶接痕220の少なくとも一方が形成されていなくてもよい。また、上記実施形態において、外側カバープレート200に溶接用凹部230が形成されていなくてもよい。
また、上記実施形態において、仮想線VLを用いて説明した外側カバープレート200等の形状は、必須ではなく、種々変形可能である。
上記実施形態において、リブ178U,178DのZ方向視の形状は、対応する流路用凹部107の長手方向に沿っていない形状でもよい。また、4つの流路用凹部107の少なくとも1つにリブが形成されていないとしてもよい。
また、上記実施形態において、燃料電池スタック100に含まれる発電単位102(単セル110)の個数は、あくまで一例であり、発電単位102(単セル110)の個数は燃料電池スタック100に要求される出力電圧等に応じて適宜決められる。また、上記実施形態において、一の発電単位102と他の発電単位102との間に、発電機能を有さず導電性を有する層(例えば、面方向のガス流路を確保するための層)が介在していてもよい。この場合であっても、最上段の発電単位102から最下段の発電単位102までの範囲の構造体(すなわち、上記発電機能を有さず導電性を有する層も含む)が発電ブロック103である。
また、上記実施形態における各部材を形成する材料は、あくまで例示であり、各部材が他の材料により形成されてもよい。例えば、各カバープレート200,300とエンドプレート106とが同一の材料で形成されるとしてもよい。
本明細書において、部材(または部材のある部分、以下同様)Aを挟んで部材Bと部材Cとが互いに対向するとは、部材Aと部材Bまたは部材Cとが隣接する形態に限定されず、部材Aと部材Bまたは部材Cとの間に他の構成要素が介在する形態を含む。例えば、電解質層112と空気極114との間に他の層が設けられていてもよい。このような構成であっても、空気極114と燃料極116とは電解質層112を挟んで互いに対向すると言える。
また、上記実施形態では、燃料ガスに含まれる水素と酸化剤ガスに含まれる酸素との電気化学反応を利用して発電を行うSOFCを対象としているが、本発明は、水の電気分解反応を利用して水素の生成を行う固体酸化物形電解セル(SOEC)の構成単位である電解単セルや、複数の電解単セルを備える電解セルスタックにも同様に適用可能である。なお、電解セルスタックの構成は、例えば特開2016−81813号公報に記載されているように公知であるためここでは詳述しないが、概略的には上述した実施形態における燃料電池スタック100と同様の構成である。すなわち、上述した実施形態における燃料電池スタック100を電解セルスタックと読み替え、発電単位102を電解セル単位と読み替え、単セル110を電解単セルと読み替えればよい。ただし、電解セルスタックの運転の際には、空気極114がプラス(陽極)で燃料極116がマイナス(陰極)となるように両電極間に電圧が印加されると共に、流路用連通孔109を介して原料ガスとしての水蒸気が供給される。これにより、各電解セル単位において水の電気分解反応が起こり、燃料室176で水素ガスが発生し、流路用連通孔109を介して電解セルスタックの外部に水素が取り出される。このような構成の電解セルスタックにおいても、上記実施形態と同様の構成とすれば、上記実施形態と同様の作用・効果を奏する。
また、上記実施形態では、固体酸化物形燃料電池(SOFC)を例に説明したが、本発明は、溶融炭酸塩形燃料電池(MCFC)といった他のタイプの燃料電池(または電解単セル)にも適用可能である。
10:断熱容器 20:支柱 22:ボルト 24:ナット 26:絶縁シート 40:補助器 60,70:配管 100:燃料電池スタック 102:発電単位 103:発電ブロック 104,106:エンドプレート 105:流路用貫通孔 107:流路用凹部 107D:外側流路用凹部 107U:内側流路用凹部 108:締結用連通孔 109:流路用連通孔 110:単セル 112:電解質層 114:空気極 116:燃料極 120:セパレータ 121:孔 130:空気極側フレーム 131:孔 132:酸化剤ガス供給連通孔 133:酸化剤ガス排出連通孔 134:空気極側集電体 140:燃料極側フレーム 141:孔 142:燃料ガス供給連通孔 143:燃料ガス排出連通孔 144:燃料極側集電体 150:インターコネクタ 161:酸化剤ガス導入マニホールド 162:酸化剤ガス排出マニホールド 163:酸化剤ガス導入連通流路 164:酸化剤ガス排出連通流路 166:空気室 171:燃料ガス導入マニホールド 172:燃料ガス排出マニホールド 173:燃料ガス導入連通流路 174:燃料ガス排出連通流路 176:燃料室 178U,178D:リブ 200:外側カバープレート 202:ガス孔 210:流路用溶接痕 220:外周溶接痕 230:溶接用凹部 300:内側カバープレート 302:中継孔 FG:燃料ガス FOG:燃料オフガス OG:酸化剤ガス OL:外周線 OOG:酸化剤オフガス Pa:外形凹部 VL:仮想線

Claims (6)

  1. 電解質層と前記電解質層を挟んで第1の方向に互いに対向する空気極および燃料極とをそれぞれ含む電気化学反応単セルが前記第1の方向に複数並べて配置された電気化学反応ブロックと、
    前記電気化学反応ブロックに対して前記第1の方向の一方側の位置に、前記第1の方向に並べて配置された複数の平板状部材と、
    を備え、前記電気化学反応ブロックにわたって延びる複数のガス流路が形成された電気化学反応セルスタックにおいて、
    前記複数の平板状部材の内の前記第1の方向の前記一方側の端に位置する前記平板状部材である外側平板状部材における前記一方側の表面である外側表面には、前記第1の方向視で前記ガス流路と重ならない位置に複数のガス孔が形成されており、
    前記複数の平板状部材により構成される構造体の内部に、前記各ガス孔と前記各ガス流路とを連通する複数の連通ガス流路が形成されており、
    前記複数の平板状部材の内、前記外側平板状部材と前記電気化学反応ブロックとの間に配置された1または複数の前記平板状部材により構成された内側平板構成体における前記第1の方向の前記一方側の表面に、前記複数の連通ガス流路の内の第1の連通ガス流路を構成する第1の凹部が形成されており、
    前記内側平板構成体における前記第1の方向の他方側の表面に、前記複数の連通ガス流路の内の第2の連通ガス流路を構成する第2の凹部が形成されていることを特徴とする、電気化学反応セルスタック。
  2. 請求項1に記載の電気化学反応セルスタックにおいて、
    前記複数のガス流路は、酸化剤ガス供給用のガス流路と、酸化剤ガス排出用のガス流路と、燃料ガス供給用のガス流路と、燃料ガス排出用のガス流路と、を含み、
    前記複数のガス孔は、酸化剤ガス供給用のガス孔と、酸化剤ガス排出用のガス孔と、燃料ガス供給用のガス孔と、燃料ガス排出用のガス孔と、を含み、
    前記第1の連通ガス流路および前記第2の連通ガス流路の内の一方の連通ガス流路は、前記酸化剤ガス供給用のガス孔と前記酸化剤ガス供給用のガス流路とを連通する酸化剤ガス供給用の連通ガス流路と、前記酸化剤ガス排出用のガス孔と前記酸化剤ガス排出用のガス流路とを連通する酸化剤ガス排出用の連通ガス流路とを含み、
    前記第1の連通ガス流路および前記第2の連通ガス流路の内の他方の連通ガス流路は、前記燃料ガス供給用のガス孔と前記燃料ガス供給用のガス流路とを連通する燃料ガス供給用の連通ガス流路と、前記燃料ガス排出用のガス孔と前記燃料ガス排出用のガス流路とを連通する燃料ガス排出用の連通ガス流路とを含み、
    前記第1の凹部および前記第2の凹部の内、前記一方の連通ガス流路を構成する凹部は、前記酸化剤ガス供給用の連通ガス流路を構成する酸化剤ガス供給用の凹部と、前記酸化剤ガス排出用の連通ガス流路を構成する酸化剤ガス排出用の凹部と、を含み、かつ、前記酸化剤ガス供給用の凹部と前記酸化剤ガス排出用の凹部とは、前記内側平板構成体における同一の表面に形成されており、
    前記第1の凹部および前記第2の凹部の内、前記他方の連通ガス流路を構成する凹部は、前記燃料ガス供給用の連通ガス流路を構成する燃料ガス供給用の凹部と、前記燃料ガス排出用の連通ガス流路を構成する燃料ガス排出用の凹部と、を含み、かつ、前記燃料ガス供給用の凹部と前記燃料ガス排出用の凹部とは、前記内側平板構成体における同一の表面に形成されていることを特徴とする、電気化学反応セルスタック。
  3. 請求項1または請求項2に記載の電気化学反応セルスタックにおいて、
    前記第1の方向視で前記第1の凹部と前記第2の凹部との少なくとも一部が重なっていることを特徴とする、電気化学反応セルスタック。
  4. 請求項1から請求項3までのいずれか一項に記載の電気化学反応セルスタックにおいて、
    前記外側平板状部材の前記外側表面には、前記第1の方向視で前記第1の連通ガス流路を取り囲む仮想線に沿って溶接痕が形成されていることを特徴とする、電気化学反応セルスタック。
  5. 請求項1から請求項4までのいずれか一項に記載の電気化学反応セルスタックにおいて、
    前記第1の凹部および前記第2の凹部の少なくとも一方の凹部には、当該凹部の長手方向に沿って延びるリブが形成されていることを特徴とする、電気化学反応セルスタック。
  6. 請求項1から請求項5までのいずれか一項に記載の電気化学反応セルスタックにおいて、
    前記複数の平板状部材に対して前記第1の方向の前記一方側の位置に配置されたガス燃焼部を備えることを特徴とする、電気化学反応セルスタック。
JP2016240226A 2016-12-12 2016-12-12 電気化学反応セルスタック Active JP6827672B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016240226A JP6827672B2 (ja) 2016-12-12 2016-12-12 電気化学反応セルスタック

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016240226A JP6827672B2 (ja) 2016-12-12 2016-12-12 電気化学反応セルスタック

Publications (2)

Publication Number Publication Date
JP2018098001A JP2018098001A (ja) 2018-06-21
JP6827672B2 true JP6827672B2 (ja) 2021-02-10

Family

ID=62632944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016240226A Active JP6827672B2 (ja) 2016-12-12 2016-12-12 電気化学反応セルスタック

Country Status (1)

Country Link
JP (1) JP6827672B2 (ja)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3276649B2 (ja) * 1991-10-24 2002-04-22 三洋電機株式会社 燃料電池
US6159629A (en) * 1998-12-17 2000-12-12 Ballard Power Systems Inc. Volume effecient layered manifold assembly for electrochemical fuel cell stacks
JP2006172849A (ja) * 2004-12-15 2006-06-29 Nissan Motor Co Ltd 燃料電池のマニフォールド
JP2006260871A (ja) * 2005-03-16 2006-09-28 Ishikawajima Harima Heavy Ind Co Ltd 固体高分子型燃料電池

Also Published As

Publication number Publication date
JP2018098001A (ja) 2018-06-21

Similar Documents

Publication Publication Date Title
JP6868051B2 (ja) 電気化学反応単位および電気化学反応セルスタック
JP6917416B2 (ja) 電気化学反応セルスタック
JP6873944B2 (ja) 電気化学反応セルスタック
JP6667278B2 (ja) 電気化学反応セルスタック
US10476087B2 (en) Fuel-cell power generation unit and fuel-cell stack
JP6893126B2 (ja) 電気化学反応セルスタック
JP7194242B1 (ja) 電気化学反応セルスタック
JP6756549B2 (ja) 電気化学反応単位および電気化学反応セルスタック
JP6945035B1 (ja) 電気化学反応セルスタック
JP6527761B2 (ja) インターコネクタ−燃料電池単セル複合体および燃料電池スタック
JP7210508B2 (ja) 電気化学反応セルスタック
JP7082954B2 (ja) 電気化学反応セルスタック
JP6766005B2 (ja) 電気化学反応セルスタック
JP6827672B2 (ja) 電気化学反応セルスタック
JP6690996B2 (ja) 電気化学反応セルスタック
JP6797153B2 (ja) 電気化学反応セルスタック
JP2022073494A (ja) 電気化学反応セルスタック
JP7507738B2 (ja) 電気化学反応単位および電気化学反応セルスタック
JP7522679B2 (ja) 電気化学反応単セルおよび電気化学反応セルスタック
JP7210509B2 (ja) 電気化学反応セルスタック
JP7237043B2 (ja) 電気化学反応セルスタック
JP2018181405A (ja) 燃料電池発電モジュール
JP6893127B2 (ja) 電気化学反応単位および電気化学反応セルスタック
JP6777473B2 (ja) 電気化学反応単位および電気化学反応セルスタック
JP6861074B2 (ja) 電気化学反応単位および電気化学反応セルスタック

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190823

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20191224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210119

R150 Certificate of patent or registration of utility model

Ref document number: 6827672

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350