JP6821151B2 - Gold-cerium oxide-supported complex catalyst supported on an alkaline carrier and its production method - Google Patents
Gold-cerium oxide-supported complex catalyst supported on an alkaline carrier and its production method Download PDFInfo
- Publication number
- JP6821151B2 JP6821151B2 JP2016163811A JP2016163811A JP6821151B2 JP 6821151 B2 JP6821151 B2 JP 6821151B2 JP 2016163811 A JP2016163811 A JP 2016163811A JP 2016163811 A JP2016163811 A JP 2016163811A JP 6821151 B2 JP6821151 B2 JP 6821151B2
- Authority
- JP
- Japan
- Prior art keywords
- gold
- cerium oxide
- catalyst
- carbon
- particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000003054 catalyst Substances 0.000 title claims description 88
- 238000004519 manufacturing process Methods 0.000 title claims description 31
- ARNJDXAPUCHUQL-UHFFFAOYSA-N [Ce].[Au] Chemical compound [Ce].[Au] ARNJDXAPUCHUQL-UHFFFAOYSA-N 0.000 title claims description 27
- 239000010931 gold Substances 0.000 claims description 95
- 239000002245 particle Substances 0.000 claims description 92
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 86
- 229910052737 gold Inorganic materials 0.000 claims description 85
- 238000005984 hydrogenation reaction Methods 0.000 claims description 61
- 239000002131 composite material Substances 0.000 claims description 46
- 229910000420 cerium oxide Inorganic materials 0.000 claims description 44
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 claims description 44
- GDVKFRBCXAPAQJ-UHFFFAOYSA-A dialuminum;hexamagnesium;carbonate;hexadecahydroxide Chemical compound [OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Al+3].[Al+3].[O-]C([O-])=O GDVKFRBCXAPAQJ-UHFFFAOYSA-A 0.000 claims description 29
- 229960001545 hydrotalcite Drugs 0.000 claims description 29
- 229910001701 hydrotalcite Inorganic materials 0.000 claims description 29
- 150000002894 organic compounds Chemical class 0.000 claims description 26
- 239000000725 suspension Substances 0.000 claims description 14
- 150000002344 gold compounds Chemical class 0.000 claims description 13
- 239000000395 magnesium oxide Substances 0.000 claims description 13
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 13
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 claims description 13
- 239000000203 mixture Substances 0.000 claims description 12
- 150000001785 cerium compounds Chemical class 0.000 claims description 11
- 238000001035 drying Methods 0.000 claims description 8
- 239000011259 mixed solution Substances 0.000 claims description 8
- RHRGMXBDAVNFLY-UHFFFAOYSA-N [O-2].[Ce+3].[Au+3].[O-2].[O-2] Chemical compound [O-2].[Ce+3].[Au+3].[O-2].[O-2] RHRGMXBDAVNFLY-UHFFFAOYSA-N 0.000 description 47
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 43
- 125000000524 functional group Chemical group 0.000 description 36
- 238000006243 chemical reaction Methods 0.000 description 31
- 150000001875 compounds Chemical class 0.000 description 23
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 19
- 239000001257 hydrogen Substances 0.000 description 18
- 229910052739 hydrogen Inorganic materials 0.000 description 18
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 15
- 238000000034 method Methods 0.000 description 13
- 239000000758 substrate Substances 0.000 description 13
- 230000000694 effects Effects 0.000 description 12
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical class O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 11
- 238000003776 cleavage reaction Methods 0.000 description 11
- 230000007017 scission Effects 0.000 description 11
- 150000001336 alkenes Chemical class 0.000 description 10
- 150000001412 amines Chemical group 0.000 description 10
- 239000011148 porous material Substances 0.000 description 10
- 239000011258 core-shell material Substances 0.000 description 9
- 125000003700 epoxy group Chemical group 0.000 description 9
- 150000001345 alkine derivatives Chemical class 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 239000003960 organic solvent Substances 0.000 description 8
- 238000003917 TEM image Methods 0.000 description 7
- 239000002105 nanoparticle Substances 0.000 description 7
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 6
- HSJPMRKMPBAUAU-UHFFFAOYSA-N cerium(3+);trinitrate Chemical compound [Ce+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O HSJPMRKMPBAUAU-UHFFFAOYSA-N 0.000 description 6
- 230000009257 reactivity Effects 0.000 description 6
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 229910052684 Cerium Inorganic materials 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 5
- 229940094522 laponite Drugs 0.000 description 5
- 239000007791 liquid phase Substances 0.000 description 5
- XCOBTUNSZUJCDH-UHFFFAOYSA-B lithium magnesium sodium silicate Chemical compound [Li+].[Li+].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[Na+].[Na+].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3.O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3.O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3.O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3.O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3.O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3 XCOBTUNSZUJCDH-UHFFFAOYSA-B 0.000 description 5
- 239000011777 magnesium Substances 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- -1 calcium carbonate Chemical compound 0.000 description 4
- 125000004432 carbon atom Chemical group C* 0.000 description 4
- 230000003197 catalytic effect Effects 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 238000013507 mapping Methods 0.000 description 4
- 230000007935 neutral effect Effects 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 230000035484 reaction time Effects 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 239000004593 Epoxy Substances 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 230000000274 adsorptive effect Effects 0.000 description 3
- 125000003172 aldehyde group Chemical group 0.000 description 3
- 150000001299 aldehydes Chemical class 0.000 description 3
- 150000001450 anions Chemical class 0.000 description 3
- 125000003118 aryl group Chemical group 0.000 description 3
- 239000002585 base Substances 0.000 description 3
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 3
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 description 3
- FDWREHZXQUYJFJ-UHFFFAOYSA-M gold monochloride Chemical compound [Cl-].[Au+] FDWREHZXQUYJFJ-UHFFFAOYSA-M 0.000 description 3
- 229910001922 gold oxide Inorganic materials 0.000 description 3
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 150000003512 tertiary amines Chemical class 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- UEXCJVNBTNXOEH-UHFFFAOYSA-N Ethynylbenzene Chemical group C#CC1=CC=CC=C1 UEXCJVNBTNXOEH-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- DHXVGJBLRPWPCS-UHFFFAOYSA-N Tetrahydropyran Chemical compound C1CCOCC1 DHXVGJBLRPWPCS-UHFFFAOYSA-N 0.000 description 2
- KZNMRPQBBZBTSW-UHFFFAOYSA-N [Au]=O Chemical compound [Au]=O KZNMRPQBBZBTSW-UHFFFAOYSA-N 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- 150000001342 alkaline earth metals Chemical class 0.000 description 2
- 125000003545 alkoxy group Chemical group 0.000 description 2
- 150000003973 alkyl amines Chemical class 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 150000001491 aromatic compounds Chemical class 0.000 description 2
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Chemical compound [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- TXCDCPKCNAJMEE-UHFFFAOYSA-N dibenzofuran Chemical compound C1=CC=C2C3=CC=CC=C3OC2=C1 TXCDCPKCNAJMEE-UHFFFAOYSA-N 0.000 description 2
- SNRUBQQJIBEYMU-UHFFFAOYSA-N dodecane Chemical compound CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- 150000004679 hydroxides Chemical class 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000008204 material by function Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 2
- 239000000693 micelle Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000011164 primary particle Substances 0.000 description 2
- 238000006479 redox reaction Methods 0.000 description 2
- 150000003335 secondary amines Chemical class 0.000 description 2
- 239000011163 secondary particle Substances 0.000 description 2
- 150000004760 silicates Chemical class 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 150000003505 terpenes Chemical class 0.000 description 2
- RYJATPLJVSILLB-UHFFFAOYSA-N 1-nitro-2-(2-phenylethenyl)benzene Chemical compound [O-][N+](=O)C1=CC=CC=C1C=CC1=CC=CC=C1 RYJATPLJVSILLB-UHFFFAOYSA-N 0.000 description 1
- BPVHWNVBBDHIQU-UHFFFAOYSA-N 2-bromoethynylbenzene Chemical group BrC#CC1=CC=CC=C1 BPVHWNVBBDHIQU-UHFFFAOYSA-N 0.000 description 1
- KUZMSPAMAHVVKJ-UHFFFAOYSA-N 2-chloro-3-phenyloxirane Chemical compound ClC1OC1C1=CC=CC=C1 KUZMSPAMAHVVKJ-UHFFFAOYSA-N 0.000 description 1
- GDWZLADUGAKASM-UHFFFAOYSA-N 2-chloroethynylbenzene Chemical group ClC#CC1=CC=CC=C1 GDWZLADUGAKASM-UHFFFAOYSA-N 0.000 description 1
- KBKNKFIRGXQLDB-UHFFFAOYSA-N 2-fluoroethenylbenzene Chemical compound FC=CC1=CC=CC=C1 KBKNKFIRGXQLDB-UHFFFAOYSA-N 0.000 description 1
- YVCOJTATJWDGEU-UHFFFAOYSA-N 2-methyl-3-phenyloxirane Chemical compound CC1OC1C1=CC=CC=C1 YVCOJTATJWDGEU-UHFFFAOYSA-N 0.000 description 1
- PIAOLBVUVDXHHL-UHFFFAOYSA-N 2-nitroethenylbenzene Chemical compound [O-][N+](=O)C=CC1=CC=CC=C1 PIAOLBVUVDXHHL-UHFFFAOYSA-N 0.000 description 1
- GTCLFEMMPGBNOI-UHFFFAOYSA-N 2-phenylethynamine Chemical group NC#CC1=CC=CC=C1 GTCLFEMMPGBNOI-UHFFFAOYSA-N 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- WTEVQBCEXWBHNA-UHFFFAOYSA-N Citral Natural products CC(C)=CCCC(C)=CC=O WTEVQBCEXWBHNA-UHFFFAOYSA-N 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- BWLUMTFWVZZZND-UHFFFAOYSA-N Dibenzylamine Chemical compound C=1C=CC=CC=1CNCC1=CC=CC=C1 BWLUMTFWVZZZND-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- AWMVMTVKBNGEAK-UHFFFAOYSA-N Styrene oxide Chemical compound C1OC1C1=CC=CC=C1 AWMVMTVKBNGEAK-UHFFFAOYSA-N 0.000 description 1
- 235000010724 Wisteria floribunda Nutrition 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000003905 agrochemical Substances 0.000 description 1
- 125000003158 alcohol group Chemical group 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 150000005215 alkyl ethers Chemical class 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- 125000000051 benzyloxy group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])O* 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 235000012241 calcium silicate Nutrition 0.000 description 1
- CREMABGTGYGIQB-UHFFFAOYSA-N carbon carbon Chemical compound C.C CREMABGTGYGIQB-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 238000004517 catalytic hydrocracking Methods 0.000 description 1
- VYLVYHXQOHJDJL-UHFFFAOYSA-K cerium trichloride Chemical compound Cl[Ce](Cl)Cl VYLVYHXQOHJDJL-UHFFFAOYSA-K 0.000 description 1
- AZRCLCUGADNYQP-UHFFFAOYSA-H cerium(3+) trisulfite Chemical compound [Ce+3].[Ce+3].[O-]S([O-])=O.[O-]S([O-])=O.[O-]S([O-])=O AZRCLCUGADNYQP-UHFFFAOYSA-H 0.000 description 1
- DRVWBEJJZZTIGJ-UHFFFAOYSA-N cerium(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ce+3].[Ce+3] DRVWBEJJZZTIGJ-UHFFFAOYSA-N 0.000 description 1
- VGBWDOLBWVJTRZ-UHFFFAOYSA-K cerium(3+);triacetate Chemical compound [Ce+3].CC([O-])=O.CC([O-])=O.CC([O-])=O VGBWDOLBWVJTRZ-UHFFFAOYSA-K 0.000 description 1
- OZECDDHOAMNMQI-UHFFFAOYSA-H cerium(3+);trisulfate Chemical compound [Ce+3].[Ce+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O OZECDDHOAMNMQI-UHFFFAOYSA-H 0.000 description 1
- 229910000421 cerium(III) oxide Inorganic materials 0.000 description 1
- 229940043350 citral Drugs 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000011246 composite particle Substances 0.000 description 1
- 239000007771 core particle Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000006392 deoxygenation reaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 1
- LAWOZCWGWDVVSG-UHFFFAOYSA-N dioctylamine Chemical compound CCCCCCCCNCCCCCCCC LAWOZCWGWDVVSG-UHFFFAOYSA-N 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000000635 electron micrograph Methods 0.000 description 1
- 150000002170 ethers Chemical group 0.000 description 1
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- WTEVQBCEXWBHNA-JXMROGBWSA-N geranial Chemical compound CC(C)=CCC\C(C)=C\C=O WTEVQBCEXWBHNA-JXMROGBWSA-N 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 238000000731 high angular annular dark-field scanning transmission electron microscopy Methods 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 230000003100 immobilizing effect Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- 238000006317 isomerization reaction Methods 0.000 description 1
- 229910052743 krypton Inorganic materials 0.000 description 1
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 description 1
- 239000011981 lindlar catalyst Substances 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- GSYSFVSGPABNNL-UHFFFAOYSA-N methyl 2-dimethoxyphosphoryl-2-(phenylmethoxycarbonylamino)acetate Chemical group COC(=O)C(P(=O)(OC)OC)NC(=O)OCC1=CC=CC=C1 GSYSFVSGPABNNL-UHFFFAOYSA-N 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052901 montmorillonite Inorganic materials 0.000 description 1
- 238000007040 multi-step synthesis reaction Methods 0.000 description 1
- PHQOGHDTIVQXHL-UHFFFAOYSA-N n'-(3-trimethoxysilylpropyl)ethane-1,2-diamine Chemical compound CO[Si](OC)(OC)CCCNCCN PHQOGHDTIVQXHL-UHFFFAOYSA-N 0.000 description 1
- DIAIBWNEUYXDNL-UHFFFAOYSA-N n,n-dihexylhexan-1-amine Chemical compound CCCCCCN(CCCCCC)CCCCCC DIAIBWNEUYXDNL-UHFFFAOYSA-N 0.000 description 1
- XTAZYLNFDRKIHJ-UHFFFAOYSA-N n,n-dioctyloctan-1-amine Chemical compound CCCCCCCCN(CCCCCCCC)CCCCCCCC XTAZYLNFDRKIHJ-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 239000013110 organic ligand Substances 0.000 description 1
- AHHWIHXENZJRFG-UHFFFAOYSA-N oxetane Chemical compound C1COC1 AHHWIHXENZJRFG-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 239000012450 pharmaceutical intermediate Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 230000036632 reaction speed Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000010420 shell particle Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 125000005389 trialkylsiloxy group Chemical group 0.000 description 1
- IMFACGCPASFAPR-UHFFFAOYSA-N tributylamine Chemical compound CCCCN(CCCC)CCCC IMFACGCPASFAPR-UHFFFAOYSA-N 0.000 description 1
- GCZKMPJFYKFENV-UHFFFAOYSA-K triiodogold Chemical compound I[Au](I)I GCZKMPJFYKFENV-UHFFFAOYSA-K 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Landscapes
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Description
本発明は、アルカリ性担体に担持された金−セリウム酸化物担持複合体触媒およびその製造方法に関するものである。 The present invention relates to a gold-cerium oxide-supported complex catalyst supported on an alkaline carrier and a method for producing the same.
水素化は有機化学においては標準的な反応であり、生じる生成物は数々の製品として市販されて利用されている。水素化または水素化分解を受ける官能基を複数種類持つ化合物は多く存在し、それらの官能基のうちの一部のみを選択的に水素化または水素化分解する触媒が知られているが、貴金属の中でも白金やパラジウムを用いるものが多い。 Hydrogenation is a standard reaction in organic chemistry, and the products produced are commercially available in a number of products. There are many compounds having multiple types of functional groups that undergo hydrogenation or hydrocracking, and catalysts that selectively hydrogenate or hydrocrack only some of these functional groups are known, but noble metals. Most of them use platinum or palladium.
金は貴金属の中でも特に安定な金属であり、触媒としての活性に乏しい金属と考えられてきたが、直径が5nm以下のナノ粒子として卑金属酸化物上に担持されると優れた触媒活性を示すことが春田らの研究(非特許文献1)で発見され、その後、様々な金触媒の研究が行われている。 Gold is a particularly stable metal among precious metals and has been considered to be a metal having poor activity as a catalyst. However, when it is supported on a base metal oxide as nanoparticles having a diameter of 5 nm or less, it exhibits excellent catalytic activity. Was discovered in the research of Haruta et al. (Non-Patent Document 1), and various gold catalysts have been studied since then.
しかし、金触媒は一般に酸化触媒として知られており、還元触媒としては報告が少ない。特許文献1では、有機配位子により安定化された金前駆体を酸素プラズマ処理し、適切なサイズの金クラスターとすることで選択的水素化活性を発現させている。 However, the gold catalyst is generally known as an oxidation catalyst, and there are few reports as a reduction catalyst. In Patent Document 1, a gold precursor stabilized by an organic ligand is treated with oxygen plasma to form a gold cluster of an appropriate size to exhibit selective hydrogenation activity.
そして、上述した選択的水素化に用いる金触媒では、いまだに十分な選択性を持って制御することができておらず、高い選択性をもって反応を制御できる触媒の開発が望まれている。 The gold catalyst used for selective hydrogenation described above has not yet been controlled with sufficient selectivity, and development of a catalyst capable of controlling the reaction with high selectivity is desired.
また、金クラスター触媒は表面に金が露出しているので、耐久性に問題があることが知られている。反応で使用した後に回収し、繰り返し使用しているうちに金ナノ粒子が固体担体の表面上で凝集し、反応性が低下してしまうことがある。 Further, it is known that the gold cluster catalyst has a problem in durability because gold is exposed on the surface. Gold nanoparticles may aggregate on the surface of the solid support during repeated use after recovery after use in the reaction, resulting in reduced reactivity.
そのため、金触媒を工業的に使用するためには、高い選択性を維持したまま、繰り返し使用できるような耐久性が高いことも求められる。 Therefore, in order to use the gold catalyst industrially, it is also required to have high durability so that it can be used repeatedly while maintaining high selectivity.
また、特許文献1と異なる技術として、特許文献2では、担体表面に金ナノ粒子を固定化して得られる表面金固定化触媒により選択的水素活性化を発現させている。しかし、この触媒も担体表面に金ナノ粒子が露出しているため、耐久性、反応性(活性や選択性)等に問題があった。また、触媒の製造時に金化合物の水溶液にアンモニアを加えるため雷金が発生する可能性があり、安全性にも問題があった。 Further, as a technique different from Patent Document 1, in Patent Document 2, selective hydrogen activation is expressed by a surface gold immobilization catalyst obtained by immobilizing gold nanoparticles on the surface of a carrier. However, since gold nanoparticles are exposed on the surface of the carrier of this catalyst as well, there are problems in durability, reactivity (activity and selectivity) and the like. In addition, since ammonia is added to the aqueous solution of the gold compound during the production of the catalyst, lightning gold may be generated, which has a problem in safety.
更に、非特許文献2では、触媒として優れた機能を有する、金粒子と該金粒子の表面に被覆されたセリウム酸化物を含んでなる金−セリウム酸化物複合体が報告されている。しかし、この金−セリウム酸化物複合体は、逆ミセル化した金溶液とセリウム溶液をそれぞれ調製し、その逆ミセル溶液を混合することでレドックス反応を進行させた後、エタノールでミセルを壊し、回収したものを更に焼成するという多段階の方法で製造され、また、その製造の際には、有機溶剤と界面活性剤の使用が必要で時間もコストもかかるという問題があった。 Further, Non-Patent Document 2 reports a gold-cerium oxide composite containing gold particles and a cerium oxide coated on the surface of the gold particles, which has an excellent function as a catalyst. However, for this gold-cerium oxide complex, reverse micelleized gold solution and cerium solution are prepared respectively, and the redox reaction is allowed to proceed by mixing the reverse micelle solution, and then the micelles are destroyed with ethanol and recovered. It is produced by a multi-step method of further firing the solute, and there is a problem that it is necessary to use an organic solvent and a surfactant in the production, which takes time and cost.
よって、本発明の課題は、触媒として優れた機能を有する、金粒子と該金粒子の表面に被覆されたセリウム酸化物を含んでなる金−セリウム酸化物複合体の新しい形態や製造方法を提供することである。 Therefore, an object of the present invention is to provide a new form and a method for producing a gold-cerium oxide composite containing gold particles and a cerium oxide coated on the surface of the gold particles, which have an excellent function as a catalyst. It is to be.
本発明者らは、上記課題を解決するために鋭意研究した結果、金粒子と該金粒子の表面に被覆されたセリウム酸化物を含んでなる金−セリウム酸化物複合体を、アルカリ性担体に担持された金−セリウム酸化物担持複合触媒が、高い水素化活性、選択性、耐久性、反応性を有することを見出した。また、本発明者らはアルカリ性担体の懸濁液に、金化合物およびセリウム化合物の混合液を滴下した後、これを乾燥させるという簡単な方法により安価で安全に前記金−セリウム酸化物担持複合触媒が製造できることを見出した。更に、本発明者らは、前記金−セリウム酸化物担持複合触媒が選択的水素化に有用であることを見出し、本発明を完成させた。 As a result of diligent research to solve the above problems, the present inventors supported a gold-cerium oxide composite containing gold particles and a cerium oxide coated on the surface of the gold particles on an alkaline carrier. It has been found that the gold-cerium oxide-supported composite catalyst obtained has high hydroactivity, selectivity, durability, and reactivity. In addition, the present inventors can inexpensively and safely use the gold-cerium oxide-supporting composite catalyst by a simple method of dropping a mixed solution of a gold compound and a cerium compound onto a suspension of an alkaline carrier and then drying the mixture. Found that can be manufactured. Furthermore, the present inventors have found that the gold-cerium oxide-supported composite catalyst is useful for selective hydrogenation, and have completed the present invention.
すなわち、本発明は、金粒子と該金粒子の表面に被覆されたセリウム酸化物を含んでなる金−セリウム酸化物複合体が、アルカリ性担体に担持されたことを特徴とする金−セリウム酸化物担持複合触媒である。 That is, the present invention is characterized in that a gold-cerium oxide composite containing gold particles and a cerium oxide coated on the surface of the gold particles is supported on an alkaline carrier. It is a supported composite catalyst.
また、本発明は、アルカリ性担体の懸濁液に、金化合物およびセリウム化合物の混合液を滴下した後、これを乾燥することを特徴とする金粒子と該金粒子の表面に被覆されたセリウム酸化物を含んでなる金−セリウム酸化物複合体が、アルカリ性担体に担持された、金−セリウム酸化物担持複合触媒の製造方法である。 Further, the present invention comprises dropping a mixed solution of a gold compound and a cerium compound onto a suspension of an alkaline carrier and then drying the mixture of gold particles and cerium oxidation coated on the surface of the gold particles. This is a method for producing a gold-cerium oxide-supported composite catalyst in which a gold-cerium oxide composite containing a compound is supported on an alkaline carrier.
更に、本発明は、上記金−セリウム酸化物担持複合触媒を用いて有機化合物を選択的に水素化することを特徴とする有機化合物の選択的水素化方法である。 Furthermore, the present invention is a method for selectively hydrogenating an organic compound, which comprises selectively hydrogenating an organic compound using the above-mentioned gold-cerium oxide-supported composite catalyst.
本発明の金−セリウム酸化物担持複合触媒は、例えば、エポキシのアルケン化、アルキンのアルケン化、アルデヒドのアルコール化等における選択的水素化や、極性官能基の選択的水素化を収率・選択率高く実施できるため、医薬中間体等の多段の合成プロセスを必要とする機能性材料の合成のショートカットが可能になる。 The gold-cerium oxide-supported composite catalyst of the present invention yields and selects, for example, selective hydrogenation in alkene formation of epoxy, alkene formation of alkyne, alcoholation of aldehyde, and selective hydrogenation of polar functional groups. Since it can be carried out at a high rate, it is possible to shortcut the synthesis of functional materials that require a multi-step synthesis process such as pharmaceutical intermediates.
また、本発明の金−セリウム酸化物担持複合触媒は、製造の際に、有機溶剤と界面活性剤を必須としないため、安価で安全に製造が可能である。 Further, since the gold-cerium oxide-supported composite catalyst of the present invention does not require an organic solvent and a surfactant at the time of production, it can be produced inexpensively and safely.
更に、本発明の金−セリウム酸化物担持複合触媒はリンドラー触媒に含まれる鉛等の有害物を使用しないため工業的にも使用しやすい。 Furthermore, since the gold-cerium oxide-supported composite catalyst of the present invention does not use harmful substances such as lead contained in the Lindlar catalyst, it is easy to use industrially.
また更に、本発明の金−セリウム酸化物担持複合触媒はアルカリ性担体に担持されているため使用後に、ろ過によって容易に回収可能であり、更にこの回収された触媒は当初の活性・選択性を維持するので高価な金触媒の再利用も容易である。 Furthermore, since the gold-cerium oxide-supported composite catalyst of the present invention is supported on an alkaline carrier, it can be easily recovered by filtration after use, and the recovered catalyst maintains its initial activity and selectivity. Therefore, it is easy to reuse expensive gold catalysts.
本発明の金−セリウム酸化物担持複合触媒(以下、「本発明の触媒」という)は、金粒子と該金粒子の表面に被覆されたセリウム酸化物を含んでなる金−セリウム酸化物複合体が、アルカリ性担体に担持されたものである。以下、本発明の触媒を構成する金−セリウム酸化物複合体と、アルカリ性担体とについて説明する。 The gold-cerium oxide-supported composite catalyst of the present invention (hereinafter referred to as “catalyst of the present invention”) is a gold-cerium oxide composite comprising gold particles and a cerium oxide coated on the surface of the gold particles. However, it is supported on an alkaline carrier. Hereinafter, the gold-cerium oxide composite constituting the catalyst of the present invention and the alkaline carrier will be described.
なお、本明細書においては、上記金−セリウム酸化物複合体は、金ナノ粒子(Au Nano Particles)および/または酸化金ナノ粒子を核(コア)として、その周りをセリウム酸化物(主としてCeO2、他にCe2O3等)が被覆していることから、これを「Au@CeO2」と表すことがある。また、本発明の触媒は上記金−セリウム酸化物複合体がアルカリ性担体に担持されていることから、「Au@CeO2/X(Xはアルカリ性担体名)」と表すことがある。 In the present specification, the gold-cerium oxide complex has gold nanoparticles (Au Nano Particles) and / or gold oxide nanoparticles as a core, and cerium oxide (mainly CeO 2 ) around the core. , In addition, since it is covered with Ce 2 O 3 etc.), this may be expressed as "Au @ CeO 2 ". Further, since the gold-cerium oxide complex is supported on an alkaline carrier, the catalyst of the present invention may be expressed as "Au @ CeO 2 / X (X is an alkaline carrier name)".
(金−セリウム酸化物複合体)
金−セリウム酸化物複合体は、金粒子の表面にセリウム酸化物の粒子が担持されている複合体である。そして、この金−セリウム酸化物複合体の望ましい形態としては、金粒子を核(コア)とし、この核である金粒子の表面にセリウム酸化物の粒子が担持されている構成である。ここで、上記金粒子とは、金属金または酸化金の少なくとも1種から選ばれる金成分の粒子であり、好ましくは金属金の粒子である。上記セリウム酸化物としては、二酸化セリウム(CeO2)または三酸化二セリウム(Ce2O3)の少なくとも1種類であり、二酸化セリウム(CeO2)のみ、三酸化二セリウム(Ce2O3)のみ、または二酸化セリウム(CeO2)と三酸化二セリウム(Ce2O3)との混合物であってもよい。
(Gold-cerium oxide complex)
The gold-cerium oxide complex is a complex in which cerium oxide particles are supported on the surface of gold particles. A desirable form of the gold-cerium oxide composite is a configuration in which gold particles are used as a core, and cerium oxide particles are supported on the surface of the gold particles which are the cores. Here, the gold particles are particles of a gold component selected from at least one of metallic gold and gold oxide, and are preferably metallic gold particles. As the cerium oxide is at least one kind of cerium dioxide (CeO 2) or trioxide cerium (Ce 2 O 3), only the cerium dioxide (CeO 2), trioxide, cerium (Ce 2 O 3) only , Or a mixture of cerium dioxide (CeO 2 ) and dicerium trioxide (Ce 2 O 3 ).
金−セリウム酸化物複合体において、金粒子の表面にセリウム酸化物が担持されている場合の「担持」の態様は、特に限定されるものではない。例えば、核(コア)となる金粒子の表面にセリウム酸化物が海島構造を形成するように分散して担持された状態であってもよいし、核(コア)の表面のかなりの部分がセリウム酸化物により被覆されているが、核(コア)が部分的に露出している状態であってもよいし、更に核(コア)の全表面がセリウム酸化物で完全に被覆されている状態まで様々な状態であってもよい。また、金−セリウム酸化物複合体は、金−セリウム酸化物粒子のクラスターを形成していてもよく、該クラスター粒子の表面に金粒子が露出している場合はその表面を更にセリウム酸化物で被覆していてもよい。 In the gold-cerium oxide composite, the mode of "supporting" when the cerium oxide is supported on the surface of the gold particles is not particularly limited. For example, cerium oxide may be dispersed and supported on the surface of gold particles serving as a core so as to form a sea-island structure, or a considerable part of the surface of the core may be cerium. Although it is covered with an oxide, the core may be partially exposed, and the entire surface of the core may be completely covered with cerium oxide. It may be in various states. Further, the gold-cerium oxide composite may form a cluster of gold-cerium oxide particles, and if the gold particles are exposed on the surface of the cluster particles, the surface thereof is further covered with cerium oxide. It may be covered.
このような担持の態様に応じて、金−セリウム酸化物複合体の成分であるセリウム酸化物の状態は、粒子状態、隣接する粒子同士が連結した状態、その連結が高まって核表面を網目状に覆い、網目において金粒子表面が露出している状態、更に、セリウム酸化物が層状態で金粒子表面を完全に被覆した状態であり得る。 Depending on the mode of such carrying, the state of cerium oxide, which is a component of the gold-cerium oxide complex, is a particle state, a state in which adjacent particles are connected to each other, and the connection is enhanced to form a network on the nuclear surface. The surface of the gold particles may be exposed in the mesh, and the surface of the gold particles may be completely covered with the cerium oxide in a layered state.
セリウム酸化物の状態は、次に述べるCeO2/Auのモル比によっても影響を受ける。いずれにしても、核(コア)となる金が表面を被覆しているセリウム酸化物とできるだけ接するように、セリウム酸化物粒子が金粒子を被覆していることが望ましい。 State of the cerium oxide is also influenced by the described below molar ratio of CeO 2 / Au. In any case, it is desirable that the cerium oxide particles cover the gold particles so that the core gold comes into contact with the cerium oxide covering the surface as much as possible.
金粒子からなる核(コア)をセリウム酸化物で被覆する態様は、特に限定されるものではないが、金粒子からなる核(コア)をセリウム酸化物で完全に被覆し、セリウム酸化物の細孔を通じて基質が金に触れることができる場合に、一般的に水素化される水素化反応部位と本発明で水素化する炭素−炭素三重結合、または極性官能基とを有する化合物中の該炭素−炭素三重結合、または極性官能基の反応性および選択性に優れることがある。これは、金粒子の表面上の活性点では炭素−炭素二重結合の水素化活性を持つ水素分子の均一開裂が起こるが、金−セリウム酸化物界面の活性点では炭素−炭素三重結合からcis−炭素−炭素二重結合への選択的水素化やエポキシ基やニトロ基等の極性官能基の選択的水素化に有利な水素分子の不均一開裂が優先するために選択性が発現すると考えられるからである。 The mode in which the core composed of gold particles is coated with cerium oxide is not particularly limited, but the core composed of gold particles is completely coated with cerium oxide, and the cerium oxide is finely divided. The carbon-in a compound having a hydrogenation reaction site that is generally hydrogenated and a carbon-carbon triple bond or polar functional group that is hydrogenated in the present invention when the substrate is accessible to gold through the pores. It may be excellent in the reactivity and selectivity of carbon triple bonds or polar functional groups. This is because uniform cleavage of hydrogen molecules with hydrogenation activity of carbon-carbon double bond occurs at the active point on the surface of the gold particle, but cis from the carbon-carbon triple bond at the active point of the gold-cerium oxide interface. It is considered that selectivity is exhibited because heterogeneous cleavage of hydrogen molecules, which is advantageous for selective hydrogenation of -carbon-carbon double bonds and selective hydrogenation of polar functional groups such as epoxy groups and nitro groups, is prioritized. Because.
金−セリウム酸化物複合体の成分である金粒子からなる核(コア)を被覆するセリウム酸化物粒子は特に制限されるものではなく、一次粒子でもよく、二次粒子でもよい。セリウム酸化物粒子の平均粒子径は2〜40nmが好ましく、4〜20nmがより好ましい。なお、本願において「平均粒径」とは、電子顕微鏡写真観察による、任意の粒子数の直径の平均値のことをいう。セリウム酸化物粒子の平均粒子径(シェル粒子径)が2nm以上であると選択性の向上に効果的であり、40nm以下であると活性向上に効果的である。 The cerium oxide particles that coat the core composed of gold particles that are components of the gold-cerium oxide complex are not particularly limited, and may be primary particles or secondary particles. The average particle size of the cerium oxide particles is preferably 2 to 40 nm, more preferably 4 to 20 nm. In the present application, the "average particle size" means an average value of the diameters of an arbitrary number of particles by electron micrograph observation. When the average particle size (shell particle size) of the cerium oxide particles is 2 nm or more, it is effective in improving the selectivity, and when it is 40 nm or less, it is effective in improving the activity.
ここで、金粒子は、金(Au)を含有していれば特に制限されるものではなく、好ましくは金属金である。金粒子は一次粒子でもよく、二次粒子であってもよい。金粒子の平均粒子径は1〜30nmが好ましく、1〜10nmがより好ましい。なお、本明細書において「平均粒子径」とは、電子顕微鏡で任意の数の粒子の直径を観察し、それらの直径の平均値のことをいう。 Here, the gold particles are not particularly limited as long as they contain gold (Au), and are preferably metallic gold. The gold particles may be primary particles or secondary particles. The average particle size of the gold particles is preferably 1 to 30 nm, more preferably 1 to 10 nm. In the present specification, the "average particle size" means the average value of the diameters of any number of particles observed with an electron microscope.
(金−セリウム酸化物複合体[CeO2/Au]のモル比)
金−セリウム酸化物複合体の金粒子中の金とセリウム酸化物の組成比は、セリウム酸化物(CeO2)/金属としての金(Au)のモル数のモル数換算で、モル比[CeO2/Au]=10〜50が好ましく、15〜40であることがより好ましく、20〜30であることが更に好ましい。[CeO2/Au]モル比が10以上であると、水素化反応部位と炭素−炭素三重結合、または極性官能基とを有する化合物中の該炭素−炭素三重結合、または極性官能基の選択率の向上に効果的であり、[CeO2/Au]モル比が50以下であると、水素化反応部位と炭素−炭素三重結合、または極性官能基とを有する化合物中の該炭素−炭素三重結合、または極性官能基の転化率の向上に効果的であるため好ましい。
(Mole ratio of gold-cerium oxide complex [CeO 2 / Au])
The composition ratio of gold and cerium oxide in the gold particles of the gold-cerium oxide complex is the molar ratio [CeO] in terms of the number of moles of cerium oxide (CeO 2 ) / gold as metal (Au). 2 / Au] = 10 to 50 is preferable, 15 to 40 is more preferable, and 20 to 30 is even more preferable. When the [CeO 2 / Au] molar ratio is 10 or more, the selectivity of the carbon-carbon triple bond or the polar functional group in the compound having the hydrogenation reaction site and the carbon-carbon triple bond or the polar functional group When the [CeO 2 / Au] molar ratio is 50 or less, the carbon-carbon triple bond in the compound having a hydrogenation reaction site and a carbon-carbon triple bond or a polar functional group is effective. , Or because it is effective in improving the conversion rate of the polar functional group, it is preferable.
(金−セリウム酸化物複合体の粒子径)
金−セリウム酸化物複合体は、その形状がほぼ真球状であったり、「コア−シェル型構造」である場合、その粒子径は特に限定されるものではないが、平均粒子径で5〜100nmであることが好ましく、10〜50nmであることがより好ましい。平均粒子径が5nm以上であると水素化反応部位と炭素−炭素三重結合、または極性官能基とを有する化合物中の該炭素−炭素三重結合、または極性官能基の選択率(以下「選択率」ということがある。)の向上に効果的であり、100nm以下である水素化反応部位と炭素−炭素三重結合、または極性官能基とを有する化合物中の該炭素−炭素三重結合、または極性官能基の転化率(以下「転化率」ということがある。)の向上に効果的である。
(Particle size of gold-cerium oxide complex)
When the shape of the gold-cerium oxide composite is substantially spherical or has a "core-shell type structure", the particle size is not particularly limited, but the average particle size is 5 to 100 nm. It is preferably 10 to 50 nm, and more preferably 10 to 50 nm. When the average particle size is 5 nm or more, the selectivity of the carbon-carbon triple bond or polar functional group in the compound having a hydrogenation reaction site and a carbon-carbon triple bond or a polar functional group (hereinafter referred to as “selectivity”). It is effective in improving), and the carbon-carbon triple bond or polar functional group in a compound having a hydrogenation reaction site having a hydrogenation reaction site of 100 nm or less and a carbon-carbon triple bond or a polar functional group. It is effective in improving the conversion rate (hereinafter sometimes referred to as "conversion rate").
ここで、「コア−シェル型構造」とは、金粒子からなる核(コア)粒子の表面に、セリウム酸化物粒子からなるシェル層が形成された二層構造をいい、必ずしもシェル層が核(コア)を完全に覆っていることを意味する訳ではないが、できるだけ覆われた状態が良く、シェル層が厚いほうが良い。 Here, the "core-shell type structure" refers to a two-layer structure in which a shell layer made of cerium oxide particles is formed on the surface of core particles made of gold particles, and the shell layer is not necessarily the core (core). It does not mean that the core) is completely covered, but it is better to cover it as much as possible and to have a thick shell layer.
また、コア−シェル型構造において、シェル層が核(コア)を一様に覆っていながらも、基質が核(コア)である金粒子とシェル層であるセリウム酸化物の界面の作用を受けながら反応することができる程度の細孔をシェル層が有することが好ましい。また、金−セリウム酸化物複合体は、金−セリウム酸化物複合体の粒子からなるクラスターを形成していても良く、また、該クラスターの表面に金粒子が露出している場合はその表面を更にセリウム酸化物で被覆していてもよい。このようなクラスターの形状は2個以上のコア−シェル型構造を有する金−セリウム酸化物複合体の粒子が集合したものの他、コアとなる金粒子2個以上の表面をシェルとなるセリウム酸化物成分が被覆している状態であってもよい。 Further, in the core-shell type structure, while the shell layer uniformly covers the core, the substrate is affected by the interface between the gold particle which is the core and the cerium oxide which is the shell layer. It is preferable that the shell layer has enough pores to react. Further, the gold-cerium oxide complex may form a cluster composed of particles of the gold-cerium oxide complex, and if the gold particles are exposed on the surface of the cluster, the surface thereof may be formed. Further, it may be coated with cerium oxide. The shape of such a cluster is a collection of particles of a gold-cerium oxide complex having two or more core-shell type structures, and a cerium oxide whose surface is a shell of two or more core gold particles. It may be in a state where the components are covered.
このようなシェル層の細孔の大きさは、金−セリウム酸化物複合体に対して、窒素、ヘリウム、クリプトン等のガスを用いて行うガス吸着法等によって測定できる。この細孔の大きさは、特に限定されないが、基質分子が通過可能な程度の大きさの細孔径を有すればよく、その一例としては、後述する実施例に記載の基質が通過できる大きさである、平均細孔径として0.3〜5.0nm程度であることが好ましく、より好ましくは0.3〜1.0nmである。平均細孔径が0.3nmより小さいと、基質が芳香族化合物の場合、シェル層の細孔を通過できず転化率が低くなる恐れがある化合物があるため好ましくないことがある。また、平均細孔径が5.0nmより大きいと、基質が核(コア)である金粒子とシェル層を構成するセリウム酸化物の両方の作用を充分に受けることができず、水素化反応部位と炭素−炭素三重結合、または極性官能基とを有する化合物中の炭素−炭素三重結合、または極性官能基の選択率が低くなる恐れがあるため好ましくないことがある。 The size of the pores of such a shell layer can be measured by a gas adsorption method or the like performed on a gold-cerium oxide composite using a gas such as nitrogen, helium, or krypton. The size of the pores is not particularly limited, but it suffices to have a pore diameter large enough to allow the substrate molecule to pass through, and as an example, the size through which the substrate described in Examples described later can pass. The average pore diameter is preferably about 0.3 to 5.0 nm, more preferably 0.3 to 1.0 nm. If the average pore diameter is smaller than 0.3 nm, when the substrate is an aromatic compound, it may not be preferable because some compounds cannot pass through the pores of the shell layer and the conversion rate may be lowered. Further, if the average pore diameter is larger than 5.0 nm, the action of both the gold particles whose substrate is the core and the cerium oxide constituting the shell layer cannot be sufficiently received, and the hydrogenation reaction site and the hydrogenation reaction site. It may not be preferable because the selectivity of the carbon-carbon triple bond or the polar functional group in the compound having the carbon-carbon triple bond or the polar functional group may be low.
なお、金−セリウム酸化物複合体がコア−シェル型構造を有する場合は、特に、その核(コア)となる金粒子の大きさが、1〜30nmであることが好ましく、1〜10nmであることがより好ましい。金粒子の粒子径が1nm以上であると、水素化反応部位と炭素−炭素三重結合、または極性官能基とを有する化合物中の該極性官能基の選択率の向上に効果的であり、30nm以下であると水素化反応部位と極性官能基とを有する化合物中の該炭素−炭素三重結合、または極性官能基の転化率の向上に効果的である。そして、シェル層となるセリウム酸化物粒子は、核(コア)となる金粒子の周囲を2〜40nmの厚みを有するシェル層として被覆していることが好ましく、4〜20nmの厚みのシェル層として被覆していることがより好ましい。シェル層の厚みが2nm以上であると、水素化反応部位と炭素−炭素三重結合、または極性官能基とを有する化合物中の該極性官能基の選択率の向上に効果的な場合があり、40nm以下であると水素化反応部位と極性官能基とを有する化合物中の該炭素−炭素三重結合、または極性官能基の転化率の向上に効果的な場合がある。 When the gold-cerium oxide composite has a core-shell type structure, the size of the gold particles serving as the core thereof is preferably 1 to 30 nm, preferably 1 to 10 nm. Is more preferable. When the particle size of the gold particles is 1 nm or more, it is effective in improving the selectivity of the polar functional group in the compound having a hydrogenation reaction site and a carbon-carbon triple bond or a polar functional group, and is 30 nm or less. If it is, it is effective in improving the conversion rate of the carbon-carbon triple bond or the polar functional group in the compound having a hydrogenation reaction site and a polar functional group. The cerium oxide particles to be the shell layer are preferably coated around the gold particles to be the core as a shell layer having a thickness of 2 to 40 nm, as a shell layer having a thickness of 4 to 20 nm. It is more preferable to cover it. When the thickness of the shell layer is 2 nm or more, it may be effective in improving the selectivity of the polar functional group in the compound having a hydrogenation reaction site and a carbon-carbon triple bond or a polar functional group, which is 40 nm. The following may be effective in improving the conversion rate of the carbon-carbon triple bond or the polar functional group in the compound having a hydrogenation reaction site and a polar functional group.
また、コア−シェル型構造のシェル層を構成するセリウム酸化物が粒子である場合、セリウム酸化物の平均粒子径は2〜40nmであることが好ましく、4〜20nmであることがより好ましい。セリウム酸化物粒子の平均粒子径(シェル平均粒子径)が2nm以上であると水素化反応部位と炭素‐炭素三重結合、または極性官能基とを有する化合物中の該炭素‐炭素三重結合、または極性官能基の選択率の向上に効果的な場合があり、40nm以下であると水素化反応部位と炭素‐炭素三重結合、または極性官能基とを有する化合物中の該炭素‐炭素三重結合、または極性官能基の転化率の向上に効果的な場合がある。 When the cerium oxide constituting the shell layer of the core-shell type structure is particles, the average particle size of the cerium oxide is preferably 2 to 40 nm, and more preferably 4 to 20 nm. When the average particle size (shell average particle size) of the cerium oxide particles is 2 nm or more, the carbon-carbon triple bond or polarity in the compound having a hydrogenation reaction site and a carbon-carbon triple bond or a polar functional group. It may be effective in improving the selectivity of the functional group, and when it is 40 nm or less, the carbon-carbon triple bond or polarity in the compound having a hydrogenation reaction site and a carbon-carbon triple bond or a polar functional group. It may be effective in improving the conversion rate of functional groups.
なお、金−セリウム酸化物複合体がコア−シェル型構造である場合、その形状は特に限定されるものではないが、独立した粒子であることが好ましい。また、その形状はほぼ真球状であってもよい。このように、金−セリウム酸化物複合体粒子の形状がほぼ真球状である場合その作用・効果は以下のように考えられる。 When the gold-cerium oxide composite has a core-shell type structure, its shape is not particularly limited, but it is preferably independent particles. Moreover, the shape may be substantially spherical. As described above, when the shape of the gold-cerium oxide composite particles is substantially spherical, the action / effect is considered as follows.
すなわち、本発明の触媒に含まれる金−セリウム酸化物複合体による炭素−炭素三重結合、または極性官能基の酸素原子に対する高い選択性は、水素分子の不均一開裂による極性の高い水素種を効率よく生成させて、水素分子の均一開裂による極性の低い水素種をほとんど生成しないことによるものと考えられる。水素分子の不均一開裂は、金粒子とセリウム酸化物の境界面近傍で起こり、水素分子の均一開裂は金粒子の表面上で起こる。 That is, the high selectivity of the carbon-carbon triple bond by the gold-cerium oxide complex contained in the catalyst of the present invention or the polar functional group for the oxygen atom makes highly polar hydrogen species efficient due to heterogeneous cleavage of hydrogen molecules. It is considered that this is due to the fact that hydrogen molecules are produced well and almost no hydrogen species with low polarity are produced by uniform cleavage of hydrogen molecules. Non-uniform cleavage of hydrogen molecules occurs near the interface between gold particles and cerium oxide, and uniform cleavage of hydrogen molecules occurs on the surface of gold particles.
また、金−セリウム酸化物複合体がセリウム酸化物によって当該複合体中の金粒子表面が適当に被覆されたコア−シェル型構造の金−セリウム酸化物複合体であると、反応分子である基質がアクセスできる活性点のほとんどを金粒子とセリウム酸化物の境界面近傍とすることができると共に、水素分子の均一開裂が起きるような金粒子単独の表面が少ないためではないかと考えられる。50nm以上の比較的大きい金粒子では触媒作用が発現し難いため、選択性が高くなっていると考えられる。 Further, when the gold-cerium oxide complex is a gold-cerium oxide complex having a core-shell type structure in which the surface of gold particles in the complex is appropriately coated with cerium oxide, a substrate that is a reaction molecule. It is considered that most of the active points that can be accessed by the gold particles can be located near the interface between the gold particles and the cerium oxide, and there are few surfaces of the gold particles alone that cause uniform cleavage of hydrogen molecules. It is considered that the selectivity is high because the catalytic action is difficult to be exhibited in the relatively large gold particles having a diameter of 50 nm or more.
(金−セリウム酸化物複合体の形状)
本発明の触媒に含まれる金−セリウム酸化物複合体の形状がほぼ真球状である場合、セリウム酸化物による金粒子の被覆を均一にしやすく、前記のような作用が得やすい触媒を形成し易く、選択性の高い触媒が得られる場合がある。
(Shape of gold-cerium oxide complex)
When the shape of the gold-cerium oxide composite contained in the catalyst of the present invention is substantially spherical, it is easy to make the coating of gold particles with cerium oxide uniform, and it is easy to form a catalyst in which the above-mentioned action can be easily obtained. , A catalyst with high selectivity may be obtained.
また、本発明に使用される金−セリウム酸化物複合体の形状がほぼ真球状のコア−シェル型構造である場合にも、セリウム酸化物による金粒子の被覆は完全に被覆する状態の他、隣接するセリウム酸化物粒子の間に隙間がある不完全な被覆であってもよい。金粒子が一部露出している状態の場合、その露出状態は特に限定されるものではないが、若干の露出があると水素化反応部位と炭素−炭素三重結合、または極性官能基とを有する化合物の該炭素−炭素三重結合、または極性官能基に対して、優れた反応性並びに選択性が優れることがある。 Further, even when the shape of the gold-cerium oxide composite used in the present invention is a substantially spherical core-shell type structure, the gold particles are completely covered with the cerium oxide, and the gold particles are completely covered. It may be an incomplete coating with gaps between adjacent cerium oxide particles. When the gold particles are partially exposed, the exposed state is not particularly limited, but when there is some exposure, the gold particles have a hydrogenation reaction site and a carbon-carbon triple bond or a polar functional group. The compound may have excellent reactivity and selectivity for the carbon-carbon triple bond or polar functional group.
(アルカリ性担体)
本発明の触媒の担体(母材)であるアルカリ性担体は、特に限定されるものではなく、例えば、アルカリ金属およびアルカリ土類金属から選ばれる1種以上の金属を含むものが挙げられ、具体的には、アルカリ金属およびアルカリ土類金属から選ばれる1種以上の金属を含む酸化物、水酸化物、炭酸塩、ケイ酸塩等が挙げられ、より具体的には、ハイドロタルサイト、モンモリロナイト、酸化マグネシウム、酸化カルシウム、酸化バリウム等の酸化物、水酸化マグネシウム、水酸化カルシウム等の水酸化物、炭酸カルシウム等の炭酸塩、ラポナイト等のケイ酸塩等が挙げられる。また、アルカリ性担体は、アルカリ性担体のみではなく、アルカリ性担体とアルミナやシリカ等の中性担体との混合物、中性担体にアルカリ成分を担持させたもの、中性担体をアミン等で修飾し、アルカリ性の担体としたもの等でもよい。本発明においては、これらの中でも、ハイドロタルサイト、酸化マグネシウム等が好ましい。なお、これらアルカリ性担体としては、カウンターアニオンが強酸でなく、アルカリ成分が水溶液中に溶けださないものが好ましい。これは本発明におけるアルカリ性担体が、触媒成分である金−セリウム酸化物複合体を分散させるための担体としてだけではなく、金−セリウム酸化物複合体を形成するための酸化還元反応場としても働いていると考えられるため、溶液中で固体表面上に塩基点が出ているほうが良いと考えられるからである。
(Alkaline carrier)
The alkaline carrier which is the carrier (base material) of the catalyst of the present invention is not particularly limited, and examples thereof include those containing one or more metals selected from alkali metals and alkaline earth metals. Examples include oxides, hydroxides, carbonates, silicates and the like containing one or more metals selected from alkali metals and alkaline earth metals, and more specifically, hydrotalcite, montmorillonite, and the like. Examples thereof include oxides such as magnesium oxide, calcium oxide and barium oxide, hydroxides such as magnesium hydroxide and calcium hydroxide, carbonates such as calcium carbonate, and silicates such as laponite. The alkaline carrier is not only an alkaline carrier, but also a mixture of an alkaline carrier and a neutral carrier such as alumina or silica, a neutral carrier on which an alkaline component is supported, or a neutral carrier modified with amine or the like to be alkaline. It may be used as a carrier of. Among these, hydrotalcite, magnesium oxide and the like are preferable in the present invention. As these alkaline carriers, it is preferable that the counter anion is not a strong acid and the alkaline component does not dissolve in the aqueous solution. This is because the alkaline carrier in the present invention acts not only as a carrier for dispersing the gold-cerium oxide complex which is a catalyst component, but also as a redox reaction field for forming the gold-cerium oxide complex. This is because it is considered that the base point should appear on the solid surface in the solution.
上記ハイドロタルサイトとしては、特に制限されることはなく、天然に産出されたハイドロタルサイトを使用してもよく、また、合成ハイドロタルサイトまたは合成ハイドロタルサイト様化合物を使用してもよい。 The hydrotalcite is not particularly limited, and naturally produced hydrotalcite may be used, or synthetic hydrotalcite or a synthetic hydrotalcite-like compound may be used.
上記ハイドロタルサイトは、例えば、下記式(1)
MII 8-X MIII X(OH)16A・nH2O (1)
(式中、MIIは、Mg2+、Fe2+、Zn2+、Ca2+、Li2+、Ni2+、Co2+、Cu2+、Mn2+から選択された少なくとも1種の二価の金属であり、MIIIはAl3+、Fe3+、Mn3+、Ru3+から選択された少なくとも1種の三価の金属である。xは1〜7の整数を示す。Aは二価のアニオンを示し、nは0〜30の整数を示す)
または、下記式(2)
[Mg2+ 1-yAl3+y(OH)2]y+[(Ds-)y/s・mH2O]y- (2)
(式中、yは0.20≦y≦0.33を満たす数を示し、Ds-はs価のアニオンを示す。mは0〜30の整数を示す)
で表される。本発明におけるハイドロタルサイトとしては、なかでも、目的化合物を極めて高い収率で得られる点で、上記式(1)においてMIIがMg2+、MIIIがAl3+、AがCO3 2-であるものが好ましく、特に、Mg6Al2(OH)16CO3・nH2Oで表されるハイドロタルサイトを好適に使用することができる。
The hydrotalcite is, for example, the following formula (1).
M II 8-X M III X (OH) 16 A ・ nH 2 O (1)
(In the formula, M II is at least one selected from Mg 2+ , Fe 2+ , Zn 2+ , Ca 2+ , Li 2+ , Ni 2+ , Co 2+ , Cu 2+ , and Mn 2+. M II I is at least one trivalent metal selected from Al 3+ , Fe 3+ , Mn 3+ , and Ru 3+. X is an integer of 1-7. A represents a divalent anion and n represents an integer from 0 to 30)
Alternatively, the following formula (2)
[Mg 2+ 1-y Al 3 + y (OH) 2 ] y + [(Ds-) y / s・ mH 2 O] y- (2)
(In the formula, y indicates a number satisfying 0.20 ≤ y ≤ 0.33, Ds- indicates an anion having an s valence, and m indicates an integer of 0 to 30).
It is represented by. Among the hydrotalcites in the present invention, M II is Mg 2+ , M III is Al 3+ , and A is CO 3 2 in the above formula (1) because the target compound can be obtained in an extremely high yield. - preferably those which are, in particular, can be suitably used hydrotalcite represented by Mg 6 Al 2 (OH) 16 CO 3 · nH 2 O.
これらアルカリ性担体の中でも少なくとも酸化マグネシウムを含むものが好ましく、特にハイドロタルサイト(Mg6Al2(CO3)(OH)16・4H2O)、酸化マグネシウム(MgO)等が好ましい。 Preferably contains at least magnesium oxide Among these alkaline carriers, especially hydrotalcite (Mg 6 Al 2 (CO 3 ) (OH) 16 · 4H 2 O), and magnesium oxide (MgO) is preferred.
また、アルカリ性担体の吸着能等の諸物性は、特に限定されるものではないが、例えばその吸着能は、いわゆるBET値として0.1〜300m2/gであってもよく、平均粒径としては0.1〜100μmであってもよい。本発明においては、アルカリ性担体の吸着能は、0.5〜180m2/gであることが好ましい。 Further, various physical properties such as the adsorptive ability of the alkaline carrier are not particularly limited, but for example, the adsorptive ability may be 0.1 to 300 m 2 / g as a so-called BET value, and the average particle size may be set. May be 0.1 to 100 μm. In the present invention, the adsorptive capacity of the alkaline carrier is preferably 0.5 to 180 m 2 / g.
更に、アルカリ性担体の形態も、特に限定されず、例えば、粉末状、球形粒状、不定形顆粒状、円柱形ペレット状、押し出し形状、リング形状等が挙げられる。 Further, the form of the alkaline carrier is not particularly limited, and examples thereof include powder, spherical granules, amorphous granules, cylindrical pellets, extruded shapes, and ring shapes.
本発明の触媒において、金−セリウム酸化物複合体がアルカリ性担体に担持される態様は、特に制限されるものではなく、アルカリ性担体の形態により、種々の態様を採ることができ、担持される位置も単純に制御されていなくてもよいし、細孔の内側であったり、表面のみであってもよい。また、中性担体に修飾されたアルカリ成分を持つような担体に担持される形であってもよい。なお、本発明の触媒における金−セリウム酸化物複合体のアルカリ性担体への担持量は、特に限定されないが、例えば、金属換算の金の量で0.1〜10wt%であることが好ましい。 In the catalyst of the present invention, the mode in which the gold-cerium oxide composite is supported on the alkaline carrier is not particularly limited, and various modes can be adopted depending on the form of the alkaline carrier, and the position where the gold-cerium oxide complex is supported. May not be simply controlled, may be inside the pores, or may be only on the surface. Further, it may be supported on a carrier having an alkaline component modified to a neutral carrier. The amount of the gold-cerium oxide composite supported on the alkaline carrier in the catalyst of the present invention is not particularly limited, but is preferably 0.1 to 10 wt% in terms of metal equivalent, for example.
本発明の触媒は、金−セリウム酸化物複合体に比べて当然粒子径は大きくなるため、反応に使用した後に分離も容易になり、触媒の再使用においても有利であることは言うまでもない。 Needless to say, the catalyst of the present invention has a larger particle size than the gold-cerium oxide composite, so that it can be easily separated after being used in the reaction, which is also advantageous in the reuse of the catalyst.
(触媒に追加できる成分)
本発明の触媒は、上記した金−セリウム酸化物複合体がアルカリ性担体に担持されていればよく、金−セリウム酸化物複合体の効果を損なわない範囲で、別の触媒や担体等を常法に従って含有させてもよい。
(Components that can be added to the catalyst)
The catalyst of the present invention may be prepared by supporting the above-mentioned gold-cerium oxide complex on an alkaline carrier, and another catalyst, carrier, or the like may be used as long as the effect of the gold-cerium oxide complex is not impaired. It may be contained according to.
(本発明の触媒の製造方法)
本発明の触媒は、アルカリ性担体の懸濁液に、金化合物およびセリウム化合物の混合液を滴下した後、これを乾燥する方法により製造できる(以下、「本発明方法」という)。
(Method for producing catalyst of the present invention)
The catalyst of the present invention can be produced by a method of dropping a mixed solution of a gold compound and a cerium compound onto a suspension of an alkaline carrier and then drying the mixture (hereinafter referred to as "the method of the present invention").
本発明方法に用いられるアルカリ性担体の懸濁液は、特に限定されず、例えば、水等の溶媒に、上記したアルカリ性担体を添加、混合、撹拌すればよい。撹拌の条件は特に限定されず、懸濁液となるような条件であればよい。また、溶媒には、更に、アルコール等を添加してもよい。また、懸濁液の温度は特に限定されないが、例えば、0〜100℃、好ましくは10〜50℃である。 The suspension of the alkaline carrier used in the method of the present invention is not particularly limited, and for example, the above-mentioned alkaline carrier may be added, mixed, and stirred in a solvent such as water. The stirring conditions are not particularly limited as long as they are suspension conditions. Further, alcohol or the like may be further added to the solvent. The temperature of the suspension is not particularly limited, but is, for example, 0 to 100 ° C, preferably 10 to 50 ° C.
本発明に用いられる金化合物は、上記したアルカリ性担体上でセリウム化合物と金-セリウム複合体構造を構成する金化合物を生じるものであれば特に限定されないが、例えば、塩化金酸、塩化金、フッ化金、臭化金、ヨウ化金等の水溶性の塩が挙げられ、特に塩化金酸が好ましい。 The gold compound used in the present invention is not particularly limited as long as it produces a cerium compound and a gold compound constituting a gold-cerium complex structure on the above-mentioned alkaline carrier, and is, for example, gold chloride acid, gold chloride, and foot. Examples thereof include water-soluble salts such as gold, bromide, and gold iodide, and gold chloride acid is particularly preferable.
本発明に用いられるセリウム化合物は、上記したアルカリ性担体上で金化合物と金-セリウム複合体構造を構成するセリウム化合物を生じるものであれば特に限定されないが、例えば、硝酸セリウム、酢酸セリウム、塩化セリウム、硫酸セリウム、亜硫酸セリウム等が挙げられ、特に硝酸セリウムが好ましい。 The cerium compound used in the present invention is not particularly limited as long as it produces a gold compound and a cerium compound constituting a gold-cerium complex structure on the above-mentioned alkaline carrier, and is, for example, cerium nitrate, cerium acetate, and cerium chloride. , Cerium sulfate, cerium sulfite and the like, and cerium nitrate is particularly preferable.
本発明に用いられる金化合物およびセリウム化合物の混合液は、上記した金化合物と、セリウム化合物を水等の溶媒に添加し、撹拌をすればよい。金化合物とセリウム化合物はモル比で1:10〜50、好ましくは1:13〜40、さらに好ましくは1:15〜30で添加すればよい。また、混合液の温度は特に限定されないが、例えば、0〜100℃、好ましくは10〜50℃である。 The mixture of the gold compound and the cerium compound used in the present invention may be obtained by adding the above-mentioned gold compound and the cerium compound to a solvent such as water and stirring the mixture. The gold compound and the cerium compound may be added in a molar ratio of 1: 10 to 50, preferably 1: 13 to 40, and more preferably 1: 15 to 30. The temperature of the mixed solution is not particularly limited, but is, for example, 0 to 100 ° C, preferably 10 to 50 ° C.
上記のようにして調製したアルカリ性担体の懸濁液に、上記で調製した金化合物およびセリウム化合物の混合液を滴下する。滴下の条件は特に限定されないが、金成分の還元に十分な塩基点があれば良く、金属換算の金0.1mmolに対してアルカリ性担体0.1〜100g、好ましくは1〜10gの量で撹拌しながら行う。滴下後は0.5〜12時間、好ましくは1〜3時間撹拌を続ける。 The mixed solution of the gold compound and the cerium compound prepared above is added dropwise to the suspension of the alkaline carrier prepared as described above. The dropping conditions are not particularly limited, but it is sufficient if there is a sufficient base point for the reduction of the gold component, and the mixture is stirred in an amount of 0.1 to 100 g, preferably 1 to 10 g of the alkaline carrier with respect to 0.1 mmol of gold in terms of metal. Do it while doing. After the dropping, stirring is continued for 0.5 to 12 hours, preferably 1 to 3 hours.
上記のようにして滴下した後は懸濁液を乾燥させればよい。乾燥の前には、懸濁液を水等による洗浄、ろ過等の前処理をしてもよい。乾燥の条件は特に限定されないが、真空下、5〜100℃、好ましくは室温で乾燥させる。乾燥後は、更に、粉砕等を行ってもよい。 After dropping as described above, the suspension may be dried. Prior to drying, the suspension may be pretreated with water or the like, filtered or the like. The drying conditions are not particularly limited, but the products are dried under vacuum at 5 to 100 ° C., preferably room temperature. After drying, further pulverization or the like may be performed.
斯くして得られる本発明の触媒は、例えば、TEM(Transmission Electron Microscope;透過型電子顕微鏡)、FE−SEM(Field Emission−Scanning Electron Microscope;電界放射型走査電子顕微鏡)等で製造できていることを確認することができる。 The catalyst of the present invention thus obtained can be produced by, for example, TEM (Transmission Electron Microscope; transmission electron microscope), FE-SEM (Field Emission-Scanning Electron Microscope; field emission scanning electron microscope), or the like. Can be confirmed.
(選択的水素化)
本発明の触媒は、従来の金−セリウム酸化物複合体触媒と同様に選択的水素化や、自動車等の排ガス処理触媒や水素センサー等の材料等に用いることもできるが、好ましくは有機化合物の選択的水素化である。
(Selective hydrogenation)
The catalyst of the present invention can be used for selective hydrogenation, as an exhaust gas treatment catalyst for automobiles, a material for a hydrogen sensor, etc., like a conventional gold-cerium oxide composite catalyst, but is preferably an organic compound. It is selective hydrogenation.
上記有機化合物としては、特に限定されないが、例えば、炭素−炭素三重結合と水素化反応部位を持つ有機化合物、ニトロ基、アルデヒド基、エポキシ基等の極性官能基の何れかと水素化反応部位を持つ有機化合物等が挙げられる。これらの有機化合物の中でも、アルデヒド基またはエポキシ基の何れかの極性官能基と水素化反応部位を持つ有機化合物が好ましい。 The organic compound is not particularly limited, but has, for example, an organic compound having a carbon-carbon triple bond and a hydrogenation reaction site, and a hydrogenation reaction site with any of polar functional groups such as a nitro group, an aldehyde group, and an epoxy group. Examples include organic compounds. Among these organic compounds, an organic compound having a polar functional group of either an aldehyde group or an epoxy group and a hydrogenation reaction site is preferable.
上記した、炭素−炭素三重結合と水素化反応部位を持つ有機化合物としては、例えば、末端アルキンでも内部アルキンでもよく、具体的には、フェニルアセチレン、ブロモフェニルアセチレン、クロロフェニルアセチレン、アミノフェニルアセチレン、ベンジルアセチレン、フェニルプロパンギル酸エチル、2−ヘキシン−1−オール等が挙げられる。また、ニトロ基と水素化反応部位を持つ化合物としては、例えば、ニトロスチレン、ニトロスチリルベンゼン等が挙げられ、アルデヒド基と水素化反応部位を持つ化合物としては、例えば、シトラール等のテルペノイド類等が挙げられ、エポキシ基と水素化反応部位を持つ化合物としては、例えば、スチルベンオキシド、スチレンオキシド、メチルスチレンオキシド、フルオロスチレンオキシド、クロロスチレンオキシド、エポキシ桂皮酸エチル等のエポキシ化合物等が挙げられる。 The above-mentioned organic compound having a carbon-carbon triple bond and a hydrogenation reaction site may be, for example, a terminal alkyne or an internal alkyne, and specifically, phenylacetylene, bromophenylacetylene, chlorophenylacetylene, aminophenylacetylene, benzyl. Examples thereof include acetylene, ethyl phenylpropanegylate, 2-hexin-1-ol and the like. Examples of the compound having a nitro group and a hydrogenation reaction site include nitrostyrene and nitrostyrylbenzene, and examples of the compound having an aldehyde group and a hydrogenation reaction site include terpenoids such as citral. Examples of the compound having an epoxy group and a hydrogenation reaction site include epoxy compounds such as stillben oxide, styrene oxide, methylstyrene oxide, fluorostyrene oxide, chlorostyrene oxide, and ethyl epoxy silicate.
本発明の触媒を用いて有機化合物を選択的に水素化する方法は、特に限定されず、有機化合物の種類と、水素化の関係により適宜設定方法を選択すればよい。この水素化は、例えば、有機溶剤を含む液相で行えばよく、具体的には、液相中で本発明の触媒と、有機化合物と、水素ガスを接触させることにより行えばよい。液相は有機溶剤のみあるいは有機溶剤と水の混液が好ましく、有機溶剤のみがより好ましい。 The method for selectively hydrogenating an organic compound using the catalyst of the present invention is not particularly limited, and a setting method may be appropriately selected depending on the type of the organic compound and the relationship between hydrogenation. This hydrogenation may be carried out, for example, in a liquid phase containing an organic solvent. Specifically, the hydrogenation may be carried out by bringing the catalyst of the present invention, the organic compound, and hydrogen gas into contact with each other in the liquid phase. The liquid phase is preferably only an organic solvent or a mixed solution of an organic solvent and water, and more preferably only an organic solvent.
上記水素化の際に用いられる有機溶剤は、特に限定されないが、例えば、ドデカン、シクロヘキサン等の炭素原子数5〜20の脂肪族炭化水素、トルエン、キシレン等の炭素原子数7〜9の芳香族炭化水素、オキセタン、テトラヒドロフラン(THF)、テトラヒロドピラン(THP)、フラン、ジベンゾフラン、フラン等の鎖状構造または環状構造を有するエーテル、ポリエチレングリコール、ポリプロピレングリコール等のポリエーテル等から選択される1種以上が挙げられ、これらの中でも特にトルエンは水素化に対する安定性が高いため好ましい。 The organic solvent used for the above hydrogenation is not particularly limited, and is, for example, an aliphatic hydrocarbon having 5 to 20 carbon atoms such as dodecane and cyclohexane, and an aromatic having 7 to 9 carbon atoms such as toluene and xylene. It is selected from ethers having a chain structure or a cyclic structure such as hydrocarbons, oxetane, tetrahydrofuran (THF), tetrahydropyran (THP), furan, dibenzofuran and furan, and polyethers such as polyethylene glycol and polypropylene glycol1 Species and above are mentioned, and among these, toluene is particularly preferable because it has high stability against hydrogenation.
上記水素化は、液相中で行われるが、これに含まれる有機溶剤の使用量としては、例えば、上記有機化合物の濃度が0.5〜2.0質量%程度となる範囲内で使用することが好ましい。また、上記水素化の際の本発明の触媒の使用量は、例えば、触媒中の金の量を基準として有機化合物に対して0.0001〜50モル%程度であり、0.01〜20モル%程度が好ましく、0.1〜5モル%程度がより好ましい。この水素化は温和な条件でも、円滑に反応を進行させることができる。反応温度としては、基質の種類や目的生成物の種類等に応じて適宜調整することができ、例えば、10〜100℃、好ましくは10〜50℃程度、特に好ましくは10〜40℃程度である。反応時間は、反応温度および圧力に応じて適宜調整することができ、例えば10分〜48時間程度、好ましくは1時間〜48時間程度、特に好ましくは4時間〜30時間程度である。 The hydrogenation is carried out in the liquid phase, and the amount of the organic solvent contained therein is, for example, within a range in which the concentration of the organic compound is about 0.5 to 2.0% by mass. Is preferable. The amount of the catalyst of the present invention used in the above hydrogenation is, for example, about 0.0001 to 50 mol% with respect to the organic compound based on the amount of gold in the catalyst, and 0.01 to 20 mol. % Is preferable, and about 0.1 to 5 mol% is more preferable. This hydrogenation allows the reaction to proceed smoothly even under mild conditions. The reaction temperature can be appropriately adjusted according to the type of substrate, the type of the target product, and the like, and is, for example, 10 to 100 ° C., preferably about 10 to 50 ° C., particularly preferably about 10 to 40 ° C. .. The reaction time can be appropriately adjusted according to the reaction temperature and pressure, and is, for example, about 10 minutes to 48 hours, preferably about 1 hour to 48 hours, and particularly preferably about 4 hours to 30 hours.
上記した選択的水素化の中でも、炭素−炭素三重結合と水素化反応部位を持つ有機化合物の水素化が好ましく、この場合には、有機化合物中の炭素−炭素三重結合を選択的に水素化して、炭素−炭素二重結合へ部分水素化することができる。また、上記した選択的水素化の中でも、エポキシ基と水素化反応部位を持つ有機化合物の水素化が好ましく、この場合には、有機化合物中のエポキシ基を選択的に水素化して、炭素−炭素二重結合へ還元することができる。 Among the above-mentioned selective hydrogenation, hydrogenation of an organic compound having a carbon-carbon triple bond and a hydrogenation reaction site is preferable. In this case, the carbon-carbon triple bond in the organic compound is selectively hydrogenated. , Can be partially hydrogenated to carbon-carbon double bonds. Further, among the above-mentioned selective hydrogenation, hydrogenation of an organic compound having an epoxy group and a hydrogenation reaction site is preferable. In this case, the epoxy group in the organic compound is selectively hydrogenated to carbon-carbon. It can be reduced to a double bond.
なお、本発明の触媒は、分子内に炭素−炭素三重結合を持つアルキン等の有機化合物から二重結合を持つアルケン等の有機化合物への還元についての選択性が極めて高く、ほとんど定量的である。また、アルキンに対して水素はシン付加されるため、選択的にZ型アルケンとなる。これは、金粒子の表面上の活性点では炭素−炭素二重結合の水素化活性を持つ水素分子の均一開裂が起こるが、本発明の触媒の金−セリウム酸化物界面の活性点では炭素−炭素三重結合からcis−炭素−炭素二重結合への選択的水素化に有利な水素分子の不均一開裂が優先するためにZ型選択性があると考えられる。E型のアルケンはZ型アルケンの異性化により生成するが、メカニズムとしてZ型アルケンに水素原子が一つ付加し、炭素−炭素結合を軸に分子が回転してE型アルケンとなると考えられ、水素分子の不均一開裂により生成した極性水素は炭素−炭素二重結合には付加しないことからZ型を選択的に得られると考えられる。 The catalyst of the present invention has extremely high selectivity for reduction from an organic compound such as an alkyne having a carbon-carbon triple bond in the molecule to an organic compound such as an alkene having a double bond, and is almost quantitative. .. Further, since hydrogen is syn-added to the alkyne, it selectively becomes a Z-type alkene. This is because uniform cleavage of hydrogen molecules having a carbon-carbon double bond hydrogenation activity occurs at the active point on the surface of the gold particle, but carbon-at the active point of the gold-cerium oxide interface of the catalyst of the present invention. It is believed that there is Z-type selectivity because heterogeneous cleavage of hydrogen molecules favoring selective hydrogenation from carbon triple bonds to cis-carbon-carbon double bonds takes precedence. The E-type alkene is produced by the isomerization of the Z-type alkene, but it is thought that one hydrogen atom is added to the Z-type alkene as a mechanism, and the molecule rotates around the carbon-carbon bond to form an E-type alkene. Since the polar hydrogen generated by the heterogeneous cleavage of the hydrogen molecule is not added to the carbon-carbon double bond, it is considered that the Z type can be selectively obtained.
そのため、本発明の触媒では、基質となる有機化合物が炭素−炭素二重結合、芳香環結合ハロゲン原子、O−ベンジル基、芳香族カルボニル基、N−ベンジルオキシカルボニル基、水酸基、トリアルキルシロキシ基、メトキシ基等のアルコキシ基を有していてもこれらの官能基は水素化されない。本発明の触媒を使用するとアルキルエーテルは切断されず、アルコキシ基についてはメトキシ基の他、エトキシ基等の炭素数の多いアルコキル基であっても水素化されない。 Therefore, in the catalyst of the present invention, the organic compound as a substrate is a carbon-carbon double bond, an aromatic ring-bonded halogen atom, an O-benzyl group, an aromatic carbonyl group, an N-benzyloxycarbonyl group, a hydroxyl group, or a trialkylsiloxy group. , These functional groups are not hydrogenated even if they have an alkoxy group such as a methoxy group. When the catalyst of the present invention is used, the alkyl ether is not cleaved, and the alkoxy group is not hydrogenated even if it is an alcohol group having a large number of carbon atoms such as an ethoxy group as well as a methoxy group.
(アミン類の添加)
また、上記選択的水素化方法において、液相に更にアミン類を添加することにより、副生物の生成を抑制し、炭素−炭素二重結合等をはじめとする水素化反応部位と炭素−炭素三重結合等をはじめとする炭素−炭素三重結合、または極性官能基とを有する化合物中の該炭素−炭素三重結合、または極性官能基を選択的に水素化することができ、その転化率、選択率、反応速度共に向上することができる場合がある。特に炭素−炭素三重結合の隣に電子求引基を持つ内部アルキンの場合は、この効果が顕著に表れる傾向がある。これは三重結合の隣に電子求引基を有するアルキンは不均等開裂により生成する極性水素と反応しやすいためではないかと考えられる。
(Addition of amines)
Further, in the above selective hydrogenation method, by further adding amines to the liquid phase, the formation of by-products is suppressed, and hydrogenation reaction sites such as carbon-carbon double bonds and carbon-carbon triple bonds are suppressed. The carbon-carbon triple bond or polar functional group in a compound having a carbon-carbon triple bond including a bond or a polar functional group can be selectively hydrogenated, and its conversion rate and selectivity can be selected. In some cases, both the reaction speed can be improved. Especially in the case of an internal alkyne having an electron attracting group next to a carbon-carbon triple bond, this effect tends to be remarkable. It is considered that this is because the alkyne having an electron attracting group next to the triple bond easily reacts with the polar hydrogen generated by uneven cleavage.
このようなアミン類の添加による性能の向上は、アミン類が有する非共有電子対による選択的水化触媒の活性サイトに作用するドナー効果によるためであると思われる。このようなアミン類としては、水素原子を置換するアルキル基の炭素数が2〜8であるアルキルアミンが好ましい。このようなアルキルアミンは比較的混み合った構造になっていることでドナー効果が作用し、反応性が向上するものと思われる。また、アミン類としては二級アミン、三級アミンが好ましく、三級アミンが特に好ましい。 It is considered that the improvement in performance by the addition of such amines is due to the donor effect acting on the active site of the selective hydration catalyst by the unshared electron pair possessed by the amines. As such amines, alkyl amines having 2 to 8 carbon atoms in the alkyl group substituting a hydrogen atom are preferable. Since such an alkylamine has a relatively crowded structure, it is considered that the donor effect acts and the reactivity is improved. Further, as the amines, secondary amines and tertiary amines are preferable, and tertiary amines are particularly preferable.
上記アミン類としては、二級アミンではジベンジルアミン、ジオクチルアミン等が挙げられ、三級アミンではトリエチルアミン、トリブチルアミン、トリヘキシルアミン、トリオクチルアミン等が挙げられる。これらアミン類の中でも優れた効果を発揮するためトリエチルアミンが好ましい。 Examples of the above amines include dibenzylamine, dioctylamine and the like as secondary amines, and triethylamine, tributylamine, trihexylamine, trioctylamine and the like as tertiary amines. Among these amines, triethylamine is preferable because it exerts an excellent effect.
また、選択的水素化方法におけるアミン類の使用量は特に限定されないが、基質である有機化合物に対して400〜1000mol%であることが好ましい。1000mol%を超えると、転化率が低下する場合があり好ましくなく、400mol%未満であると、選択性の向上が見られない場合があり好ましくない。 The amount of amines used in the selective hydrogenation method is not particularly limited, but is preferably 400 to 1000 mol% with respect to the organic compound as a substrate. If it exceeds 1000 mol%, the conversion rate may decrease, which is not preferable, and if it is less than 400 mol%, the selectivity may not be improved, which is not preferable.
(触媒の再利用)
選択的水素化に使用した本発明の触媒は金粒子がセリウム酸化物に覆われているため、反応中においても担持された金が大きな粒子になりにくい。また、本発明の触媒は、例えば、水素化後に反応液から濾過、遠心分離等の物理的な分離手法により容易に回収することができる。回収された本発明の触媒はそのまま、あるいは、必要により、洗浄、乾燥、焼成等を施した後、再利用することができる。洗浄、乾燥、焼成等は本発明の触媒の製造の際と同様に行えばよい。
(Reuse of catalyst)
In the catalyst of the present invention used for selective hydrogenation, the gold particles are covered with cerium oxide, so that the supported gold is unlikely to become large particles even during the reaction. Further, the catalyst of the present invention can be easily recovered from the reaction solution after hydrogenation by a physical separation method such as filtration or centrifugation. The recovered catalyst of the present invention can be reused as it is or, if necessary, after being washed, dried, fired or the like. Cleaning, drying, firing and the like may be carried out in the same manner as in the production of the catalyst of the present invention.
回収された本発明の触媒は、未使用の本発明の触媒と比べ、ほぼ同等の触媒能を示すことができ、使用−再生を複数回繰り返しても、その触媒能の低下を著しく抑制することができる。そのため、本発明によれば、通常、水素化の費用の多くの割合を占める触媒を回収し、繰り返し利用することができるため、有機化合物の水素化のコストを大幅に削減することができる。 The recovered catalyst of the present invention can exhibit almost the same catalytic ability as the unused catalyst of the present invention, and even if the use-regeneration is repeated a plurality of times, the decrease in the catalytic ability is remarkably suppressed. Can be done. Therefore, according to the present invention, the catalyst, which usually accounts for a large proportion of the cost of hydrogenation, can be recovered and repeatedly used, so that the cost of hydrogenation of an organic compound can be significantly reduced.
以下、本発明の金−セリウム酸化物担持複合触媒(Au@CeO2/X)、並びに本発明の実施例について具体的に説明するが、本発明は以下の実施例に限定されるものではなく、本発明の趣旨の範囲で広く応用が可能なものである。 Hereinafter, the gold-cerium oxide-supported composite catalyst (Au @ CeO 2 / X) of the present invention and examples of the present invention will be specifically described, but the present invention is not limited to the following examples. , It can be widely applied within the scope of the gist of the present invention.
製 造 例 1
Au@CeO2/HTの調製:
純水50mLにハイドロタルサイト(HT)0.5gを懸濁した。得られた懸濁液に硝酸セリウム(0.8 mmol)と塩化金酸(0.05mmol)の混合液50mLを15℃で滴下した。得られた混合物を1時間、15℃で撹拌した。得られた懸濁液を純水で洗浄し、ろ過し、真空下、室温で乾燥してAu@CeO2/HTが得られた。
Manufacturing example 1
Preparation of Au @ CeO 2 / HT:
0.5 g of hydrotalcite (HT) was suspended in 50 mL of pure water. 50 mL of a mixed solution of cerium nitrate (0.8 mmol) and chloroauric acid (0.05 mmol) was added dropwise to the obtained suspension at 15 ° C. The resulting mixture was stirred for 1 hour at 15 ° C. The obtained suspension was washed with pure water, filtered, and dried under vacuum at room temperature to obtain Au @ CeO 2 / HT.
実 施 例 1
エポキシ基のアルケン化:
製造例1で得られた触媒(Au@CeO2/HT)を用いて下記式の反応を行った。具体的には、Au@CeO2/HTを金として0.005mmol、基質1を0.3mmol、溶媒であるトルエンを4mL、水素圧30atm、表1に記載の反応温度および反応時間で還元処理を行った。反応後、ガスクロマトグラフを用いて転化率、選択率を測定した。結果を表1に示した。
Example 1
Epoxy group alkenation:
The reaction of the following formula was carried out using the catalyst (Au @ CeO 2 / HT) obtained in Production Example 1. Specifically, the reduction treatment was carried out at 0.005 mmol of Au @ CeO 2 / HT as gold, 0.3 mmol of substrate 1, 4 mL of toluene as a solvent, hydrogen pressure of 30 atm, and the reaction temperature and reaction time shown in Table 1. went. After the reaction, the conversion rate and selectivity were measured using a gas chromatograph. The results are shown in Table 1.
Au@CeO2/HTは、エポキシ基のアルケン化を転嫁率および選択率よく行えることが分かった。 It was found that Au @ CeO 2 / HT can perform alkene formation of epoxy groups with good pass-through rate and selectivity.
実 施 例 2
アルキンのアルケン化:
基質3、反応時間、反応温度として表2に記載のものを用いる以外は、実施例1と同様にして下記式の反応を行った。結果を表2に示した。
Example 2
Alkyne Alkene:
The reaction of the following formula was carried out in the same manner as in Example 1 except that the substrates, reaction time, and reaction temperature shown in Table 2 were used. The results are shown in Table 2.
Au@CeO2/HTは、アルキンのアルケン化を転嫁率および選択率よく行えることが分かった。 It was found that Au @ CeO 2 / HT can perform alkene conversion of alkynes with good pass-through rate and selectivity.
実 施 例 3
アルデヒドのアルコール化:
基質5、反応時間、反応温度として表3に記載のものを用いる以外は、実施例1と同様にして下記式の反応を行った。結果を表3に示した。
Actual example 3
Aldehyde alcoholization:
The reaction of the following formula was carried out in the same manner as in Example 1 except that the substrates 5, reaction times and reaction temperatures shown in Table 3 were used. The results are shown in Table 3.
Au@CeO2/HTは、アルデヒドのアルコール化を転嫁率および選択率よく行えることが分かった。 It was found that Au @ CeO 2 / HT can pass on alcoholization of aldehydes with good pass-through rate and selectivity.
実 施 例 4
触媒の再利用:
実施例3の下記式の反応で使用したAu@CeO2/HTを遠心分離により分離し、溶媒であるトルエンで洗浄して反応系から回収した。この回収したAu@CeO2/HTを、再度同じ反応に使用した。結果を表4に示した。
Example 4
Reuse of catalyst:
Au @ CeO 2 / HT used in the reaction of the following formula of Example 3 was separated by centrifugation, washed with toluene as a solvent, and recovered from the reaction system. This recovered Au @ CeO 2 / HT was used again in the same reaction. The results are shown in Table 4.
Au@CeO2/HTは、性能の劣化なく再利用できることがわかった。 It was found that Au @ CeO 2 / HT can be reused without deterioration of performance.
製 造 例 2
Au@CeO2/MgOの調製:
ハイドロタルサイトを酸化マグネシウム(MgO)に変えた以外は、製造例1と同様にして、Au@CeO2/MgOを得た。Au@CeO2/MgOのTEM画像を図8に示した。
Manufacturing example 2
Preparation of Au @ CeO 2 / MgO:
Au @ CeO 2 / MgO was obtained in the same manner as in Production Example 1 except that the hydrotalcite was changed to magnesium oxide (MgO). A TEM image of Au @ CeO 2 / MgO is shown in FIG.
製 造 例 3
Au@CeO2/ラポナイトの調製:
ハイドロタルサイトをラポナイト(Laponite-RD:BYK株式会社製)に変えた以外は、製造例1と同様にして、Au@CeO2/ラポナイトを得た。Au@CeO2/ラポナイトのTEM画像を図9に示した。
Manufacturing example 3
Preparation of Au @ CeO 2 / Laponite:
Au @ CeO 2 / Laponite was obtained in the same manner as in Production Example 1 except that the hydrotalcite was changed to Laponite-RD: manufactured by BYK Co., Ltd. A TEM image of Au @ CeO 2 / Laponite is shown in FIG.
製 造 例 4
Au@CeO2/アミン修飾シリカの調製:
ハイドロタルサイトを以下のようにして調製されたアミン修飾シリカに変えた以外は、製造例1と同様にして、Au@CeO2/アミン修飾シリカを得た。Au@CeO2/アミン修飾シリカのTEM画像を図10に示した。
Manufacturing example 4
Preparation of Au @ CeO 2 / amine-modified silica:
Au @ CeO 2 / amine-modified silica was obtained in the same manner as in Production Example 1 except that the hydrotalcite was changed to amine-modified silica prepared as follows. A TEM image of Au @ CeO 2 / amine-modified silica is shown in FIG.
<アミン修飾シリカの調製>
シリカ(CARIACT Q3:富士シリシア化学株式会社製)4.0gを10mLのトルエンに懸濁した。得られた懸濁液に3−(2−アミノエチルアミノ)プロピルトリメトキシシラン4.0gを滴下し、得られた混合物を10時間、120℃で撹拌した。得られた懸濁液をエタノールで洗浄し、ろ過し、真空下、室温で乾燥してアミン修飾シリカを得た。
<Preparation of amine-modified silica>
4.0 g of silica (CARIACT Q3: manufactured by Fuji Silysia Chemical Ltd.) was suspended in 10 mL of toluene. 4.0 g of 3- (2-aminoethylamino) propyltrimethoxysilane was added dropwise to the obtained suspension, and the obtained mixture was stirred for 10 hours at 120 ° C. The obtained suspension was washed with ethanol, filtered, and dried under vacuum at room temperature to obtain amine-modified silica.
本発明の触媒は、種々の医薬、農薬、その他種々の工業分野において中間体として有用なエポキシ基を有する芳香族化合物の脱酸素反応、炭素−炭素二重結合と水酸基を含有するテルペノイドの製造、特異的な水素化反応特性を利用した自動車用触媒やセンサー等の機能性材料に用いるのに有用である。また、本発明の触媒は、安価で安全に製造できる。
以 上
The catalyst of the present invention comprises a deoxygenation reaction of an aromatic compound having an epoxy group useful as an intermediate in various pharmaceuticals, agrochemicals, and other various industrial fields, and production of a terpenoid containing a carbon-carbon double bond and a hydroxyl group. It is useful for functional materials such as automobile catalysts and sensors that utilize specific hydrogenation reaction characteristics. Moreover, the catalyst of the present invention can be manufactured inexpensively and safely.
that's all
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016163811A JP6821151B2 (en) | 2016-08-24 | 2016-08-24 | Gold-cerium oxide-supported complex catalyst supported on an alkaline carrier and its production method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016163811A JP6821151B2 (en) | 2016-08-24 | 2016-08-24 | Gold-cerium oxide-supported complex catalyst supported on an alkaline carrier and its production method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018030093A JP2018030093A (en) | 2018-03-01 |
JP6821151B2 true JP6821151B2 (en) | 2021-01-27 |
Family
ID=61304206
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016163811A Active JP6821151B2 (en) | 2016-08-24 | 2016-08-24 | Gold-cerium oxide-supported complex catalyst supported on an alkaline carrier and its production method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6821151B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109364931B (en) * | 2018-11-05 | 2020-08-04 | 江南大学 | Catalyst with core-shell structure for preparing methanol by carbon dioxide hydrogenation and preparation method thereof |
CN111280176A (en) * | 2019-08-28 | 2020-06-16 | 大连民族大学 | Au/CeO2Bactericide and preparation method and application thereof |
CN116237059B (en) * | 2023-01-04 | 2024-06-28 | 沈阳化工研究院有限公司 | Modified hydrotalcite-loaded platinum ruthenium catalyst and preparation method and application thereof |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5577226B2 (en) * | 2010-12-01 | 2014-08-20 | 株式会社ダイセル | Process for producing alkenes by deoxygenation of epoxy compounds |
EP2952252B1 (en) * | 2013-01-31 | 2019-05-22 | Osaka University | Selective hydrogenation catalyst, production method for selective hydrogenation catalyst, and selective hydrogenation method |
JP6570032B2 (en) * | 2015-07-01 | 2019-09-04 | 国立大学法人大阪大学 | Gold-cerium oxide composite catalyst and selective hydrogenation method using the catalyst |
-
2016
- 2016-08-24 JP JP2016163811A patent/JP6821151B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2018030093A (en) | 2018-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7019813B2 (en) | Catalyst for producing α-phenylethanol by hydrogenation of acetophenone, its production method and application | |
JP5261801B2 (en) | Nickel catalysts for selective hydrogenation | |
JP4513372B2 (en) | Exhaust gas purification catalyst and exhaust gas purification catalyst | |
JP4142733B2 (en) | Uniform type highly dispersed metal catalyst and method for producing the same | |
JP4547935B2 (en) | Exhaust gas purification catalyst, exhaust gas purification catalyst, and catalyst manufacturing method | |
JP5584891B2 (en) | Exothermic catalyst carrier and catalyst produced from the carrier | |
US11666891B2 (en) | Highly active metal oxide supported atomically dispersed platinum group metal catalysts | |
JP4253193B2 (en) | Spherical metal-containing catalyst, method for producing the same, and method for hydrogenating aromatic compounds | |
JP6821151B2 (en) | Gold-cerium oxide-supported complex catalyst supported on an alkaline carrier and its production method | |
JP5660006B2 (en) | Method for producing Co3O4 / CeO2 composite catalyst for exhaust gas purification and catalyst obtained thereby | |
JP2022161913A (en) | Catalyst for hydrogenation reaction used in hydrogenation of amide compound, and manufacturing method of amine compound using the same | |
JP6570032B2 (en) | Gold-cerium oxide composite catalyst and selective hydrogenation method using the catalyst | |
JP2005152725A (en) | Catalyst body and its producing method | |
JP6304043B2 (en) | Selective hydrogenation catalyst, method for producing selective hydrogenation catalyst, and selective hydrogenation method | |
CN114585439B (en) | Catalyst suitable for hydrocarbon conversion reaction, preparation method and application thereof | |
CN106984318B (en) | Bimetal cobalt-based catalyst, preparation method and application | |
JP2005262126A (en) | Catalyst carrier, its preparation method and preparation method of catalyst | |
JP6531327B2 (en) | Silver-cerium oxide composite catalyst supported on alkaline carrier and method for producing the same | |
EP3384985A1 (en) | Steam reforming catalyst for hydrocarbons | |
KR100830726B1 (en) | Catalyst for cycloolefin production and process for production | |
KR20210061711A (en) | Shaped Dehydrogenation Catalysts and Process for Converting Paraffins to Corresponding Olefins Using the Same | |
JP4056782B2 (en) | Catalyst for producing carboxylic acid ester, process for producing the same, and process for producing carboxylic acid ester using the catalyst | |
JPWO2020050160A1 (en) | A catalyst for hydrogenation reaction used for hydrogenation of an amide compound and a method for producing an amine compound using the catalyst. | |
JP4931099B2 (en) | Catalyst for producing cycloolefin and method for producing cycloolefin | |
CN115430423A (en) | Rare earth doped spherical alumina-based PtSn catalyst and preparation method and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190520 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200131 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200218 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200401 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20200908 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200928 |
|
C60 | Trial request (containing other claim documents, opposition documents) |
Free format text: JAPANESE INTERMEDIATE CODE: C60 Effective date: 20200928 |
|
C11 | Written invitation by the commissioner to file amendments |
Free format text: JAPANESE INTERMEDIATE CODE: C11 Effective date: 20201013 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20201109 |
|
C21 | Notice of transfer of a case for reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C21 Effective date: 20201112 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20201201 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20201223 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6821151 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |