[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6827022B2 - Copper foil for flexible printed circuit boards, copper-clad laminates using it, flexible printed circuit boards, and electronic devices - Google Patents

Copper foil for flexible printed circuit boards, copper-clad laminates using it, flexible printed circuit boards, and electronic devices Download PDF

Info

Publication number
JP6827022B2
JP6827022B2 JP2018187990A JP2018187990A JP6827022B2 JP 6827022 B2 JP6827022 B2 JP 6827022B2 JP 2018187990 A JP2018187990 A JP 2018187990A JP 2018187990 A JP2018187990 A JP 2018187990A JP 6827022 B2 JP6827022 B2 JP 6827022B2
Authority
JP
Japan
Prior art keywords
copper foil
copper
flexible printed
printed circuit
tensile strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018187990A
Other languages
Japanese (ja)
Other versions
JP2020056081A (en
Inventor
慎介 坂東
慎介 坂東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2018187990A priority Critical patent/JP6827022B2/en
Priority to TW108132612A priority patent/TWI741365B/en
Priority to KR1020190116562A priority patent/KR102260207B1/en
Priority to CN201910923158.9A priority patent/CN110996507B/en
Publication of JP2020056081A publication Critical patent/JP2020056081A/en
Application granted granted Critical
Publication of JP6827022B2 publication Critical patent/JP6827022B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/022Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4652Adding a circuit layer by laminating a metal foil or a preformed metal foil pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/11Treatments characterised by their effect, e.g. heating, cooling, roughening
    • H05K2203/1105Heating or thermal processing not related to soldering, firing, curing or laminating, e.g. for shaping the substrate or during finish plating

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)

Description

本発明はフレキシブルプリント基板等の配線部材に用いて好適な銅箔、それを用いた銅張積層体、フレキシブル配線板、及び電子機器に関する。 The present invention relates to a copper foil suitable for use in a wiring member such as a flexible printed circuit board, a copper-clad laminate using the same, a flexible wiring board, and an electronic device.

電子機器の小型、薄型、高性能化にともない、フレキシブルプリント基板(フレキシブル配線板、以下、「FPC」と称する)が広く用いられている。
FPCは銅箔と樹脂(ポリイミド、液晶ポリマー等)とを積層したCopper Clad Laminate(銅張積層体、以下CCLと称する)をエッチングすることで配線を形成し、その上をカバーレイと呼ばれる樹脂層によって被覆したものである。
Flexible printed circuit boards (flexible wiring boards, hereinafter referred to as "FPCs") are widely used as electronic devices become smaller, thinner, and have higher performance.
FPC forms wiring by etching Copper Clad Laminate (copper-clad laminate, hereinafter referred to as CCL) in which copper foil and resin (polyimide, liquid crystal polymer, etc.) are laminated, and a resin layer called coverlay is formed on the wiring. It is covered with.

ところで、銅箔と樹脂とを熱圧着やキャスト法等で積層する際、銅箔が加熱されて再結晶し、軟化する。そして、積層前後の銅箔の引張強さの差が大きくなると、積層を行うラミネートライン内で銅箔にシワが発生するという問題がある。
そこで、最終冷間圧延後の銅箔に70〜95℃の熱処理を加えて歪取りを行い、熱圧着時の熱収縮を低減して寸法安定性を向上させた技術が開発されている(特許文献1)。
By the way, when the copper foil and the resin are laminated by thermocompression bonding or a casting method, the copper foil is heated to recrystallize and soften. Then, when the difference in the tensile strength of the copper foil before and after laminating becomes large, there is a problem that wrinkles are generated in the copper foil in the laminating line where laminating is performed.
Therefore, a technique has been developed in which the copper foil after the final cold rolling is subjected to heat treatment at 70 to 95 ° C. to remove strain, reducing thermal shrinkage during thermocompression bonding and improving dimensional stability (patented). Document 1).

特開2017-179393号公報JP-A-2017-179393

しかしながら、特許文献1記載の技術の場合、積層後の寸法安定性は改善するものの、銅箔のシワの低減は不十分であった。
本発明は上記の課題を解決するためになされたものであり、銅箔と樹脂とを積層する際の銅箔のシワを抑制したフレキシブルプリント基板用銅箔、それを用いた銅張積層体、フレキシブルプリント基板、及び電子機器の提供を目的とする。
However, in the case of the technique described in Patent Document 1, although the dimensional stability after lamination is improved, the reduction of wrinkles in the copper foil is insufficient.
The present invention has been made to solve the above problems, and is a copper foil for a flexible printed circuit board that suppresses wrinkles of the copper foil when laminating a copper foil and a resin, and a copper-clad laminate using the same. The purpose is to provide flexible printed circuit boards and electronic devices.

本発明者らは種々検討した結果、所定の熱処理をした前後の引張強さの低下率を10%以下にすることで、銅箔と樹脂とを積層する際の銅箔のシワを抑制できることを見出した。 As a result of various studies, the present inventors have found that wrinkles in the copper foil when laminating the copper foil and the resin can be suppressed by reducing the reduction rate of the tensile strength before and after the predetermined heat treatment to 10% or less. I found it.

すなわち、本発明のフレキシブルプリント基板用銅箔は、Cu を99.9質量%以上、Pを0.0005質量%以上0.0220質量%以下含有し、残部不可避的不純物からなる銅箔であって、厚み0.018mm以下、400℃で1秒間熱処理した前後の引張強さの低下率が10%以下であり、前記熱処理後の導電率が80%IACS以上、前記熱処理前の引張強さが180MPa以上〜320MPa未満である。 That is, the copper foil for flexible printed circuit boards of the present invention is a copper foil containing Cu in an amount of 99.9% by mass or more and P in an amount of 0.0005% by mass or more and 0.0220% by mass or less, and the balance is unavoidable impurities. The rate of decrease in tensile strength before and after heat treatment at 400 ° C. for 1 second is 10% or less, the conductivity after the heat treatment is 80% IACS or more, and the tensile strength before the heat treatment is 180 MPa or more and less than 320 MPa.

本発明のフレキシブルプリント基板用銅箔は、JIS−H3100(C1100)に規格するタフピッチ銅又はJIS−H3100(C1020)の無酸素銅からなってもよい。
本発明の銅張積層体は、前記フレキシブルプリント基板用銅箔と、樹脂層とを積層してなる。
The copper foil for a flexible printed circuit board of the present invention may be made of tough pitch copper specified in JIS-H3100 (C1100) or oxygen-free copper of JIS-H3100 (C1020).
The copper-clad laminate of the present invention is formed by laminating the copper foil for a flexible printed circuit board and a resin layer.

本発明のフレキシブルプリント基板は、前記銅張積層体における前記銅箔に回路を形成してなる。 The flexible printed circuit board of the present invention is formed by forming a circuit on the copper foil in the copper-clad laminate.

本発明の電子機器は、前記フレキシブルプリント基板を用いてなる。 The electronic device of the present invention uses the flexible printed circuit board.

本発明によれば、銅箔と樹脂とを積層する際の銅箔のシワを抑制したフレキシブルプリント基板用銅箔が得られる。 According to the present invention, it is possible to obtain a copper foil for a flexible printed circuit board in which wrinkles of the copper foil are suppressed when the copper foil and the resin are laminated.

以下、本発明に係る銅箔の実施の形態について説明する。なお、本発明において%は特に断らない限り、質量%を示すものとする。 Hereinafter, embodiments of the copper foil according to the present invention will be described. In the present invention,% means mass% unless otherwise specified.

<組成>
本発明に係る銅箔は、Cu を99.9質量%以上、Pを0.0005質量%以上0.0220質量%以下含有し、残部不可避的不純物からなる。Cuが99.96質量%以上であると好ましい
<Composition>
The copper foil according to the present invention contains Cu in an amount of 99.9% by mass or more and P in an amount of 0.0005% by mass or more and 0.0220% by mass or less, and the balance is unavoidable impurities. It is preferable that Cu is 99.96% by mass or more .

Pの含有量が0.0220質量%(220質量ppm)を超えると、導電率が低下し、フレキシブルプリント基板に適さない。 If the P content exceeds 0.0220 mass% (220 mass ppm), the conductivity will decrease, making it unsuitable for flexible printed circuit boards.

本発明に係る銅箔を、JIS−H3100(C1100)に規格するタフピッチ銅(TPC)又はJIS−H3100(C1020)の無酸素銅(OFC)からなる組成に、添加元素としてPを0.0005質量%以上0.0220質量%以下含有する組成としてもよい。 The copper foil according to the present invention is composed of tough pitch copper (TPC) standardized for JIS-H3100 (C1100) or oxygen-free copper (OFC) of JIS-H3100 (C1020), and P is 0.0005% by mass or more as an additive element. The composition may contain 0.0220% by mass or less.

<銅箔の厚み>
銅箔の厚みを0.018mm以下とする。
銅箔の厚みが0.018mmより大きいと、エッチングによる回路の微細化が困難で、FPCとして不適である。銅箔の厚みの下限は制限されないが、製造上から、例えば0.003mmが例示される。
<Thickness of copper foil>
The thickness of the copper foil shall be 0.018 mm or less.
If the thickness of the copper foil is larger than 0.018 mm, it is difficult to miniaturize the circuit by etching, which is not suitable for FPC. The lower limit of the thickness of the copper foil is not limited, but for manufacturing purposes, for example, 0.003 mm is exemplified.

<熱処理前後の引張強さの低下率>
400℃で1秒間熱処理した前後の銅箔の引張強さの低下率が10%以下である。
銅箔と樹脂とを熱圧着やキャスト法等で積層する際、銅箔が加熱されて再結晶し、軟化する。そして、積層前後の銅箔の引張強さの差が大きくなると、積層時に銅箔にシワが発生する。
そこで、上記熱処理した前後の銅箔の引張強さの低下率を10%以下に管理すれば、積層前後の銅箔の引張強さの差が小さくなり積層時の銅箔のシワを抑制できる。
なお、熱処理条件を、400℃で1秒間に設定した理由は、以下のロールtoロール方式で一般的に行われるラミネートの中で最も過酷な条件を想定し、この条件で所期の性能を満たせば、一般的なCCL積層時の加熱であれば十分とみなせるからである。
なお、熱処理による銅箔表面の酸化を防止するため、熱処理の雰囲気は、還元性又は非酸化性の雰囲気が好ましく、例えば、真空雰囲気、又は、アルゴン、窒素、水素、一酸化炭素等若しくはこれらの混合ガスからなる雰囲気などとすればよい。400℃に到達するまでの昇温速度は100〜300℃/minの間であればよい。
<Reduction rate of tensile strength before and after heat treatment>
The rate of decrease in the tensile strength of the copper foil before and after heat treatment at 400 ° C. for 1 second is 10% or less.
When the copper foil and the resin are laminated by thermocompression bonding or a casting method, the copper foil is heated to recrystallize and soften. If the difference in tensile strength between the copper foils before and after laminating becomes large, wrinkles occur in the copper foils during laminating.
Therefore, if the rate of decrease in the tensile strength of the copper foil before and after the heat treatment is controlled to 10% or less, the difference in the tensile strength of the copper foil before and after laminating becomes small, and wrinkles of the copper foil during laminating can be suppressed.
The reason why the heat treatment conditions were set at 400 ° C for 1 second is that the harshest conditions among the laminations generally performed by the following roll-to-roll method are assumed, and the desired performance can be satisfied under these conditions. For example, it can be considered that heating at the time of general CCL lamination is sufficient.
In order to prevent oxidation of the copper foil surface due to heat treatment, the heat treatment atmosphere is preferably a reducing or non-oxidizing atmosphere, for example, a vacuum atmosphere, argon, nitrogen, hydrogen, carbon monoxide, etc., or these. The atmosphere may be a mixed gas. The rate of temperature rise until reaching 400 ° C. may be between 100 and 300 ° C./min.

<導電率及び引張強さ>
上記熱処理後の導電率が80%IACS以上である。導電率が80%IACS未満であると、フレキシブルプリント基板に適さない。
上記熱処理前の引張強さが180MPa以上〜320MPa未満であり、好ましくは210以上320MPa未満である。
熱処理前の引張強さが180MPa未満であると、銅箔と樹脂とを積層する際に銅箔が折れ易くなる。
熱処理前の引張強さが320MPa以上であると、熱処理後に引張強さが大幅に低下し、引張強さの低下率が10%を超える。
<Conductivity and tensile strength>
The conductivity after the heat treatment is 80% IACS or higher. If the conductivity is less than 80% IACS, it is not suitable for flexible printed circuit boards.
The tensile strength before the heat treatment is 180 MPa or more and less than 320 MPa, preferably 210 or more and less than 320 MPa.
If the tensile strength before the heat treatment is less than 180 MPa, the copper foil is likely to break when the copper foil and the resin are laminated.
When the tensile strength before the heat treatment is 320 MPa or more, the tensile strength is significantly reduced after the heat treatment, and the rate of decrease in the tensile strength exceeds 10%.

本発明の銅箔は、例えば以下のようにして製造することができる。まず、銅インゴットにPを添加して溶解、鋳造した後、熱間圧延し、冷間圧延と焼鈍を行うことにより箔を製造することができる。
ここで、例えば(1)最終冷間圧延の加工度η、(2)最終冷間圧延後の軟化処理、の条件を制御することで、熱処理前後の銅箔の引張強さの低下率を確実に10%以下にすることができる。
The copper foil of the present invention can be produced, for example, as follows. First, P can be added to a copper ingot, melted and cast, then hot-rolled, cold-rolled and annealed to produce a foil.
Here, for example, by controlling the conditions of (1) the workability η of the final cold rolling and (2) the softening treatment after the final cold rolling, the reduction rate of the tensile strength of the copper foil before and after the heat treatment is ensured. Can be less than 10%.

最終冷間圧延の加工度ηを制御することで、ひずみを十分に蓄積させることができ、上記熱処理後の引張強さの低下を抑制し、引張強さの低下率を10%以下にすることができる。
最終冷間圧延の加工度ηは銅箔の製造条件によっても変わり、限定されないが、例えばηを6.0以上とするとよい。
加工度ηは、最終焼鈍前の冷間圧延直前の材料の厚みをA0、最終焼鈍前の冷間圧延直後の材料の厚みをA1とし、η=ln(A0/A1)で表す。
最終冷間圧延の加工度ηが低過ぎると、ひずみを最終冷間圧延中に十分に導入することが難しく、上記熱処理後の引張強さが大きく低下し、引張強さの低下率が10%を超える。加工度ηの上限は特に制限されないが、実用上、7.45程度である。
By controlling the workability η of the final cold rolling, strain can be sufficiently accumulated, the decrease in tensile strength after the heat treatment is suppressed, and the rate of decrease in tensile strength is reduced to 10% or less. Can be done.
The workability η of the final cold rolling varies depending on the manufacturing conditions of the copper foil and is not limited, but for example, η may be 6.0 or more.
The workability η is represented by η = ln (A0 / A1), where the thickness of the material immediately before cold rolling before final annealing is A0 and the thickness of the material immediately after cold rolling before final annealing is A1.
If the workability η of the final cold rolling is too low, it is difficult to sufficiently introduce strain during the final cold rolling, the tensile strength after the heat treatment is greatly reduced, and the rate of decrease in the tensile strength is 10%. Exceed. The upper limit of the degree of processing η is not particularly limited, but is practically about 7.45.

最終冷間圧延後の軟化処理を行うことで、予め銅箔が加熱されて再結晶し軟化する。これにより、銅箔と樹脂とを積層する際の銅箔の軟化の度合いが小さくなり、引張強さの低下率を10%以下にすることができる。
軟化処理の温度としては、300℃以上が好ましく、300℃〜400℃がより好ましい。軟化処理の時間は数十秒〜数分でよく、例えば1〜2分とすると好ましい。
軟化処理の温度が低すぎると、銅箔の軟化が十分でなく引張強さの低下率を10%以下にすることが困難になる。軟化処理の温度が高過ぎると、銅箔が軟化し過ぎて強度が低下する。
軟化処理を行う方法として、専用の熱処理ラインを設けてもよいが、例えば銅箔の表面に粗化処理等の表面処理を施す際には、前処理として脱脂液への浸漬及びその後の乾燥工程がある。そこで、この乾燥工程における乾燥温度を300℃以上とすれば、上記軟化処理を脱脂後の乾燥処理と兼用できる。
By performing the softening treatment after the final cold rolling, the copper foil is preheated and recrystallized and softened. As a result, the degree of softening of the copper foil when laminating the copper foil and the resin is reduced, and the reduction rate of the tensile strength can be reduced to 10% or less.
The temperature of the softening treatment is preferably 300 ° C. or higher, more preferably 300 ° C. to 400 ° C. The softening treatment time may be several tens of seconds to several minutes, and is preferably 1 to 2 minutes, for example.
If the temperature of the softening treatment is too low, the copper foil is not sufficiently softened and it becomes difficult to reduce the rate of decrease in tensile strength to 10% or less. If the temperature of the softening treatment is too high, the copper foil will be softened too much and its strength will decrease.
As a method of performing the softening treatment, a dedicated heat treatment line may be provided. For example, when a surface treatment such as a roughening treatment is applied to the surface of a copper foil, a pretreatment is a dipping step in a degreasing solution and a subsequent drying step. There is. Therefore, if the drying temperature in this drying step is set to 300 ° C. or higher, the softening treatment can be combined with the drying treatment after degreasing.

<銅張積層体及びフレキシブルプリント基板>
又、本発明の銅箔に例えば(1)樹脂前駆体(例えばワニスと呼ばれるポリイミド前駆体)をキャスティングして熱をかけて重合させること、(2)ベースフィルムと同種の熱可塑性接着剤を用いてベースフィルムを本発明の銅箔にラミネートすること、により、銅箔と樹脂基材の2層からなる銅張積層体(CCL)が得られる。又、本発明の銅箔に接着剤を塗着したベースフィルムをラミネートすることにより、銅箔と樹脂基材とその間の接着層の3層からなる銅張積層体(CCL)が得られる。これらのCCL製造時に銅箔が熱処理されて再結晶化する。
これらにフォトリソグラフィー技術を用いて回路を形成し、必要に応じて回路にめっきを施し、カバーレイフィルムをラミネートすることでフレキシブルプリント基板(フレキシブル配線板)が得られる。
<Copper-clad laminate and flexible printed circuit board>
Further, for example, (1) a resin precursor (for example, a polyimide precursor called varnish) is cast on the copper foil of the present invention and polymerized by applying heat, and (2) a thermoplastic adhesive of the same type as the base film is used. By laminating the base film on the copper foil of the present invention, a copper-clad laminate (CCL) composed of two layers of the copper foil and a resin base material can be obtained. Further, by laminating a base film coated with an adhesive on the copper foil of the present invention, a copper-clad laminate (CCL) composed of three layers of a copper foil, a resin base material, and an adhesive layer between them can be obtained. During the production of these CCLs, the copper foil is heat treated and recrystallized.
A flexible printed circuit board (flexible wiring board) can be obtained by forming a circuit from these using photolithography technology, plating the circuit as necessary, and laminating a coverlay film.

従って、本発明の銅張積層体は、銅箔と樹脂層とを積層してなる。又、本発明のフレキシブルプリント基板は、銅張積層体の銅箔に回路を形成してなる。
樹脂層としては、PET(ポリエチレンテレフタレート)、PI(ポリイミド)、LCP(液晶ポリマー)、PEN(ポリエチレンナフタレート)が挙げられるがこれに限定されない。また、樹脂層として、これらの樹脂フィルムを用いてもよい。
樹脂層と銅箔との積層方法としては、銅箔の表面に樹脂層となる材料を塗布して加熱成膜してもよい。又、樹脂層として樹脂フィルムを用い、樹脂フィルムと銅箔との間に以下の接着剤を用いてもよく、接着剤を用いずに樹脂フィルムを銅箔に熱圧着してもよい。但し、樹脂フィルムに余分な熱を加えないという点からは、接着剤を用いることが好ましい。
Therefore, the copper-clad laminate of the present invention is formed by laminating a copper foil and a resin layer. Further, the flexible printed circuit board of the present invention is formed by forming a circuit on a copper foil of a copper-clad laminate.
Examples of the resin layer include, but are not limited to, PET (polyethylene terephthalate), PI (polyimide), LCP (liquid crystal polymer), and PEN (polyethylene naphthalate). Moreover, you may use these resin films as a resin layer.
As a method of laminating the resin layer and the copper foil, a material to be a resin layer may be applied to the surface of the copper foil to form a heat film. Further, a resin film may be used as the resin layer, and the following adhesive may be used between the resin film and the copper foil, or the resin film may be thermocompression bonded to the copper foil without using the adhesive. However, it is preferable to use an adhesive from the viewpoint of not applying extra heat to the resin film.

樹脂層としてフィルムを用いた場合、このフィルムを、接着剤層を介して銅箔に積層するとよい。この場合、フィルムと同成分の接着剤を用いることが好ましい。例えば、樹脂層としてポリイミドフィルムを用いる場合は、接着剤層もポリイミド系接着剤を用いることが好ましい。尚、ここでいうポリイミド接着剤とはイミド結合を含む接着剤を指し、ポリエーテルイミド等も含む。 When a film is used as the resin layer, this film may be laminated on the copper foil via the adhesive layer. In this case, it is preferable to use an adhesive having the same composition as the film. For example, when a polyimide film is used as the resin layer, it is preferable to use a polyimide-based adhesive as the adhesive layer. The polyimide adhesive referred to here refers to an adhesive containing an imide bond, and also includes polyetherimide and the like.

なお、本発明は、上記実施形態に限定されない。又、本発明の作用効果を奏する限り、上記実施形態における銅合金がその他の成分を含有してもよい。
例えば、銅箔の表面に、粗化処理、防錆処理、耐熱処理、またはこれらの組み合わせによる表面処理を施してもよい。
The present invention is not limited to the above embodiment. Further, the copper alloy in the above-described embodiment may contain other components as long as the effects of the present invention are exhibited.
For example, the surface of the copper foil may be roughened, rust-proofed, heat-resistant, or surface-treated by a combination thereof.

次に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。電気銅に、Pを添加して表1に示す組成とし、Ar雰囲気で鋳造して鋳塊を得た。鋳塊中の酸素含有量は15ppm未満であった。この鋳塊を900℃で均質化焼鈍後、熱間圧延と冷間圧延を行った後に中間焼鈍を行った。
その後、表面に発生した酸化スケールを除去して、表1に示す加工度ηで最終冷間圧延をして目的とする最終厚さの箔を得た。得られた箔を脱脂液槽に通箔して脱脂を行った後、表1に示す温度で乾燥し、粗化処理および防錆処理を行った。なお、脱脂乾燥槽を通箔する時間は1分であった。
Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto. P was added to electrolytic copper to obtain the composition shown in Table 1, and casting was performed in an Ar atmosphere to obtain an ingot. The oxygen content in the ingot was less than 15 ppm. This ingot was homogenized and annealed at 900 ° C., then hot-rolled and cold-rolled, and then intermediate-annealed.
Then, the oxide scale generated on the surface was removed, and the final cold rolling was performed at the workability η shown in Table 1 to obtain a foil having a desired final thickness. The obtained foil was passed through a degreasing liquid tank for degreasing, and then dried at the temperatures shown in Table 1 for roughening treatment and rust prevention treatment. The time for passing the foil through the degreasing drying tank was 1 minute.

<銅箔サンプルの評価>
1.導電率
上記脱脂乾燥槽通過後の各銅箔サンプルについて、JIS H 0505に基づいて4端子法により、25℃の導電率(%IACS)を測定した。
導電率が80%IACS以上であれば導電性が良好である。
2.引張強さ
上記脱脂乾燥槽通過後の各銅箔サンプルについて、熱処理(400℃×1秒)前後の銅箔の引張強さを、IPC-TM650に準拠した引張試験により、試験片幅12.7mm、室温(15〜35℃)、引張速度50.8mm/min、ゲージ長さ50mmで、銅箔の圧延方向(又はMD方向)と平行な方向に引張試験して測定した。
<Evaluation of copper foil sample>
1. 1. Conductivity For each copper foil sample after passing through the degreasing drying tank, the conductivity (% IACS) at 25 ° C. was measured by the 4-terminal method based on JIS H 0505.
If the conductivity is 80% IACS or more, the conductivity is good.
2. 2. Tensile strength For each copper foil sample after passing through the degreasing drying tank, the tensile strength of the copper foil before and after heat treatment (400 ° C x 1 second) was measured by a tensile test based on IPC-TM650 to obtain a test piece width of 12.7 mm. The measurement was carried out by a tensile test at room temperature (15 to 35 ° C.), a tensile speed of 50.8 mm / min, and a gauge length of 50 mm in a direction parallel to the rolling direction (or MD direction) of the copper foil.

3.積層時のシワの有無
ロールtoロール式(ロール状の銅箔と、ロール状の樹脂フィルムを積層した後、再びロールに巻き取る)のラミネート装置を用い、ラミネート後の銅張積層体のシワの発生の有無を判定した。
シワの確認は、形状解析レーザー顕微鏡(キーエンス社製、製品名:VK-X1000)を用い、銅張積層体の銅箔側の表面の凹凸差が3μm以上の場合に、シワの発生ありと判定した。
凹凸差は、ISO-25178に規定される最大高さSzから、ISO-25178に規定される算術平均高さSaを引いた値(Sz-Sa)である。
3. 3. Presence or absence of wrinkles during laminating Using a roll-to-roll type laminating device (a roll-shaped copper foil and a roll-shaped resin film are laminated and then wound back on a roll), the wrinkles of the copper-clad laminate after laminating are removed. The presence or absence of occurrence was judged.
To check for wrinkles, use a shape analysis laser microscope (manufactured by KEYENCE, product name: VK-X1000) to determine that wrinkles have occurred when the difference in unevenness on the surface of the copper-clad laminate on the copper foil side is 3 μm or more. did.
The unevenness difference is the value (Sz-Sa) obtained by subtracting the arithmetic mean height Sa specified in ISO-25178 from the maximum height Sz specified in ISO-25178.

得られた結果を表1に示す。 The results obtained are shown in Table 1.

Figure 0006827022
Figure 0006827022

表1から明らかなように、所定量のPを含有し、熱処理した前後の引張強さの低下率が10%以下である各実施例の場合、銅張積層体に積層したときに銅箔にシワが発生しなかった As is clear from Table 1, in each example in which a predetermined amount of P is contained and the rate of decrease in tensile strength before and after heat treatment is 10% or less, the copper foil is formed when laminated on a copper-clad laminate. No wrinkles occurred .

一方、熱処理した前後の引張強さの低下率が10%を超えた比較例1〜4,6,8の場合、銅張積層体に積層したときに銅箔にシワが発生した。
なお、比較例1〜3は、最終冷間圧延後の脱脂乾燥槽での乾燥温度が300℃未満のため、熱処理前の引張強さが320MPa以上となり、熱処理後の引張強さとの差が大きくなり過ぎ、引張強さの低下率が10%を超えた。
On the other hand, in the cases of Comparative Examples 1 to 4, 6 and 8 in which the reduction rate of the tensile strength before and after the heat treatment exceeded 10%, wrinkles were generated in the copper foil when laminated on the copper-clad laminate.
In Comparative Examples 1 to 3, since the drying temperature in the degreasing drying tank after the final cold rolling was less than 300 ° C., the tensile strength before the heat treatment was 320 MPa or more, and the difference from the tensile strength after the heat treatment was large. It became too much, and the rate of decrease in tensile strength exceeded 10%.

較例6は、Pを含有せず、最終冷間圧延後の脱脂乾燥槽での乾燥温度が300℃未満のため、熱処理前の引張強さが320MPa以上となり、熱処理後の引張強さとの差が大きくなり過ぎ、引張強さの低下率が10%を超えた。ここで、比較例6は、脱脂乾燥槽の通箔時間を24時間とし、特許文献1と同様の条件として低温長時間の軟化処理を行った。
比較例8は、最終冷間圧延の加工度ηが6.0未満のため、ひずみが十分に蓄積せず、上記熱処理前後の引張強さの低下度合いが大きくなり、引張強さの低下率が10%を超えた。
The ratio Comparative Examples 6 does not contain P, because the drying temperature in the degreasing drying tank after the final cold rolling is lower than 300 ° C., the tensile strength before heat treatment becomes more 320 MPa, the tensile strength after heat treatment The difference became too large, and the rate of decrease in tensile strength exceeded 10%. Here, in Comparative Example 6, the foil passing time of the degreasing drying tank was set to 24 hours, and the softening treatment was performed at a low temperature for a long time under the same conditions as in Patent Document 1.
In Comparative Example 8, since the workability η of the final cold rolling is less than 6.0, strain is not sufficiently accumulated, the degree of decrease in tensile strength before and after the heat treatment is large, and the rate of decrease in tensile strength is high. It exceeded 10%.

Claims (5)

Cu を99.9質量%以上、Pを0.0005質量%以上0.0220質量%以下含有し、残部不可避的不純物からなる銅箔であって、
厚み0.018mm以下、
400℃で1秒間熱処理した前後の引張強さの低下率が10%以下であり、
前記熱処理後の導電率が80%IACS以上、
前記熱処理前の引張強さが180MPa以上〜320MPa未満であるフレキシブルプリント基板用銅箔。
A copper foil containing 99.9% by mass or more of Cu, 0.0005% by mass or more and 0.0220% by mass or less of P, and the balance being unavoidable impurities.
Thickness 0.018 mm or less,
The rate of decrease in tensile strength before and after heat treatment at 400 ° C for 1 second is 10% or less.
Conductivity after the heat treatment is 80% IACS or more,
A copper foil for a flexible printed circuit board having a tensile strength of 180 MPa or more and less than 320 MPa before the heat treatment.
JIS−H3100(C1100)に規格するタフピッチ銅、又はJIS−H3100(C1020)に規格する無酸素銅に、Pを0.0005質量%以上0.0220質量%以下含有してなる請求項1に記載のフレキシブルプリント基板用銅箔。 The flexible printed substrate according to claim 1, wherein P is contained in 0.0005% by mass or more and 0.0220% by mass or less of P in tough pitch copper specified in JIS-H3100 (C1100) or oxygen-free copper specified in JIS-H3100 (C1020). For copper foil. 請求項1又は2に記載のフレキシブルプリント基板用銅箔と、樹脂層とを積層してなる銅張積層体。 A copper-clad laminate obtained by laminating the copper foil for a flexible printed circuit board according to claim 1 or 2 and a resin layer. 請求項3に記載の銅張積層体における前記銅箔に回路を形成してなるフレキシブルプリント基板。 A flexible printed circuit board formed by forming a circuit on the copper foil in the copper-clad laminate according to claim 3. 請求項4に記載のフレキシブルプリント基板を用いた電子機器。 An electronic device using the flexible printed circuit board according to claim 4.
JP2018187990A 2018-10-03 2018-10-03 Copper foil for flexible printed circuit boards, copper-clad laminates using it, flexible printed circuit boards, and electronic devices Active JP6827022B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018187990A JP6827022B2 (en) 2018-10-03 2018-10-03 Copper foil for flexible printed circuit boards, copper-clad laminates using it, flexible printed circuit boards, and electronic devices
TW108132612A TWI741365B (en) 2018-10-03 2019-09-10 Copper foil for flexible printed circuit boards, copper-clad laminates using the same, flexible printed circuit boards and electronic devices
KR1020190116562A KR102260207B1 (en) 2018-10-03 2019-09-23 Copper foil for flexible printed substrate, copper-clad laminate using the same, flexible printed substrate, and electronic equipment
CN201910923158.9A CN110996507B (en) 2018-10-03 2019-09-27 Copper foil, copper-clad laminate using same, flexible printed board, and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018187990A JP6827022B2 (en) 2018-10-03 2018-10-03 Copper foil for flexible printed circuit boards, copper-clad laminates using it, flexible printed circuit boards, and electronic devices

Publications (2)

Publication Number Publication Date
JP2020056081A JP2020056081A (en) 2020-04-09
JP6827022B2 true JP6827022B2 (en) 2021-02-10

Family

ID=70081821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018187990A Active JP6827022B2 (en) 2018-10-03 2018-10-03 Copper foil for flexible printed circuit boards, copper-clad laminates using it, flexible printed circuit boards, and electronic devices

Country Status (4)

Country Link
JP (1) JP6827022B2 (en)
KR (1) KR102260207B1 (en)
CN (1) CN110996507B (en)
TW (1) TWI741365B (en)

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3911173B2 (en) * 2002-02-27 2007-05-09 日鉱金属株式会社 Rolled copper foil for copper clad laminate and method for producing the same (2)
JP5235080B2 (en) * 2007-09-28 2013-07-10 Jx日鉱日石金属株式会社 Copper alloy foil and flexible printed circuit board using the same
JP5055088B2 (en) * 2007-10-31 2012-10-24 Jx日鉱日石金属株式会社 Copper foil and flexible printed circuit board using the same
JP5329372B2 (en) * 2009-11-16 2013-10-30 Jx日鉱日石金属株式会社 Rolled copper foil, and negative electrode current collector, negative electrode plate and secondary battery using the same
JP2012038890A (en) * 2010-08-06 2012-02-23 Sumitomo Electric Printed Circuit Inc Copper foil for flexible copper clad laminate, flexible copper clad laminate, method of manufacturing flexible copper clad laminate, flexible printed wiring board, method of manufacturing flexible printed wiring board and electronic apparatus
JP5124039B2 (en) * 2011-03-23 2013-01-23 Jx日鉱日石金属株式会社 Copper foil and copper-clad laminate using the same
JP2013001982A (en) * 2011-06-20 2013-01-07 Jx Nippon Mining & Metals Corp Rolled copper foil
JP2013001983A (en) * 2011-06-20 2013-01-07 Jx Nippon Mining & Metals Corp Rolled copper foil
JP5826160B2 (en) * 2012-04-10 2015-12-02 Jx日鉱日石金属株式会社 Rolled copper foil, copper-clad laminate, flexible printed wiring board and manufacturing method thereof
CN104812943B (en) * 2013-01-29 2016-11-16 古河电气工业株式会社 Electrolytic copper foil, use the electrode for lithium ion secondary battery of this electrolytic copper foil and use the lithium rechargeable battery of this electrode
TWI518210B (en) * 2013-01-31 2016-01-21 三井金屬鑛業股份有限公司 Electrolytic copper foil and method for manufacturing the same and surface-treated copper foil using the electrolytic copper foil
KR101776471B1 (en) * 2015-03-30 2017-09-07 제이엑스금속주식회사 Rolled copper foil for secondary battery, and lithium ion secondary battery and lithium ion capacitor using the same
JP6193950B2 (en) * 2015-03-30 2017-09-06 Jx金属株式会社 Rolled copper foil for secondary battery, method for producing the same, and lithium ion secondary battery and lithium ion capacitor using the same
JP6294376B2 (en) * 2016-02-05 2018-03-14 Jx金属株式会社 Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
JP6663769B2 (en) 2016-03-28 2020-03-13 Jx金属株式会社 Rolled copper foil, copper-clad laminate, flexible printed circuit board and electronic equipment
JP6348621B1 (en) * 2017-02-15 2018-06-27 Jx金属株式会社 Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device

Also Published As

Publication number Publication date
TWI741365B (en) 2021-10-01
JP2020056081A (en) 2020-04-09
KR20200038410A (en) 2020-04-13
KR102260207B1 (en) 2021-06-03
CN110996507B (en) 2022-09-09
TW202030339A (en) 2020-08-16
CN110996507A (en) 2020-04-10

Similar Documents

Publication Publication Date Title
TWI646207B (en) Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
JP2009172996A (en) Flexible copper clad laminated board and its manufacturing method
TWI588273B (en) Copper alloy foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board and electronic equipment
JP2017141501A (en) Copper foil for flexible printed circuit board, and copper clad laminate, flexible printed circuit board, and electronic apparatus prepared therewith
WO2011052556A1 (en) Copper or copper-alloy foil and method of manufacturing double-sided copper-clad laminate using same
TWI687526B (en) Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board and electronic equipment
JP2008091463A (en) Manufacturing method for both-side flexible-copper-laminated board and carrier-attached both-side flexible-copper-laminated board
JP2010116443A (en) Adhesive film and flexible metal-clad laminate
JP5694094B2 (en) Copper foil for flexible printed wiring board, copper-clad laminate, flexible printed wiring board, and electronic device
JP6663769B2 (en) Rolled copper foil, copper-clad laminate, flexible printed circuit board and electronic equipment
JP6663712B2 (en) Rolled copper foil, copper-clad laminate using the same, flexible printed circuit board, and electronic device
JP2013044005A (en) Rolled copper alloy foil for double-sided copper-clad laminate, and method of manufacturing the double-sided copper-clad laminate using the same
TWI663270B (en) Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
JP2011153360A (en) Rolled copper alloy foil for double-sided copper-clad laminated plate, and method for producing double-sided copper-clad laminated plate using the same
JP6348621B1 (en) Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
JP6827022B2 (en) Copper foil for flexible printed circuit boards, copper-clad laminates using it, flexible printed circuit boards, and electronic devices
TWI718025B (en) Copper foil for flexible printed circuit boards, copper-clad laminates, flexible printed circuit boards and electronic devices using the same
KR102136096B1 (en) Copper foil for flexible printed substrate, and copper clad laminate using the same, flexible printed substrate and electronic equipment
JP6647253B2 (en) Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
JP2007055165A (en) Flexible copper-clad laminated sheet and its manufacturing method
JP2011174156A (en) Rolled copper alloy foil for double-sided copper clad laminated plate and method for manufacturing double-sided copper clad laminated plate using the same
JP2011093229A (en) Method for manufacturing double-sided copper-clad laminated plate, and one set of copper or copper alloy foil used for the same
JP6712561B2 (en) Rolled copper foil for flexible printed circuit board, copper clad laminate using the same, flexible printed circuit board, and electronic device
JP2012059778A (en) Copper foil for printed wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210118

R151 Written notification of patent or utility model registration

Ref document number: 6827022

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250