[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6826962B2 - Compressed air storage power generation device and compressed air storage power generation method - Google Patents

Compressed air storage power generation device and compressed air storage power generation method Download PDF

Info

Publication number
JP6826962B2
JP6826962B2 JP2017143731A JP2017143731A JP6826962B2 JP 6826962 B2 JP6826962 B2 JP 6826962B2 JP 2017143731 A JP2017143731 A JP 2017143731A JP 2017143731 A JP2017143731 A JP 2017143731A JP 6826962 B2 JP6826962 B2 JP 6826962B2
Authority
JP
Japan
Prior art keywords
heat medium
heat
flow path
air
path system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017143731A
Other languages
Japanese (ja)
Other versions
JP2019027289A (en
Inventor
治幸 松田
治幸 松田
正剛 戸島
正剛 戸島
洋平 久保
洋平 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2017143731A priority Critical patent/JP6826962B2/en
Publication of JP2019027289A publication Critical patent/JP2019027289A/en
Application granted granted Critical
Publication of JP6826962B2 publication Critical patent/JP6826962B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Description

本発明は、圧縮空気貯蔵発電装置及び圧縮空気貯蔵発電方法に関する。 The present invention relates to a compressed air storage power generation device and a compressed air storage power generation method.

変動する不安定な発電出力を平滑化又は平準化するための技術の一つとして、圧縮空気貯蔵(CAES:compressed air energy storage)が知られている。 Compressed air energy storage (CAES) is known as one of the techniques for smoothing or leveling the fluctuating unstable power generation output.

特許文献1には、AA−CAES(Advanced Adiabatic Compressed Air Energy)型の圧縮空気貯蔵発電装置が開示されている。この圧縮空気貯蔵発電装置は、空気クーラ(熱交換器)、高温熱媒タンク、空気ヒータ(熱交換器)、及び低温熱媒タンクを備えている。充電時には、圧縮機から吐出された圧縮空気は、空気クーラにおける熱媒との熱交換によって熱回収された後、蓄圧タンクに貯蔵される。また、熱回収により昇温した熱媒は、高温熱媒タンクに回収される。発電時には、蓄圧タンクに貯蔵された圧縮空気は、空気ヒータにおける熱媒との熱交換によって加熱された後、膨張機に供給される。また、熱交換により降温した熱媒は、低温熱媒タンクに回収される。 Patent Document 1 discloses an AA-CAES (Advanced Adiabatic Compressed Air Energy) type compressed air storage power generation device. This compressed air storage power generator includes an air cooler (heat exchanger), a high temperature heat medium tank, an air heater (heat exchanger), and a low temperature heat medium tank. At the time of charging, the compressed air discharged from the compressor is stored in the accumulator tank after heat is recovered by heat exchange with the heat medium in the air cooler. Further, the heat medium whose temperature has been raised by heat recovery is recovered in the high temperature heat medium tank. At the time of power generation, the compressed air stored in the accumulator tank is heated by heat exchange with the heat medium in the air heater and then supplied to the expander. Further, the heat medium whose temperature has been lowered by heat exchange is recovered in the low temperature heat medium tank.

特開2016−48063号公報JP-A-2016-48063

特許文献1に開示された圧縮空気貯蔵発電装置では、充発電の負荷が定格未満である部分負荷運転時における熱媒による熱回収と熱利用の効率低下について特に考慮されていない。 In the compressed air storage power generation device disclosed in Patent Document 1, no particular consideration is given to the reduction in efficiency of heat recovery and heat utilization by the heat medium during partial load operation in which the load of charge power generation is less than the rating.

本発明は、圧縮空気貯蔵発電装置において、部分負荷運転時における熱媒による熱回収と熱利用の効率低下を抑制することを課題とする。 An object of the present invention is to suppress a decrease in efficiency of heat recovery and heat utilization by a heat medium during partial load operation in a compressed air storage power generation device.

本発明の第1の態様は、電動機と機械的に接続され、空気を圧縮する圧縮機と、前記圧縮機により生成された圧縮空気を貯蔵する蓄圧部と、
前記蓄圧部から供給される前記圧縮空気によって駆動され、発電機に機械的に接続された1台の膨張機と、前記圧縮機で生成された前記圧縮空気と熱媒とで熱交換し、前記圧縮空気を降温させる、複数台の第1熱交換器と、前記第1熱交換器での前記熱交換によって昇温された前記熱媒を貯蔵する高温蓄熱部と、前記1台の膨張機に並列に接続され、前記蓄圧部から前記膨張機に供給される前記圧縮空気と、前記高温蓄熱部から供給される前記熱媒とで熱交換し、前記圧縮空気を昇温させる、複数台の第2熱交換器と、前記第2熱交換器での前記熱交換によって降温された熱媒を貯蔵する低温蓄熱部と、前記複数台の第2熱交換器の空気入口を前記蓄圧部にそれぞれ流体的に接続すると共に、前記複数台の第2熱交換器の空気出口を前記1台の膨張機の給気口にそれぞれ流体的に接続する第1空気流路系と、個々の前記第2熱交換器が、前記圧縮空気が流れる状態と、前記圧縮空気の流れが遮断された状態とのいずれかに設定されるように、前記第1空気流路系を切換可能な第1空気流路系切換部と、前記複数台の第2熱交換器の熱媒入口を前記高温蓄熱部にそれぞれ流体的に接続すると共に、前記複数台の第2熱交換器の熱媒出口を前記低温蓄熱部にそれぞれ流体的に接続する第1熱媒流路系と、前記第1熱媒流路系に設けられ、前記高温蓄熱部から前記低温蓄熱部へ前記熱媒を送出する第1熱媒ポンプと、個々の前記第2熱交換器を、前記高温蓄熱部から前記低温蓄熱部へ前記熱媒が流れる状態と、前記高温蓄熱部から前記低温蓄熱部への前記熱媒の流れが遮断された状態とのいずれかに設定されるように、前記第1熱媒流路系を切換可能な第1熱媒流路系切換部と、発電電力要求値の発電電力定格値に対する比較に少なくとも基づいて、前記第1空気流路系切換部と前記第1熱媒流路系切換部とを少なくとも制御する制御部とを備え、前記制御部は、前記発電電力要求値が前記発電電力定格値未満である部分負荷発電時に、前記複数台の前記第2熱交換器のうちの1台又は複数台が、前記空気の流れが遮断され、かつ前記高温蓄熱部から前記低温蓄熱部への前記熱媒の流れが遮断された状態に設定されるように、前記第1空気流路系切換部と前記第1熱媒流路系切換部を制御する、圧縮空気貯蔵発電装置を提供する。
A first aspect of the present invention includes a compressor that is mechanically connected to an electric motor and compresses air, and a pressure accumulator that stores compressed air generated by the compressor.
A heat exchanger is exchanged between one expander, which is driven by the compressed air supplied from the accumulator and mechanically connected to the generator, and the compressed air generated by the compressor and a heat medium. A plurality of first heat exchangers for lowering the temperature of the compressed air, a high-temperature heat storage unit for storing the heat medium heated by the heat exchange in the first heat exchanger, and the one expander. A plurality of units that are connected in parallel and exchange heat between the compressed air supplied from the accumulator to the expander and the heat medium supplied from the high temperature heat storage unit to raise the temperature of the compressed air. Two heat exchangers, a low-temperature heat storage unit that stores the heat medium cooled by the heat exchange in the second heat exchanger, and air inlets of the plurality of second heat exchangers are fluidized in the pressure storage unit, respectively. A first air flow path system that fluidly connects the air outlets of the plurality of second heat exchangers to the air supply ports of the one expander, and the individual second heats. A first air flow path system capable of switching the first air flow path system so that the exchanger is set to either a state in which the compressed air flows or a state in which the flow of the compressed air is blocked. The switching unit and the heat medium inlets of the plurality of second heat exchangers are fluidly connected to the high temperature heat storage unit, and the heat medium outlets of the plurality of second heat exchangers are connected to the low temperature heat storage unit. A first heat medium flow path system that is fluidly connected to each other, and a first heat medium pump that is provided in the first heat medium flow path system and sends the heat medium from the high temperature heat storage section to the low temperature heat storage section. Each of the second heat exchangers has a state in which the heat medium flows from the high temperature heat storage section to the low temperature heat storage section and a state in which the flow of the heat medium from the high temperature heat storage section to the low temperature heat storage section is blocked. Based on at least a comparison between the first heat medium flow path system switching unit capable of switching the first heat medium flow path system and the generated power required value with respect to the generated power rated value so as to be set to any of the above. e Bei a control unit for controlling at least said first air flow path system switching section first heating medium channel system switching section, wherein the control unit, the generated power demand value is less than the generated power rated value During partial load power generation, one or more of the plurality of second heat exchangers are blocked from the air flow, and the flow of the heat medium from the high temperature heat storage unit to the low temperature heat storage unit. Provided is a compressed air storage power generation device that controls the first air flow path system switching unit and the first heat medium flow path system switching unit so that is set to a shut-off state .

部分負荷発電時には、1台又は複数台の第2熱交換器に対する空気の流れが遮断される。また、部分負荷発電時には、空気の流れが遮断された第2熱交換器について高温蓄熱部から低温蓄熱部への熱媒の流れが遮断される。つまり、部分負荷発電時には、1台又は複数台の第2熱交換器は使用されず、残りの第2熱交換器によって蓄圧部からの圧縮空気と高温蓄熱部からの熱媒との熱交換が行われる。これにより、部分負荷発電時に、熱交換に使用される第2熱交換器における熱媒の流速の低下を抑制しつつ、高温蓄熱部から低温蓄熱部に流れる熱媒の流量を低減できる。熱交換に使用される第2熱交換器における熱媒の流速の低下を抑制することで、熱媒の流速低下に起因する第2熱交換器の熱交換性能の低下を抑制できる。また、高温蓄熱部から低温蓄熱部に流れる熱媒の流量を低減することで、低温蓄熱部に流入する熱媒の温度低下の不足を回避でき、低温蓄熱部内の熱媒の温度が目標値から高温側に逸脱するのを防止できる。以上より、部分負荷発電時における熱媒の熱利用の効率低下を抑制できる。 During partial load power generation, the flow of air to one or more second heat exchangers is blocked. Further, at the time of partial load power generation, the flow of the heat medium from the high temperature heat storage section to the low temperature heat storage section is cut off for the second heat exchanger in which the air flow is cut off. That is, during partial load power generation, one or more second heat exchangers are not used, and the remaining second heat exchangers exchange heat between the compressed air from the accumulator and the heat medium from the high temperature heat storage. Will be done. As a result, it is possible to reduce the flow rate of the heat medium flowing from the high temperature heat storage unit to the low temperature heat storage unit while suppressing a decrease in the flow velocity of the heat medium in the second heat exchanger used for heat exchange during partial load power generation. By suppressing the decrease in the flow velocity of the heat medium in the second heat exchanger used for heat exchange, it is possible to suppress the decrease in the heat exchange performance of the second heat exchanger due to the decrease in the flow velocity of the heat medium. Further, by reducing the flow rate of the heat medium flowing from the high temperature heat storage section to the low temperature heat storage section, it is possible to avoid insufficient temperature drop of the heat medium flowing into the low temperature heat storage section, and the temperature of the heat medium in the low temperature heat storage section is higher than the target value. It is possible to prevent deviation to the high temperature side. From the above, it is possible to suppress a decrease in efficiency of heat utilization of the heat medium during partial load power generation.

さらに具体的には、前記制御部は、前記部分負荷発電時に、前記複数台の前記第2熱交換器のうちの1台又は複数台について、前記空気の流れが遮断され、かつ前記熱媒の流入及び流出が停止されるように、前記第1空気流路系切換部と前記第1熱媒流路系切換部を制御し、前記制御部は、前記部分負荷発電時に、前記第1熱媒ポンプによって送出される前記熱媒の流量を減少させる。 More specifically, at the time of the partial load power generation, the control unit cuts off the flow of air for one or more of the plurality of second heat exchangers and of the heat medium. The first air flow path system switching unit and the first heat medium flow path system switching unit are controlled so that the inflow and outflow are stopped, and the control unit controls the first heat medium during the partial load power generation. The flow rate of the heat medium delivered by the pump is reduced.

代案としては、前記第1熱媒流路系は、個々の前記複数台の第2熱交換器の前記熱媒出口と、前記高温蓄熱部とを流体的に接続する第1熱媒戻り流路をさらに備え、前記第1熱媒流路系切換部は、個々の前記複数台の第2熱交換器と前記高温蓄熱部との前記第1熱媒戻り流路を介した連通と遮断を切換可能であり、前記制御部は、前記部分負荷発電時に、前記複数台の前記第2熱交換器のうちの1台又は複数台について、前記空気の流れが遮断され、前記高温蓄熱部から前記低温蓄熱部への前記熱媒の流れが遮断され、かつ前記熱媒出口から前記第1熱媒戻り流路を介して前記高温蓄熱部に前記熱媒が流れるように、前記第1空気流路系切換部と前記第1熱媒流路系切換部を制御する。 As an alternative, the first heat medium flow path system is a first heat medium return flow path that fluidly connects the heat medium outlets of the plurality of second heat exchangers and the high temperature heat storage unit. The first heat medium flow path system switching unit switches between communication and disconnection between each of the plurality of second heat exchangers and the high temperature heat storage unit via the first heat medium return flow path. It is possible, and the control unit cuts off the flow of air for one or more of the plurality of second heat exchangers during the partial load power generation, and the high temperature heat storage unit causes the low temperature. The first air flow path system so that the flow of the heat medium to the heat storage section is blocked and the heat medium flows from the heat medium outlet to the high temperature heat storage section via the first heat medium return flow path. It controls the switching unit and the first heat medium flow path system switching unit.

この構成によれば、部分負荷発電時に、蓄圧部からの圧縮空気との熱交換に使用しない第2熱交換器と高温蓄熱部との間に熱媒の循環経路が形成される。その結果、高温蓄熱部の熱媒貯蔵量の減少を抑制しつつ、蓄圧部からの圧縮空気との熱交換に使用しない第2熱交換器内の熱媒が、外気温度との温度差によって降温するのを防止できる。 According to this configuration, a heat medium circulation path is formed between the second heat exchanger, which is not used for heat exchange with the compressed air from the accumulator, and the high-temperature heat storage unit during partial load power generation. As a result, the heat medium in the second heat exchanger, which is not used for heat exchange with the compressed air from the pressure storage section, is lowered due to the temperature difference from the outside air temperature while suppressing the decrease in the heat medium storage amount in the high temperature heat storage section. Can be prevented from doing so.

圧縮空気貯蔵発電装置は、前記低温蓄熱部内の前記熱媒の温度を検出する第1温度検出部をさらに備え、前記制御部は、前記第1温度検出部によって検出される温度が予め定められた設定温度以下となるように、前記第1空気流路系切換部、前記第1熱媒流路系切換部、及び前記第1熱媒ポンプを制御してもよい。 The compressed air storage power generation device further includes a first temperature detection unit that detects the temperature of the heat medium in the low temperature heat storage unit, and the control unit has a predetermined temperature detected by the first temperature detection unit. The first air flow path system switching unit, the first heat medium flow path system switching unit, and the first heat medium pump may be controlled so that the temperature becomes equal to or lower than the set temperature.

圧縮空気貯蔵発電装置は、前記第1空気流路系における前記複数台の第2熱交換器の前記空気入口側と前記空気出口側との差圧を検出する第1差圧検出部をさらに備え、前記制御部は、前記第1差圧検出部で検出された差圧が予め定められた圧損を超えないように、前記第1空気流路系切換部、前記第1熱媒流路系切換部、及び前記第1熱媒ポンプを制御してもよい。 The compressed air storage power generation device further includes a first differential pressure detecting unit that detects the differential pressure between the air inlet side and the air outlet side of the plurality of second heat exchangers in the first air flow path system. The control unit switches between the first air flow path system switching unit and the first heat medium flow path system so that the differential pressure detected by the first differential pressure detection unit does not exceed a predetermined pressure loss. The unit and the first heat medium pump may be controlled.

前記制御部は、前記複数台の第2熱交換器間で使用時間が均一化されるように、前記第1空気流路系切換部と前記第1熱媒流路系切換部とを制御してもよい。 The control unit controls the first air flow path system switching unit and the first heat medium flow path system switching unit so that the usage time is made uniform among the plurality of second heat exchangers. You may.

圧縮空気貯蔵発電装置は、前記複数台の第1熱交換器の空気入口を前記圧縮機の吐出口にそれぞれ流体的に接続すると共に、前記複数台の第1熱交換器の空気出口を前記蓄圧部にそれぞれ流体的に接続する第2空気流路系と、個々の前記第1熱交換器が、前記圧縮空気が流れる状態と、前記圧縮空気の流れが遮断された状態とのいずれかに設定されるように、前記第2空気流路系を切換可能な第2空気流路系切換部と、前記複数台の第1熱交換器の熱媒入口を前記低温蓄熱部にそれぞれ流体的に接続すると共に、前記複数台の第1熱交換器の熱媒出口を前記高温蓄熱部にそれぞれ流体的に接続する第2熱媒流路系と、前記第2熱媒流路系に設けられ、前記低温蓄熱部から前記高温蓄熱部へ前記熱媒を送出する第2熱媒ポンプと、個々の前記第1熱交換器を、前記低温蓄熱部から前記高温蓄熱部へ前記熱媒が流れる状態と、前記低温蓄熱部から前記高温蓄熱部への前記熱媒の流れが遮断された状態とのいずれかに設定されるように、前記第2熱媒流路系を切換可能な第2熱媒流路系切換部とをさらに備え、前記制御部は、充電電力要求値の充電電力定格値に対する比較に少なくとも基づいて、前記第2空気流路系切換部と前記第2熱媒流路系切換部とを少なくとも制御してもよい。 In the compressed air storage power generation device, the air inlets of the plurality of first heat exchangers are fluidly connected to the discharge ports of the compressors, and the air outlets of the plurality of first heat exchangers are pressure-accumulated. The second air flow path system, which is fluidly connected to each unit, and the individual first heat exchangers are set to either a state in which the compressed air flows or a state in which the flow of the compressed air is blocked. The second air flow path system switching unit capable of switching the second air flow path system and the heat medium inlets of the plurality of first heat exchangers are fluidly connected to the low temperature heat storage unit, respectively. In addition, the second heat medium flow path system in which the heat medium outlets of the plurality of first heat exchangers are fluidly connected to the high temperature heat storage unit and the second heat medium flow path system are provided. A second heat medium pump that sends the heat medium from the low temperature heat storage unit to the high temperature heat storage unit and each of the first heat exchangers are in a state where the heat medium flows from the low temperature heat storage unit to the high temperature heat storage unit. A second heat medium flow path in which the second heat medium flow path system can be switched so that the flow of the heat medium from the low temperature heat storage section to the high temperature heat storage section is cut off. The control unit further includes a system switching unit, and the control unit includes the second air flow path system switching unit and the second heat medium flow path system switching unit based on at least a comparison of the charging power required value with respect to the charging power rated value. At least may be controlled.

具体的には、前記制御部は、前記充電電力要求値が前記充電電力定格値未満である部分負荷充電時に、前記複数台の前記第1熱交換器のうちの1台又は複数台が、前記空気の流れが遮断され、かつ前記低温蓄熱部から前記高温蓄熱部への前記熱媒の流れが遮断された状態に設定されるように、前記第2空気流路系切換部と前記第2熱媒流路系切換部を制御してもよい。 Specifically, in the control unit, when the charging power required value is less than the charging power rated value, one or more of the plurality of the first heat exchangers are said to be in the partial load charging. The second air flow path system switching section and the second heat are set so that the flow of air is blocked and the flow of the heat medium from the low temperature heat storage section to the high temperature heat storage section is blocked. The medium flow path system switching unit may be controlled.

部分負荷充電時には、1台又は複数台の第1熱交換器に対する空気の流れが遮断される。また、部分負荷充電時には、空気の流れが遮断された第1熱交換器について低温蓄熱部から高温蓄熱部への熱媒の流れが遮断される。つまり、部分負荷充電時には、1台又は複数台の第1熱交換器は使用されず、残りの第1熱交換器によって圧縮機からの圧縮空気と低温蓄熱部からの熱媒との熱交換が行われる。これにより、部分負荷充電時に、熱交換に使用される第1熱交換器における熱媒の流速の低下を抑制しつつ、高温蓄熱部から低温蓄熱部に流れる熱媒の流量を低減できる。熱交換に使用される第1熱交換器における熱媒の流速の低下を抑制することで、熱媒の流速低下に起因する第1熱交換器の熱交換性能の低下を抑制できる。また、低温蓄熱部から高温蓄熱部に流れる熱媒の流量を低減することで、高温蓄熱部に流入する熱媒の温度上昇の不足を回避でき、高温蓄熱部内の熱媒の温度が目標値から低温側に逸脱するのを防止できる。以上より、部分負荷充電時における熱媒による熱回収の効率低下を抑制できる。 During partial load charging, the flow of air to one or more first heat exchangers is blocked. Further, at the time of partial load charging, the flow of the heat medium from the low temperature heat storage section to the high temperature heat storage section is cut off for the first heat exchanger in which the air flow is cut off. That is, during partial load charging, one or more first heat exchangers are not used, and the remaining first heat exchangers exchange heat between the compressed air from the compressor and the heat medium from the low temperature heat storage unit. Will be done. As a result, it is possible to reduce the flow rate of the heat medium flowing from the high temperature heat storage unit to the low temperature heat storage unit while suppressing a decrease in the flow velocity of the heat medium in the first heat exchanger used for heat exchange during partial load charging. By suppressing the decrease in the flow velocity of the heat medium in the first heat exchanger used for heat exchange, it is possible to suppress the decrease in the heat exchange performance of the first heat exchanger due to the decrease in the flow velocity of the heat medium. In addition, by reducing the flow rate of the heat medium flowing from the low temperature heat storage section to the high temperature heat storage section, it is possible to avoid insufficient temperature rise of the heat medium flowing into the high temperature heat storage section, and the temperature of the heat medium in the high temperature heat storage section is higher than the target value. It is possible to prevent deviation to the low temperature side. From the above, it is possible to suppress a decrease in heat recovery efficiency due to the heat medium during partial load charging.

さらに具体的には、前記制御部は、前記部分負荷充電時に、前記複数台の前記第1熱交換器のうちの1台又は複数台について、前記空気の流れが遮断され、かつ前記熱媒の流入及び流出が停止されるように、前記第2空気流路系切換部と前記第2熱媒流路系切換部を制御し、前記制御部は、前記部分負荷充電時に、前記第2熱媒ポンプによって送出される前記熱媒の流量を減少させてもよい。 More specifically, at the time of the partial load charging, the control unit cuts off the flow of air for one or more of the plurality of first heat exchangers and of the heat medium. The second air flow path system switching unit and the second heat medium flow rate system switching unit are controlled so that the inflow and outflow are stopped, and the control unit controls the second heat medium during the partial load charging. The flow rate of the heat medium delivered by the pump may be reduced.

代案としては、前記第2熱媒流路系は、個々の前記複数台の第1熱交換器の前記熱媒出口と、前記低温蓄熱部とを流体的に接続する第2熱媒戻り流路をさらに備え、前記第2熱媒流路系切換部は、個々の前記複数台の第1熱交換器と前記低温蓄熱部との前記第熱媒戻り流路を介した連通と遮断を切換可能であり、前記制御部は、前記部分負荷充電時に、前記複数台の前記第1熱交換器のうちの1台又は複数台について、前記空気の流れが遮断され、前記低温蓄熱部から前記高温蓄熱部への前記熱媒の流れが遮断され、かつ前記熱媒出口から前記第2熱媒戻り流路を介して前記低温蓄熱部に前記熱媒が流れるように、前記第2空気流路系切換部と前記第2熱媒流路系切換部を制御してもよい。 As an alternative, the second heat medium flow path system is a second heat medium return flow path that fluidly connects the heat medium outlets of the plurality of first heat exchangers and the low temperature heat storage unit. The second heat medium flow path system switching unit switches between communication and disconnection between the plurality of first heat exchangers and the low temperature heat storage unit via the second heat medium return flow path. It is possible, and the control unit cuts off the flow of air for one or more of the plurality of first heat exchangers during the partial load charging, and the low temperature heat storage unit causes the high temperature. The second air flow path system so that the flow of the heat medium to the heat storage section is blocked and the heat medium flows from the heat medium outlet to the low temperature heat storage section via the second heat medium return flow path. The switching unit and the second heat medium flow path system switching unit may be controlled.

この構成によれば、部分負荷充電時に、圧縮機からの圧縮空気との熱交換に使用しない第1熱交換器と低温蓄熱部との間に熱媒の循環経路が形成される。その結果、低温蓄熱部の熱媒貯蔵量の減少を抑制しつつ、圧縮機からの圧縮空気との熱交換に使用しない第1熱交換器内の熱媒が、外気温度との温度差によって降温するのを防止できる。 According to this configuration, a heat medium circulation path is formed between the first heat exchanger, which is not used for heat exchange with the compressed air from the compressor, and the low temperature heat storage unit during partial load charging. As a result, the heat medium in the first heat exchanger, which is not used for heat exchange with the compressed air from the compressor, is lowered due to the temperature difference from the outside air temperature while suppressing the decrease in the heat medium storage amount of the low temperature heat storage unit. Can be prevented from doing so.

圧縮空気貯蔵発電装置は、前記高温蓄熱部内の前記熱媒の温度を検出する第2温度検出部をさらに備え、前記制御部は、前記第2温度検出部によって検出された温度が予め定められた設定温度以上となるように、前記第2空気流路系切換部、前記第2熱媒流路系切換部、及び前記第2熱媒ポンプを制御してもよい。 The compressed air storage power generation device further includes a second temperature detection unit that detects the temperature of the heat medium in the high temperature heat storage unit, and the control unit has a predetermined temperature detected by the second temperature detection unit. The second air flow path system switching unit, the second heat medium flow path system switching unit, and the second heat medium pump may be controlled so that the temperature becomes equal to or higher than the set temperature.

圧縮空気貯蔵発電装置は、前記第2空気流路系における前記複数台の第1熱交換器の前記空気入口側と前記空気出口側との差圧を検出する第2差圧検出部をさらに備え、前記制御部は、前記第2差圧検出部で検出された差圧が予め定められた圧損を超えないように、前記第2空気流路系切換部、前記第2熱媒流路系切換部、及び前記第2熱媒ポンプを制御してもよい。 The compressed air storage power generation device further includes a second differential pressure detection unit that detects the differential pressure between the air inlet side and the air outlet side of the plurality of first heat exchangers in the second air flow path system. The control unit switches between the second air flow path system switching unit and the second heat medium flow path system so that the differential pressure detected by the second differential pressure detection unit does not exceed a predetermined pressure loss. The unit and the second heat medium pump may be controlled.

前記制御部は、前記複数台の第1熱交換器間で使用時間が均一化されるように、前記第2空気流路系切換部と前記第2熱媒流路系切換部とを制御してもよい。 The control unit controls the second air flow path system switching unit and the second heat medium flow path system switching unit so that the usage time is made uniform among the plurality of first heat exchangers. You may.

本発明の第2の態様は、電動機と機械的に接続され、空気を圧縮する圧縮機と、前記圧縮機により生成された圧縮空気を貯蔵する蓄圧部と、前記蓄圧部から供給される前記圧縮空気によって駆動され、発電機に機械的に接続された1台の膨張機と、前記圧縮機で生成された前記圧縮空気と熱媒とで熱交換し、前記圧縮空気を降温させる、複数台の第1熱交換器と、前記第1熱交換器での前記熱交換によって昇温された前記熱媒を貯蔵する高温蓄熱部と、前記1台の膨張機に並列に接続され、前記蓄圧部から前記膨張機に供給される前記圧縮空気と、前記高温蓄熱部から供給される前記熱媒とで熱交換し、前記圧縮空気を昇温させる、複数台の第2熱交換器と、前記第2熱交換器での前記熱交換によって降温された熱媒を貯蔵する低温蓄熱部と、前記複数台の第2熱交換器の空気入口を前記蓄圧部にそれぞれ流体的に接続すると共に、前記複数台の第2熱交換器の空気出口を前記1台の膨張機の給気口にそれぞれ流体的に接続する第1空気流路系と、個々の前記第2熱交換器が、前記圧縮空気が流れる状態と、前記圧縮空気の流れが遮断された状態とのいずれかに設定されるように、前記第1空気流路系を切換可能な第1空気流路系切換部と、前記複数台の第2熱交換器の熱媒入口を前記高温蓄熱部にそれぞれ流体的に接続すると共に、前記複数台の第2熱交換器の熱媒出口を前記低温蓄熱部にそれぞれ流体的に接続する第1熱媒流路系と、前記第1熱媒流路系に設けられ、前記高温蓄熱部から前記低温蓄熱部へ前記熱媒を送出する第1熱媒ポンプと、個々の前記第2熱交換器を、前記高温蓄熱部から前記低温蓄熱部へ前記熱媒が流れる状態と、前記高温蓄熱部から前記低温蓄熱部への前記熱媒の流れが遮断された状態とのいずれかに設定されるように、前記第1熱媒流路系を切換可能な第1熱媒流路系切換部とを備える圧縮空気貯蔵発電装置を準備し、発電電力要求値の発電電力定格値に対する比較に少なくとも基づいて、前記第1空気流路系切換部と前記第1熱媒流路系切換部とを少なくとも制御し、前記発電電力要求値が前記発電電力定格値未満である部分負荷発電時に、前記複数台の前記第2熱交換器のうちの1台又は複数台が、前記空気の流れが遮断され、かつ前記高温蓄熱部から前記低温蓄熱部への前記熱媒の流れが遮断された状態に設定されるように、前記第1空気流路系切換部と前記第1熱媒流路系切換部を制御する、圧縮空気貯蔵発電方法を提供する。 A second aspect of the present invention is a compressor mechanically connected to an electric motor to compress air, a pressure accumulator for storing compressed air generated by the compressor, and the compression supplied from the accumulator. A plurality of expanders driven by air and mechanically connected to a generator, and a plurality of units that exchange heat with the compressed air generated by the compressor and a heat medium to lower the temperature of the compressed air. A first heat exchanger, a high-temperature heat storage unit that stores the heat medium heated by the heat exchange in the first heat exchanger, and a high-temperature heat storage unit that is connected in parallel to the one expander and from the pressure storage unit A plurality of second heat exchangers that exchange heat between the compressed air supplied to the expander and the heat medium supplied from the high temperature heat storage unit to raise the temperature of the compressed air, and the second heat exchanger. The low-temperature heat storage unit that stores the heat medium cooled by the heat exchange in the heat exchanger and the air inlets of the plurality of second heat exchangers are fluidly connected to the pressure storage unit, and the plurality of units are connected. The compressed air flows through the first air flow path system that fluidly connects the air outlet of the second heat exchanger to the air supply port of the one expander, and the individual second heat exchangers. A first air flow path system switching unit capable of switching the first air flow path system and a plurality of units so as to be set to either a state or a state in which the flow of the compressed air is cut off. The first heat that fluidly connects the heat medium inlets of the two heat exchangers to the high temperature heat storage section and fluidly connects the heat medium outlets of the plurality of second heat exchangers to the low temperature heat storage section. A medium flow path system, a first heat medium pump provided in the first heat medium flow path system and sending the heat medium from the high temperature heat storage unit to the low temperature heat storage unit, and individual second heat exchangers. The heat medium flows from the high temperature heat storage section to the low temperature heat storage section, and the heat medium flows from the high temperature heat storage section to the low temperature heat storage section. A compressed air storage power generation device including the first heat medium flow path system switching unit capable of switching the first heat medium flow path system is prepared, and at least based on the comparison of the generated power required value with the generated power rated value. At least the first air flow path system switching unit and the first heat medium flow path system switching unit are controlled, and at the time of partial load power generation in which the generated power required value is less than the generated power rated value, the plurality of the above. One or more of the second heat exchangers are set so that the flow of the air is cut off and the flow of the heat medium from the high temperature heat storage unit to the low temperature heat storage unit is cut off. In addition, the first air flow path system switching unit and the first heat medium flow path system switching unit Provide a controlled, compressed air storage power generation method.

本発明によれば、部分負荷運転時における熱媒による熱回収と熱利用の効率低下を抑制できる。 According to the present invention, it is possible to suppress a decrease in efficiency of heat recovery and heat utilization by a heat medium during partial load operation.

本発明の第1実施形態に係る圧縮空気貯蔵発電装置の概略構成図。The schematic block diagram of the compressed air storage power generation apparatus which concerns on 1st Embodiment of this invention. 充電運転時の制御を説明するためのフローチャート。A flowchart for explaining control during charging operation. 充電運転時の制御の代案を説明するためのフローチャート。A flowchart for explaining alternative control during charging operation. 充電運転時の弁の開閉状態の設定を示す概略構成図。The schematic block diagram which shows the setting of the open / closed state of a valve at the time of a charging operation. 発電運転時の制御を説明するためのフローチャート。A flowchart for explaining control during power generation operation. 発電運転時の制御の代案を説明するためのフローチャート。A flowchart for explaining alternative control during power generation operation. 発電運転時の弁の開閉状態の設定を示す概略構成図。The schematic block diagram which shows the setting of the open / closed state of a valve at the time of power generation operation. 本発明の第2実施形態に係る圧縮空気貯蔵発電装置の概略構成図。The schematic block diagram of the compressed air storage power generation apparatus which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る圧縮空気貯蔵発電装置の概略構成図。The schematic block diagram of the compressed air storage power generation apparatus which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る圧縮空気貯蔵発電装置の概略構成図。The schematic block diagram of the compressed air storage power generation apparatus which concerns on 4th Embodiment of this invention. 充電運転時の弁の開閉状態の設定を示す概略構成図。The schematic block diagram which shows the setting of the open / closed state of a valve at the time of a charging operation. 発電運転時の弁の開閉状態の設定を示す概略構成図。The schematic block diagram which shows the setting of the open / closed state of a valve at the time of power generation operation. 本発明の第5実施形態に係る圧縮空気貯蔵発電装置の概略構成図。The schematic block diagram of the compressed air storage power generation apparatus which concerns on 5th Embodiment of this invention. 本発明の第6実施形態に係る圧縮空気貯蔵発電装置の概略構成図。The schematic block diagram of the compressed air storage power generation apparatus which concerns on 6th Embodiment of this invention.

(第1実施形態)
図1に示す本発明の第1実施形態に係る圧縮空気貯蔵(CAES:compressed air energy storage)発電装置1は、再生可能エネルギーを利用して発電する発電装置(図示せず)の出力変動を平準化して電力系統に電力を供給すると共に、電力需要の変動に合わせた電力を電力系統に供給する。
(First Embodiment)
The compressed air energy storage (CAES) power generation device 1 according to the first embodiment of the present invention shown in FIG. 1 equalizes the output fluctuation of the power generation device (not shown) that generates power by using renewable energy. In addition to supplying power to the power system, it also supplies power to the power system in accordance with fluctuations in power demand.

本実施形態のCAES発電装置1は、空気流路系2と熱媒流路系3とを備える。 The CAES power generation device 1 of the present embodiment includes an air flow path system 2 and a heat medium flow path system 3.

(空気流路系)
空気流路系2は、2系統の空気流路系2A,2Bを備える。
(Air flow path system)
The air flow path system 2 includes two systems of air flow path systems 2A and 2B.

一方の空気流路系2A(第2空気流路系)には、圧縮機10、複数台の空気クーラ4(第1熱交換器)、及び蓄圧タンク(蓄圧部)5が設けられている。 One air flow path system 2A (second air flow path system) is provided with a compressor 10, a plurality of air coolers 4 (first heat exchangers), and a pressure accumulator tank (accumulation unit) 5.

圧縮機10には、電動機6が機械的に接続されている。電動機6は、風力、太陽光、太陽熱、波力のような再生可能エネルギーにより発電する発電装置(図示せず)からの変動する入力電力によって駆動される。電動機6は電力系統から給電されるものでもよい。本実施形態の圧縮機10は、スクリュ式である。スクリュ式の圧縮機10は、回転数制御可能であるため、不規則に変動する入力電力に応答性良く追従でき、CAES発電装置1の構成要素として好ましい。圧縮機10は、スクロール式、ターボ式、レシプロ式のようなスクリュ式以外のものでもよい。 An electric motor 6 is mechanically connected to the compressor 10. The electric motor 6 is driven by fluctuating input power from a power generator (not shown) that generates electricity from renewable energies such as wind power, sunlight, solar heat, and wave power. The electric motor 6 may be supplied with power from the electric power system. The compressor 10 of this embodiment is a screw type. Since the screw type compressor 10 can control the rotation speed, it can follow the irregularly fluctuating input power with good responsiveness, and is preferable as a component of the CAES power generation device 1. The compressor 10 may be a compressor 10 other than a screw type such as a scroll type, a turbo type, or a reciprocating type.

空気流路系2Aは、複数台の空気クーラ4の空気入口4aを圧縮機10の吐出口10bにそれぞれ流体的に接続する空気流路21と、複数の空気クーラ4の空気出口4bを蓄圧タンク5にそれぞれ流体的に接続する空気流路22とを備える。つまり、空気流路系2Aには、圧縮機10と蓄圧タンク5の間に、複数台の空気クーラ4が並列的に設けられている。 In the air flow path system 2A, an air flow path 21 that fluidly connects the air inlets 4a of the plurality of air coolers 4 to the discharge ports 10b of the compressor 10 and the air outlets 4b of the plurality of air coolers 4 are accumulating tanks. Each of 5 is provided with an air flow path 22 that is fluidly connected. That is, in the air flow path system 2A, a plurality of air coolers 4 are provided in parallel between the compressor 10 and the accumulator tank 5.

空気流路22の個々の空気クーラ4の空気出口4bに接続された箇所には、後述の制御装置14により開閉制御可能な弁V1がそれぞれ設けられている。1個の弁V1が開弁であると、対応する空気クーラ4は、圧縮機10からの圧縮空気が流れる状態となる。1個の弁V1が閉弁であると、対応する空気クーラ4は圧縮機10からの圧縮空気の流れが遮断された状態となる。つまり、個々の空気クーラ4は、対応する1個の弁V1が開弁であると圧縮機10からの圧縮空気の冷却に使用されるが、対応する1個の弁V1が閉弁であると圧縮機10からの圧縮空気の冷却に使用されない。弁V1は本発明における第2空気流路系切換部を構成している。 Valves V1 that can be opened and closed by a control device 14 described later are provided at locations connected to the air outlets 4b of the individual air coolers 4 of the air flow path 22. When one valve V1 is open, the corresponding air cooler 4 is in a state in which compressed air from the compressor 10 flows. When one valve V1 is closed, the corresponding air cooler 4 is in a state where the flow of compressed air from the compressor 10 is cut off. That is, each air cooler 4 is used to cool the compressed air from the compressor 10 when the corresponding valve V1 is open, but when the corresponding valve V1 is closed. It is not used to cool the compressed air from the compressor 10. The valve V1 constitutes the second air flow path system switching portion in the present invention.

他方の空気流路系2B(第1空気流路系)には、膨張機7、複数台の空気ヒータ(第2熱交換器)8、及び蓄圧タンク5が設けられている。 The other air flow path system 2B (first air flow path system) is provided with an expander 7, a plurality of air heaters (second heat exchangers) 8, and an accumulator tank 5.

膨張機7には、発電機9が機械的に接続されている。発電機9は電力系統(図示せず)に電気的に接続されている。本実施形態の膨張機7は、スクリュ式である。スクリュ式の膨張機7は、回転数制御可能である点で、CAES発電装置1の構成要素として好ましい。膨張機7は、スクロール式、ターボ式、レシプロ式のようなスクリュ式以外のものでもよい。 A generator 9 is mechanically connected to the expander 7. The generator 9 is electrically connected to a power system (not shown). The expander 7 of the present embodiment is a screw type. The screw type expander 7 is preferable as a component of the CAES power generation device 1 in that the rotation speed can be controlled. The inflator 7 may be a non-screw type such as a scroll type, a turbo type, or a reciprocating type.

空気流路系2Bは、複数の空気ヒータ8の空気入口8aを蓄圧タンク5にそれぞれ流体的に接続する空気流路23と、複数の空気ヒータ8の空気出口8bを膨張機7の給気口7aにそれぞれ流体的に接続する空気流路24とを備える。 In the air flow path system 2B, the air flow path 23 for fluidly connecting the air inlets 8a of the plurality of air heaters 8 to the accumulator tank 5 and the air outlets 8b of the plurality of air heaters 8 are the air supply ports of the expander 7. An air flow path 24 that is fluidly connected to each of the 7a is provided.

空気流路24の個々の空気ヒータ8の空気出口8bに接続された箇所には、後述の制御装置14により開閉制御可能な弁V2がそれぞれ設けられている。1個の弁V2が開弁であると、対応する空気ヒータ8は、蓄圧タンク5からの圧縮空気が流れる状態となる。1個の弁V2が閉弁であると、対応する空気ヒータ8は蓄圧タンク5からの圧縮空気の流れが遮断された状態となる。つまり、個々の空気ヒータ8は、対応する1個の弁V2が開弁であると蓄圧タンク5からの圧縮空気の加熱に使用されるが、対応する1個の弁V2が閉弁である蓄圧タンク5からの圧縮空気の加熱に使用されない。弁V2は本発明における第1空気流路系切換部を構成している。 Valves V2 that can be opened and closed by a control device 14 described later are provided at locations connected to the air outlets 8b of the individual air heaters 8 of the air flow path 24. When one valve V2 is open, the corresponding air heater 8 is in a state in which compressed air from the accumulator tank 5 flows. When one valve V2 is closed, the corresponding air heater 8 is in a state where the flow of compressed air from the accumulator tank 5 is cut off. That is, each air heater 8 is used to heat compressed air from the accumulator tank 5 when the corresponding valve V2 is open, but the corresponding valve V2 is closed. Not used to heat compressed air from tank 5. The valve V2 constitutes the first air flow path system switching portion in the present invention.

(熱媒流路系)
熱媒流路系3は、2系統の熱媒流路系3A,3Bを備える。
(Heat medium flow path system)
The heat medium flow path system 3 includes two heat medium flow path systems 3A and 3B.

一方の熱媒流路系3A(第2熱媒流路系)には、低温熱媒タンク12(低温蓄熱部)、複数台の空気クーラ4、及び高温熱媒タンク11(高温蓄熱部)が設けられている。 One heat medium flow path system 3A (second heat medium flow path system) includes a low temperature heat medium tank 12 (low temperature heat storage section), a plurality of air coolers 4, and a high temperature heat medium tank 11 (high temperature heat storage section). It is provided.

熱媒流路系3Aは、複数台の空気クーラ4の熱媒入口4cを低温熱媒タンク12にそれぞれ流体的に接続する熱媒流路31と、複数の空気クーラ4の熱媒出口4dを高温熱媒タンク11にそれぞれ流体的に接続する熱媒流路32とを備える。つまり、熱媒流路系3Aには、低温熱媒タンク12と高温熱媒タンク11との間に、複数台の空気クーラ4が並列的に設けられている。熱媒流路31には、低温熱媒タンク12から、空気クーラ4を介して、高温熱媒タンク11へ熱媒を送出するための熱媒ポンプ13A(第2熱媒ポンプ)が設けられている。 The heat medium flow path system 3A has a heat medium flow path 31 that fluidly connects the heat medium inlets 4c of a plurality of air coolers 4 to the low temperature heat medium tank 12, and a heat medium outlet 4d of the plurality of air coolers 4. A heat medium flow path 32 that is fluidly connected to the high temperature heat medium tank 11 is provided. That is, in the heat medium flow path system 3A, a plurality of air coolers 4 are provided in parallel between the low temperature heat medium tank 12 and the high temperature heat medium tank 11. The heat medium flow path 31 is provided with a heat medium pump 13A (second heat medium pump) for sending a heat medium from the low temperature heat medium tank 12 to the high temperature heat medium tank 11 via the air cooler 4. There is.

熱媒流路31の個々の空気クーラ4の熱媒入口4cに接続された箇所には、後述の制御装置14により開閉制御可能な弁V3がそれぞれ設けられている。1個の弁V3が開弁であると、対応する空気クーラ4は、低温熱媒タンク12からの熱媒が流れる状態となる。1個の弁V3が閉弁であると、対応する空気クーラ4は、低温熱媒タンク12から高温熱媒タンク11への熱媒の流れが遮断された状態(熱媒入口4cへの熱媒の流入と熱媒出口4dからの熱媒の流出がない状態)となる。つまり、個々の空気クーラ4は、対応する弁V3が開弁であると熱媒が流れるが、対応する弁V3が閉弁であると熱媒が流れない。弁V3は本発明における第2熱媒流路系切換部を構成している。 Valves V3 that can be opened and closed by a control device 14 described later are provided at locations connected to the heat medium inlets 4c of the individual air coolers 4 of the heat medium flow path 31. When one valve V3 is open, the corresponding air cooler 4 is in a state in which the heat medium from the low temperature heat medium tank 12 flows. When one valve V3 is closed, the corresponding air cooler 4 is in a state where the flow of the heat medium from the low temperature heat medium tank 12 to the high temperature heat medium tank 11 is blocked (heat medium to the heat medium inlet 4c). There is no inflow of heat medium and no outflow of heat medium from the heat medium outlet 4d). That is, in each air cooler 4, the heat medium flows when the corresponding valve V3 is open, but the heat medium does not flow when the corresponding valve V3 is closed. The valve V3 constitutes the second heat medium flow path system switching unit in the present invention.

他方の熱媒流路系3B(第1熱媒流路系)には、高温熱媒タンク11、複数台の空気ヒータ8、及び低温熱媒タンク12が設けられている。 The other heat medium flow path system 3B (first heat medium flow path system) is provided with a high temperature heat medium tank 11, a plurality of air heaters 8, and a low temperature heat medium tank 12.

熱媒流路系3Bは、複数台の空気ヒータ8の熱媒入口8cを高温熱媒タンク11にそれぞれ流体的に接続する熱媒流路33と、複数台の空気ヒータ8の熱媒出口8dを低温熱媒タンク12にそれぞれ流体的に接続する熱媒流路34とを備える。つまり、熱媒流路系3Bには、高温熱媒タンク11と低温熱媒タンク12との間に、複数台の空気ヒータ8が並列的に設けられている。熱媒流路33には、高温熱媒タンク11から、空気ヒータ8を介して、低温熱媒タンク12へ熱媒を送出するための熱媒ポンプ13B(第1熱媒ポンプ)が設けられている。 The heat medium flow path system 3B includes a heat medium flow path 33 that fluidly connects the heat medium inlets 8c of the plurality of air heaters 8 to the high temperature heat medium tank 11, and the heat medium outlets 8d of the plurality of air heaters 8. Is provided with a heat medium flow path 34, which is fluidly connected to the low temperature heat medium tank 12. That is, in the heat medium flow path system 3B, a plurality of air heaters 8 are provided in parallel between the high temperature heat medium tank 11 and the low temperature heat medium tank 12. The heat medium flow path 33 is provided with a heat medium pump 13B (first heat medium pump) for sending a heat medium from the high temperature heat medium tank 11 to the low temperature heat medium tank 12 via the air heater 8. There is.

熱媒流路33の個々の空気ヒータ8の熱媒入口8cに接続された箇所には、後述する制御装置14により開閉制御可能な弁V4がそれぞれ設けられている。1個の弁V4が開弁であると、対応する空気ヒータ8は、高温熱媒タンク11からの熱媒が流れる状態となる。1個の弁V4が閉弁であると、対応する空気ヒータ8は、高温熱媒タンク11から低温熱媒タンク12への熱媒の流れが遮断された状態(熱媒入口8cへの熱媒の流入と熱媒出口8dからの熱媒の流出がない状態)となる。つまり、個々の空気ヒータ8は、対応する弁V4が開弁であると熱媒が流れるが、対応する弁V4が閉弁であると熱媒が流れない。弁V4は本発明における第1熱媒流路系切換部を構成している。 Valves V4 that can be opened and closed by a control device 14 described later are provided at locations connected to the heat medium inlets 8c of the individual air heaters 8 of the heat medium flow path 33. When one valve V4 is open, the corresponding air heater 8 is in a state in which the heat medium from the high temperature heat medium tank 11 flows. When one valve V4 is closed, the corresponding air heater 8 is in a state where the flow of the heat medium from the high temperature heat medium tank 11 to the low temperature heat medium tank 12 is blocked (heat medium to the heat medium inlet 8c). There is no inflow of heat medium and no outflow of heat medium from the heat medium outlet 8d). That is, in each air heater 8, the heat medium flows when the corresponding valve V4 is open, but the heat medium does not flow when the corresponding valve V4 is closed. The valve V4 constitutes the first heat medium flow path system switching unit in the present invention.

(制御装置)
制御装置14(制御部)は、CAES発電装置1の外部から入力される充電要求(充電電力要求値を含む)と、発電要求(発電電力要求値を含む)とに基づいて、CAES発電装置1の種々の構成要素を統括的に制御する。このような要素には、圧縮機10を駆動する電動機6、熱媒ポンプ13A,13B、及び弁V1〜V4が含まれる。制御装置14は、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)のような記憶装置を含むハードウェアと、それに実装されたソフトウェアにより構築できる。
(Control device)
The control device 14 (control unit) is based on a charging request (including a charging power request value) input from the outside of the CAES power generation device 1 and a power generation request (including a generated power request value), and the CAES power generation device 1 Controls various components of the system in an integrated manner. Such elements include an electric motor 6 for driving the compressor 10, heat medium pumps 13A and 13B, and valves V1 to V4. The control device 14 can be constructed by hardware including a storage device such as a CPU (Central Processing Unit), a RAM (Random Access Memory), and a ROM (Read Only Memory), and software mounted therein.

(充電運転)
図2は、充電運転時の制御の概要を示す。充電運転時には、充電電力要求値の充電電力定格値に対する比較に基づいて、空気クーラ4の台数制御が実行される。
(Charging operation)
FIG. 2 shows an outline of control during charging operation. During the charging operation, the number of air coolers 4 is controlled based on the comparison of the required charging power value with respect to the rated charging power value.

ステップS21において、制御装置14は充電電力要求値を確認する。続いて、ステップS22において、制御装置14は、予め記憶された充電電力要求値毎の空気クーラ使用台数のデータに基づいて、空気クーラの台数制御を実行する。具体的には、充電電力要求値が充電電力定格値未満であれば、全ての空気クーラ4を使用するのではなく、1台又は複数台の空気クーラ4は使用せず、残りの空気クーラ4で圧縮機10からの圧縮空気と熱媒との熱交換を実行する。充電電力要求値が充電電力定格値に対して小さい程、熱交換に使用する空気クーラ4の台数を減らす。充電電力要求値が充電電力定格値以上であれば、全ての空気クーラ4が使用される。 In step S21, the control device 14 confirms the required charging power value. Subsequently, in step S22, the control device 14 executes the control of the number of air coolers based on the data of the number of air coolers used for each charging power required value stored in advance. Specifically, if the required charging power value is less than the rated charging power value, not all the air coolers 4 are used, but one or more air coolers 4 are not used, and the remaining air coolers 4 are not used. The heat exchange between the compressed air and the heat medium from the compressor 10 is performed. As the charge power demand value smaller against the charging power rated value, reducing the number of air cooler 4 to be used for heat exchange. If the required charging power value is equal to or higher than the rated charging power value, all the air coolers 4 are used.

充電運転時には、熱媒ポンプ13Aが作動し、熱媒ポンプ13Bは非作動である。本実施形態では、部分負荷充電時には、熱交換に使用する空気クーラ4の台数が少ない程、熱媒ポンプ13Aによって送出される熱媒の流量が減少される。 During the charging operation, the heat medium pump 13A operates and the heat medium pump 13B does not operate. In the present embodiment, the smaller the number of air coolers 4 used for heat exchange during partial load charging, the smaller the flow rate of the heat medium delivered by the heat medium pump 13A.

図4を併せて参照すると、熱交換に使用しない空気クーラ4(この例では1台)については、弁V1と弁V3が閉弁に設定される。つまり、熱交換に使用しいな空気クーラ4については、圧縮機10からの圧縮空気の流れが遮断され、かつ低温熱媒タンク12から高温熱媒タンク11への熱媒の流れが遮断された状態(熱媒入口4cへの熱媒の流入と熱媒出口4dからの熱媒の流出がない状態)となる。熱交換に使用する空気クーラ4については、弁V1と弁V3は開弁に設定される。 With reference to FIG. 4, for the air cooler 4 (one in this example) that is not used for heat exchange, the valves V1 and V3 are set to be closed. That is, for the air cooler 4 which is not used for heat exchange, the flow of compressed air from the compressor 10 is blocked, and the flow of the heat medium from the low temperature heat medium tank 12 to the high temperature heat medium tank 11 is blocked ( There is no inflow of the heat medium into the heat medium inlet 4c and no outflow of the heat medium from the heat medium outlet 4d). For the air cooler 4 used for heat exchange, the valves V1 and V3 are set to open.

充電運転時には、発電装置から入力される変動する電力により電動機6が駆動され、電動機6によって圧縮機10が駆動される。圧縮機10は吸込口10aから空気を吸い込んで圧縮し、圧縮空気を生成する。圧縮機10の吐出口10bから吐出された圧縮空気は、空気流路系2Aを通って蓄圧タンク5に圧送され、蓄圧タンク5に貯蔵される。つまり、蓄圧タンク5は、圧縮空気を貯蔵してエネルギーとして蓄積する。圧縮空気は、蓄圧タンク5に圧送される前に、熱交換に使用する空気クーラ4(弁V1,V3が開弁に設定されている)を通過するが、熱交換に使用しない空気クーラ4(弁V1,V3は閉弁に設定されている)は通過しない。 During the charging operation, the electric motor 6 is driven by the fluctuating electric power input from the power generation device, and the compressor 10 is driven by the electric motor 6. The compressor 10 sucks air from the suction port 10a and compresses it to generate compressed air. The compressed air discharged from the discharge port 10b of the compressor 10 is pressure-fed to the accumulator tank 5 through the air flow path system 2A and stored in the accumulator tank 5. That is, the accumulator tank 5 stores compressed air and stores it as energy. The compressed air passes through the air cooler 4 (valves V1 and V3 are set to open) used for heat exchange before being pumped to the accumulator tank 5, but is not used for heat exchange. Valves V1 and V3 are set to closed) do not pass.

充電運転時には、熱媒ポンプ13Aによって、低温熱媒タンク12に貯蔵された熱媒が、熱媒流路系3Aを通って高温熱媒タンク11に送られる。熱媒は、高温熱媒タンク11に送られる前に、熱交換に使用する空気クーラ4(弁V1,V3が開弁に設定されている)を通過するが、熱交換に使用しない空気クーラ4(弁V1,V3は閉弁に設定されている)は通過しない。 During the charging operation, the heat medium pump 13A sends the heat medium stored in the low temperature heat medium tank 12 to the high temperature heat medium tank 11 through the heat medium flow path system 3A. The heat medium passes through the air cooler 4 used for heat exchange (valves V1 and V3 are set to open) before being sent to the high temperature heat medium tank 11, but is not used for heat exchange. (Valves V1 and V3 are set to closed) do not pass.

圧縮機10の吐出口10bから吐出された圧縮空気は、圧縮の際に生じる圧縮熱により高温となっている。熱交換に使用する空気クーラ4では、熱媒と圧縮空気の間の熱交換により、圧縮空気は冷却され、熱媒は加熱される。従って、蓄圧タンク5には、熱交換によって降温した圧縮空気が貯蔵される。また、高温熱媒タンク11には、熱交換後の昇温した熱媒が貯蔵される。 The compressed air discharged from the discharge port 10b of the compressor 10 has a high temperature due to the heat of compression generated during compression. In the air cooler 4 used for heat exchange, the compressed air is cooled and the heat medium is heated by heat exchange between the heat medium and the compressed air. Therefore, the compressed air cooled by heat exchange is stored in the accumulator tank 5. Further, the high temperature heat medium tank 11 stores the heated heat medium after heat exchange.

仮に、部分負荷充電時に、単に熱媒ポンプ13Aによって送出される流量を低減させ、空気クーラ4の台数制御を実行しないとすると、個々の空気クーラ4を流れる熱媒の流速が低下することになる。空気クーラ4を流れる熱媒の流速の低下は、熱交換性能の低下を招く。本実施形態では、部分負荷充電時に、空気クーラ4の台数制御を行い、かつ熱交換に使用する空気クーラ4の台数に応じて熱媒ポンプ13Aによって送出される流量を低減することで、熱交換に使用される空気クーラ4における熱媒の流速の低下を抑制しつつ、低温熱媒タンク12から高温熱媒タンク11に流れる熱媒の流量を低減できる。 If the flow rate sent by the heat medium pump 13A is simply reduced during partial load charging and the number of air coolers 4 is not controlled, the flow velocity of the heat medium flowing through the individual air coolers 4 will decrease. .. A decrease in the flow velocity of the heat medium flowing through the air cooler 4 causes a decrease in heat exchange performance. In the present embodiment, heat exchange is performed by controlling the number of air coolers 4 during partial load charging and reducing the flow rate sent by the heat medium pump 13A according to the number of air coolers 4 used for heat exchange. The flow rate of the heat medium flowing from the low temperature heat medium tank 12 to the high temperature heat medium tank 11 can be reduced while suppressing a decrease in the flow velocity of the heat medium in the air cooler 4 used for the above.

部分負荷充電時に、熱交換に使用される空気クーラ4における熱媒の流速の低下を抑制することで、熱媒の流速低下に起因する空気クーラ4の熱交換性能の低下を抑制できる。また、部分負荷充電時に、低温熱媒タンク12から高温熱媒タンク11に流れる熱媒の流量を低減することで、高温熱媒タンク11に流入する熱媒の温度上昇の不足を回避でき、高温熱媒タンク11内の熱媒の温度が目標値から低温側に逸脱するのを防止できる。従って、補助的なヒータによって高温熱媒タンク11へ流入する熱媒の温度を上昇させる必要がない。以上より、部分負荷発電時における熱媒における熱回収の効率低下を抑制し、充電電力量とシステム効率の低下を抑制できる。 By suppressing the decrease in the flow velocity of the heat medium in the air cooler 4 used for heat exchange during partial load charging, it is possible to suppress the decrease in the heat exchange performance of the air cooler 4 due to the decrease in the flow rate of the heat medium. Further, by reducing the flow rate of the heat medium flowing from the low temperature heat medium tank 12 to the high temperature heat medium tank 11 during partial load charging, it is possible to avoid insufficient temperature rise of the heat medium flowing into the high temperature heat medium tank 11, which is high. It is possible to prevent the temperature of the heat medium in the heat medium tank 11 from deviating from the target value to the low temperature side. Therefore, it is not necessary to raise the temperature of the heat medium flowing into the high temperature heat medium tank 11 by the auxiliary heater. From the above, it is possible to suppress a decrease in the efficiency of heat recovery in the heat medium during partial load power generation, and suppress a decrease in the amount of charging power and the system efficiency.

部分負荷充電時に使用する熱媒量を節約できるので、低温熱媒タンク12と高温熱媒タンク11を大容量に設定する必要がなく、熱媒量の制限を受けずに長い充電運転時間を確保できる。 Since the amount of heat medium used for partial load charging can be saved, it is not necessary to set the low temperature heat medium tank 12 and the high temperature heat medium tank 11 to large capacities, and a long charging operation time is secured without being limited by the amount of heat medium. it can.

部分負荷充電時に、複数台の空気クーラ4のうちのいずれを熱交換に使用しないかは、複数台の空気クーラ4間で使用時間が均一化されるように選択される。例えば、制御装置14は、個々の空気クーラ4の使用時間を記憶し、部分負荷充電時には、それまでの使用時間の長い空気クーラ4を優先して熱交換に使用しない空気クーラ4として選択する。 Which of the plurality of air coolers 4 is not used for heat exchange during partial load charging is selected so that the usage time is made uniform among the plurality of air coolers 4. For example, the control device 14 stores the usage time of each air cooler 4, and at the time of partial load charging, the air cooler 4 having a long usage time up to that point is preferentially selected as the air cooler 4 not used for heat exchange.

は、充電運転時の代案の制御の概要を示す。ステップS31において、制御装置14は充電電力要求値を確認する。続いて、ステップS32において、制御装置14は、充電電力要求値の充電電力定格値に対する割合αを算出する。また、ステップS33において、制御装置14は、割合αと予め記憶した空気クーラ設置台数N1(CAES装置1が備える空気クーラ4の総台数)との積α*N1に基づいて空気クーラ使用台数Naを決定する。ステップS34では、この空気クーラ使用台数Naに基づいて空気クーラ4の台数制御と熱媒ポンプ13Aの流量制御が実行される。 FIG. 3 shows an outline of control of an alternative during charging operation. In step S31, the control device 14 confirms the required charging power value. Subsequently, in step S32, the control device 14 calculates the ratio α of the required charging power value to the rated charging power value. Further, in step S33, the control device 14 determines the number of air coolers used Na based on the product α * N1 of the ratio α and the number of installed air coolers N1 (total number of air coolers 4 included in the CAES device 1) stored in advance. decide. In step S34, the number of air coolers 4 and the flow rate of the heat medium pump 13A are controlled based on the number of Na air coolers used.

例えば、充電電力定格値を100として、実際の充電電力要求値が50である場合を考える。この場合、割合αは0.5(50%)であり、空気クーラ使用台数Naは0.5N1(α*N1)に設定される。しかし、0.5N1が整数にならない場合は、熱媒流速が定格以下となるとによる性能低下を避けるため、0.5N1以上の最初の整数を空気クーラ使用台数Naに設定する。具体的には、仮に空気クーラ設置台数N1が3台で割合αが0.5であれば、空気クーラ使用台数Naは2台となる。 For example, consider a case where the rated charging power rating value is 100 and the actual charging power required value is 50. In this case, the ratio α is 0.5 (50%), and the number of air coolers used Na is set to 0.5N1 (α * N1). However, 0.5N1 is if not an integer, to avoid performance degradation heat medium flow rate by. Doing so less than the rated, set the first integer greater than or equal 0.5N1 air cooler use number Na. Specifically, if the number of air coolers installed N1 is three and the ratio α is 0.5, the number of air coolers used Na is two.

(発電運転)
図5は、発電運転時の制御の概要を示す。発電運転時には、発電電力要求値の発電電力定格値に対する比較に基づいて、空気ヒータ8の台数制御が実行される。
(Power generation operation)
FIG. 5 shows an outline of control during power generation operation. During the power generation operation, the number of air heaters 8 is controlled based on the comparison of the required power generation value with respect to the rated power generation value.

ステップS51において、制御装置14は発電電力要求値を確認する。続いて、ステップS52において、制御装置14は、予め記憶された発電電力要求値毎の空気ヒータ使用台数のデータに基づいて、空気ヒータの台数制御を実行する。具体的には、発電電力要求値が発電電力定格値未満であれば、全ての空気ヒータ8を使用するのではなく、1台又は複数台の空気ヒータ8は使用せず、残りの1台又は複数台の空気ヒータ8で蓄圧タンク5からの圧縮空気と熱媒との熱交換を実行する。発電電力要求値が発電電力定格値に対して小さい程、熱交換に使用する空気ヒータ8の台数を減らす。発電電力要求値が発電電力定格値以上であれば、全ての空気ヒータ8が使用される。 In step S51, the control device 14 confirms the required power generation value. Subsequently, in step S52, the control device 14 executes the control of the number of air heaters based on the data of the number of air heaters used for each power generation demand value stored in advance. Specifically, if the required power generation value is less than the rated power generation power value, not all the air heaters 8 are used, but one or a plurality of air heaters 8 are not used, and the remaining one or the remaining one or a plurality of air heaters 8 are not used. A plurality of air heaters 8 perform heat exchange between the compressed air from the accumulator tank 5 and the heat medium. As generated power demand value is smaller against the generated power rated value, reducing the number of air heater 8 to be used for heat exchange. If the required power generation value is equal to or higher than the rated power generation value, all the air heaters 8 are used.

発電運転時には、熱媒ポンプ13Bが作動し、熱媒ポンプ13Aは非作動である。本実施形態では、部分負荷発電時には、熱交換に使用する空気ヒータ8の台数が少ない程、熱媒ポンプ13Bによって送出される熱媒の流量が減少される。 During the power generation operation, the heat medium pump 13B operates and the heat medium pump 13A does not operate. In the present embodiment, the smaller the number of air heaters 8 used for heat exchange during partial load power generation, the smaller the flow rate of the heat medium delivered by the heat medium pump 13B.

図7を併せて参照すると、熱交換に使用しない空気ヒータ8(この例では1台)については、弁V2と弁V4が閉弁に設定される。つまり、熱交換に使用しいな空気ヒータ8については、蓄圧タンク5からの圧縮空気の流れが遮断され、かつ高温熱媒タンク11から低温熱媒タンク12への熱媒の流れが遮断された状態(熱媒入口8cへの熱媒の流入と熱媒出口8dからの熱媒の流出がない状態)となる。熱交換に使用する空気ヒータ8については、弁V2と弁V4は開弁に設定される。 With reference to FIG. 7, for the air heater 8 (one in this example) that is not used for heat exchange, the valves V2 and V4 are set to be closed. That is, for the air heater 8 which is not used for heat exchange, the flow of compressed air from the accumulator tank 5 is blocked, and the flow of the heat medium from the high temperature heat medium tank 11 to the low temperature heat medium tank 12 is blocked ( There is no inflow of the heat medium into the heat medium inlet 8c and no outflow of the heat medium from the heat medium outlet 8d). For the air heater 8 used for heat exchange, the valves V2 and V4 are set to open.

発電運転時には、蓄圧タンク5から送出された圧縮空気が、空気流路系2Bを通って膨張機7の給気口7aに供給される。給気口7aに給気された圧縮空気によって膨張機7が作動し、発電機9が複動される。発電機9で発電した電力は電力系統(図示せず)に供給される。膨張機7で膨張された空気は、排気口7bから排出される。圧縮空気は、膨張機7に供給される前に、熱交換に使用する空気ヒータ8(弁V2,V4が開弁に設定されている)を通過するが、熱交換に使用しない空気ヒータ8(弁V2,V4は閉弁に設定されている)は通過しない。 During the power generation operation, the compressed air sent out from the accumulator tank 5 is supplied to the air supply port 7a of the expander 7 through the air flow path system 2B . The expander 7 is operated by the compressed air supplied to the air supply port 7a, and the generator 9 is double-operated. The electric power generated by the generator 9 is supplied to the electric power system (not shown). The air expanded by the inflator 7 is discharged from the exhaust port 7b. The compressed air passes through the air heater 8 (valves V2 and V4 are set to open) used for heat exchange before being supplied to the expander 7, but is not used for heat exchange. Valves V2 and V4 are set to closed) do not pass.

発電運転時には、熱媒ポンプ13Bによって、高温熱媒タンク11に貯蔵された熱媒が、熱媒流路系3Bを通って低温熱媒タンク12に送られる。熱媒は、低温熱媒タンク12に送られる前に、熱交換に使用する空気ヒータ8(弁V2,V4が開弁に設定されている)を通過するが、熱交換に使用しない空気ヒータ8(弁V2,V4は閉弁に設定されている)は通過しない。 During the power generation operation, the heat medium pump 13B sends the heat medium stored in the high temperature heat medium tank 11 to the low temperature heat medium tank 12 through the heat medium flow path system 3B. The heat medium passes through the air heater 8 used for heat exchange (valves V2 and V4 are set to open) before being sent to the low temperature heat medium tank 12, but the air heater 8 is not used for heat exchange. (Valves V2 and V4 are set to closed) do not pass.

膨張機7では、膨張時の吸熱により空気の温度が低下する。そのため、膨張機7に給気される圧縮空気は、高温であることが好ましい。熱交換に使用される空気ヒータ8では、熱媒と圧縮空気の間の熱交換により、圧縮空気は加熱され、熱媒は冷却される。従って、膨張機7には、熱交換によって昇温した圧縮空気が供給される。また、低温熱媒タンク12には、熱交換後の降温した熱媒が貯蔵される。 In the expander 7, the temperature of the air drops due to endothermic heat during expansion. Therefore, the compressed air supplied to the expander 7 is preferably at a high temperature. In the air heater 8 used for heat exchange, the compressed air is heated and the heat medium is cooled by heat exchange between the heat medium and the compressed air. Therefore, compressed air whose temperature has been raised by heat exchange is supplied to the expander 7. Further, the low temperature heat medium tank 12 stores the cooled heat medium after heat exchange.

仮に、部分負荷発電時に、単に熱媒ポンプ13Bによって送出される流量を低減させ、空気ヒータ8の台数制御を実行しないとすると、個々の空気ヒータ8を流れる熱媒の流速が低下することになる。空気ヒータ8を流れる熱媒の流速の低下は、熱交換性能の低下を招く。本実施形態では、部分負荷発電時に、空気ヒータ8の台数制御を行い、かつ熱交換に使用する空気ヒータ8の台数に応じて熱媒ポンプ13Bによって送出される流量を低減することで、熱交換に使用される空気ヒータ8における熱媒の流速の低下を抑制しつつ、高温熱媒タンク11から低温熱媒タンク12に流れる熱媒の流量を低減できる。 If the flow rate sent by the heat medium pump 13B is simply reduced during partial load power generation and the number of air heaters 8 is not controlled, the flow velocity of the heat medium flowing through the individual air heaters 8 will decrease. .. A decrease in the flow velocity of the heat medium flowing through the air heater 8 causes a decrease in heat exchange performance. In the present embodiment, heat exchange is performed by controlling the number of air heaters 8 during partial load power generation and reducing the flow rate sent by the heat medium pump 13B according to the number of air heaters 8 used for heat exchange. The flow rate of the heat medium flowing from the high temperature heat medium tank 11 to the low temperature heat medium tank 12 can be reduced while suppressing a decrease in the flow velocity of the heat medium in the air heater 8 used for the above.

部分負荷発電時に、熱交換に使用される空気ヒータ8における熱媒の流速の低下を抑制することで、熱媒の流速低下に起因する空気ヒータ8の熱交換性能の低下を抑制できる。また、部分負荷発電時に、高温熱媒タンク11から低温熱媒タンク12に流れる熱媒の流量を低減することで、低温熱媒タンク12に流入する熱媒の温度低下の不足を回避でき、低温熱媒タンク12内の熱媒の温度が目標値から高温側に逸脱するのを防止できる。従って、空気ヒータ8以外の補助的なクーラによって低温熱媒タンク12へ流入する熱媒の温度を低下させる必要がない。以上より、部分負荷発電時における熱媒における熱利用の効率低下を抑制し、発電電力量とシステム効率の低下を抑制できる。 By suppressing a decrease in the flow velocity of the heat medium in the air heater 8 used for heat exchange during partial load power generation, it is possible to suppress a decrease in the heat exchange performance of the air heater 8 due to the decrease in the flow velocity of the heat medium. Further, by reducing the flow rate of the heat medium flowing from the high temperature heat medium tank 11 to the low temperature heat medium tank 12 during partial load power generation, it is possible to avoid insufficient temperature drop of the heat medium flowing into the low temperature heat medium tank 12, and the temperature is low. It is possible to prevent the temperature of the heat medium in the heat medium tank 12 from deviating from the target value to the high temperature side. Therefore, it is not necessary to lower the temperature of the heat medium flowing into the low temperature heat medium tank 12 by an auxiliary cooler other than the air heater 8. From the above, it is possible to suppress a decrease in the efficiency of heat utilization in the heat medium during partial load power generation, and suppress a decrease in the amount of generated power and the system efficiency.

部分負荷発電時に使用する熱媒量を節約できるので、低温熱媒タンク12と高温熱媒タンク11を大容量に設定する必要がなく、熱媒量の制限を受けずに長い発電運転時間を確保できる。 Since the amount of heat medium used during partial load power generation can be saved, it is not necessary to set the low temperature heat medium tank 12 and the high temperature heat medium tank 11 to large capacities, and a long power generation operation time is secured without being limited by the amount of heat medium. it can.

部分負荷発電時に、複数台の空気ヒータ8のうちのいずれを熱交換に使用しないかは、複数台の空気ヒータ8間で使用時間が均一化されるように選択される。例えば、制御装置14は、個々の空気ヒータ8の使用時間を記憶し、部分負荷発電時には、それまでの使用時間の長い空気ヒータ8を優先して熱交換に使用しない空気ヒータ8として選択する。 Which of the plurality of air heaters 8 is not used for heat exchange during partial load power generation is selected so that the usage time is made uniform among the plurality of air heaters 8. For example, the control device 14 stores the usage time of each air heater 8, and at the time of partial load power generation, the air heater 8 having a long usage time up to that point is preferentially selected as the air heater 8 not used for heat exchange.

図6は、発電運転時の代案の制御の概要を示す。ステップS61において、制御装置14は発電電力要求値を確認する。続いて、ステップS62において、制御装置14は、発電電力要求値の発電電力定格値に対する割合βを算出する。また、ステップS63において、制御装置14は、割合βと予め記憶した空気ヒータ設置台数N2(CAES装置1が備える空気ヒータ8の総台数)との積β*N2に基づいて空気ヒータ使用台数Nbを決定する。ステップS64では、この空気ヒータ使用台数Nbに基づいて空気ヒータ8の台数制御と熱媒ポンプ13Bの流量制御が実行される。 FIG. 6 shows an outline of alternative control during power generation operation. In step S61, the control device 14 confirms the required power generation value. Subsequently, in step S62, the control device 14 calculates the ratio β of the generated power required value to the generated power rated value. Further, in step S63, the control device 14 determines the number of air heaters used Nb based on the product β * N2 of the ratio β and the number of installed air heaters N2 (total number of air heaters 8 included in the CAES device 1) stored in advance. decide. In step S64, the number of air heaters 8 and the flow rate of the heat medium pump 13B are controlled based on the number of air heaters used Nb .

例えば、発電電力定格値を100として、実際の発電電力要求値が50である場合を考える。この場合、割合βは0.5(50%)であり、空気ヒータ使用台数Nbは0.5N2(β*N2)に設定される。しかし、0.5N2が整数にならない場合は、熱媒流速が定格以下となるとによる性能低下を避けるため、0.5N2以上の最初の整数を空気ヒータ使用台数Nbに設定する。具体的には、仮に空気ヒータ設置台数N2が3台で割合βが0.5であれば、空気ヒータ使用台数Nbは2台となる。 For example, consider a case where the rated value of the generated power is 100 and the actual required value of the generated power is 50. In this case, the ratio β is 0.5 (50%), and the number of air heaters used Nb is set to 0.5N2 (β * N2). However, 0.5N2 is if not an integer, to avoid performance degradation heat medium flow rate by. Doing so less than the rated, set the first integer greater than or equal 0.5N2 air heater using the number Nb. Specifically, if the number of air heaters installed N2 is 3 and the ratio β is 0.5, the number of air heaters used Nb is 2.

本実施形態における弁V1〜V4の配置は、図1に図示したものに限定されない。具体的には、弁V1は空気クーラ4の空気入口4a側に設けてもよく、空気入口4a側と空気出口4b側の両方に設けてもよい。弁V2は空気ヒータ8の空気入口8a側に設けてもよく、空気入口8a側と空気出口8b側の両方に設けてもよい。弁V3は空気クーラ4の熱媒出口4d側に設けてもよく、熱媒入口4cと熱媒出口4dの両方に設けてもよい。弁V4は空気ヒータ8の熱媒出口8d側に設けてもよく、熱媒入口8c側と熱媒出口8d側の両方に設けてもよい。 The arrangement of valves V1 to V4 in this embodiment is not limited to that shown in FIG. Specifically, the valve V1 may be provided on the air inlet 4a side of the air cooler 4, or may be provided on both the air inlet 4a side and the air outlet 4b side. The valve V2 may be provided on the air inlet 8a side of the air heater 8, or may be provided on both the air inlet 8a side and the air outlet 8b side. The valve V3 may be provided on the heat medium outlet 4d side of the air cooler 4, or may be provided on both the heat medium inlet 4c and the heat medium outlet 4d. The valve V4 may be provided on the heat medium outlet 8d side of the air heater 8, or may be provided on both the heat medium inlet 8c side and the heat medium outlet 8d side.

以下の第2から第6実施形態については、特に言及しない点は第1実施形態と同様である。また、これらの実施形態に関する図面では、第1実施形態と同一ないし同様の要素には、同一の符号を付している。 The following second to sixth embodiments are the same as those of the first embodiment without particular mention. Further, in the drawings relating to these embodiments, the same or similar elements as those in the first embodiment are designated by the same reference numerals.

(第2実施形態)
図8に示す本発明の第2実施形態に係るCAES発電装置1は、高温熱媒タンク11内の熱媒の温度を検出する温度センサ15A(第2温度検出部)と、低温熱媒タンク12内の熱媒の温度を検出する温度センサ15B(第1温度検出部)とを備える。
(Second Embodiment)
The CAES power generation device 1 according to the second embodiment of the present invention shown in FIG. 8 includes a temperature sensor 15A (second temperature detection unit) for detecting the temperature of the heat medium in the high temperature heat medium tank 11 and a low temperature heat medium tank 12. It is provided with a temperature sensor 15B (first temperature detection unit) that detects the temperature of the heat medium inside.

制御装置14は、充電運転時の台数制御と熱媒ポンプ13Aの流量制御(図2のステップS22及び図3のステップS34)において、温度センサ15Aの検出温度を考慮する。具体的には、制御装置14は、温度センサ15Aの検出温度が予め定められた設定温度以上となるように、熱交換に使用する空気クーラ4の台数と熱媒ポンプ13Aの流量を決定する。 The control device 14 considers the detected temperature of the temperature sensor 15A in the number control during the charging operation and the flow rate control of the heat medium pump 13A (step S22 in FIG. 2 and step S34 in FIG. 3). Specifically, the control device 14 determines the number of air coolers 4 used for heat exchange and the flow rate of the heat medium pump 13A so that the detection temperature of the temperature sensor 15A becomes equal to or higher than a predetermined set temperature.

また、制御装置14は、発電運転時の台数制御と熱媒ポンプ13Bの流量制御(図5のステップS52及び図6のステップS64)において、温度センサ15Bの検出温度を考慮する。具体的には、制御装置14は、温度センサ15Bの検出温度が予め定められた設定温度以下となるように、熱交換に使用する空気ヒータ8の台数と熱媒ポンプ13Bの流量を決定する。 Further, the control device 14 considers the detected temperature of the temperature sensor 15B in the number control during the power generation operation and the flow rate control of the heat medium pump 13B (step S52 in FIG. 5 and step S64 in FIG. 6). Specifically, the control device 14 determines the number of air heaters 8 used for heat exchange and the flow rate of the heat medium pump 13B so that the detection temperature of the temperature sensor 15B becomes equal to or lower than a predetermined set temperature.

(第3実施形態)
図9に示す本発明の第3実施形態に係るCAES発電装置1は、空気流路系2Aにおける複数台の空気クーラ4の空気入口4a側と空気出口4b側の差圧を検出する差圧センサ16A(第2差圧検出部)を備える。また、本実施形態に係るCAES装置1は、空気流路系2Bにおける複数台の空気ヒータ8の空気入口8a側と空気出口8b側の差圧を検出する差圧センサ16B(第1差圧検出部)を備える。
(Third Embodiment)
The CAES power generation device 1 according to the third embodiment of the present invention shown in FIG. 9 is a differential pressure sensor that detects the differential pressure between the air inlet 4a side and the air outlet 4b side of a plurality of air coolers 4 in the air flow path system 2A. 16A comprises a (second differential pressure detecting unit). Further, the CAES device 1 according to the present embodiment is a differential pressure sensor 16B (first differential pressure detection) that detects the differential pressure between the air inlet 8a side and the air outlet 8b side of a plurality of air heaters 8 in the air flow path system 2B. Part ).

制御装置14は、充電運転時の台数制御(図2のステップS22及び図3のステップS34)において、差圧センサ16Aによって検出された差圧を考慮する。具体的には、制御装置14は、差圧センサ16Aによって検出された差圧が予め定められた圧損を超えないように、熱交換に使用する空気クーラ4の台数を決定する。 The control device 14 considers the differential pressure detected by the differential pressure sensor 16A in the number control during the charging operation (step S22 in FIG. 2 and step S34 in FIG. 3). Specifically, the control device 14 determines the number of air coolers 4 used for heat exchange so that the differential pressure detected by the differential pressure sensor 16A does not exceed a predetermined pressure loss.

制御装置14は、発電運転時の台数制御(図5のステップS52及び図6のステップS64)において、差圧センサ16Bによって検出された差圧を考慮する。具体的には、制御装置14は、差圧センサ16Bによって検出された差圧が予め定められた圧損を超えないように、熱交換に使用する空気ヒータ8の台数を決定する。 The control device 14 considers the differential pressure detected by the differential pressure sensor 16B in the number control (step S52 in FIG. 5 and step S64 in FIG. 6) during the power generation operation. Specifically, the control device 14 determines the number of air heaters 8 used for heat exchange so that the differential pressure detected by the differential pressure sensor 16B does not exceed a predetermined pressure loss.

(第4実施形態)
図10は本発明の第4実施形態に係るCAES発電装置1を示す。本実施形態では、熱媒流路系32の個々の複数の空気クーラ4の熱媒出口4dと接続された箇所に、弁V3が設けられている。
(Fourth Embodiment)
FIG. 10 shows the CAES power generation device 1 according to the fourth embodiment of the present invention. In the present embodiment, the valve V3 is provided at a position connected to the heat medium outlets 4d of the individual plurality of air coolers 4 in the heat medium flow path system 32.

本実施形態における熱媒流路系3Aは、個々の複数台の空気クーラ4の熱媒出口4dと、低温熱媒タンク12とを流体的には接続する熱媒戻り流路41を備える。熱媒戻り流路41は、個々の空気クーラ4の熱媒出口4dと弁V3との間で熱媒流路32から分岐する部分を有し、個々のこれらの部分には弁V5が設けられている。弁V5は制御装置14により開閉制御可能である。また、熱媒戻り流路41は、弁V4と低温熱媒タンク12との間の位置で、熱媒流路33に合流している。 The heat medium flow path system 3A in the present embodiment includes a heat medium return flow path 41 that fluidly connects the heat medium outlets 4d of a plurality of individual air coolers 4 and the low temperature heat medium tank 12. The heat medium return flow path 41 has a portion branched from the heat medium flow path 32 between the heat medium outlet 4d of each air cooler 4 and the valve V3, and the valve V5 is provided in each of these portions. Has been done. The valve V5 can be opened and closed by the control device 14. The heat medium return flow path 41, at a location between the low-temperature heat medium tank 12 and a valve V4, and joined to Netsunakadachiryu path 3 3.

本実施形態おける熱媒流路系3Bは、個々の複数台の空気ヒータ8の熱媒出口8dと、高温熱媒タンク11とを流体的には接続する熱媒戻り流路42を備える。熱媒戻り流路42は、個々の空気ヒータ8の熱媒出口4dと弁V4との間で熱媒流路33から分岐する部分を有し、個々のこれらの部分には弁V6が設けられている。弁V6は制御装置14により開閉制御可能である。また、熱媒戻り流路42は、弁V3と高温熱媒タンク11との間の位置で、熱媒流路32に合流している。 The heat medium flow path system 3B in the present embodiment includes a heat medium return flow path 42 that fluidly connects the heat medium outlets 8d of each of a plurality of air heaters 8 and the high temperature heat medium tank 11. The heat medium return flow path 42 has a portion branched from the heat medium flow path 33 between the heat medium outlet 4d of each air heater 8 and the valve V4, and the valve V6 is provided in each of these portions. Has been done. The valve V6 can be opened and closed by the control device 14. The heat medium return flow path 42, at a location between the high temperature heat medium tank 11 and a valve V3, which joins the Netsunakadachiryu passage 3 2.

図11を併せて参照すると、部分負荷充電運転時に熱交換に使用する空気クーラ4については、弁V1,V3が開弁され、弁V5が閉弁される。一方、部分負荷充電運転時に熱交換に使用しない空気クーラ4については、弁V1,V3が閉弁され、弁V5が開弁される。かかる弁V1,V3,V5の開閉設定により、部分負荷充電時には、熱交換に使用しない空気クーラ4と低温熱媒タンク12との間に、熱媒戻り流路41を含む熱媒の循環経路が形成される。 With reference to FIG. 11, the valves V1 and V3 of the air cooler 4 used for heat exchange during the partial load charging operation are opened and the valves V5 are closed. On the other hand, for the air cooler 4 that is not used for heat exchange during the partial load charging operation, the valves V1 and V3 are closed and the valves V5 are opened. Due to the opening / closing settings of the valves V1, V3, and V5, a heat medium circulation path including the heat medium return flow path 41 is provided between the air cooler 4 not used for heat exchange and the low temperature heat medium tank 12 during partial load charging. It is formed.

第1実施形態では、部分負荷充電時に熱交換に使用しない空気クーラ4には熱媒が流入しないため、熱交換に使用しない空気クーラ4は外気温度との差によって放熱し、内部の熱媒と熱交壁面温度が下がる。この状態で運転状態に復帰する場合は熱媒の低温化、粘度増加によって流動性悪化による偏流を起こしてしまい、所定の空気及び熱媒温度が得られない状態となる。この状態を解消するためには時には数十分の時間を要するため、その暖機時間の間は十分な充電性能が得られずエネルギー効率の低下が発生してしまう。これに対して、本実施形態では、熱交換に使用しない空気クーラ4にも熱媒を流し続けることで、温度低下を防ぐことができる。 In the first embodiment, since the heat medium does not flow into the air cooler 4 that is not used for heat exchange during partial load charging, the air cooler 4 that is not used for heat exchange dissipates heat due to the difference from the outside air temperature and becomes the internal heat medium. The heat exchange wall temperature drops. When returning to the operating state in this state, the temperature of the heat medium is lowered and the viscosity is increased, causing a drift due to deterioration of fluidity, and the predetermined air and heat medium temperatures cannot be obtained. Since it sometimes takes several tens of minutes to resolve this state, sufficient charging performance cannot be obtained during the warm-up time, resulting in a decrease in energy efficiency. On the other hand, in the present embodiment, the temperature drop can be prevented by continuing to flow the heat medium to the air cooler 4 which is not used for heat exchange.

熱交換に使用しない空気クーラ4から流出する熱媒は、ほとんど加熱されていないので、熱交換に使用する空気クーラ4から流出する熱媒と混合すると、高温熱媒タンク11の熱媒温度が目標値から低温側に逸脱することになる。本実施形態では、熱交換に使用しない空気クーラ4から流出する熱媒を高温熱媒タンク11ではなく低温熱媒タンク12、つまり熱交換に使用する空気クーラ4とは異なるタンクに戻すので、低温熱媒タンク12の熱媒貯蔵量の減少を抑制しつつ、高温熱媒タンク11の熱媒温度が目標値から低温側に逸脱するのを防止できる。 Since the heat medium flowing out of the air cooler 4 not used for heat exchange is hardly heated, the heat medium temperature of the high temperature heat medium tank 11 is targeted when mixed with the heat medium flowing out from the air cooler 4 used for heat exchange. It will deviate from the value to the low temperature side. In the present embodiment, the heat medium flowing out of the air cooler 4 not used for heat exchange is returned to the low temperature heat medium tank 12, that is, a tank different from the air cooler 4 used for heat exchange, instead of the high temperature heat medium tank 11, so that the temperature is low. It is possible to prevent the heat medium temperature of the high temperature heat medium tank 11 from deviating from the target value to the low temperature side while suppressing a decrease in the heat medium storage amount of the heat medium tank 12.

図12を併せて参照すると、部分負荷発電運転時に熱交換に使用する空気ヒータ8については、弁V2,V4が開弁され、弁V6が閉弁される。一方、部分負荷発電運転時に熱交換に使用しない空気ヒータ8については、弁V2,V4が閉弁され、弁V6が開弁される。かかる弁V2,V4,V6の開閉設定により、部分負荷発電時には、熱交換に使用しない空気ヒータ8と高温熱媒タンク11との間に、熱媒戻り流路42を含む熱媒の循環経路が形成される。 With reference to FIG. 12, the valves V2 and V4 of the air heater 8 used for heat exchange during the partial load power generation operation are opened and the valves V6 are closed. On the other hand, for the air heater 8 that is not used for heat exchange during the partial load power generation operation, the valves V2 and V4 are closed and the valves V6 are opened. Due to the opening / closing settings of the valves V2, V4, and V6, a heat medium circulation path including the heat medium return flow path 42 is established between the air heater 8 not used for heat exchange and the high temperature heat medium tank 11 during partial load power generation. It is formed.

第1実施形態では、部分負荷発電時に熱交換に使用しない空気ヒータ8には熱媒が流入しないため、熱交換に使用しない空気ヒータ8は外気温度との差によって放熱し、内部の熱媒と熱交壁面温度が下がる。この状態で運転状態に復帰する場合は熱媒の低温化、粘度増加によって流動性悪化による偏流を起こしてしまい、所定の空気及び熱媒温度が得られない状態となる。この状態を解消するためには時には数十分の時間を要するため、その暖機時間の間は十分な充電性能が得られずエネルギー効率の低下が発生してしまう。これに対して、本実施形態では、熱交換に使用しない空気ヒータ8にも熱媒を流し続けることで、温度低下を防ぐことができる。 In the first embodiment, since the heat medium does not flow into the air heater 8 that is not used for heat exchange during partial load power generation, the air heater 8 that is not used for heat exchange dissipates heat due to the difference from the outside air temperature, and is combined with the internal heat medium. The heat exchange wall temperature drops. When returning to the operating state in this state, the temperature of the heat medium is lowered and the viscosity is increased, causing a drift due to deterioration of fluidity, and the predetermined air and heat medium temperatures cannot be obtained. Since it sometimes takes several tens of minutes to resolve this state, sufficient charging performance cannot be obtained during the warm-up time, resulting in a decrease in energy efficiency. On the other hand, in the present embodiment, the temperature drop can be prevented by continuing to flow the heat medium to the air heater 8 which is not used for heat exchange.

熱交換に使用しない空気ヒータ8から流出する熱媒は、ほとんど冷却されていないので、熱交換に使用する空気ヒータ8から流出する熱媒と混合すると、低温熱媒タンク12の熱媒温度が目標値から高温側に逸脱することになる。本実施形態では、熱交換に使用しない空気ヒータ8から流出する熱媒を低温熱媒タンク12ではなく高温熱媒タンク11、つまり熱交換に使用する空気ヒータ8とは異なるタンクに戻すので、高温熱媒タンク11の熱媒貯蔵量の減少を抑制しつつ、低温熱媒タンク12の熱媒温度が目標値から高温側に逸脱するのを防止できる。 Since the heat medium flowing out from the air heater 8 not used for heat exchange is hardly cooled, the heat medium temperature of the low temperature heat medium tank 12 is the target when mixed with the heat medium flowing out from the air heater 8 used for heat exchange. It will deviate from the value to the high temperature side. In the present embodiment, the heat medium flowing out from the air heater 8 not used for heat exchange is returned to the high temperature heat medium tank 11 instead of the low temperature heat medium tank 12, that is, a tank different from the air heater 8 used for heat exchange. It is possible to prevent the heat medium temperature of the low temperature heat medium tank 12 from deviating from the target value to the high temperature side while suppressing a decrease in the heat medium storage amount of the hot heat medium tank 11.

(第5実施形態)
図13に示す本発明の第5実施形態に係るCAES装置1は、高温熱媒タンク11内の熱媒温度を検出する温度センサ15Aと、低温熱媒タンク12内の熱媒温度を検出する温度センサ15Bを備える点が、第4実施形態と異なる。
(Fifth Embodiment)
The CAES apparatus 1 according to the fifth embodiment of the present invention shown in FIG. 13 has a temperature sensor 15A for detecting the heat medium temperature in the high temperature heat medium tank 11 and a temperature for detecting the heat medium temperature in the low temperature heat medium tank 12. The point that the sensor 15B is provided is different from the fourth embodiment.

第2実施形態と同様に、充電運転時の空気クーラ4の台数制御では温度センサ15Aの検出温度も考慮され、発電運転時の空気ヒータ8の台数制御では温度センサ15Bの検出温度も考慮される。 Similar to the second embodiment, the detection temperature of the temperature sensor 15A is also considered in the control of the number of air coolers 4 during the charging operation, and the detection temperature of the temperature sensor 15B is also considered in the control of the number of air heaters 8 during the power generation operation. ..

(第6実施形態)
図14に示す本発明の第6実施形態に係るCAES発電装置1は、差圧センサ16A,16Bを備える点が、第4実施形態と異なる。差圧センサ16Aは、空気流路系2Aにおける複数台の空気クーラ4の空気入口4a側と空気出口4b側の差圧を検出する。差圧センサ16Bは、空気流路系2Bにおける複数台の空気ヒータ8の空気入口8a側と空気出口8b側の差圧を検出する。
(Sixth Embodiment)
The CAES power generation device 1 according to the sixth embodiment of the present invention shown in FIG. 14 is different from the fourth embodiment in that the differential pressure sensors 16A and 16B are provided. The differential pressure sensor 16A detects the differential pressure between the air inlet 4a side and the air outlet 4b side of a plurality of air coolers 4 in the air flow path system 2A. The differential pressure sensor 16B detects the differential pressure between the air inlet 8a side and the air outlet 8b side of the plurality of air heaters 8 in the air flow path system 2B.

第3実施形態と同様に、充電運転時の空気クーラ4の台数制御では差圧センサ16Aによって検出された差圧も考慮され、発電運転時の空気ヒータ8の台数制御では差圧センサ16Bによって検出された差圧も考慮される。 Similar to the third embodiment, the differential pressure detected by the differential pressure sensor 16A is also taken into consideration in the control of the number of air coolers 4 during the charging operation, and is detected by the differential pressure sensor 16B in the control of the number of air heaters 8 during the power generation operation. The differential pressure applied is also taken into account.

1 圧縮空気貯蔵発電装置
2 空気流路系
2A 空気流路系(第2空気流路系)
2B 空気流路系(第1空気流路系)
3 熱媒流路系
3A 熱媒流路系(第2熱媒流路系)
3B 熱媒流路系(第1熱媒流路系)
4 空気クーラ(第1熱交換器)
4a 空気入口
4b 空気出口
4c 熱媒入口
4d 熱媒出口
5 蓄圧タンク(蓄圧部)
6 電動機
7 膨張機
7a 給気口
7b 排気口
8 空気ヒータ(第2熱交換器)
8a 空気入口
8b 空気出口
8c 熱媒入口
8d 熱媒出口
9 発電機
10 圧縮機
10a 吸込口
10b 吐出口
11 高温熱媒タンク(高温蓄熱部)
12 低温熱媒タンク(低温蓄熱部)
13A 熱媒ポンプ(第2熱媒ポンプ)
13B 熱媒ポンプ(第1熱媒ポンプ)
14 制御装置
15A 温度センサ(第2温度検出
15B 温度センサ(第1温度検出部)
16A 差圧センサ(第2差圧検出
16B 差圧センサ(第差圧検出部)
21,22,23,24 空気流路
31,32,33,34 熱媒流路
41,42 熱媒戻り流路
1 Compressed air storage power generation device 2 Air flow path system 2A Air flow path system (second air flow path system)
2B air flow path system (first air flow path system)
3 Heat medium flow path system 3A Heat medium flow path system (second heat medium flow path system)
3B heat medium flow path system (first heat medium flow path system)
4 Air cooler (1st heat exchanger)
4a Air inlet 4b Air outlet 4c Heat medium inlet 4d Heat medium outlet 5 Accumulation tank (accumulation part)
6 Electric motor 7 Expander 7a Air supply port 7b Exhaust port 8 Air heater (second heat exchanger)
8a Air inlet 8b Air outlet 8c Heat medium inlet 8d Heat medium outlet 9 Generator 10 Compressor 10a Suction port 10b Discharge port 11 High temperature heat medium tank (high temperature heat storage unit)
12 Low temperature heat medium tank (low temperature heat storage unit)
13A heat medium pump (second heat medium pump)
13B heat medium pump (first heat medium pump)
14 controller 15A temperature sensor (second temperature detector)
15B temperature sensor (first temperature detector)
16A differential pressure sensor (second differential pressure detecting unit)
16B differential pressure sensor ( first differential pressure detector)
21, 22, 23, 24 Air flow path 31, 32, 33, 34 Heat medium flow path 41, 42 Heat medium return flow path

Claims (14)

電動機と機械的に接続され、空気を圧縮する圧縮機と、
前記圧縮機により生成された圧縮空気を貯蔵する蓄圧部と、
前記蓄圧部から供給される前記圧縮空気によって駆動され、発電機に機械的に接続された1台の膨張機と、
前記圧縮機で生成された前記圧縮空気と熱媒とで熱交換し、前記圧縮空気を降温させる、複数台の第1熱交換器と、
前記第1熱交換器での前記熱交換によって昇温された前記熱媒を貯蔵する高温蓄熱部と、
前記1台の膨張機に並列に接続され、前記蓄圧部から前記膨張機に供給される前記圧縮空気と、前記高温蓄熱部から供給される前記熱媒とで熱交換し、前記圧縮空気を昇温させる、複数台の第2熱交換器と、
前記第2熱交換器での前記熱交換によって降温された熱媒を貯蔵する低温蓄熱部と、
前記複数台の第2熱交換器の空気入口を前記蓄圧部にそれぞれ流体的に接続すると共に、前記複数台の第2熱交換器の空気出口を前記1台の膨張機の給気口にそれぞれ流体的に接続する第1空気流路系と、
個々の前記第2熱交換器が、前記圧縮空気が流れる状態と、前記圧縮空気の流れが遮断された状態とのいずれかに設定されるように、前記第1空気流路系を切換可能な第1空気流路系切換部と、
前記複数台の第2熱交換器の熱媒入口を前記高温蓄熱部にそれぞれ流体的に接続すると共に、前記複数台の第2熱交換器の熱媒出口を前記低温蓄熱部にそれぞれ流体的に接続する第1熱媒流路系と、
前記第1熱媒流路系に設けられ、前記高温蓄熱部から前記低温蓄熱部へ前記熱媒を送出する第1熱媒ポンプと、
個々の前記第2熱交換器を、前記高温蓄熱部から前記低温蓄熱部へ前記熱媒が流れる状態と、前記高温蓄熱部から前記低温蓄熱部への前記熱媒の流れが遮断された状態とのいずれかに設定されるように、前記第1熱媒流路系を切換可能な第1熱媒流路系切換部と、
発電電力要求値の発電電力定格値に対する比較に少なくとも基づいて、前記第1空気流路系切換部と前記第1熱媒流路系切換部とを少なくとも制御する制御部と
を備え、
前記制御部は、前記発電電力要求値が前記発電電力定格値未満である部分負荷発電時に、前記複数台の前記第2熱交換器のうちの1台又は複数台が、前記空気の流れが遮断され、かつ前記高温蓄熱部から前記低温蓄熱部への前記熱媒の流れが遮断された状態に設定されるように、前記第1空気流路系切換部と前記第1熱媒流路系切換部を制御する、圧縮空気貯蔵発電装置。
A compressor that is mechanically connected to an electric motor and compresses air,
A pressure accumulator that stores the compressed air generated by the compressor,
An expander driven by the compressed air supplied from the accumulator and mechanically connected to the generator.
A plurality of first heat exchangers that exchange heat between the compressed air generated by the compressor and a heat medium to lower the temperature of the compressed air.
A high-temperature heat storage unit that stores the heat medium that has been heated by the heat exchange in the first heat exchanger, and
The compressed air connected in parallel to the one expander and supplied from the accumulator to the expander exchanges heat with the heat medium supplied from the high temperature heat storage unit to raise the compressed air. With multiple second heat exchangers to heat,
A low-temperature heat storage unit that stores the heat medium cooled by the heat exchange in the second heat exchanger, and
The air inlets of the plurality of second heat exchangers are fluidly connected to the accumulator, and the air outlets of the plurality of second heat exchangers are connected to the air supply ports of the one expander, respectively. The first air flow path system that connects fluidly,
The first air flow path system can be switched so that each of the second heat exchangers is set to either a state in which the compressed air flows or a state in which the flow of the compressed air is blocked. The first air flow path system switching unit and
The heat medium inlets of the plurality of second heat exchangers are fluidly connected to the high temperature heat storage section, and the heat medium outlets of the plurality of second heat exchangers are fluidly connected to the low temperature heat storage section. The first heat medium flow path system to be connected and
A first heat medium pump provided in the first heat medium flow path system and sending the heat medium from the high temperature heat storage unit to the low temperature heat storage unit.
Each of the second heat exchangers has a state in which the heat medium flows from the high temperature heat storage unit to the low temperature heat storage unit and a state in which the flow of the heat medium from the high temperature heat storage unit to the low temperature heat storage unit is blocked. A first heat medium flow path system switching unit capable of switching the first heat medium flow path system so as to be set to any of
Based at least on a comparison to the generator power rating of the power generation demand value, Bei example a control unit for controlling at least said first air flow path system switching section and said first heating medium flow channel system switching section,
In the control unit, at the time of partial load power generation in which the generated power required value is less than the generated power rated value, one or more of the plurality of the second heat exchangers shut off the air flow. The first air flow path system switching section and the first heat medium flow path system switching are set so that the flow of the heat medium from the high temperature heat storage section to the low temperature heat storage section is cut off. A compressed air storage power generator that controls the unit.
前記制御部は、前記部分負荷発電時に、前記複数台の前記第2熱交換器のうちの1台又は複数台について、前記空気の流れが遮断され、かつ前記熱媒の流入及び流出が停止されるように、前記第1空気流路系切換部と前記第1熱媒流路系切換部を制御し、
前記制御部は、前記部分負荷発電時に、前記第1熱媒ポンプによって送出される前記熱媒の流量を減少させる、請求項に記載の圧縮空気貯蔵発電装置。
During the partial load power generation, the control unit shuts off the flow of air and stops the inflow and outflow of the heat medium for one or more of the plurality of second heat exchangers. As described above, the first air flow path system switching unit and the first heat medium flow path system switching unit are controlled.
The compressed air storage power generation device according to claim 1 , wherein the control unit reduces the flow rate of the heat medium delivered by the first heat medium pump during the partial load power generation.
前記第1熱媒流路系は、個々の前記複数台の第2熱交換器の前記熱媒出口と、前記高温蓄熱部とを流体的に接続する第1熱媒戻り流路をさらに備え、
前記第1熱媒流路系切換部は、個々の前記複数台の第2熱交換器と前記高温蓄熱部との前記第1熱媒戻り流路を介した連通と遮断を切換可能であり、
前記制御部は、前記部分負荷発電時に、前記複数台の前記第2熱交換器のうちの1台又は複数台について、前記空気の流れが遮断され、前記高温蓄熱部から前記低温蓄熱部への前記熱媒の流れが遮断され、かつ前記熱媒出口から前記第1熱媒戻り流路を介して前記高温蓄熱部に前記熱媒が流れるように、前記第1空気流路系切換部と前記第1熱媒流路系切換部を制御する、請求項に記載の圧縮空気貯蔵発電装置。
The first heat medium flow path system further includes a first heat medium return flow path that fluidly connects the heat medium outlets of the plurality of second heat exchangers and the high temperature heat storage unit.
The first heat medium flow path system switching unit can switch between communication and interruption between each of the plurality of second heat exchangers and the high temperature heat storage unit via the first heat medium return flow path.
At the time of the partial load power generation, the control unit cuts off the flow of air for one or more of the plurality of second heat exchangers, and the high temperature heat storage unit is transferred to the low temperature heat storage unit. The first air flow path system switching section and the said so that the flow of the heat medium is blocked and the heat medium flows from the heat medium outlet to the high temperature heat storage section via the first heat medium return flow path. controlling the first heating medium channel system switching section, the compressed air storage power generating apparatus according to claim 1.
前記低温蓄熱部内の前記熱媒の温度を検出する第1温度検出部をさらに備え、
前記制御部は、前記第1温度検出部によって検出される温度が予め定められた設定温度以下となるように、前記第1空気流路系切換部、前記第1熱媒流路系切換部、及び前記第1熱媒ポンプを制御する、請求項から請求項のいずれか1項に記載の圧縮空気貯蔵発電装置。
A first temperature detection unit for detecting the temperature of the heat medium in the low temperature heat storage unit is further provided.
In the control unit, the first air flow path system switching unit, the first heat medium flow path system switching unit, and the like so that the temperature detected by the first temperature detection unit is equal to or lower than a predetermined set temperature. The compressed air storage power generation device according to any one of claims 1 to 3 , which controls the first heat medium pump.
前記第1空気流路系における前記複数台の第2熱交換器の前記空気入口側と前記空気出口側との差圧を検出する第1差圧検出部をさらに備え、
前記制御部は、前記第1差圧検出部で検出された差圧が予め定められた圧損を超えないように、前記第1空気流路系切換部、前記第1熱媒流路系切換部、及び前記第1熱媒ポンプを制御する、請求項から請求項のいずれか1項に記載の圧縮空気貯蔵発電装置。
A first differential pressure detecting unit for detecting the differential pressure between the air inlet side and the air outlet side of the plurality of second heat exchangers in the first air flow path system is further provided.
The control unit has the first air flow path system switching unit and the first heat medium flow path system switching unit so that the differential pressure detected by the first differential pressure detection unit does not exceed a predetermined pressure loss. The compressed air storage power generation device according to any one of claims 1 to 3 , which controls the first heat medium pump.
前記制御部は、前記複数台の第2熱交換器間で使用時間が均一化されるように、前記第1空気流路系切換部と前記第1熱媒流路系切換部とを制御する、請求項1から請求項のいずれか1項に記載の圧縮空気貯蔵発電装置。 The control unit controls the first air flow path system switching unit and the first heat medium flow path system switching unit so that the usage time is made uniform among the plurality of second heat exchangers. , The compressed air storage power generation device according to any one of claims 1 to 5 . 前記複数台の第1熱交換器の空気入口を前記圧縮機の吐出口にそれぞれ流体的に接続すると共に、前記複数台の第1熱交換器の空気出口を前記蓄圧部にそれぞれ流体的に接続する第2空気流路系と、
個々の前記第1熱交換器が、前記圧縮空気が流れる状態と、前記圧縮空気の流れが遮断された状態とのいずれかに設定されるように、前記第2空気流路系を切換可能な第2空気流路系切換部と、
前記複数台の第1熱交換器の熱媒入口を前記低温蓄熱部にそれぞれ流体的に接続すると共に、前記複数台の第1熱交換器の熱媒出口を前記高温蓄熱部にそれぞれ流体的に接続する第2熱媒流路系と、
前記第2熱媒流路系に設けられ、前記低温蓄熱部から前記高温蓄熱部へ前記熱媒を送出する第2熱媒ポンプと、
個々の前記第1熱交換器を、前記低温蓄熱部から前記高温蓄熱部へ前記熱媒が流れる状態と、前記低温蓄熱部から前記高温蓄熱部への前記熱媒の流れが遮断された状態とのいずれかに設定されるように、前記第2熱媒流路系を切換可能な第2熱媒流路系切換部と、
をさらに備え、
前記制御部は、充電電力要求値の充電電力定格値に対する比較に少なくとも基づいて、前記第2空気流路系切換部と前記第2熱媒流路系切換部とを少なくとも制御する、請求項1から請求項のいずれか1項に記載の圧縮空気貯蔵発電装置。
The air inlets of the plurality of first heat exchangers are fluidly connected to the discharge ports of the compressor, and the air outlets of the plurality of first heat exchangers are fluidly connected to the accumulator. 2nd air flow path system and
The second air flow path system can be switched so that each of the first heat exchangers is set to either a state in which the compressed air flows or a state in which the flow of the compressed air is blocked. The second air flow path system switching unit and
The heat medium inlets of the plurality of first heat exchangers are fluidly connected to the low temperature heat storage section, and the heat medium outlets of the plurality of first heat exchangers are fluidly connected to the high temperature heat storage section. The second heat medium flow path system to be connected and
A second heat medium pump provided in the second heat medium flow path system and sending the heat medium from the low temperature heat storage unit to the high temperature heat storage unit.
Each of the first heat exchangers has a state in which the heat medium flows from the low temperature heat storage unit to the high temperature heat storage unit and a state in which the flow of the heat medium from the low temperature heat storage unit to the high temperature heat storage unit is blocked. A second heat medium flow path system switching unit capable of switching the second heat medium flow path system so as to be set to any of
With more
The control unit controls at least the second air flow path system switching unit and the second heat medium flow path system switching unit based on at least a comparison of the charging power required value with respect to the charged power rated value. The compressed air storage power generation device according to any one of claims 6 .
前記制御部は、前記充電電力要求値が前記充電電力定格値未満である部分負荷充電時に、前記複数台の前記第1熱交換器のうちの1台又は複数台が、前記空気の流れが遮断され、かつ前記低温蓄熱部から前記高温蓄熱部への前記熱媒の流れが遮断された状態に設定されるように、前記第2空気流路系切換部と前記第2熱媒流路系切換部を制御する、請求項に記載の圧縮空気貯蔵発電装置。 In the control unit, at the time of partial load charging in which the charging power required value is less than the charging power rated value, one or more of the plurality of the first heat exchangers shut off the air flow. The second air flow path system switching section and the second heat medium flow path system switching are set so that the flow of the heat medium from the low temperature heat storage section to the high temperature heat storage section is blocked. The compressed air storage power generation device according to claim 7 , which controls a unit. 前記制御部は、前記部分負荷充電時に、前記複数台の前記第1熱交換器のうちの1台又は複数台について、前記空気の流れが遮断され、かつ前記熱媒の流入及び流出が停止されるように、前記第2空気流路系切換部と前記第2熱媒流路系切換部を制御し、
前記制御部は、前記部分負荷充電時に、前記第2熱媒ポンプによって送出される前記熱媒の流量を減少させる、請求項に記載の圧縮空気貯蔵発電装置。
During the partial load charging, the control unit shuts off the flow of air and stops the inflow and outflow of the heat medium for one or more of the plurality of first heat exchangers. As described above, the second air flow path system switching unit and the second heat medium flow path system switching unit are controlled.
The compressed air storage power generation device according to claim 8 , wherein the control unit reduces the flow rate of the heat medium delivered by the second heat medium pump during the partial load charging.
前記第2熱媒流路系は、個々の前記複数台の第1熱交換器の前記熱媒出口と、前記低温蓄熱部とを流体的に接続する第2熱媒戻り流路をさらに備え、
前記第2熱媒流路系切換部は、個々の前記複数台の第1熱交換器と前記低温蓄熱部との前記第熱媒戻り流路を介した連通と遮断を切換可能であり、
前記制御部は、前記部分負荷充電時に、前記複数台の前記第1熱交換器のうちの1台又は複数台について、前記空気の流れが遮断され、前記低温蓄熱部から前記高温蓄熱部への前記熱媒の流れが遮断され、かつ前記熱媒出口から前記第2熱媒戻り流路を介して前記低温蓄熱部に前記熱媒が流れるように、前記第2空気流路系切換部と前記第2熱媒流路系切換部を制御する、請求項に記載の圧縮空気貯蔵発電装置。
The second heat medium flow path system further includes a second heat medium return flow path that fluidly connects the heat medium outlets of the plurality of first heat exchangers and the low temperature heat storage unit.
The second heat medium flow path system switching unit can switch between communication and interruption between the plurality of first heat exchangers and the low temperature heat storage unit via the second heat medium return flow path.
At the time of partial load charging, the control unit cuts off the flow of air for one or more of the plurality of first heat exchangers, and transfers the low temperature heat storage unit to the high temperature heat storage unit. The second air flow path system switching section and the said so that the flow of the heat medium is blocked and the heat medium flows from the heat medium outlet to the low temperature heat storage section via the second heat medium return flow path. The compressed air storage power generation device according to claim 8 , which controls a second heat medium flow path system switching unit.
前記高温蓄熱部内の前記熱媒の温度を検出する第2温度検出部をさらに備え、
前記制御部は、前記第2温度検出部によって検出された温度が予め定められた設定温度以上となるように、前記第2空気流路系切換部、前記第2熱媒流路系切換部、及び前記第2熱媒ポンプを制御する、請求項から請求項10のいずれか1項に記載の圧縮空気貯蔵発電装置。
A second temperature detection unit for detecting the temperature of the heat medium in the high temperature heat storage unit is further provided.
The control unit includes the second air flow path system switching unit and the second heat medium flow path system switching unit so that the temperature detected by the second temperature detection unit becomes equal to or higher than a predetermined set temperature. The compressed air storage power generation device according to any one of claims 8 to 10 , which controls the second heat medium pump.
前記第2空気流路系における前記複数台の第1熱交換器の前記空気入口側と前記空気出口側との差圧を検出する第2差圧検出部をさらに備え、
前記制御部は、前記第2差圧検出部で検出された差圧が予め定められた圧損を超えないように、前記第2空気流路系切換部、前記第2熱媒流路系切換部、及び前記第2熱媒ポンプを制御する、請求項から請求項10のいずれか1項に記載の圧縮空気貯蔵発電装置。
A second differential pressure detecting unit for detecting the differential pressure between the air inlet side and the air outlet side of the plurality of first heat exchangers in the second air flow path system is further provided.
The control unit has the second air flow path system switching unit and the second heat medium flow path system switching unit so that the differential pressure detected by the second differential pressure detection unit does not exceed a predetermined pressure loss. The compressed air storage power generation device according to any one of claims 7 to 10 , which controls the second heat medium pump.
前記制御部は、前記複数台の第1熱交換器間で使用時間が均一化されるように、前記第2空気流路系切換部と前記第2熱媒流路系切換部とを制御する、請求項から請求項12のいずれか1項に記載の圧縮空気貯蔵発電装置。 The control unit controls the second air flow path system switching unit and the second heat medium flow path system switching unit so that the usage time is made uniform among the plurality of first heat exchangers. , The compressed air storage power generation device according to any one of claims 7 to 12 . 電動機と機械的に接続され、空気を圧縮する圧縮機と、
前記圧縮機により生成された圧縮空気を貯蔵する蓄圧部と、
前記蓄圧部から供給される前記圧縮空気によって駆動され、発電機に機械的に接続された1台の膨張機と、
前記圧縮機で生成された前記圧縮空気と熱媒とで熱交換し、前記圧縮空気を降温させる、複数台の第1熱交換器と、
前記第1熱交換器での前記熱交換によって昇温された前記熱媒を貯蔵する高温蓄熱部と、
前記1台の膨張機に並列に接続され、前記蓄圧部から前記膨張機に供給される前記圧縮空気と、前記高温蓄熱部から供給される前記熱媒とで熱交換し、前記圧縮空気を昇温させる、複数台の第2熱交換器と、
前記第2熱交換器での前記熱交換によって降温された熱媒を貯蔵する低温蓄熱部と、
前記複数台の第2熱交換器の空気入口を前記蓄圧部にそれぞれ流体的に接続すると共に、前記複数台の第2熱交換器の空気出口を前記1台の膨張機の給気口にそれぞれ流体的に接続する第1空気流路系と、
個々の前記第2熱交換器が、前記圧縮空気が流れる状態と、前記圧縮空気の流れが遮断された状態とのいずれかに設定されるように、前記第1空気流路系を切換可能な第1空気流路系切換部と、
前記複数台の第2熱交換器の熱媒入口を前記高温蓄熱部にそれぞれ流体的に接続すると共に、前記複数台の第2熱交換器の熱媒出口を前記低温蓄熱部にそれぞれ流体的に接続する第1熱媒流路系と、
前記第1熱媒流路系に設けられ、前記高温蓄熱部から前記低温蓄熱部へ前記熱媒を送出する第1熱媒ポンプと、
個々の前記第2熱交換器を、前記高温蓄熱部から前記低温蓄熱部へ前記熱媒が流れる状態と、前記高温蓄熱部から前記低温蓄熱部への前記熱媒の流れが遮断された状態とのいずれかに設定されるように、前記第1熱媒流路系を切換可能な第1熱媒流路系切換部と
を備える圧縮空気貯蔵発電装置を準備し、
発電電力要求値の発電電力定格値に対する比較に少なくとも基づいて、前記第1空気流路系切換部と前記第1熱媒流路系切換部とを少なくとも制御し、
前記発電電力要求値が前記発電電力定格値未満である部分負荷発電時に、前記複数台の前記第2熱交換器のうちの1台又は複数台が、前記空気の流れが遮断され、かつ前記高温蓄熱部から前記低温蓄熱部への前記熱媒の流れが遮断された状態に設定されるように、前記第1空気流路系切換部と前記第1熱媒流路系切換部を制御する、圧縮空気貯蔵発電方法。
A compressor that is mechanically connected to an electric motor and compresses air,
A pressure accumulator that stores the compressed air generated by the compressor,
An expander driven by the compressed air supplied from the accumulator and mechanically connected to the generator.
A plurality of first heat exchangers that exchange heat between the compressed air generated by the compressor and a heat medium to lower the temperature of the compressed air.
A high-temperature heat storage unit that stores the heat medium that has been heated by the heat exchange in the first heat exchanger, and
The compressed air connected in parallel to the one expander and supplied from the accumulator to the expander exchanges heat with the heat medium supplied from the high temperature heat storage unit to raise the compressed air. With multiple second heat exchangers to heat,
A low-temperature heat storage unit that stores the heat medium cooled by the heat exchange in the second heat exchanger, and
The air inlets of the plurality of second heat exchangers are fluidly connected to the accumulator, and the air outlets of the plurality of second heat exchangers are connected to the air supply ports of the one expander, respectively. The first air flow path system that connects fluidly,
The first air flow path system can be switched so that each of the second heat exchangers is set to either a state in which the compressed air flows or a state in which the flow of the compressed air is blocked. The first air flow path system switching unit and
The heat medium inlets of the plurality of second heat exchangers are fluidly connected to the high temperature heat storage section, and the heat medium outlets of the plurality of second heat exchangers are fluidly connected to the low temperature heat storage section. The first heat medium flow path system to be connected and
A first heat medium pump provided in the first heat medium flow path system and sending the heat medium from the high temperature heat storage unit to the low temperature heat storage unit.
Each of the second heat exchangers has a state in which the heat medium flows from the high temperature heat storage unit to the low temperature heat storage unit and a state in which the flow of the heat medium from the high temperature heat storage unit to the low temperature heat storage unit is blocked. A compressed air storage power generation device including a first heat medium flow path system switching unit capable of switching the first heat medium flow path system is prepared so as to be set to any of the above.
At least the first air flow path system switching unit and the first heat medium flow path system switching unit are controlled based on at least the comparison of the generated power required value with respect to the generated power rated value .
During partial load power generation in which the required power generation value is less than the rated power generation value, one or more of the plurality of second heat exchangers have the air flow blocked and the high temperature. The first air flow path system switching unit and the first heat medium flow path system switching unit are controlled so that the flow of the heat medium from the heat storage unit to the low temperature heat storage unit is set to be blocked. Compressed air storage power generation method.
JP2017143731A 2017-07-25 2017-07-25 Compressed air storage power generation device and compressed air storage power generation method Active JP6826962B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017143731A JP6826962B2 (en) 2017-07-25 2017-07-25 Compressed air storage power generation device and compressed air storage power generation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017143731A JP6826962B2 (en) 2017-07-25 2017-07-25 Compressed air storage power generation device and compressed air storage power generation method

Publications (2)

Publication Number Publication Date
JP2019027289A JP2019027289A (en) 2019-02-21
JP6826962B2 true JP6826962B2 (en) 2021-02-10

Family

ID=65477969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017143731A Active JP6826962B2 (en) 2017-07-25 2017-07-25 Compressed air storage power generation device and compressed air storage power generation method

Country Status (1)

Country Link
JP (1) JP6826962B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6510876B2 (en) * 2015-05-01 2019-05-08 株式会社神戸製鋼所 Compressed air storage power generation method and compressed air storage power generation device
JP6373794B2 (en) * 2015-05-08 2018-08-15 株式会社神戸製鋼所 Compressed air storage power generation apparatus and compressed air storage power generation method
JP6387325B2 (en) * 2015-05-11 2018-09-05 株式会社神戸製鋼所 Compressed air storage generator
JP6475107B2 (en) * 2015-06-25 2019-02-27 株式会社神戸製鋼所 Compressed air storage power generation apparatus and compressed air storage power generation method
JP2017014986A (en) * 2015-06-30 2017-01-19 アネスト岩田株式会社 Binary power generation system and binary power generation method
JP6511378B2 (en) * 2015-09-29 2019-05-15 株式会社神戸製鋼所 Compressed air storage power generation device and compressed air storage power generation method
JP6693287B2 (en) * 2016-06-15 2020-05-13 三浦工業株式会社 Steam heating system

Also Published As

Publication number Publication date
JP2019027289A (en) 2019-02-21

Similar Documents

Publication Publication Date Title
JP6510876B2 (en) Compressed air storage power generation method and compressed air storage power generation device
JP6571491B2 (en) heat pump
WO2016181883A1 (en) Compressed air energy storage and power generation device
JP6511378B2 (en) Compressed air storage power generation device and compressed air storage power generation method
US10401038B2 (en) Heat pump system
JP6913044B2 (en) Compressed air storage power generator
JP6930844B2 (en) Compressed air storage power generator
JP6796577B2 (en) Compressed air storage power generation device and compressed air storage power generation method
JP6689616B2 (en) Compressed air storage power generation device and compressed air storage power generation method
JP2011220591A (en) System for recovery of air compressor waste heat
JP6731377B2 (en) Compressed air storage power generation device and compressed air storage power generation method
JP6826962B2 (en) Compressed air storage power generation device and compressed air storage power generation method
CN110892139A (en) Compressed air storage power generation device
JP6817908B2 (en) Compressed air storage power generation equipment and method
US10907542B2 (en) Compressed air energy storage power generation device
JP6752751B2 (en) Compressed air storage power generator
JP6705771B2 (en) Compressed air storage power generator
JP6906013B2 (en) heat pump
JP2019173608A (en) Compressed-air storage power generating method
JPH05264072A (en) Device for heating or cooling
JP2019060312A (en) Compressed air storage power generation device and compressed air storage power generation method
JP2014074557A (en) Refrigeration cycle device
JP2022184621A (en) Compressed air storage and power generation system
JP2020122428A (en) Compressed air storage power generation apparatus and compressed air storage power generation method
JP2019019791A (en) Compressed air storage power generator and compressed air storage power generation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210118

R151 Written notification of patent or utility model registration

Ref document number: 6826962

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151