[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6823802B2 - Method for producing ethylene polymerization catalyst and method for producing ethylene polymer - Google Patents

Method for producing ethylene polymerization catalyst and method for producing ethylene polymer Download PDF

Info

Publication number
JP6823802B2
JP6823802B2 JP2016229784A JP2016229784A JP6823802B2 JP 6823802 B2 JP6823802 B2 JP 6823802B2 JP 2016229784 A JP2016229784 A JP 2016229784A JP 2016229784 A JP2016229784 A JP 2016229784A JP 6823802 B2 JP6823802 B2 JP 6823802B2
Authority
JP
Japan
Prior art keywords
group
component
compound
formula
silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016229784A
Other languages
Japanese (ja)
Other versions
JP2018087257A (en
Inventor
俊明 谷池
俊明 谷池
稔 寺野
稔 寺野
竜希 馬場
竜希 馬場
山本 和弘
和弘 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Polyethylene Corp
Original Assignee
Japan Polyethylene Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Polyethylene Corp filed Critical Japan Polyethylene Corp
Priority to JP2016229784A priority Critical patent/JP6823802B2/en
Publication of JP2018087257A publication Critical patent/JP2018087257A/en
Application granted granted Critical
Publication of JP6823802B2 publication Critical patent/JP6823802B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Description

本発明は、エチレン重合触媒の製造方法およびエチレン重合体の製造方法に関し、さらに詳しくは、高活性なエチレン重合触媒を得るエチレン重合触媒の製造方法および、そのエチレン重合触媒を用いたエチレン重合体の製造方法に関する。 The present invention relates to a method for producing an ethylene polymerization catalyst and a method for producing an ethylene polymer. More specifically, the present invention relates to a method for producing an ethylene polymerization catalyst for obtaining a highly active ethylene polymerization catalyst, and a method for producing an ethylene polymer using the ethylene polymerization catalyst. Regarding the manufacturing method.

エチレン重合体およびエチレンを主要成分とするエチレンとα―オレフィンの共重合体(以下、両重合体をエチレン系重合体と記載する)は、各種の成形品の樹脂材料として、一般に広く用いられている。エチレン系重合体はその成形方法と用途によって要求される特性が異なる。例えば、射出成形法によって成形される製品には分子量が比較的小さく、狭い分子量分布を有する重合体が適しているが、フィルム成形やブロー成形などによって成形される製品には、分子量が比較的大きく、分子量分布が広い重合体が適している。
従来から、分子量分布の広いエチレン系重合体は、三酸化クロムあるいは非還元性雰囲気下で焼成することで三酸化クロムに酸化しうる任意のクロク化合物をシリカなどの無機酸化物担体に担持させた、いわゆるフィリップス触媒を用いることにより得られることは良く知られており、多くの製品がフィリップス触媒から得られたポリエチレンにより製造されている。
Ethylene polymers and copolymers of ethylene and α-olefins containing ethylene as a main component (hereinafter, both polymers are referred to as ethylene-based polymers) are widely used as resin materials for various molded products. There is. Ethylene-based polymers have different required properties depending on the molding method and application. For example, a polymer having a relatively small molecular weight and a narrow molecular weight distribution is suitable for a product molded by an injection molding method, but a polymer having a relatively large molecular weight is suitable for a product molded by film molding or blow molding. , A polymer having a wide molecular weight distribution is suitable.
Conventionally, ethylene-based polymers having a wide molecular weight distribution have been supported on an inorganic oxide carrier such as silica with chromium trioxide or an arbitrary chromium compound that can be oxidized to chromium trioxide by firing in a non-reducing atmosphere. It is well known that it can be obtained by using a so-called Phillips catalyst, and many products are manufactured from polyethylene obtained from a Phillips catalyst.

フィリップス触媒を変性して触媒性能を改良する試みも行われている。例えば、オレフィン重合時、環状オレフィンモノマーを共存させて重合活性を向上させる技術(特許文献1)、フィリップス触媒の表面を特定の有機アルミニウム化合物で処理した触媒で物性バランスの良いポリエチレンが得られる技術(特許文献2)、フィリップス触媒とシクロペンタジエニル環を有する特定の化合物を共存させることで、得られるポリマーの分子量分布を広げることが出来る技術(特許文献3)が開示されている。
一方、非還元性雰囲気下での焼成を必要としない3価のクロム触媒の開発も行われている。クロムアミド化合物、無機酸化物固体およびアルモキサンからなる触媒で分子量分布が広く、フィルム成形およびブロー成形に適したエチレン系重合体が効率よく製造できることが開示されている(特許文献4)。また、クロムアミド化合物およびアルキルクロム化合物をシリカに担持した触媒を種々のアルモキサンで活性化し、エチレン重合評価を実施した結果が示されている。(非特許文献1)。
しかしながら、3価のクロム化合物を担持した触媒は、通常のフィリップス触媒よりも高価なため、さらなる触媒活性の向上が求められている。
Attempts have also been made to modify the Philips catalyst to improve catalytic performance. For example, a technique for improving the polymerization activity by coexisting a cyclic olefin monomer during olefin polymerization (Patent Document 1), and a technique for obtaining polyethylene having a well-balanced physical properties with a catalyst in which the surface of a Phillips catalyst is treated with a specific organoaluminum compound (Patent Document 1). Patent Document 2) discloses a technique (Patent Document 3) capable of expanding the molecular weight distribution of the obtained polymer by coexisting a phillips catalyst and a specific compound having a cyclopentadienyl ring.
On the other hand, a trivalent chromium catalyst that does not require calcination in a non-reducing atmosphere is also being developed. It is disclosed that an ethylene-based polymer having a wide molecular weight distribution and suitable for film molding and blow molding can be efficiently produced by a catalyst composed of a chromium amide compound, an inorganic oxide solid and alumoxane (Patent Document 4). In addition, the results of ethylene polymerization evaluation by activating a catalyst in which a chromium amide compound and an alkyl chromium compound are supported on silica with various almoxane are shown. (Non-Patent Document 1).
However, since a catalyst carrying a trivalent chromium compound is more expensive than a normal Philips catalyst, further improvement in catalytic activity is required.

特開平2007−302724号JP-A-2007-302724 特開平2011−006589号JP-A-2011-006589 特表平2007−533822号Special table No. 2007-533822 国際公開第98/07762号International Publication No. 98/07762

Macromol.Chem.Phys.2001年,202巻,p1806−1811.Macromol. Chem. Phys. 2001, Volume 202, p1806-1811.

本発明の目的は、上記した従来技術の問題点に鑑み、高活性な触媒が得られるエチレン重合触媒の製造方法、およびこれを用いたエチレン重合体の製造方法を提供することにある。 An object of the present invention is to provide a method for producing an ethylene polymerization catalyst capable of obtaining a highly active catalyst, and a method for producing an ethylene polymer using the same, in view of the above-mentioned problems of the prior art.

本発明者らは、上記課題を解決すべく種々検討を行った結果、無機酸化物担体、電子供与性化合物、及び3価クロム原子を含む化合物を接触させると、高活性なエチレン重合触媒が得られることを見出し、本発明を完成するに至った。 As a result of various studies to solve the above problems, the present inventors obtained a highly active ethylene polymerization catalyst by contacting an inorganic oxide carrier, an electron donating compound, and a compound containing a trivalent chromium atom. It was found that this was possible, and the present invention was completed.

すなわち、本発明の第1の発明によれば、無機酸化物担体(成分A)、電子供与性化合物(成分B)、及び3価クロム原子を含む化合物(成分C)を接触させることを特徴とするエチレン重合触媒の製造方法が提供される。 That is, according to the first invention of the present invention, the inorganic oxide carrier (component A), the electron donating compound (component B), and the compound containing a trivalent chromium atom (component C) are brought into contact with each other. A method for producing an ethylene polymerization catalyst is provided.

第2の発明によれば、前記成分Bが、ルイス塩基性置換基を含む化合物または不飽和結合含有炭化水素基を含む化合物であることを特徴とする第1の発明に記載のエチレン重合触媒の製造方法が提供される。 According to the second invention, the ethylene polymerization catalyst according to the first invention, wherein the component B is a compound containing a Lewis basic substituent or a compound containing an unsaturated bond-containing hydrocarbon group. A manufacturing method is provided.

第3の発明によれば、前記ルイス塩基性置換基を含む化合物が、リン、窒素、酸素または硫黄原子を含有する置換基を有する化合物であることを特徴とする第2の発明に記載のエチレン重合触媒の製造方法が提供される。 According to the third invention, the ethylene according to the second invention is characterized in that the compound containing a Lewis basic substituent is a compound having a substituent containing a phosphorus, nitrogen, oxygen or sulfur atom. A method for producing a polymerization catalyst is provided.

第4の発明によれば、前記ルイス塩基性置換基を含む化合物が、式(1)で表されるケイ素化合物であることを特徴とする第2又は第3の発明に記載のエチレン重合触媒の製造方法が提供される。

Figure 0006823802
(1)
(式中、Xはフッ素、塩素、臭素、ヨウ素から選ばれる原子であり、R, Rは水素または炭素数1〜10の炭化水素基であり、Rはヘテロ原子含有基を有いていてもよい芳香族炭化水素基である。) According to the fourth invention, the ethylene polymerization catalyst according to the second or third invention, wherein the compound containing a Lewis basic substituent is a silicon compound represented by the formula (1). A manufacturing method is provided.

Figure 0006823802
(1)
(In the formula, X is an atom selected from fluorine, chlorine, bromine, and iodine, R 1 and R 2 are hydrogen or hydrocarbon groups having 1 to 10 carbon atoms, and R 3 has a hetero atom-containing group. It is an aromatic hydrocarbon group that may be used.)

第5の発明によれば、前記式(1)で表されるケイ素化合物において、前記Rが式(2)で表されるヘテロ原子含有基を有していてもよい芳香族炭化水素基であることを特徴とする第4の発明に記載のエチレン重合触媒の製造方法が提供される。

Figure 0006823802
(2)
(式中、R,R,R,R,Rは、水素、炭素数1〜10の炭化水素基、ケイ素含有基、窒素含有基、リン含有基、酸素含有基、または硫黄含有基である。) According to the fifth invention, in the silicon compound represented by the formula (1), wherein R 3 is a heteroatom aromatic optionally having a containing hydrocarbon group represented by the formula (2) The method for producing an ethylene polymerization catalyst according to a fourth invention is provided.

Figure 0006823802
(2)
(In the formula, R 4 , R 5 , R 6 , R 7 , and R 8 are hydrogen, hydrocarbon groups having 1 to 10 carbon atoms, silicon-containing groups, nitrogen-containing groups, phosphorus-containing groups, oxygen-containing groups, or sulfur. It is a containing group.)

第6の発明によれば、前記成分Cが、置換アミノ基を有する3価クロム化合物、または置換シリル基で置換されていてもよいアルキル基を有する3価クロム化合物であることを特徴とする第1〜第5のいずれか1項に記載のエチレン重合触媒の製造方法が提供される。 According to the sixth invention, the component C is a trivalent chromium compound having a substituted amino group or a trivalent chromium compound having an alkyl group optionally substituted with a substituted silyl group. The method for producing an ethylene polymerization catalyst according to any one of 1 to 5 is provided.

第7の発明によれば、前記置換アミノ基を有する3価クロム化合物が、式(3)で表されることを特徴とする第6の発明に記載のエチレン重合触媒の製造方法が提供される。

Cr[N(M1011 ・・・・・・(3)

(式中、Mは、各々炭素またはケイ素原子であり、R、R10、R11は各々水素または炭素数1〜18の炭化水素基であり、同一であっても異なっていてもよい。)
According to the seventh invention, there is provided the method for producing an ethylene polymerization catalyst according to the sixth invention, wherein the trivalent chromium compound having a substituted amino group is represented by the formula (3). ..

Cr [N (M 1 R 9 R 10 R 11 ) 2 ] 3 ... (3)

(In the formula, M 1 is a carbon or silicon atom, respectively, and R 9 , R 10 , and R 11 are hydrogen or hydrocarbon groups having 1 to 18 carbon atoms, respectively, which may be the same or different. .)

第8の発明によれば、前記置換シリル基で置換されていてもよいアルキル基を有する3価クロム化合物が、式(4)で表されることを特徴とする第6の発明に記載のエチレン重合触媒の製造方法が提供される。

Cr[CR12(M131415)(M161718)]
・・・・・・(4)

(式中、M、Mは、各々炭素またはケイ素原子であり、R12〜R18は各々水素または炭素数1〜18の炭化水素基であり、同一であっても異なっていてもよい。)
According to the eighth invention, the ethylene according to the sixth invention, wherein the trivalent chromium compound having an alkyl group optionally substituted with the substituted silyl group is represented by the formula (4). A method for producing a polymerization catalyst is provided.

Cr [CR 12 (M 2 R 13 R 14 R 15 ) (M 3 R 16 R 17 R 18 )] 3
・ ・ ・ ・ ・ ・ (4)

(In the formula, M 2 and M 3 are carbon or silicon atoms, respectively, and R 12 to R 18 are hydrogen or hydrocarbon groups having 1 to 18 carbon atoms, respectively, which may be the same or different. .)

第9の発明によれば、前記成分Aが、シリカ、アルミナ、チタニア、マグネシア、ジルコニア、シリカーアルミナ、シリカーチタニア、シリカーマグネシア、シリカージルコニア、及びこれらの混合物からなる群より選ばれることを特徴とする第1〜8の発明のいずれか1項に記載のエチレン重合触媒の製造方法が提供される。 According to the ninth invention, the component A is selected from the group consisting of silica, alumina, titania, magnesia, zirconia, silica-alumina, silica-titania, silica-magnesia, silica-zirconia, and mixtures thereof. The method for producing an ethylene polymerization catalyst according to any one of the first to eighth inventions is provided.

第10の発明によれば、前記無機酸化物担体(成分A)と前記電子供与性化合物(成分B)を接触させ、次いで前記3価クロム原子を含む化合物(成分C)を接触させることを特徴とする第1〜9の発明のいずれかに記載のエチレン重合触媒の製造方法が提供される。 According to the tenth invention, the inorganic oxide carrier (component A) is brought into contact with the electron donating compound (component B), and then the compound containing a trivalent chromium atom (component C) is brought into contact with each other. The method for producing an ethylene polymerization catalyst according to any one of the first to ninth inventions is provided.

第11の発明によれば、第1〜10の発明のいずれか1項に記載の製造方法で製造されるエチレン重合触媒を用いて、オレフィンを重合することを特徴とするエチレン重合体の製造方法が提供される。 According to the eleventh invention, a method for producing an ethylene polymer, which comprises polymerizing an olefin using an ethylene polymerization catalyst produced by the production method according to any one of the first to tenth inventions. Is provided.

特定の電子供与性化合物と3価クロム化合物の組み合わせで触媒を製造することで、高活性な触媒が得られる。 A highly active catalyst can be obtained by producing a catalyst with a combination of a specific electron donating compound and a trivalent chromium compound.

以下、無機酸化物担体(成分A)、電子供与性化合物(成分B)、及び3価クロム原子を含む化合物(成分C)を接触させることを特徴とするエチレン重合触媒の製造方法について、項目毎に、詳細に説明する。 Hereinafter, the method for producing an ethylene polymerization catalyst, which comprises contacting an inorganic oxide carrier (component A), an electron donating compound (component B), and a compound containing a trivalent chromium atom (component C), will be described for each item. Will be explained in detail.

1.無機酸化物担体(成分A)
本発明の無機酸化物担体は、オレフィン重合用担体として用いられている担体であれば、特に限定されない。例えば、周期律表第2、4、13または14族の金属の酸化物である。より具体的には、シリカ、アルミナ、チタニア、マグネシア、ジルコニア、これらの複合酸化物(例えば、シリカ−アルミナ、シリカ−チタニア、シリカ−ジルコニア)、リン酸アルミニウムなどが挙げられる。これらは単独で又は2種以上を組み合わせて用いることができる。これらの中で好ましいのはシリカ、シリカ−アルミナである。
無機酸化物担体の特性としては、特に限定されないが、比表面積が50〜1000m/g、好ましくは200〜800m/g、細孔体積が0.5〜3.0m/g、好ましくは0.7〜2.5m/g、平均粒径が1〜200μm、好ましくは5〜150μmの範囲のものが好適に用いられる。無機酸化物担体は、使用前に特定の温度で焼成して吸着した水分を除去しておくことが望ましい。
無機酸化物担体の焼成は、通常モレキュラーシーブ流通下、乾燥した窒素ガス気流中で、100〜500℃、好ましくは150〜450℃の温度範囲で、30分〜24時間行われる。充分な量の窒素ガスを供給し、無機酸化物担体を流動状態において乾燥させることが好ましい。
1. 1. Inorganic oxide carrier (component A)
The inorganic oxide carrier of the present invention is not particularly limited as long as it is a carrier used as a carrier for olefin polymerization. For example, it is an oxide of a metal of Group 2, 4, 13 or 14 of the Periodic Table. More specifically, silica, alumina, titania, magnesia, zirconia, composite oxides thereof (for example, silica-alumina, silica-titania, silica-zirconia), aluminum phosphate and the like can be mentioned. These can be used alone or in combination of two or more. Of these, silica and silica-alumina are preferred.
The properties of the inorganic oxide support is not particularly limited, specific surface area of 50~1000m 2 / g, preferably 200~800m 2 / g, a pore volume of 0.5~3.0m 2 / g, preferably Those having an average particle size of 0.7 to 2.5 m 2 / g and an average particle size in the range of 1 to 200 μm, preferably 5 to 150 μm are preferably used. It is desirable that the inorganic oxide carrier be calcined at a specific temperature to remove the adsorbed water before use.
The calcination of the inorganic oxide carrier is usually carried out in a dry nitrogen gas stream under a molecular sieve flow in a temperature range of 100 to 500 ° C., preferably 150 to 450 ° C. for 30 minutes to 24 hours. It is preferable to supply a sufficient amount of nitrogen gas and dry the inorganic oxide carrier in a fluid state.

2.電子供与性化合物(成分B)
電子供与性化合物は、電子供与性を有している任意の化合物を用いることができる。
電子供与性化合物として、ルイス塩基性置換基を含む化合物または不飽和結合含有炭化水素基を含む化合物が好適に例示される。ルイス塩基性置換基を含む化合物として、リン、窒素、酸素または硫黄原子を含有する置換基を有する化合物が例示される。
2. 2. Electron-donating compound (component B)
As the electron donating compound, any compound having an electron donating property can be used.
As the electron donating compound, a compound containing a Lewis basic substituent or a compound containing an unsaturated bond-containing hydrocarbon group is preferably exemplified. Examples of the compound containing a Lewis basic substituent include a compound having a substituent containing a phosphorus, nitrogen, oxygen or sulfur atom.

ルイス塩基性置換基を含む化合物として、下記式(1)で表されるケイ素化合物を好適に例示できる。

Figure 0006823802
(1)
(式中、Xはフッ素、塩素、臭素、ヨウ素から選ばれる原子であり、R,Rは水素または炭素数1〜10の炭化水素基であり、Rはヘテロ原子含有基を有いていてもよい芳香族炭化水素基である。) As the compound containing a Lewis basic substituent, a silicon compound represented by the following formula (1) can be preferably exemplified.

Figure 0006823802
(1)
(Wherein, X is fluorine, chlorine, bromine, atom selected from iodine, R 1, R 2 is hydrogen or a hydrocarbon group having 1 to 10 carbon atoms, R 3 is have have a hetero atom-containing group It is an aromatic hydrocarbon group that may be used.)

,Rにおける炭素数1〜10の炭化水素基としては、特に限定されないが、メチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、i−ブチル基、s−ブチル基、t−ブチル基、n−ペンチル基、n−ヘキシル基、シクロプロピル基、シクロペンチル基、シクロヘキシル基などのアルキル基、フェニル基、トリル基、ジメチルフェニル基、エチルフェニル基、トリメチルフェニル基などのアリール基が例示され、メチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、i−ブチル基、s−ブチル基、t−ブチル基が好ましい。R,Rは同一であっても異なっていても良い。 The hydrocarbon group having 1 to 10 carbon atoms in R 1 and R 2 is not particularly limited, but is a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, an i-butyl group, and s. -Butyl group, t-butyl group, n-pentyl group, n-hexyl group, cyclopropyl group, cyclopentyl group, cyclohexyl group and other alkyl groups, phenyl group, trill group, dimethylphenyl group, ethylphenyl group, trimethylphenyl group Such as aryl groups are exemplified, and methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, s-butyl group, and t-butyl group are preferable. R 1 and R 2 may be the same or different.

ヘテロ原子含有基を有いていてもよい芳香族炭化水素基としては、特に限定されない。
芳香族炭化水素基としては、フェニル基、ナフチル基、アントラセニル基、ビフェニリル基、インデニル基、フルオレニル基、フェナントレニル基、等が例示され、これら芳香族炭化水素基上にヘテロ原子含有基を有いていてもよい。
The aromatic hydrocarbon group which may have a heteroatom-containing group is not particularly limited.
Examples of the aromatic hydrocarbon group include a phenyl group, a naphthyl group, an anthracenyl group, a biphenylyl group, an indenyl group, a fluorenyl group, a phenanthrenyl group, and the like, and these aromatic hydrocarbon groups have a heteroatom-containing group. May be good.

上記式(1)で表されるケイ素化合物において、上記Rが下記式(2)で表されるヘテロ原子含有基を有いていてもよい芳香族炭化水素基であることが好ましい。

Figure 0006823802
(2)
(式中、R,R,R,R,Rは、水素、炭素数1〜10の炭化水素基、ケイ素含有基、窒素含有基、リン含有基、酸素含有基、または硫黄含有基である。) In the silicon compound represented by the above formula (1), it is preferable that the above R 3 is an aromatic hydrocarbon group which may have a hetero atom-containing group represented by the following formula (2).

Figure 0006823802
(2)
(In the formula, R 4 , R 5 , R 6 , R 7 , and R 8 are hydrogen, hydrocarbon groups having 1 to 10 carbon atoms, silicon-containing groups, nitrogen-containing groups, phosphorus-containing groups, oxygen-containing groups, or sulfur. It is a containing group.)

ここで、炭素数1〜10の炭化水素基としては、特に限定されないが、メチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、i−ブチル基、s−ブチル基、t−ブチル基、n−ペンチル基、n−ヘキシル基、シクロプロピル基、シクロペンチル基、シクロヘキシル基などのアルキル基、フェニル基、トリル基、ジメチルフェニル基、エチルフェニル基、トリメチルフェニル基などのアリール基が例示される。 Here, the hydrocarbon group having 1 to 10 carbon atoms is not particularly limited, but is a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, an i-butyl group, and an s-butyl group. , T-butyl group, n-pentyl group, n-hexyl group, cyclopropyl group, cyclopentyl group, cyclohexyl group and other alkyl groups, phenyl group, trill group, dimethylphenyl group, ethylphenyl group, trimethylphenyl group and other aryl Group is exemplified.

ケイ素含有基としては、特に限定されないが、メチルシリル基、ジメチルシリル基、トリメチルシリル基、トリエチルシリル基、ブチルジメチルシリル基、シクロヘキシルジメチルシリル基、ジメチルフェニルシリル基、トリフェニルシリル基、ジエチルトリフルオロメチルシリル基、クロロジメチルシリル基、ブロモジメチルシリル基、メトキシジメチルシリル基、ジメトキシメチルシリル基、トリメトキシシリル基、メトキシメチルジメチルシリル基、等が例示される。 The silicon-containing group is not particularly limited, but is a methylsilyl group, a dimethylsilyl group, a trimethylsilyl group, a triethylsilyl group, a butyldimethylsilyl group, a cyclohexyldimethylsilyl group, a dimethylphenylsilyl group, a triphenylsilyl group, or a diethyltrifluoromethylsilyl group. Examples thereof include a group, a chlorodimethylsilyl group, a bromodimethylsilyl group, a methoxydimethylsilyl group, a dimethoxymethylsilyl group, a trimethoxysilyl group, a methoxymethyldimethylsilyl group, and the like.

窒素含有基としては、特に限定されないが、アミノ基、ジメチルアミノ基、ジエチルアミノ基、ヒドラジノ基、ピロリジノ基、メトキシメチルアミノ基、ジメトキシエチルアミノ基、トリフルオロメチルアミノ基、シアノ基、イソシアノ基、アミジノ基、アニリノ基、ヒドロキシアミノ基、アセチルアミノ基、等が例示される。 The nitrogen-containing group is not particularly limited, but is limited to an amino group, a dimethylamino group, a diethylamino group, a hydradino group, a pyrrolidino group, a methoxymethylamino group, a dimethoxyethylamino group, a trifluoromethylamino group, a cyano group, an isocyano group and an amidino group. Examples thereof include a group, an anilino group, a hydroxyamino group, an acetylamino group, and the like.

リン含有基としては、特に限定されないが、ジメチルホスフィノ基、ジエチルホスフィノ基、ジフェニルホスフィノ基、メチルフェニルホスフィノ基、ジメトキシホスフィノ基、ジエトキシホスフィノ基、ジクロロホスフィノ基、等が例示される。 The phosphorus-containing group is not particularly limited, but includes a dimethylphosphino group, a diethylphosphino group, a diphenylphosphino group, a methylphenylphosphino group, a dimethoxyphosphino group, a diethoxyphosphino group, a dichlorophosphino group, and the like. Illustrated.

酸素含有基としては、特に限定されないが、水酸基、メトキシ基、エトキシ基、ブトキシ基、フェノキシ基、カルボキシル基、アセチル基、アセトキシ基、ホルミル基、メトキシカルボニル基、等が例示される。 The oxygen-containing group is not particularly limited, and examples thereof include a hydroxyl group, a methoxy group, an ethoxy group, a butoxy group, a phenoxy group, a carboxyl group, an acetyl group, an acetoxy group, a formyl group, and a methoxycarbonyl group.

硫黄含有基としては、特に限定されないが、メルカプト基、メチルチオ基、エチルチオ基、フェニルチオ基、チオホルミル基、チオアセチル基、スルフィノ基、スルフォ基、メシル基、ベンゼンスルホニル基、等が例示される。 The sulfur-containing group is not particularly limited, and examples thereof include a mercapto group, a methylthio group, an ethylthio group, a phenylthio group, a thioformyl group, a thioacetyl group, a sulfino group, a sulfo group, a mesyl group, and a benzenesulfonyl group.

式(2)の中で、R,Rの少なくともどちらか一つがヘテロ原子含有基であることが好ましい。ヘテロ原子含有基としては、窒素含有基、リン含有基、酸素含有基が好ましく、リン含有基が最も好ましい。
具体的な化合物としては、ClSiMePh、ClSiEtPh、ClSiPh、ClSiMeEtPh、ClSiMePh−2−SiMe、ClSiMePh−2−SiEt、ClSiMePh−2−SiMetBu、ClSiMePh−2−NH、ClSiMePh−2−NMe、ClSiMePh−2−NPh、ClSiMePh−2−PH、ClSiMePh−2−PMe、ClSiMePh−2−PPh、ClSiMePh−2−OH、ClSiMePh−2−OMe、ClSiMePh−2−OPh、ClSiMePh−2−SH、ClSiMePh−2−SMe、ClSiMe2Ph−2−SPh等が例示される。中でも、ClSiMePh、ClSiMe−2−PPh、ClSiMe−2−OHが好ましい。
In the expression (2), R 4, is preferably one of at least one of R 8 is a heteroatom-containing group. As the heteroatom-containing group, a nitrogen-containing group, a phosphorus-containing group, and an oxygen-containing group are preferable, and a phosphorus-containing group is most preferable.
Specific compounds include ClSiMe 2 Ph, ClSiEt 2 Ph, ClSiPh 3 , ClSiMeEtPh, ClSiMe 2 Ph-2-SiMe 3 , ClSiMe 2 Ph-2-SiEt 3 , ClSiMe 2 Ph-2-SiMe 2 tBu, ClSiMe 2 Ph-2-NH 2 , ClSiMe 2 Ph-2-NMe 2 , ClSiMe 2 Ph-2-NPh 2 , ClSiMe 2 Ph-2-PH 2 , ClSiMe 2 Ph-2-PMe 2 , ClSiMe 2 Ph-2-PPh 2 , ClSiMe 2 Ph-2-OH, ClSiMe 2 Ph-2-OMe, ClSiMe 2 Ph-2-OPh, ClSiMe 2 Ph-2-SH, ClSiMe 2 Ph-2-SMe, ClSiMe2Ph-2-SPh, etc. Will be done. Among them, ClSiMe 2 Ph, ClSiMe 2 C 6 H 4 -2-PPh 2, ClSiMe 2 C 6 H 4 -2-OH is preferred.

3.3価クロム原子を含む化合物(成分C)
3価クロム原子を含む化合物としては、特に限定されず、3価クロム原子を含む幅広い化合物を用いることができる。例えば、トリアルキルクロム化合物、クロムカルボン酸塩化合物、クロム−1,3−ジケトン化合物、クロム酸エステル化合物、等が例示出来る。また、シクロペンタジエニル基含有クロム化合物、例えば、(C)Cr(CH、(CMe)Cr(CH(SiMe、(CMe)CrCH(CH(SiMe)等、が挙げられる。
3価クロム原子を含む化合物としては、置換アミノ基を有する3価クロム化合物、または置換シリル基で置換されていてもよいアルキル基を有する3価クロム化合物が好ましい。
3.3 Compound containing trivalent chromium atom (component C)
The compound containing a trivalent chromium atom is not particularly limited, and a wide range of compounds containing a trivalent chromium atom can be used. For example, a trialkylchrome compound, a chromium carboxylate compound, a chromium-1,3-diketone compound, a chromic acid ester compound, and the like can be exemplified. In addition, cyclopentadienyl group-containing chromium compounds, for example, (C 5 H 5 ) Cr (CH 3 ) 2 , (C 5 Me 5 ) Cr (CH 2 (SiMe 3 ) 2 ) 2 , (C 5 Me 5 ) CrCH 3 (CH 2 (SiMe 3 ) 2 ) and the like can be mentioned.
As the compound containing a trivalent chromium atom, a trivalent chromium compound having a substituted amino group or a trivalent chromium compound having an alkyl group optionally substituted with a substituted silyl group is preferable.

置換アミノ基を有する3価クロム化合物は、式(3)で表される化合物であることが好ましい。

Cr[N(M1011 ・・・・・・(3)

(式中、Mは、各々炭素またはケイ素原子であり、R、R10、R11は各々水素または炭素数1〜18の炭化水素基であり、同一であっても異なっていてもよい。)
The trivalent chromium compound having a substituted amino group is preferably a compound represented by the formula (3).

Cr [N (M 1 R 9 R 10 R 11 ) 2 ] 3 ... (3)

(In the formula, M 1 is a carbon or silicon atom, respectively, and R 9 , R 10 , and R 11 are hydrogen or hydrocarbon groups having 1 to 18 carbon atoms, respectively, which may be the same or different. .)

ここで、R、R10、R11における炭素数1〜18の炭化水素基としては、メチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、i−ブチル基、s−ブチル基、t−ブチル基、n−ペンチル基、n−ヘキシル基、シクロプロピル基、シクロペンチル基、シクロヘキシル基などのアルキル基、フェニル基、トリル基、ジメチルフェニル基、エチルフェニル基、トリメチルフェニル基、t−ブチルフェニル基、ジt−ブチルフェニル基、ビフェニリル基、1−ナフチル基、2−ナフチル基、アセナフチル基、フェナントリル基、アントリル基などのアリール基が例示される。これらの中で、メチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、i−ブチル基、s−ブチル基、t−ブチル基、n−ペンチル基、n−ヘキシル基、シクロプロピル基、シクロペンチル基、シクロヘキシル基などのアルキル基、フェニル基が好ましく、さらには、アルキル基が好ましく、特に、メチル基が好ましい。 Here, the hydrocarbon groups having 1 to 18 carbon atoms in R 9 , R 10 and R 11 include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group and i-butyl group. Alkyl groups such as s-butyl group, t-butyl group, n-pentyl group, n-hexyl group, cyclopropyl group, cyclopentyl group, cyclohexyl group, phenyl group, trill group, dimethylphenyl group, ethylphenyl group, trimethylphenyl Examples thereof include an aryl group such as a group, a t-butylphenyl group, a di-t-butylphenyl group, a biphenylyl group, a 1-naphthyl group, a 2-naphthyl group, an acenaphthyl group, a phenanthryl group, and an anthryl group. Among these, methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, s-butyl group, t-butyl group, n-pentyl group, n-hexyl group. , Cyclopropyl group, cyclopentyl group, alkyl group such as cyclohexyl group, phenyl group are preferable, alkyl group is preferable, and methyl group is particularly preferable.

置換シリル基で置換されていてもよいアルキル基を有する3価クロム化合物は、式(4)で表される化合物であることが好ましい。

Cr[CR12(M131415)(M161718)]
・・・・・・(4)

(式中、M、Mは、各々炭素またはケイ素原子であり、R12〜R18は各々水素または炭素数1〜18の炭化水素基であり、同一であっても異なっていてもよい。)
The trivalent chromium compound having an alkyl group which may be substituted with a substituted silyl group is preferably a compound represented by the formula (4).

Cr [CR 12 (M 2 R 13 R 14 R 15 ) (M 3 R 16 R 17 R 18 )] 3
・ ・ ・ ・ ・ ・ (4)

(In the formula, M 2 and M 3 are carbon or silicon atoms, respectively, and R 12 to R 18 are hydrogen or hydrocarbon groups having 1 to 18 carbon atoms, respectively, which may be the same or different. .)

ここで、R12〜R18における炭素数1〜18の炭化水素基としては、メチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、i−ブチル基、s−ブチル基、t−ブチル基、n−ペンチル基、n−ヘキシル基、シクロプロピル基、シクロペンチル基、シクロヘキシル基などのアルキル基、フェニル基、トリル基、ジメチルフェニル基、エチルフェニル基、トリメチルフェニル基、t−ブチルフェニル基、ジt−ブチルフェニル基、ビフェニリル基、1−ナフチル基、2−ナフチル基、アセナフチル基、フェナントリル基、アントリル基などのアリール基が例示される。
これらの中で、メチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、i−ブチル基、s−ブチル基、t−ブチル基、n−ペンチル基、n−ヘキシル基、シクロプロピル基、シクロペンチル基、シクロヘキシル基などのアルキル基、フェニル基が好ましく、さらには、アルキル基が好ましく、特に、メチル基が好ましい。
式(4)で表される化合物としては、Cr[CH(SiMeが好適に例示される。
Here, the hydrocarbon groups having 1 to 18 carbon atoms in R 12 to R 18 include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group and s-butyl. Group, t-butyl group, n-pentyl group, n-hexyl group, cyclopropyl group, cyclopentyl group, cyclohexyl group and other alkyl groups, phenyl group, trill group, dimethylphenyl group, ethylphenyl group, trimethylphenyl group, t Examples thereof include aryl groups such as −butylphenyl group, dit-butylphenyl group, biphenylyl group, 1-naphthyl group, 2-naphthyl group, acenaphthyl group, phenanthryl group and anthryl group.
Among these, methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, s-butyl group, t-butyl group, n-pentyl group, n-hexyl group. , Cyclopropyl group, cyclopentyl group, alkyl group such as cyclohexyl group, phenyl group are preferable, alkyl group is preferable, and methyl group is particularly preferable.
As the compound represented by the formula (4), Cr [CH (SiMe 3 ) 2 ] 3 is preferably exemplified.

4.エチレン重合触媒の製造
本発明では、無機酸化物担体(成分A)、電子供与性化合物(成分B)、及び3価クロム原子を含む化合物(成分C)を接触させる。
無機酸化物担体(成分A)に、電子供与性化合物(成分B)を接触させる際の、両者の割合は特に限定されない。例えば、無機酸化物担体(成分A)1gに対して、電子供与性化合物(成分B)を好ましくは0.01〜20mmol、より好ましくは0.05〜10mmol、更に好ましくは0.1〜5mmol用いる。
なお、無機酸化物担体(成分A)に、電子供与性化合物(成分B)を接触させる際には、無機酸化物担体(成分A)を有機溶媒に分散させた状態で電子供与性化合物(成分B)を添加することが好ましい。有機溶媒としては特に限定されないが、THF、エーテル、ヘキサン、ヘプタン、トルエン、アセトン、及びこれらの混合溶媒が好適に用いられる。反応温度は特に限定されず、好ましくは、−78℃〜溶媒の沸点、より好ましくは、−20℃から60℃である。反応時間は、特に限定されないが、好ましくは、1分〜48時間、より好ましくは、10分〜24時間である。反応後、ろ過によって分離して固体成分が得られる。なお、必要に応じて固体成分を有機溶媒により洗浄してもよい。このようにして修飾された無機酸化物担体が得られる。なお、修飾された無機酸化物担体は、溶媒を減圧下で除去する方法などにより乾燥させてもよい。
4. Production of Ethylene Polymerization Catalyst In the present invention, an inorganic oxide carrier (component A), an electron donating compound (component B), and a compound containing a trivalent chromium atom (component C) are brought into contact with each other.
When the electron donating compound (component B) is brought into contact with the inorganic oxide carrier (component A), the ratio of the two is not particularly limited. For example, the electron donating compound (component B) is preferably 0.01 to 20 mmol, more preferably 0.05 to 10 mmol, and further preferably 0.1 to 5 mmol with respect to 1 g of the inorganic oxide carrier (component A). ..
When the electron donating compound (component B) is brought into contact with the inorganic oxide carrier (component A), the electron donating compound (component) is dispersed in an organic solvent. It is preferable to add B). The organic solvent is not particularly limited, but THF, ether, hexane, heptane, toluene, acetone, and a mixed solvent thereof are preferably used. The reaction temperature is not particularly limited, and is preferably −78 ° C. to the boiling point of the solvent, more preferably −20 ° C. to 60 ° C. The reaction time is not particularly limited, but is preferably 1 minute to 48 hours, more preferably 10 minutes to 24 hours. After the reaction, it is separated by filtration to obtain a solid component. If necessary, the solid component may be washed with an organic solvent. An inorganic oxide carrier modified in this way is obtained. The modified inorganic oxide carrier may be dried by a method of removing the solvent under reduced pressure or the like.

無機酸化物担体(成分A)に、3価クロム原子を含む化合物(成分C)を接触させる際の、両者の割合は特に限定されない。例えば、無機酸化物担体(成分A)1gに対して、3価クロム原子を含む化合物(成分C)をクロム原子の担持量として、好ましくは0.01〜10wt%、より好ましくは0.03〜5wt%である。
反応温度は特に限定されず、好ましくは、−78℃〜溶媒の沸点、より好ましくは、−20℃から60℃である。反応時間は、特に限定されないが、好ましくは、1分〜24時間、より好ましくは、10分〜5時間である。担持反応後、溶媒を減圧下で除去する方法、またはろ過によって分離する方法により流動性の良い固体成分(エチレン重合触媒)が得られる。あるいは溶媒を除去せずに、引き続きオレフィンを重合してもよい。
When the compound (component C) containing a trivalent chromium atom is brought into contact with the inorganic oxide carrier (component A), the ratio of the two is not particularly limited. For example, the amount of the chromium atom supported by the compound (component C) containing a trivalent chromium atom is preferably 0.01 to 10 wt%, more preferably 0.03 to 0.03 to 1 g of the inorganic oxide carrier (component A). It is 5 wt%.
The reaction temperature is not particularly limited, and is preferably −78 ° C. to the boiling point of the solvent, more preferably −20 ° C. to 60 ° C. The reaction time is not particularly limited, but is preferably 1 minute to 24 hours, more preferably 10 minutes to 5 hours. After the loading reaction, a solid component (ethylene polymerization catalyst) having good fluidity can be obtained by a method of removing the solvent under reduced pressure or a method of separating by filtration. Alternatively, the olefin may be continuously polymerized without removing the solvent.

成分A、成分Bおよび成分Cは任意の順番で接触することが出来るが、成分Aと成分Bを接触し、その後、成分Cを接触することが好ましい。
成分Bと成分Cを先に接触させると成分Cを分解させる場合がある。また、成分Aと成分Cを先に接触し、次いで成分Bを接触させた場合、成分Bと相互作用する成分Cと、成分Bと相互作用しない成分Cが存在する可能性がある。このことは、成分Cから生成するエチレン重合活性種が複数存在する可能性を示唆している。触媒性能の安定性の観点から、成分Aと成分Bを接触し、その後、成分Cを接触する順番が好ましい。
The component A, the component B and the component C can be contacted in any order, but it is preferable that the component A and the component B are contacted and then the component C is contacted.
If the component B and the component C are brought into contact with each other first, the component C may be decomposed. Further, when the component A and the component C are brought into contact with each other first, and then the component B is brought into contact with each other, there may be a component C that interacts with the component B and a component C that does not interact with the component B. This suggests that there may be a plurality of ethylene polymerization active species produced from the component C. From the viewpoint of the stability of the catalytic performance, it is preferable that the component A and the component B are brought into contact with each other, and then the component C is brought into contact with the component C.

5.エチレン重合体の製造方法
本発明のエチレン重合体の製造方法は、上述のエチレン重合触媒を用いて、オレフィンを重合することを特徴とする。
上述のエチレン重合触媒を用いて本発明のエチレン重合体を実施するにあたっては、スラリー重合、溶液重合のような液相重合法、あるいは気相重合法などを採用することができる。液相重合法は通常炭化水素溶媒中で実施される。炭化水素溶媒としては特に限定されず、例えば、プロパン、ブタン、イソブタン、へキサン、ヘプタン、シクロへキサン、ベンゼン、トルエン、キシレンなどの不活性炭化水素の単独または混合物が用いられる。
気相重合法では、不活性ガス共存下にて、流動床、撹拌床等の通常知られる重合法を採用でき、場合により重合熱除去の媒体を共存させる、いわゆるコンデンシングモードを採用することもできる。
液相または気相重合における重合温度は、一般には0〜300℃であり、実用的には20〜300℃である。反応器中の触媒濃度およびエチレン圧は重合を進行させるのに十分なものであれば任意の濃度および圧力でよい。また、分子量調節のために重合系内に水素などを共存させることができる。
5. Method for Producing Ethylene Polymer The method for producing an ethylene polymer of the present invention is characterized by polymerizing an olefin using the above-mentioned ethylene polymerization catalyst.
In carrying out the ethylene polymer of the present invention using the above-mentioned ethylene polymerization catalyst, a liquid phase polymerization method such as slurry polymerization or solution polymerization, or a gas phase polymerization method can be adopted. The liquid phase polymerization method is usually carried out in a hydrocarbon solvent. The hydrocarbon solvent is not particularly limited, and for example, a single or a mixture of inert hydrocarbons such as propane, butane, isobutane, hexane, heptane, cyclohexane, benzene, toluene, and xylene is used.
In the gas phase polymerization method, a commonly known polymerization method such as a fluidized bed or a stirring bed can be adopted in the coexistence of an inert gas, and in some cases, a so-called condensin mode in which a medium for removing heat of polymerization coexists can also be adopted. ..
The polymerization temperature in the liquid phase or vapor phase polymerization is generally 0 to 300 ° C., and practically 20 to 300 ° C. The catalyst concentration and ethylene pressure in the reactor may be any concentration and pressure as long as they are sufficient to allow the polymerization to proceed. Further, hydrogen or the like can coexist in the polymerization system for adjusting the molecular weight.

重合系に水分等の不純物が存在すると、触媒成分が被毒されて重合活性が発現しなくなる。そのため、極性化合物による被毒防止のため、有機アルミニウム化合物を使用しても良い。有機アルミニウム化合物は、単独であるいは複数種を組み合わせて使用することができる。 If impurities such as water are present in the polymerization system, the catalyst component is poisoned and the polymerization activity is not exhibited. Therefore, an organoaluminum compound may be used to prevent poisoning by the polar compound. The organoaluminum compound can be used alone or in combination of two or more.

有機アルミニウム化合物の具体例としては、トリメチルアルミニウム、トリエチルアルミニウム、トリノルマルプロピルアルミニウム、トリノルマルブチルアルミニウム、トリイソブチルアルミニウム、トリノルマルヘキシルアルミニウム、トリノルマルオクチルアルミニウム、トリノルマルデシルアルミニウム、ジエチルアルミニウムクロライド、ジエチルアルミニウムセスキクロライド、ジエチルアルミニウムヒドリド、ジエチルアルミニウムエトキシド、ジエチルアルミニウムジメチルアミド、ジイソブチルアルミニウムヒドリド、ジイソブチルアルミニウムクロライド等が挙げられる。これらのうち好ましくは、トリアルキルアルミニウム及びアルキルアルミニウムヒドリドである。さらに好ましくは、Rが炭素数1〜8であるトリアルキルアルミニウムである。 Specific examples of the organic aluminum compound include trimethylaluminum, triethylaluminum, trinormalpropylaluminum, trinormalbutylaluminum, triisobutylaluminum, trinormalhexylaluminum, trinormaloctylaluminum, trinormaldecylaluminum, diethylaluminum chloride, diethylaluminum. Examples thereof include sesquichloride, diethylaluminum hydride, diethylaluminum ethoxide, diethylaluminum dimethylamide, diisobutylaluminum hydride, diisobutylaluminum chloride and the like. Of these, trialkylaluminum and alkylaluminum hydride are preferred. More preferably, it is trialkylaluminum in which R has 1 to 8 carbon atoms.

さらに、必要に応じて、エチレンと共に、プロピレン、1−ブテン、1−へキセン、4−メチル−1−ペンテン、1−オクテンなどのα−オレフィンを単独または2種類以上反応器中に導入して共重合させることもできる。 Further, if necessary, α-olefins such as propylene, 1-butene, 1-hexene, 4-methyl-1-pentene, and 1-octene are introduced into the reactor alone or in combination with ethylene. It can also be copolymerized.

以下、本発明をより具体的にかつ明確に説明するために、本発明を実施例及び比較例の対照において説明し、本発明の構成要件の合理性と有意性及び従来技術に対する卓越性を実証する。 Hereinafter, in order to explain the present invention more concretely and clearly, the present invention will be described in comparison with Examples and Comparative Examples, and the rationality and significance of the constituent requirements of the present invention and the excellence over the prior art will be demonstrated. To do.

1.実施例、及び比較例において使用した原料
ヘプタンは、ベンゾフェノンケチル法により脱水・脱酸素後、窒素下にて蒸留したものを用いた。THF、メタノールは市販の脱水品(関東化学、Aldrich)をそのまま使用した。トリエチルアミン(NEt3)はCaH2で脱水した後、窒素下で蒸留したものを使用した。その他の一般的な試薬は市販品のものをそのまま用いた。1,3,5,7,9,11,14-Heptaisobutyltricyclo[7.3.3.15,11]heptasiloxane-endo-3,7,14-triol((iBu)7Si7O9(OH)3)は市販品(Aldrich)を使用した。シリカはES70Xグレード(PQ社製)を使用した。オルト置換アリールクロロジメチルシラン化合物であるClSiMe2C6H4-2-PPh2はHeteroatom Chem.2012年,23巻,p520.に従い合成した。Cr[CH(SiMe3)2]3は、Macromol.Chem.Phys.2001年,202巻,p1806.に従い合成した。トリオクチルアルミニウム(TNOA)は市販のヘキサン溶液(Aldrich)を使用した。
1. 1. The raw material heptane used in Examples and Comparative Examples was dehydrated and deoxidized by the benzophenone ketyl method and then distilled under nitrogen. For THF and methanol, commercially available dehydrated products (Kanto Chemical Co., Ltd., Aldrich) were used as they were. Triethylamine (NEt 3 ) was dehydrated with CaH 2 and then distilled under nitrogen. As other general reagents, commercially available ones were used as they were. 1,3,5,7,9,11,14-Heptaisobutyltricyclo [7.3.3.15,11] hepataicone-endo-3,7,14-triol (( i Bu) 7 Si 7 O 9 (OH) 3 ) is commercially available The product (Aldrich) was used. For silica, ES70X grade (manufactured by PQ) was used. ClSiMe 2 C 6 H 4 -2-PPh 2 , an ortho-substituted arylchlorodimethylsilane compound, was synthesized according to Heteroatom Chem. 2012, Vol. 23, p520. Cr [CH (SiMe 3 ) 2 ] 3 was synthesized according to Macromol. Chem. Phys. 2001, Vol. 202, p1806. As the trioctyl aluminum (TNOA), a commercially available hexane solution (Aldrich) was used.

2. 実施例及び比較例
2.1 実施例1
2.1.1 オルト置換アリールクロロジメチルシランの合成
〔ClSiMe2C6H4-2-PPh2の合成〕
(2-Bromophenyl)diphenylphosphine 1.71 g (5.00 mmol)をトルエン40 ml、エーテル20 ml中に加え、1.63 M のn-BuLiヘキサン溶液 3.4 ml(5.50 mmol)を滴下し、室温で25 min撹拌した。得られた反応溶液にMe2SiCl2 2.5 ml(1.50 mmol)を加え、室温下で一晩撹拌した。反応後の溶液を濾過した後、得られた濾液を真空減圧下で乾燥し、目的生成物1.74 g(4.90 mmol, Yield 98%)を得た。
2. 2. Example and Comparative Example 2.1 Example 1
2.1.1 Synthesis of ortho-substituted arylchlorodimethylsilane [Synthesis of ClSiMe 2 C 6 H 4 -2-PPh 2 ]
1.71 g (5.00 mmol) of (2-Bromophenyl) diphenylphosphine was added to 40 ml of toluene and 20 ml of ether, 3.4 ml (5.50 mmol) of 1.63 M n-BuLihexane solution was added dropwise, and the mixture was stirred at room temperature for 25 min. To the obtained reaction solution, 2.5 ml (1.50 mmol) of Me 2 SiCl 2 was added, and the mixture was stirred overnight at room temperature. After filtering the solution after the reaction, the obtained filtrate was dried under vacuum and reduced pressure to obtain 1.74 g (4.90 mmol, Yield 98%) of the target product.

2.1.2 エチレン重合触媒(Cat-SiO2-PPh2)の合成
シリカを窒素雰囲気下400℃で6 時間焼成した。焼成したシリカ0.50 gをTHF 10 ml中に分散させ、トリエチルアミン(0.28 ml, 20 mmol)を加えた後、ClSiMe2C6H4-2-PPh2(0.20 mmol)のTHF溶液を滴下し、室温下で一晩撹拌した。その後スラリー溶液をろ過し、THF、メタノール、ヘプタンでそれぞれ3回ずつ洗浄した。真空減圧下で乾燥し、SiMe2C6H4-2-PPh2基修飾シリカ(SiO2-PPh2)を得た。得られた修飾シリカをヘプタン中(5.0 ml)に分散させ、クロム担持率が1.0 wt%となるようにCr[CH(SiMe3)2]3(Crとして51 mg, 0.096 mmol)のヘプタン溶液を加え、40℃で2 h加熱した。反応後のスラリー溶液をろ過した後、ヘプタンで3回洗浄し、真空減圧下で乾燥を行い、エチレン重合触媒(Cat-SiO2-PPh2)を得た。
2.1.2 Synthesis of ethylene polymerization catalyst (Cat-SiO 2- PPh 2 ) Silica was calcined at 400 ° C. for 6 hours in a nitrogen atmosphere. 0.50 g of calcined silica was dispersed in 10 ml of THF, triethylamine (0.28 ml, 20 mmol) was added, and then a THF solution of ClSiMe 2 C 6 H 4 -2-PPh 2 (0.20 mmol) was added dropwise to room temperature. Stirred overnight underneath. The slurry solution was then filtered and washed 3 times each with THF, methanol and heptane. And dried under vacuum reduced pressure to give SiMe 2 C 6 H 4 -2- PPh 2 group-modified silica (SiO 2 -PPh 2). The obtained modified silica was dispersed in heptane (5.0 ml), and a heptane solution of Cr [CH (SiMe 3 ) 2 ] 3 (51 mg, 0.096 mmol as Cr) was added so that the chromium carrying ratio was 1.0 wt%. In addition, it was heated at 40 ° C for 2 h. The slurry solution after the reaction was filtered, washed with heptane three times, and dried under vacuum and reduced pressure to obtain an ethylene polymerization catalyst (Cat-SiO 2- PPh 2 ).

2.1.3 エチレン重合
1 Lオートクレーブ中にヘプタン200 mlを加え、各温度に昇温した後、エチレンを圧力0.50 MPaで30 min飽和させた。トリオクチルアルミニウムのヘキサン溶液(0.2mmol-Al)およびCat-SiO2-PPh2(8μmol-Cr)を導入した。重合中は、エチレン圧0.5 MPa、重合温度50℃、を30分間維持した。その結果8.44gのポリエチレンを得た。
2.1.3 Ethylene polymerization
200 ml of heptane was added to a 1 L autoclave, the temperature was raised to each temperature, and then ethylene was saturated at a pressure of 0.50 MPa for 30 min. A hexane solution of trioctylaluminum (0.2 mmol-Al) and Cat-SiO 2- PPh 2 (8 μmol-Cr) were introduced. During the polymerization, an ethylene pressure of 0.5 MPa and a polymerization temperature of 50 ° C. were maintained for 30 minutes. As a result, 8.44 g of polyethylene was obtained.

2.2 実施例2
実施例1のエチレンの重合において、重合温度を30℃にした以外は、同じ触媒を用い、同様の操作でエチレン重合を行った。その結果、4.58gのポリエチレンを得た。
2.2 Example 2
In the polymerization of ethylene in Example 1, ethylene polymerization was carried out in the same operation using the same catalyst except that the polymerization temperature was set to 30 ° C. As a result, 4.58 g of polyethylene was obtained.

2.3 比較例1
2.3.1 エチレン重合触媒(Cat-SiO2)の合成
シリカを窒素雰囲気下400℃で6 時間焼成した。焼成したシリカ0.50gをヘプタン中(5.0 ml)に分散させ、クロム担持率が1.0 wt%となるようにCr[CH(SiMe3)2]3(Crとして51 mg, 0.096 mmol)のヘプタン溶液を加え、40℃で2 h加熱した。反応後のスラリー溶液をろ過した後、ヘプタンで3回洗浄し、真空減圧下で乾燥を行い、エチレン重合触媒(Cat-SiO2)を得た。
2.3.2 エチレン重合
実施例1のエチレンの重合において、エチレン重合触媒として比較例1で合成した触媒(Cat-SiO2)を用いた以外は同様にエチレン重合を行った。その結果、7.39gのポリエチレンを得た。
2.3 Comparative Example 1
2.3.1 Synthesis of ethylene polymerization catalyst (Cat-SiO 2 ) Silica was calcined at 400 ° C. for 6 hours in a nitrogen atmosphere. 0.50 g of calcined silica was dispersed in heptane (5.0 ml), and a heptane solution of Cr [CH (SiMe 3 ) 2 ] 3 (51 mg, 0.096 mmol as Cr) was added so that the chromium carrying ratio was 1.0 wt%. In addition, it was heated at 40 ° C for 2 h. After filtering the slurry solution after the reaction, it was washed with heptane three times and dried under vacuum and reduced pressure to obtain an ethylene polymerization catalyst (Cat-SiO 2 ).
2.3.2 Ethylene polymerization In the ethylene polymerization of Example 1, ethylene polymerization was carried out in the same manner except that the catalyst (Cat-SiO 2 ) synthesized in Comparative Example 1 was used as the ethylene polymerization catalyst. As a result, 7.39 g of polyethylene was obtained.

2.4 比較例2
実施例2のエチレンの重合において、エチレン重合触媒として比較例1で合成した触媒(Cat-SiO2)を用いた以外は同様にエチレン重合を行った。その結果、4.08gのポリエチレンを得た。
2.4 Comparative Example 2
In the ethylene polymerization of Example 2, ethylene polymerization was carried out in the same manner except that the catalyst (Cat-SiO 2 ) synthesized in Comparative Example 1 was used as the ethylene polymerization catalyst. As a result, 4.08 g of polyethylene was obtained.

3.実験結果の考察
実施例1と比較例1とは、ともに重合温度が50℃である。両者を比較すると、実施例1の方が比較例1よりも、ポリマー収量が高かった。従って、実施例1は、比較例1よりも高活性な触媒が得られていることが確認された。
実施例2と比較例2とは、ともに重合温度が30℃である。両者を比較すると、実施例2の方が比較例2よりも、ポリマー収量が高かった。従って、実施例2は、比較例2よりも高活性な触媒が得られていることが確認された。
3. 3. Consideration of Experimental Results Both Example 1 and Comparative Example 1 have a polymerization temperature of 50 ° C. Comparing the two, the polymer yield of Example 1 was higher than that of Comparative Example 1. Therefore, it was confirmed that in Example 1, a catalyst having higher activity than in Comparative Example 1 was obtained.
Both Example 2 and Comparative Example 2 have a polymerization temperature of 30 ° C. Comparing the two, the polymer yield of Example 2 was higher than that of Comparative Example 2. Therefore, it was confirmed that in Example 2, a catalyst having higher activity than in Comparative Example 2 was obtained.

本発明は上記で詳述した実施形態に限定されず、本発明の請求項に示した範囲で様々な変形または変更が可能である。 The present invention is not limited to the embodiments detailed above, and various modifications or modifications can be made within the scope of the claims of the present invention.

特定の電子供与性化合物と3価クロム化合物の組み合わせで触媒を製造することで、高活性な触媒が得られるため、エチレン重合体の製造に非常に有用である。 By producing a catalyst with a combination of a specific electron donating compound and a trivalent chromium compound, a highly active catalyst can be obtained, which is very useful for producing an ethylene polymer.

Claims (3)

無機酸化物担体(成分A)と、式(1)で表されるケイ素化合物(成分B)を反応させ、次いで式(4)で表される3価クロム化合物(成分C)を担持させることを特徴とするエチレン重合触媒の製造方法。

Figure 0006823802
(1)
(式中、Xはフッ素、塩素、臭素、ヨウ素から選ばれる原子であり、R,Rは水素または炭素数1〜10の炭化水素基であり、Rは式(2)で表される。)

Figure 0006823802
(2)
(式中、R,R,R,R,Rは、水素、炭素数1〜10の炭化水素基、ケイ素含有基、窒素含有基、リン含有基、酸素含有基、または硫黄含有基であって、R,Rの少なくともどちらか一つが窒素含有基、リン含有基、又は酸素含有基である。)

Cr[CR12(M131415)(M161718)]
・・・・・・(4)

(式中、M、Mは、各々炭素またはケイ素原子であり、R12〜R18は各々水素または炭素数1〜18の炭化水素基であり、同一であっても異なっていてもよい。)
The inorganic oxide carrier (component A) is reacted with the silicon compound (component B) represented by the formula (1), and then the trivalent chromium compound (component C) represented by the formula (4) is supported. A method for producing an ethylene polymerization catalyst.

Figure 0006823802
(1)
(In the formula, X is an atom selected from fluorine, chlorine, bromine, and iodine, R 1 and R 2 are hydrogen or a hydrocarbon group having 1 to 10 carbon atoms, and R 3 is represented by the formula (2). )

Figure 0006823802
(2)
(In the formula, R 4 , R 5 , R 6 , R 7 , and R 8 are hydrogen, hydrocarbon groups having 1 to 10 carbon atoms, silicon-containing groups, nitrogen-containing groups, phosphorus-containing groups, oxygen-containing groups, or sulfur. a-containing group, R 4, at least one one nitrogen-containing group R 8, a phosphorus-containing group, or an oxygen-containing group.)

Cr [CR 12 (M 2 R 13 R 14 R 15 ) (M 3 R 16 R 17 R 18 )] 3
・ ・ ・ ・ ・ ・ (4)

(In the formula, M 2 and M 3 are carbon or silicon atoms, respectively, and R 12 to R 18 are hydrogen or hydrocarbon groups having 1 to 18 carbon atoms, respectively, which may be the same or different. .)
前記成分Aが、シリカ、アルミナ、チタニア、マグネシア、ジルコニア、シリカーアルミナ、シリカーチタニア、シリカーマグネシア、シリカージルコニア、及びこれらの混合物からなる群より選ばれることを特徴とする請求項1に記載のエチレン重合触媒の製造方法。 The first aspect of claim 1 is that the component A is selected from the group consisting of silica, alumina, titania, magnesia, zirconia, silica-alumina, silica titania, silica-magnesia, silica-zirconia, and mixtures thereof. The method for producing an ethylene polymerization catalyst according to the above method. 請求項1又は2に記載の製造方法で製造されるエチレン重合触媒を用いて、オレフィンを重合することを特徴とするエチレン重合体の製造方法。 A method for producing an ethylene polymer, which comprises polymerizing an olefin using an ethylene polymerization catalyst produced by the production method according to claim 1 or 2 .
JP2016229784A 2016-11-28 2016-11-28 Method for producing ethylene polymerization catalyst and method for producing ethylene polymer Active JP6823802B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016229784A JP6823802B2 (en) 2016-11-28 2016-11-28 Method for producing ethylene polymerization catalyst and method for producing ethylene polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016229784A JP6823802B2 (en) 2016-11-28 2016-11-28 Method for producing ethylene polymerization catalyst and method for producing ethylene polymer

Publications (2)

Publication Number Publication Date
JP2018087257A JP2018087257A (en) 2018-06-07
JP6823802B2 true JP6823802B2 (en) 2021-02-03

Family

ID=62493360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016229784A Active JP6823802B2 (en) 2016-11-28 2016-11-28 Method for producing ethylene polymerization catalyst and method for producing ethylene polymer

Country Status (1)

Country Link
JP (1) JP6823802B2 (en)

Also Published As

Publication number Publication date
JP2018087257A (en) 2018-06-07

Similar Documents

Publication Publication Date Title
RU2165435C2 (en) Catalyst composition used for polymerization of olefins
US5744666A (en) Process for preparing an alkynyl fulvene group containing compound and said compound
KR101401856B1 (en) Polymerization catalysts for producing polymers with low levels of long chain branching
AU686504B2 (en) Double bonded metallocenes useful in olefin polymerization
KR101589315B1 (en) Polymerization catalysts for producing polymers with high comonomer incorporation
JPH03502207A (en) Supported vanadium catalyst for olefin polymerization and its production and use method
JP2816766B2 (en) Modified monocyclopentadienyl transition metal / alumoxane catalyst system for olefin polymerization
JP4798847B2 (en) Supported bidentate and tridentate catalyst compositions and olefin polymerization using the catalyst compositions
CA2186698A1 (en) Process for the production of polyolefins
JP2018503509A (en) Olefin oligomerization catalyst system and olefin oligomerization method using the same
JP2021501820A (en) Solid carrier material
JP2002519359A (en) Metal complexes containing one or more silsesquioxane ligands
US4587227A (en) Ethylene polymers and chromium catalysts
KR20100015391A (en) Tethered supported transition metal complex
JP6823802B2 (en) Method for producing ethylene polymerization catalyst and method for producing ethylene polymer
CN114630843A (en) Bimodal catalyst system
US4665263A (en) Ethylene polymerization with polychromium catalysts and resulting polymer
KR20100100433A (en) A method for preparation of catalyst for ethylene (co)polymerization
JP2006500459A (en) Olefin polymerization method
KR0151873B1 (en) Metallocene compounds
WO2002032967A2 (en) Transition metal complexes containing sulfur ligands, and polyolefin production processes using them
JP2003105016A (en) CATALYST FOR PRODUCING ETHYLENE BASED POLYMER, PROCESS FOR PRODUCING ETHYLENE BASED POLYMER AND ETHYLENE-alpha- OLEFIN COPOLYMER
JP2006117642A (en) Method for producing low molecular weight olefin polymer and olefin copolymer
CN112778441B (en) Supported metallocene catalyst and preparation and application thereof
JPS5915407A (en) Polymerization of 1-olefin

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20161206

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201223

R150 Certificate of patent or registration of utility model

Ref document number: 6823802

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250