JP6820064B2 - 半導体発光素子を含む発光装置、発光装置の設計方法、発光装置の駆動方法、および照明方法 - Google Patents
半導体発光素子を含む発光装置、発光装置の設計方法、発光装置の駆動方法、および照明方法 Download PDFInfo
- Publication number
- JP6820064B2 JP6820064B2 JP2018121449A JP2018121449A JP6820064B2 JP 6820064 B2 JP6820064 B2 JP 6820064B2 JP 2018121449 A JP2018121449 A JP 2018121449A JP 2018121449 A JP2018121449 A JP 2018121449A JP 6820064 B2 JP6820064 B2 JP 6820064B2
- Authority
- JP
- Japan
- Prior art keywords
- light emitting
- light
- emitting device
- color
- ssl
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 184
- 239000004065 semiconductor Substances 0.000 title claims description 174
- 230000003595 spectral effect Effects 0.000 claims description 390
- 238000009826 distribution Methods 0.000 claims description 376
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 286
- 230000004907 flux Effects 0.000 claims description 257
- 230000005855 radiation Effects 0.000 claims description 195
- 238000005286 illumination Methods 0.000 claims description 163
- 230000002596 correlated effect Effects 0.000 claims description 112
- 230000005457 Black-body radiation Effects 0.000 claims description 49
- 229910052791 calcium Inorganic materials 0.000 claims description 21
- 229910052712 strontium Inorganic materials 0.000 claims description 20
- 229910052788 barium Inorganic materials 0.000 claims description 19
- 229910003564 SiAlON Inorganic materials 0.000 claims description 12
- 229910052749 magnesium Inorganic materials 0.000 claims description 11
- 229910052693 Europium Inorganic materials 0.000 claims description 8
- 229910052765 Lutetium Inorganic materials 0.000 claims description 8
- 229910052725 zinc Inorganic materials 0.000 claims description 7
- 229910052684 Cerium Inorganic materials 0.000 claims description 6
- 229910052771 Terbium Inorganic materials 0.000 claims description 5
- 238000002360 preparation method Methods 0.000 claims description 5
- 102100032047 Alsin Human genes 0.000 claims description 4
- 101710187109 Alsin Proteins 0.000 claims description 4
- 230000008569 process Effects 0.000 claims description 3
- 238000012360 testing method Methods 0.000 description 235
- 238000004364 calculation method Methods 0.000 description 122
- 239000003086 colorant Substances 0.000 description 71
- 238000002474 experimental method Methods 0.000 description 70
- 239000000463 material Substances 0.000 description 70
- 230000000007 visual effect Effects 0.000 description 56
- 238000010586 diagram Methods 0.000 description 52
- 230000000875 corresponding effect Effects 0.000 description 51
- 239000000758 substrate Substances 0.000 description 41
- 230000000694 effects Effects 0.000 description 36
- 230000008859 change Effects 0.000 description 34
- 238000001228 spectrum Methods 0.000 description 32
- 230000003287 optical effect Effects 0.000 description 31
- 230000000052 comparative effect Effects 0.000 description 29
- 239000011575 calcium Substances 0.000 description 27
- 229910052751 metal Inorganic materials 0.000 description 22
- 238000009877 rendering Methods 0.000 description 19
- 239000002184 metal Substances 0.000 description 18
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 17
- 239000013078 crystal Substances 0.000 description 16
- 238000011156 evaluation Methods 0.000 description 16
- 239000011777 magnesium Substances 0.000 description 15
- 238000005265 energy consumption Methods 0.000 description 13
- 239000012190 activator Substances 0.000 description 10
- 239000000203 mixture Substances 0.000 description 10
- 230000010355 oscillation Effects 0.000 description 10
- 229910052594 sapphire Inorganic materials 0.000 description 10
- 239000010980 sapphire Substances 0.000 description 10
- 229910052706 scandium Inorganic materials 0.000 description 10
- 229910052782 aluminium Inorganic materials 0.000 description 9
- 230000007246 mechanism Effects 0.000 description 9
- 239000011734 sodium Substances 0.000 description 9
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 8
- 230000007423 decrease Effects 0.000 description 8
- 230000004800 psychological effect Effects 0.000 description 8
- 239000000919 ceramic Substances 0.000 description 7
- 238000000295 emission spectrum Methods 0.000 description 7
- 235000013305 food Nutrition 0.000 description 7
- 230000001443 photoexcitation Effects 0.000 description 7
- 239000011701 zinc Substances 0.000 description 7
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 6
- 230000004888 barrier function Effects 0.000 description 6
- 230000005284 excitation Effects 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 238000010606 normalization Methods 0.000 description 6
- 229910052708 sodium Inorganic materials 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 230000002195 synergetic effect Effects 0.000 description 6
- 229910019655 synthetic inorganic crystalline material Inorganic materials 0.000 description 6
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 description 5
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 5
- 238000013461 design Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- -1 silicate nitride Chemical class 0.000 description 5
- 239000010936 titanium Substances 0.000 description 5
- 229910052727 yttrium Inorganic materials 0.000 description 5
- 240000004160 Capsicum annuum Species 0.000 description 4
- 235000008534 Capsicum annuum var annuum Nutrition 0.000 description 4
- 150000004645 aluminates Chemical class 0.000 description 4
- JNDMLEXHDPKVFC-UHFFFAOYSA-N aluminum;oxygen(2-);yttrium(3+) Chemical compound [O-2].[O-2].[O-2].[Al+3].[Y+3] JNDMLEXHDPKVFC-UHFFFAOYSA-N 0.000 description 4
- 239000008280 blood Substances 0.000 description 4
- 210000004369 blood Anatomy 0.000 description 4
- 239000001511 capsicum annuum Substances 0.000 description 4
- 230000001276 controlling effect Effects 0.000 description 4
- 238000000605 extraction Methods 0.000 description 4
- 230000010354 integration Effects 0.000 description 4
- 230000007935 neutral effect Effects 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 4
- 229910052721 tungsten Inorganic materials 0.000 description 4
- 239000010937 tungsten Substances 0.000 description 4
- 229910052688 Gadolinium Inorganic materials 0.000 description 3
- 241000735332 Gerbera Species 0.000 description 3
- 229910052769 Ytterbium Inorganic materials 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 230000002349 favourable effect Effects 0.000 description 3
- 150000002222 fluorine compounds Chemical class 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 229910052735 hafnium Inorganic materials 0.000 description 3
- 229910052738 indium Inorganic materials 0.000 description 3
- 229910052746 lanthanum Inorganic materials 0.000 description 3
- 229910052748 manganese Inorganic materials 0.000 description 3
- 230000008447 perception Effects 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 229910052718 tin Inorganic materials 0.000 description 3
- 239000010981 turquoise Substances 0.000 description 3
- 229910052726 zirconium Inorganic materials 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 229910052691 Erbium Inorganic materials 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 2
- 229910017639 MgSi Inorganic materials 0.000 description 2
- 229910052772 Samarium Inorganic materials 0.000 description 2
- 244000000231 Sesamum indicum Species 0.000 description 2
- 235000003434 Sesamum indicum Nutrition 0.000 description 2
- 229910004283 SiO 4 Inorganic materials 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 229910052793 cadmium Inorganic materials 0.000 description 2
- 230000004456 color vision Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000004043 dyeing Methods 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 230000005670 electromagnetic radiation Effects 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- WPPDXAHGCGPUPK-UHFFFAOYSA-N red 2 Chemical compound C1=CC=CC=C1C(C1=CC=CC=C11)=C(C=2C=3C4=CC=C5C6=CC=C7C8=C(C=9C=CC=CC=9)C9=CC=CC=C9C(C=9C=CC=CC=9)=C8C8=CC=C(C6=C87)C(C=35)=CC=2)C4=C1C1=CC=CC=C1 WPPDXAHGCGPUPK-UHFFFAOYSA-N 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 238000005204 segregation Methods 0.000 description 2
- 239000011669 selenium Substances 0.000 description 2
- 230000002269 spontaneous effect Effects 0.000 description 2
- 230000005428 wave function Effects 0.000 description 2
- 239000002023 wood Substances 0.000 description 2
- 235000001674 Agaricus brunnescens Nutrition 0.000 description 1
- 229910000980 Aluminium gallium arsenide Inorganic materials 0.000 description 1
- 229910000789 Aluminium-silicon alloy Inorganic materials 0.000 description 1
- 244000105624 Arachis hypogaea Species 0.000 description 1
- 240000005528 Arctium lappa Species 0.000 description 1
- 241000674144 Asparagus albus Species 0.000 description 1
- 240000007124 Brassica oleracea Species 0.000 description 1
- 235000003899 Brassica oleracea var acephala Nutrition 0.000 description 1
- 235000011299 Brassica oleracea var botrytis Nutrition 0.000 description 1
- 235000011301 Brassica oleracea var capitata Nutrition 0.000 description 1
- 235000017647 Brassica oleracea var italica Nutrition 0.000 description 1
- 235000001169 Brassica oleracea var oleracea Nutrition 0.000 description 1
- 240000003259 Brassica oleracea var. botrytis Species 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- 235000005979 Citrus limon Nutrition 0.000 description 1
- 244000131522 Citrus pyriformis Species 0.000 description 1
- 244000000626 Daucus carota Species 0.000 description 1
- 235000002767 Daucus carota Nutrition 0.000 description 1
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- 229910005793 GeO 2 Inorganic materials 0.000 description 1
- 229910052689 Holmium Inorganic materials 0.000 description 1
- 240000008415 Lactuca sativa Species 0.000 description 1
- 235000003228 Lactuca sativa Nutrition 0.000 description 1
- 235000007688 Lycopersicon esculentum Nutrition 0.000 description 1
- 229910020068 MgAl Inorganic materials 0.000 description 1
- 241000581835 Monodora junodii Species 0.000 description 1
- 240000008790 Musa x paradisiaca Species 0.000 description 1
- 235000018290 Musa x paradisiaca Nutrition 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 240000003768 Solanum lycopersicum Species 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 229910052775 Thulium Inorganic materials 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 235000005811 Viola adunca Nutrition 0.000 description 1
- 240000009038 Viola odorata Species 0.000 description 1
- 235000013487 Viola odorata Nutrition 0.000 description 1
- 235000002254 Viola papilionacea Nutrition 0.000 description 1
- 244000172533 Viola sororia Species 0.000 description 1
- TVGGZXXPVMJCCL-UHFFFAOYSA-N [Si].[La] Chemical compound [Si].[La] TVGGZXXPVMJCCL-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 230000003796 beauty Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 235000019219 chocolate Nutrition 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000004737 colorimetric analysis Methods 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 235000014510 cooky Nutrition 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000008393 encapsulating agent Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 235000012054 meals Nutrition 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 235000020232 peanut Nutrition 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 235000020995 raw meat Nutrition 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 description 1
- 239000000565 sealant Substances 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- UJMBCXLDXJUMFB-UHFFFAOYSA-K trisodium;5-oxo-1-(4-sulfonatophenyl)-4-[(4-sulfonatophenyl)diazenyl]-4h-pyrazole-3-carboxylate Chemical compound [Na+].[Na+].[Na+].[O-]C(=O)C1=NN(C=2C=CC(=CC=2)S([O-])(=O)=O)C(=O)C1N=NC1=CC=C(S([O-])(=O)=O)C=C1 UJMBCXLDXJUMFB-UHFFFAOYSA-K 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
- 229910019901 yttrium aluminum garnet Inorganic materials 0.000 description 1
Landscapes
- Led Device Packages (AREA)
- Spectrometry And Color Measurement (AREA)
- Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
- Non-Portable Lighting Devices Or Systems Thereof (AREA)
Description
さらに、液晶バックライト用光源等も同様に高効率化、省電力化が進展している。
appearance)」は非常に重要である。
の発光装置全般の発明に到達している。また、本発明者は、同時に快適な照明環境を高効率で実現する照明方法にも到達している。さらに本発明者はそのような好ましい発光装置の設計指針にも到達している。
しかし、年齢、性別、国などによって、最適と考えられる照明の嗜好は少しずつ異なっており、また、どのような空間をどのような目的で照明するかによっても最適な照明は異なる。さらに、生まれ育った生活環境、文化の異なる被験者間では、最適と考える照明の嗜好差も大きくなる場合もある。
本発明は、屋外で見たような、自然で、生き生きとした、視認性の高い、快適な、色の見え、物体の見えを実現可能な発光装置であって、さらには各種照明に対する要請を満たすべく、照明された対象物の色の見えを変化させうる発光装置、この設計方法を提供することを目的とする。さらに、本発明においては、当該発光装置の駆動方法、当該装置による照明方法を提供することを目的とする。
[1]
M個(Mは2以上の自然数)の発光領域が内在し、少なくとも一つの前記発光領域内に半導体発光素子を発光要素として備える発光装置であって、
当該発光装置の主たる放射方向に各発光領域から出射される光の分光分布をφSSLN(λ)(Nは1からM)とし、前記発光装置から当該放射方向に出射されるすべての光の分光分布φSSL(λ)が、
前記φSSL(λ)を、以下の条件1−2を満たすように出来る発光領域が内在する発光装置。
条件1:
前記発光装置から出射される光は、ANSI C78.377で定義される黒体放射軌跡からの距離DuvSSLが、−0.0350 ≦ DuvSSL ≦ −0.0040となる光を主たる放射方向に含む。
条件2:
前記発光装置から当該放射方向に出射される光の分光分布をφSSL(λ)、前記発光装置から当該放射方向に出射される光の相関色温度TSSL(K)に応じて選択される基準の光の分光分布をφref(λ)、前記発光装置から当該放射方向に出射される光の三刺激値を(XSSL、YSSL、ZSSL)、前記発光装置から当該放射方向に出射される光の相関色温度TSSL(K)に応じて選択される基準の光の三刺激値を(Xref、Yref、Zref)とし、
前記発光装置から当該放射方向に出射される光の規格化分光分布SSSL(λ)と、前記発光装置から当該放射方向に出射される光の相関色温度TSSL(K)に応じて選択される基準の光の規格化分光分布Sref(λ)と、これら規格化分光分布の差ΔS(λ)をそれぞれ、
SSSL(λ)=φSSL(λ)/YSSL
Sref(λ)=φref(λ)/Yref
ΔS(λ)=Sref(λ)−SSSL(λ)
と定義し、
波長380nm以上780nm以内の範囲で、SSSL(λ)の最長波長極大値を与える波長をλR(nm)とした際に、λRよりも長波長側にSSSL(λR)/2となる波長Λ4が存在する場合において、
下記数式(1)で表される指標Acgが、−360 ≦ Acg ≦ −10を満たし、
波長380nm以上780nm以内の範囲で、SSSL(λ)の最長波長極大値を与える波長をλR(nm)とした際に、λRよりも長波長側にSSSL(λR)/2となる波長Λ4が存在しない場合において、
下記数式(2)で表される指標Acgが、−360 ≦ Acg ≦ −10を満たす。
[1]記載の発光装置であって、すべてのφSSLN(λ)(Nは1からM)が、前記条件1と条件2を満たす発光装置。
[3]
[1]または[2]に記載の発光装置であって、前記M個の発光領域中の、少なくとも1つの発光領域が、他の発光領域に対して電気的に独立に駆動しうる配線となっている発光装置。
[4]
[3]記載の発光装置であって、M個の発光領域すべてが、他の発光領域に対して電気的に独立に駆動しうる配線となっている発光装置。
[5]
[1]〜[4]のいずれかに記載の発光装置であって、前記数式(1)又は(2)で表される指標Acg、相関色温度TSSL(K)、及び黒体放射軌跡からの距離DuvSSLからなる群から選択される少なくとも1つが変化し得る発光装置。
[6]
[5]記載の発光装置であって、前記数式(1)又は(2)で表される指標Acg、相関色温度TSSL(K)、及び黒体放射軌跡からの距離DuvSSLからなる群から選択される少なくとも1つが変化した際に、発光装置から主たる放射方向に出射される光束かつ/または放射束を独立に制御しうることを特徴とする発光装置。
[7]
[1]〜[6]のいずれかに記載の発光装置であって、最近接している異なる発光領域全体を包絡する仮想外周上にある任意の2点がつくる最大距離Lが、0.4mm以上200mm以下である発光装置。
[8]
[1]〜[7]のいずれかに記載の発光装置であって、
前記発光領域から出射される光束量かつ/または放射束量を変化させることで、φSSL(λ)が以下の条件3−4を更に満たすように出来る発光領域が内在する発光装置。
条件3:
当該放射方向に出射される光による照明を数学的に仮定した場合の#01から#15の下記15種類の修正マンセル色票のCIE 1976 L*a*b*色空間におけるa*値、b*値をそれぞれa* nSSL、b* nSSL(ただしnは1から15の自然数)とし、
当該放射方向に出射される光の相関色温度TSSL(K)に応じて選択される基準の光での照明を数学的に仮定した場合の当該15種類の修正マンセル色票のCIE 1976
L*a*b*色空間におけるa*値、b*値をそれぞれa* nref、b* nref(ただしnは1から15の自然数)とした場合に、飽和度差ΔCnが
−3.8 ≦ ΔCn ≦ 18.6 (nは1から15の自然数)
を満たし、下記式(3)で表される飽和度差の平均が下記式(4)を満たし、
2.8 ≦ |ΔCmax−ΔCmin| ≦ 19.6
を満たす。
ただし、ΔCn=√{(a* nSSL)2+(b* nSSL)2}−√{(a* nref)2+(b* nref)2}とする。
15種類の修正マンセル色票
#01 7.5 P 4 /10
#02 10 PB 4 /10
#03 5 PB 4 /12
#04 7.5 B 5 /10
#05 10 BG 6 / 8
#06 2.5 BG 6 /10
#07 2.5 G 6 /12
#08 7.5 GY 7 /10
#09 2.5 GY 8 /10
#10 5 Y 8.5/12
#11 10 YR 7 /12
#12 5 YR 7 /12
#13 10 R 6 /12
#14 5 R 4 /14
#15 7.5 RP 4 /12
条件4:
当該放射方向に出射される光による照明を数学的に仮定した場合の上記15種類の修正マンセル色票のCIE 1976 L*a*b*色空間における色相角をθnSSL(度)(ただしnは1から15の自然数)とし、
当該放射方向に出射される光の相関色温度TSSL(K)に応じて選択される基準の光での照明を数学的に仮定した場合の当該15種類の修正マンセル色票のCIE 1976
L*a*b*色空間における色相角をθnref(度)(ただしnは1から15の自然数)とした場合に、色相角差の絶対値|Δhn|が
0 ≦ |Δhn| ≦ 9.0(度)(nは1から15の自然数)
を満たす。
ただし、Δhn=θnSSL−θnrefとする。
[9]
[1]〜[8]のいずれかに記載の発光装置であって、
前記発光装置から当該放射方向に出射される光は、分光分布φSSL(λ)から導出される波長380nm以上780nm以下の範囲の放射効率K(lm/W)が
180(lm/W) ≦ K(lm/W) ≦ 320(lm/W)
を満たすように出来ることを特徴とする発光装置。
[10]
[1]〜[9]のいずれかに記載の発光装置であって、
前記発光装置から当該放射方向に出射される光は、相関色温度TSSL(K)が
2550(K) ≦ TSSL(K) ≦ 5650(K)
を満たすように出来ることを特徴とする発光装置。
[11]
[1]〜[10]のいずれかに記載の発光装置であって、
前記発光領域から出射される光束量かつ/または放射束量を変化させることで、前記φSSL(λ)を、前記条件1−2を満たすように出来る発光領域が内在することを特徴とする発光装置。
[12]
M個(Mは2以上の自然数)の発光領域が内在し、少なくとも一つの前記発光領域内に半導体発光素子を発光要素として備える発光装置の設計方法であって、
当該発光装置の主たる放射方向に各発光領域から出射される光の分光分布をφSSLN(λ)(Nは1からM)とし、前記発光装置から当該放射方向に出射されるすべての光の分光分布φSSL(λ)が、
前記φSSL(λ)を、以下の条件1−2を満たすようにできる構成となるように発光領域を設計する、発光装置の設計方法。
条件1:
前記発光装置から出射される光は、ANSI C78.377で定義される黒体放射軌跡からの距離DuvSSLが、−0.0350 ≦ DuvSSL ≦ −0.0040となる光を主たる放射方向に含む。
条件2:
前記発光装置から当該放射方向に出射される光の分光分布をφSSL(λ)、前記発光装置から当該放射方向に出射される光の相関色温度TSSL(K)に応じて選択される基準の光の分光分布をφref(λ)、前記発光装置から当該放射方向に出射される光の三刺激値を(XSSL、YSSL、ZSSL)、前記発光装置から当該放射方向に出射される光の相関色温度TSSL(K)に応じて選択される基準の光の三刺激値を(Xref、Yref、Zref)とし、
前記発光装置から当該放射方向に出射される光の規格化分光分布SSSL(λ)と、前
記発光装置から当該放射方向に出射される光の相関色温度TSSL(K)に応じて選択される基準の光の規格化分光分布Sref(λ)と、これら規格化分光分布の差ΔS(λ)をそれぞれ、
SSSL(λ)=φSSL(λ)/YSSL
Sref(λ)=φref(λ)/Yref
ΔS(λ)=Sref(λ)−SSSL(λ)
と定義し、
波長380nm以上780nm以内の範囲で、SSSL(λ)の最長波長極大値を与える波長をλR(nm)とした際に、λRよりも長波長側にSSSL(λR)/2となる波長Λ4が存在する場合において、
下記数式(1)で表される指標Acgが、−360 ≦ Acg ≦ −10を満たし、
波長380nm以上780nm以内の範囲で、SSSL(λ)の最長波長極大値を与える波長をλR(nm)とした際に、λRよりも長波長側にSSSL(λR)/2となる波長Λ4が存在しない場合において、
下記数式(2)で表される指標Acgが、−360 ≦ Acg ≦ −10を満たす。
[12]記載の発光装置の設計方法であって、すべてのφSSLN(λ)(Nは1からM)が、前記条件1と条件2を満たす発光装置の設計方法。
[14]
[12]または[13]に記載の発光装置の設計方法であって、前記M個の発光領域中の、少なくとも1つの発光領域が、他の発光領域に対して電気的に独立に駆動しうる配線となっている発光装置の設計方法。
[15]
[14]記載の発光装置の設計方法であって、M個の発光領域すべてが、他の発光領域に対して電気的に独立に駆動しうる配線となっている発光装置の設計方法。
[16]
[12]〜[15]のいずれかに記載の発光装置の設計方法であって、前記数式(1)又は(2)で表される指標Acg、相関色温度TSSL(K)、及び黒体放射軌跡からの距離DuvSSLからなる群から選択される少なくとも1つが変化し得る発光装置の設計方法。
[17]
[16]記載の発光装置の設計方法であって、前記数式(1)又は(2)で表される指標Acg、相関色温度TSSL(K)、及び黒体放射軌跡からの距離DuvSSLからなる群から選択される少なくとも1つが変化した際に、発光装置から主たる放射方向に出射される光束かつ/または放射束を独立に制御しうることを特徴とする発光装置の設計方法。
[18]
[12]〜[17]のいずれかに記載の発光装置の設計方法であって、最近接している
異なる発光領域全体を包絡する仮想外周上にある任意の2点がつくる最大距離Lが、0.4mm以上200mm以下である発光装置の設計方法。
[19]
[12]〜[18]のいずれかに記載の発光装置の設計方法であって、
前記発光領域から出射される光束量かつ/または放射束量を変化させることでφSSL(λ)を、更に以下の条件3−4を満たすようにできる発光装置の設計方法。
条件3:
当該放射方向に出射される光による照明を数学的に仮定した場合の#01から#15の下記15種類の修正マンセル色票のCIE 1976 L*a*b*色空間におけるa*値、b*値をそれぞれa* nSSL、b* nSSL(ただしnは1から15の自然数)とし、
当該放射方向に出射される光の相関色温度T(K)に応じて選択される基準の光での照明を数学的に仮定した場合の当該15種類の修正マンセル色票のCIE 1976 L*a*b*色空間におけるa*値、b*値をそれぞれa* nref、b* nref(ただしnは1から15の自然数)とした場合に、飽和度差ΔCnが
−3.8 ≦ ΔCn ≦ 18.6 (nは1から15の自然数)
を満たし、下記式(3)で表される飽和度差の平均が下記式(4)を満たし、
2.8 ≦ |ΔCmax−ΔCmin| ≦ 19.6
を満たす。
ただし、ΔCn=√{(a* nSSL)2+(b* nSSL)2}−√{(a* nref)2+(b* nref)2}とする。
15種類の修正マンセル色票
#01 7.5 P 4 /10
#02 10 PB 4 /10
#03 5 PB 4 /12
#04 7.5 B 5 /10
#05 10 BG 6 / 8
#06 2.5 BG 6 /10
#07 2.5 G 6 /12
#08 7.5 GY 7 /10
#09 2.5 GY 8 /10
#10 5 Y 8.5/12
#11 10 YR 7 /12
#12 5 YR 7 /12
#13 10 R 6 /12
#14 5 R 4 /14
#15 7.5 RP 4 /12
条件4:
当該放射方向に出射される光による照明を数学的に仮定した場合の上記15種類の修正マンセル色票のCIE 1976 L*a*b*色空間における色相角をθnSSL(度)(ただしnは1から15の自然数)とし、
当該放射方向に出射される光の相関色温度TSSL(K)に応じて選択される基準の光での照明を数学的に仮定した場合の当該15種類の修正マンセル色票のCIE 1976
L*a*b*色空間における色相角をθnref(度)(ただしnは1から15の自然数)とした場合に、色相角差の絶対値|Δhn|が
0 ≦ |Δhn| ≦ 9.0(度)(nは1から15の自然数)
を満たす。
ただし、Δhn=θnSSL−θnrefとする。
[20]
[12]〜[19]のいずれかに記載の発光装置の設計方法であって、
前記発光装置から当該放射方向に出射される光は、分光分布φSSL(λ)から導出される波長380nm以上780nm以下の範囲の放射効率K(lm/W)が
180(lm/W) ≦ K(lm/W) ≦ 320(lm/W)
を満たすように出来ることを特徴とする発光装置の設計方法。
[21]
[12]〜[20]のいずれかに記載の発光装置の設計方法であって、
前記発光装置から当該放射方向に出射される光は、相関色温度TSSL(K)が
2550(K) ≦ TSSL(K) ≦ 5650(K)
を満たすように出来ることを特徴とする発光装置の設計方法。
[22]
[12]〜[21]のいずれかに記載の発光装置の設計方法であって、
前記発光領域から出射される光束量かつ/または放射束量を変化させることで、前記φSSL(λ)を、前記条件1−2を満たすようにできる構成となるように発光領域を設計することを特徴とする発光装置の設計方法。
[23]
M個(Mは2以上の自然数)の発光領域が内在し、少なくとも一つの前記発光領域内に半導体発光素子を発光要素として備える発光装置の駆動方法であって、
当該発光装置の主たる放射方向に各発光領域から出射される光の分光分布をφSSLN(λ)(Nは1からM)とし、前記発光装置から当該放射方向に出射されるすべての光の分光分布φSSL(λ)が、
φSSL(λ)を、以下の条件1−2を満たすものとなるように、前記各発光領域に給電する発光装置の駆動方法。
条件1:
前記発光装置から出射される光は、ANSI C78.377で定義される黒体放射軌跡からの距離DuvSSLが、−0.0350 ≦ DuvSSL ≦ −0.0040となる光を主たる放射方向に含む。
条件2:
前記発光装置から当該放射方向に出射される光の分光分布をφSSL(λ)、前記発光装置から当該放射方向に出射される光の相関色温度TSSL(K)に応じて選択される基準の光の分光分布をφref(λ)、前記発光装置から当該放射方向に出射される光の三刺激値を(XSSL、YSSL、ZSSL)、前記発光装置から当該放射方向に出射される光の相関色温度TSSL(K)に応じて選択される基準の光の三刺激値を(Xref、Yref、Zref)とし、
前記発光装置から当該放射方向に出射される光の規格化分光分布SSSL(λ)と、前記発光装置から当該放射方向に出射される光の相関色温度TSSL(K)に応じて選択される基準の光の規格化分光分布Sref(λ)と、これら規格化分光分布の差ΔS(λ)をそれぞれ、
SSSL(λ)=φSSL(λ)/YSSL
Sref(λ)=φref(λ)/Yref
ΔS(λ)=Sref(λ)−SSSL(λ)
と定義し、
波長380nm以上780nm以内の範囲で、SSSL(λ)の最長波長極大値を与える波長をλR(nm)とした際に、λRよりも長波長側にSSSL(λR)/2となる波長Λ4が存在する場合において、
下記数式(1)で表される指標Acgが、−360 ≦ Acg ≦ −10を満たし、
下記数式(2)で表される指標Acgが、−360 ≦ Acg ≦ −10を満たす。
[23]記載の発光装置の駆動方法であって、すべてのφSSLN(λ)(Nは1からM)を、前記条件1と条件2を満たすものとなるように発光領域に給電する発光装置の駆動方法。
[25]
[23]または[24]に記載の発光装置の駆動方法であって、M個の発光領域中の、少なくとも1つの発光領域を、他の発光領域に対して電気的に独立に駆動する発光装置の駆動方法。
[26]
[23]〜[25]のいずれかに記載の発光装置の駆動方法であって、M個の発光領域すべてを、他の発光領域に対して電気的に独立に駆動する発光装置の駆動方法。
[27]
[23]〜[26]のいずれかに記載の発光装置の駆動方法であって、前記数式(1)又は(2)で表される指標Acg、相関色温度TSSL(K)、及び黒体放射軌跡からの距離DuvSSLからなる群から選択される少なくとも1つを変化させる発光装置の駆動方法。
[28]
[27]に記載の発光装置の駆動方法であって、前記数式(1)又は(2)で表される指標Acg、相関色温度TSSL(K)、及び黒体放射軌跡からの距離DuvSSLからなる群から選択される少なくとも1つを変化させた際に、発光装置から主たる放射方向に出射される光束かつ/または放射束を不変とする発光装置の駆動方法。
[29]
[27]に記載の発光装置の駆動方法であって、前記数式(1)又は(2)で表される指標Acgを減少させた際に、発光装置から主たる放射方向に出射される光束かつ/または放射束を低減させる発光装置の駆動方法。
[30]
[27]に記載の発光装置の駆動方法であって相関色温度TSSL(K)を増加させた際に、発光装置から主たる放射方向に出射される光束かつ/または放射束を増加させる発光装置の駆動方法。
[31]
[27]に記載の発光装置の駆動方法であって黒体放射軌跡からの距離DuvSSLを減少させた際に、発光装置から主たる放射方向に出射される光束かつ/または放射束を減少させる発光装置の駆動方法。
[32]
[23]〜[31]のいずれかに記載の発光装置の駆動方法であって、
φSSL(λ)を、更に以下の条件3−4を満たすものとなるように給電する、発光装置の駆動方法。
条件3:
当該放射方向に出射される光による照明を数学的に仮定した場合の#01から#15の下記15種類の修正マンセル色票のCIE 1976 L*a*b*色空間におけるa*値、b*値をそれぞれa* nSSL、b* nSSL(ただしnは1から15の自然数)とし、
当該放射方向に出射される光の相関色温度TSSL(K)に応じて選択される基準の光での照明を数学的に仮定した場合の当該15種類の修正マンセル色票のCIE 1976
L*a*b*色空間におけるa*値、b*値をそれぞれa* nref、b* nref(ただしnは1から15の自然数)とした場合に、飽和度差ΔCnが
−3.8 ≦ ΔCn ≦ 18.6 (nは1から15の自然数)
を満たし、下記式(3)で表される飽和度差の平均が下記式(4)を満たし、
2.8 ≦ |ΔCmax−ΔCmin| ≦ 19.6
を満たす。
ただし、ΔCn=√{(a* nSSL)2+(b* nSSL)2}−√{(a* nref)2+(b* nref)2}とする。
15種類の修正マンセル色票
#01 7.5 P 4 /10
#02 10 PB 4 /10
#03 5 PB 4 /12
#04 7.5 B 5 /10
#05 10 BG 6 / 8
#06 2.5 BG 6 /10
#07 2.5 G 6 /12
#08 7.5 GY 7 /10
#09 2.5 GY 8 /10
#10 5 Y 8.5/12
#11 10 YR 7 /12
#12 5 YR 7 /12
#13 10 R 6 /12
#14 5 R 4 /14
#15 7.5 RP 4 /12
条件4:
当該放射方向に出射される光による照明を数学的に仮定した場合の上記15種類の修正マンセル色票のCIE 1976 L*a*b*色空間における色相角をθnSSL(度)(ただしnは1から15の自然数)とし、
当該放射方向に出射される光の相関色温度TSSL(K)に応じて選択される基準の光での照明を数学的に仮定した場合の当該15種類の修正マンセル色票のCIE 1976
L*a*b*色空間における色相角をθnref(度)(ただしnは1から15の自然数)とした場合に、色相角差の絶対値|Δhn|が
0 ≦ |Δhn| ≦ 9.0(度)(nは1から15の自然数)
を満たす。
ただし、Δhn=θnSSL−θnrefとする。
対象物を準備する照明対象物準備工程、および、M個(Mは2以上の自然数)の発光領域が内在し、少なくとも一つの発光領域内に半導体発光素子を発光要素として備える発光装置から出射される光により対象物を照明する照明工程、を含む照明方法であって、
前記照明工程において、前記発光装置から出射される光が対象物を照明した際に、前記対象物の位置で測定した光が以下の<1>、<2>及び<3>を満たすように照明する照明方法。
<1>前記対象物の位置で測定した光のANSI C78.377で定義される黒体放射軌跡からの距離DuvSSLが、−0.0350 ≦ DuvSSL ≦ −0.0040である。
<2>前記対象物の位置で測定した光による照明を数学的に仮定した場合の#01から#15の下記15種類の修正マンセル色票のCIE 1976 L*a*b*色空間におけるa*値、b*値をそれぞれa* nSSL、b* nSSL(ただしnは1から15の自然数)とし、
前記対象物の位置で測定した光の相関色温度TSSL(K)に応じて選択される基準の光による照明を数学的に仮定した場合の当該15種類の修正マンセル色票のCIE 1976 L*a*b*色空間におけるa*値、b*値をそれぞれa* nref、b* nref(ただしnは1から15の自然数)とした場合に、飽和度差ΔCnが
−3.8 ≦ ΔCn ≦ 18.6 (nは1から15の自然数)
を満たし、
下記式(3)で表される飽和度差の平均が下記式(4)を満たし、
2.8 ≦ |ΔCmax−ΔCmin| ≦ 19.6
を満たす。
ただし、ΔCn=√{(a* nSSL)2+(b* nSSL)2}−√{(a* nref)2+(b* nref)2}とする。
15種類の修正マンセル色票
#01 7.5 P 4 /10
#02 10 PB 4 /10
#03 5 PB 4 /12
#04 7.5 B 5 /10
#05 10 BG 6 / 8
#06 2.5 BG 6 /10
#07 2.5 G 6 /12
#08 7.5 GY 7 /10
#09 2.5 GY 8 /10
#10 5 Y 8.5/12
#11 10 YR 7 /12
#12 5 YR 7 /12
#13 10 R 6 /12
#14 5 R 4 /14
#15 7.5 RP 4 /12
<3>前記対象物の位置で測定した光による照明を数学的に仮定した場合の上記15種類の修正マンセル色票のCIE 1976 L*a*b*色空間における色相角をθnSSL(度)(ただしnは1から15の自然数)とし、
前記対象物の位置で測定した光の相関色温度TSSL(K)に応じて選択される基準の光による照明を数学的に仮定した場合の当該15種類の修正マンセル色票のCIE 1976 L*a*b*色空間における色相角をθnref(度)(ただしnは1から15の自然数)とした場合に、色相角差の絶対値|Δhn|が
0 ≦ |Δhn| ≦ 9.0(度)(nは1から15の自然数)
を満たす。
ただし、Δhn=θnSSL−θnrefとする。
[34]
[33]記載の照明方法であって、前記対象物の位置に到達している各発光要素から出射された光の分光分布をφSSLN(λ)(Nは1からM)、前記対象物の位置で測定した光の分光分布φSSL(λ)が、
すべてのφSSLN(λ)(Nは1からM)を、前記<1><2><3>を満たすようにできる照明方法。
[35]
[33]または[34]に記載の照明方法であって、M個の発光領域中の、少なくとも1つの発光領域を、他の発光領域に対して電気的に独立駆動し照明する照明方法。
[36]
[35]に記載の照明方法であって、M個の発光領域すべてを、他の発光領域に対して電気的に独立駆動し照明する照明方法。
[37]
[33]〜[36]のいずれかに記載の照明方法であって、前記式(3)で表される飽和度差の平均
[38]
[37]に記載の照明方法であって、前記式(3)で表される飽和度差の平均
[39]
[38]に記載の照明方法であって、前記式(3)で表される飽和度差の平均
[40]
[38]に記載の照明方法であって、前記式(3)で表される飽和度差の平均
[41]
[38]に記載の照明方法であって、相関色温度TSSL(K)を増加させた際に、当該対象物における照度を増加する照明方法。
[42]
[38]に記載の照明方法であって、黒体放射軌跡からの距離DuvSSLを減少させた際に、当該対象物における照度を減少する照明方法。
[43]
[33]〜[42]のいずれかに記載の照明方法であって、最近接している異なる発光領域全体を包絡する仮想外周上にある任意の2点がつくる最大距離をL、発光装置と照明対象物の距離をHとした際に、
5×L≦H≦500×L
となるように距離Hを設定する照明方法。
特に本発明では、屋外で見たような、自然で、生き生きとした、視認性の高い、快適な、色の見え、物体の見えを実現しつつ、照明する空間、使用する目的に応じて、光源の色度点(換言すると相関色温度と、ANSI C78.377で定義される黒体放射からの距離Duv)を可変とすることができる。さらに、色の見えに大きな影響を与えるAcgを変化させることで、当該発光装置で照明された照明対象物の飽和度(彩度)も可変することができるようになる。さらに、光源の色度点の変化に対して、光源の光束かつ/または放射束、あるいは照明対象物における照度を可変とすることで、照明対象物の彩度(飽和度)相関色温度、Duv、等に対する照度を最適に制御することも可能となる。
第一に、本発明による光源、器具、システム等の発光装置で照明した場合、又は、本発明の照明方法により照明した場合には、実験用基準光や実験用擬似基準光で照明した場合等に比較して、ほぼ同様のCCT、ほぼ同様の照度であっても、白色はより白く、自然に、心地よく見える。さらに、白、灰色、黒等の無彩色間の明度差も視認しやすくなる。このために、例えば、一般の白色紙上の黒文字等が読みやすくなる。なお、詳細は後述するが、このような効果はこれまでの常識に照らして全く予想外の効果である。
第二に、本発明による発光装置で実現された照度は、又は、本発明の照明方法により照明した場合の照度は、数千Lxから数百Lx程度の通常室内環境程度であったとしても、紫色、青紫色、青色、青緑色、緑色、黄緑色、黄色、黄赤色、赤色、赤紫色などの大半の色、場合によってはすべての色について、たとえば晴れた日の屋外照度下のような数万lx程度の下で見たような真に自然な色の見えが実現される。また、中間的な彩度を有する、被験者(日本人)の肌色、各種食品、衣料品、木材色等も、多くの被験者がより好ましいと感じる、自然な色の見えとなる。
第三に、実験用基準光や実験用擬似基準光で照明した場合等に比較して、ほぼ同様のC
CT、ほぼ同様の照度であっても、本発明による発光装置で照明した場合、又は、本発明の照明方法により照明した場合には、近接した色相における色識別が容易になり、あたかも高照度環境下の様な快適な作業等が可能となる。さらに具体的には、たとえば類似した赤色を有する複数の口紅などをより容易に識別可能となる。
第四に、実験用基準光や実験用擬似基準光で照明した場合等に比較して、ほぼ同様のCCT、ほぼ同様の照度であっても、本発明による光源、器具、システムで照明した場合、又は、本発明の照明方法により照明した場合には、あたかも高照度環境下で見たように、物体がよりはっきりと、容易に、視認できるようになる。
また、本発明により実現する利便さは、以下の通りである。
すなわち、年齢、性別、国などによって、また、どのような空間をどのような目的で照明するかによって、最適な照明は異なるが、本発明の発光装置、また本発明の発光装置の駆動方法を用いると、より最適と考えられる照明条件を、可変範囲から容易に選択することができる。
なお、本発明の第一乃至第三の実施態様では、発光装置が放射する光のうち「主たる放射方向」の光により発明を特定するものである。そのため、本発明の要件を満たす「主たる放射方向」の光を含む放射を行うことができる発光装置は、本発明の範囲に属するもの
である。
また、本発明の第四の実施態様における照明方法は、該照明方法に用いる発光装置から出射された光が対象物を照明した場合において、当該対象物が照明されている位置における光により、発明を特定するものである。そのため、本発明の要件を満たす「対象物が照明されている位置」における光を出射できる発光装置による照明方法は、本発明の範囲に属するものである。
が放射されている方向を示す。
例えば、発光装置の光度(luminous intensity)もしくは輝度(luminance)が最大もし
くは極大となる方向でありうる。
また、発光装置の光度もしくは輝度が最大もしくは極大となる方向を含む有限の範囲を持った方向でありうる。
また、発光装置の放射強度(radiant intensity)あるいは放射輝度(radiance)が最
大もしくは極大となる方向でありうる。
また、発光装置の放射強度あるいは放射輝度が最大もしくは極大となる方向を含む有限の範囲を持った方向でありうる。
発光装置が単体発光ダイオード(LED)、単体パッケージLED,単体LEDモジュール、単体LED電球、蛍光ランプと半導体発光素子の単体複合ランプ、白熱電球と半導体発光素子の単体複合ランプ等である場合には、主たる放射方向は各発光装置の鉛直方向、鉛直方向を含む有限の立体角内、例えば最大でπ(sr)、最小でπ/100(sr)でありうる。
発光装置が前記パッケージLED等にレンズ、反射機構等を付与したLED照明器具、蛍光ランプと半導体発光素子が内在する照明器具であって、いわゆる、直接型照明用途、半直接型照明用途、全般拡散照明用途、直接/間接型照明用途、半間接型照明用途、間接型照明用途に応用可能な配光特性を有する場合には、主たる放射方向は、各発光装置の鉛直方向、鉛直方向を含む有限の立体角内、例えば最大でπ(sr)、最小でπ/100(sr)でありうる。また、発光装置の光度もしくは輝度が最大もしくは極大となる方向でありうる。また、発光装置の光度もしくは輝度が最大もしくは極大となる方向を含む有限の立体角内、例えば最大でπ(sr)、最小でπ/100(sr)でありうる。また、発光装置の放射強度あるいは放射輝度が最大もしくは極大となる方向でありうる。また、発光装置の放射強度あるいは放射輝度が最大もしくは極大となる方向を含む有限の立体角内、例えば最大でπ(sr)、最小でπ/100(sr)でありうる。
発光装置が、前記LED照明器具や蛍光ランプが内在する照明器具を複数搭載した照明システムである場合は、主たる放射方向は、各発光装置の平面的中心の鉛直方向、当該鉛直方向を含む有限の立体角内、例えば最大でπ(sr)、最小でπ/100(sr)でありうる。また、発光装置の光度もしくは輝度が最大もしくは極大となる方向でありうる。また、発光装置の光度もしくは輝度が最大もしくは極大となる方向を含む有限の立体角内、例えば最大でπ(sr)、最小でπ/100(sr)でありうる。また、発光装置の放射強度あるいは放射輝度が最大もしくは極大となる方向でありうる。また、発光装置の放射強度あるいは放射輝度が最大もしくは極大となる方向を含む有限の立体角内、例えば最大でπ(sr)、最小でπ/100(sr)でありうる。
発光装置から当該主たる放射方向に出射された光の分光分布を計測するためには、計測点における照度が実用上の照度(後述の通り150lx以上5000lx以下)となる距離で計測することが好ましい。
た基準の光を、基準の光、計算用基準の光、計算用基準光などと記載する場合がある。一方、視覚的な実比較で用いる実験用の基準の光、すなわちタングステンフィラメントが内在する白熱電球光などは、基準の光、実験用基準の光、実験用基準光と記載する場合がある。また、基準の光に近接した色の見えとなると予想される高Raかつ高Riである光、たとえばLED光源であって、比較視覚実験で実験用基準光の代替光として用いる光は、基準の光、実験用疑似基準の光、実験用擬似基準光と記載する場合がある。また、数学的にまた実験的に検討対象とした光を、基準の光に対して、試験光と記載する場合がある。
また、複数種類の発光領域のうち少なくとも一つの発光領域に、半導体発光素子を発光要素として備える。少なくとも一つの発光領域に半導体発光素子を発光要素として備えていれば、各発光領域が備える発光要素に制限はない。半導体発光素子以外の発光要素としては、投入された種々のエネルギーを電磁放射のエネルギーに変換し、その電磁放射エネルギー中に380nmから780nmの可視光を含むものであればよい。例えば、電気エネルギーを変換しうる熱フィラメント、蛍光管、高圧ナトリウムランプ、レーザ、二次高調波発生(SHG)源等を例示することができる。また、光エネルギーを変換しうる蛍光体なども例示できる。
本発明の第一の実施態様に係る発光装置は、発光要素である半導体発光素子を備える発光領域を含め、複数の発光領域が内在すれば、それ以外の構成は特段限定されない。発光領域としては、単体の半導体発光素子に通電機構としてのリード線等を付与したものでも、放熱機構等をさらに付与し蛍光体等と一体にしたパッケージ化LED等でもよい。
また、発光装置としては、1以上のパッケージ化LEDにさらに堅牢な放熱機構を付与し、一般的には複数のパッケージLEDを搭載したLEDモジュールでもよい。さらには、パッケージLED等にレンズ、光反射機構等を付与したLED照明器具であってもよい。さらに、LED照明器具等を多数支持し、対象物を照明できるように仕上げた照明システムであってもよい。本実施態様に係る発光装置とは、これらをすべて含んだものである。
図101に記載の発光装置100は、本発明の第一の実施態様に係る発光装置の一態様である。発光装置100は、上記式においてM=5の場合を示しており、発光領域1〜発光領域5の、5つの(すなわち5種類の)発光領域が内在する。各発光領域は半導体発光素子6を発光要素として備える。
発光領域1から出射される光の分光分布をφSSL1(λ)、発光領域2から出射される光の分光分布をφSSL2(λ)、発光領域3から出射される光の分光分布をφSSL3(λ)、発光領域4から出射される光の分光分布をφSSL4(λ)、発光領域5から
出射される光の分光分布をφSSL5(λ)と表すと、発光装置から当該放射方向に出射されるすべての光の分光分布φSSL(λ)は、
以下、本発明に関して詳細に説明をする。
具体的な発明到達までの概要は以下の通りであった。
第一ステップとして、分光分布設定の自由度が高い、A)半導体発光素子と蛍光体が共に内在するパッケージLED光源、B)蛍光体を含まず、半導体発光素子のみが発光要素として内在するパッケージLED光源を想定し、数学的な基礎検討を行った。
この際に、計算用基準光による照明を仮定した場合と、検討対象とする試験光による照明を仮定した場合とで、特定の分光反射特性を有する色票の色の見えに関する数学的変化を指針としつつ、色相、飽和度(彩度)等が変化する試験光に関して詳細な検討を行った。特に屋外に対して1/10から1/1000程度に照度が下がる通常の屋内環境下でのハント効果を意識し、照明された物体の色の見えの飽和度が変化するような光を中心に数学的に検討した。
得る光源、これを内在させた照明器具も試作した。さらに、これらを用いた視覚実験のために、実験用基準光もしくは実験用擬似基準光で対象物を照明した場合の色の見えと、パッケージLED光源を内在させた照明器具の光(試験光)で対象物を照明した場合の色の見えを、被験者に評価してもらうために、多数の観察対象物に対して異なる照明光を照射可能な照明実験システムを作成した。
なお、第五ステップの内容は、本発明の第一乃至第四の実施態様に係る実施例/比較例でもあり、第三ステップ、第四ステップの内容は、本発明の第四の実施態様に係る照明方法の参考実施例/参考比較例でもあり、第二ステップ、第三ステップ、第四ステップの内容は、本発明の第一乃至第三の実施態様に係る参考実施例/参考比較例でもある。
第一ステップにおいて、本発明の照明方法において主として検討した発光装置から出射された光が対象物を照明した位置における分光分布、又は、本発明の発光装置から出射される主たる放射方向の光が有する分光分布は、ハント効果を意識して、飽和度が基準の光で照明した場合から変化するものとした。ここで、色の見えやその変化を定量化するために、以下の選択を行った。
一般には、CRIで使用される試験色が選択肢となりうるが、平均演色評価数等を導出する際に使用しているR1からR8の色票は中彩度な色票であって、高彩度な色の飽和度を議論するには適さないと考えた。また、R9からR12は高彩度な色票であるが、全色相角範囲の詳細な議論にはサンプル数が足りない。
Technology)から提案されている新たな演色評価指標のひとつであるCQS
(Color Quality Scale)(バージョン7.4及び7.5)で用いる色票と同じである。以下に本発明で用いた15種類の色票を列記する。また冒頭には、便宜上色票に与えた、番号を記載した。なお、本明細書中においては、これら番号をnと代表させる場合があり、たとえばn=3は、「5PB 4/12」の意味である。nは1から15の自然数である。
#01 7.5 P 4 /10
#02 10 PB 4 /10
#03 5 PB 4 /12
#04 7.5 B 5 /10
#05 10 BG 6 / 8
#06 2.5 BG 6 /10
#07 2.5 G 6 /12
#08 7.5 GY 7 /10
#09 2.5 GY 8 /10
#10 5 Y 8.5/12
#11 10 YR 7 /12
#12 5 YR 7 /12
#13 10 R 6 /12
#14 5 R 4 /14
#15 7.5 RP 4 /12
of 2000)を採用した。
第一ステップにおいて、パッケージLED光源を各種試作するためには、光源の色度点選択も重要である。光源、光源からの光で対象物が照明された位置における分光分布、又は、発光装置から出射された主たる放射方向の光が有する分光分布から、導出される色度は、例えばCIE 1931(x、y)色度図でも定義できるが、より均等な色度図であるCIE 1976(u’、v’)色度図で議論することが好ましい。また、色度図上の位置をCCTとDuvで記述する際には特に(u’、(2/3)v’)色度図(CIE 1960(u、v)色度図と同義)が用いられる。なお、本明細書中で記載するDuvは、ANSI C78.377で定義されている量であって、(u’、(2/3)v’)色度図における黒体放射軌跡に対して最近接となる距離をその絶対値として示している。また、正符号は発光装置の色度点が黒体放射軌跡の上方(v’が大きい側)に位置し、負符号は発光装置の色度点が黒体放射軌跡の下方(v’が小さい側)に位置することを意味する。
同一の色度点にあっても、物体の色の見えは変えることができる。例えば、図1、図2、図3に示した3種類の分光分布(試験光)は、ピーク波長が425−475nmの半導体発光素子を内在させ、これを、緑色蛍光体と赤色蛍光体の励起光源としたパッケージLEDを仮定して、同一の色度(CCTは5500K、Duvは0.0000)において、照明された物体の色の見えが異なるようにした例である。それぞれの分光分布を構成する緑色蛍光体と赤色蛍光体は同一材料を仮定しているが、青色半導体発光素子のピーク波長は、飽和度を変化させるべく、図1は459nm、図2は475nm、図3は425nmとした。それぞれの分光分布での照明と、その分光分布に対応する計算用基準光での照明を仮定すると、当該15色票の予想される色の見えは、図1から図3のCIELAB色空間に示したようになる。ここで、図中点線で結んだ点は計算用基準光での照明を仮定した場合であって、実線はそれぞれの試験光での照明を仮定した場合である。なお、紙面垂直方向は明度であるが、ここでは簡便のためにa*、b*軸のみをプロットした。
このように同一色度点において色の見えは変化させ得ることが理解できる。
中点線で結んだ点は計算用基準光の結果であって、実線はそれぞれの試験光の結果である。なお、紙面垂直方向は明度であるが、ここでは簡便のためにa*、b*軸のみをプロットした。
色票の飽和度を変化させ得ることが分かった。また、Duv=0.0001の試験光の場合と比較すると、比較的均等に当該15種類の色票の飽和度を変化させ得ることも分かった。なお、計算用基準光での照明を仮定した場合と、図中の試験光での照明を仮定した場合では、当該15種類の色票の色の見えは、Duvを正方向にシフトさせた場合、青領域を除いて、ほぼすべての色がくすんで見えることが予想された。さらにDuvを正にすればするほど、飽和度が低下する傾向も予想された。図23から図27の分光分布から計算されるRaは、それぞれ92、85、76、69、62と、現在一般に広がっている理解に従えば、Duvの値を正にすればするほど、色の見えは基準光で照明した場合から離れ、悪化すると予想された。
い系として実現したものである。ここに見られるように、Duvを負方向にシフトさせると、Duv=0.0001の試験光の場合と比較して、より広範な色相域において当該15種類の色票の飽和度を変化させ得ることが分かった。また、Duv=0.0001の試験光の場合と比較すると、比較的均等に当該15種類の色票の飽和度を変化させ得ることも分かった。なお、計算用基準光での照明を仮定した場合と、図中の試験光での照明を仮定した場合では、当該15種類の色票の色の見えは、Duvを負方向にシフトさせた場合、青領域を除いて、ほぼすべての色が鮮やかに見えることが予想された。さらにDuvを負にすればするほど、飽和度が上昇する傾向も予想された。図28から図32の分光分布から計算されるRaは、それぞれ89、80、71、61、56であって、現在一般に広がっている理解に従えば、Duvの値を負にすればするほど、色の見えは基準光で照明した場合から離れ、悪化すると予想された。
ここまでの計算検討から、「現在広く信じられている常識に従えば」以下のことが予想された。
(1)Duv=0.0000近傍の色度点を有する試験光で、当該15色票の飽和度を変化させる自由度は低い。具体的には高彩度な当該15色票の大多数の色相の飽和度を一度に変化させる、あるいは、多数の色相において比較的均等に飽和度を向上させる、低下させるなどのことは困難である。
(2)試験光のDuvを正にすると、当該15色票の飽和度を比較的容易に低下できる。Duv=0.0000の試験光の場合と比較して、より広範な色相域において、かつ、比較的均等に当該15種類の色票の飽和度を低下させ得る。さらにDuvを正にすればするほど、飽和度がより低下する。また、Raがより低下することから、視覚実験等では、Duvを正にすればするほど、実験用基準光や実験用疑似基準光で実際の照明対象物等を照明した場合と、試験光で照明した場合の色の見えは差が大きくなり、また、それは悪化したものとなってしまうと予想された。特に白色は黄色(緑色)かかり、色の見えは全体に不自然に見えると予想された。
(3)Duvを負にすると、当該15色票の飽和度を比較的容易に上昇できる。Duv=0.0000の試験光の場合と比較して、より広範な色相域において、かつ、比較的均等に当該15種類の色票の飽和度を向上させ得る。さらにDuvを負にすればするほど、飽和度がより上昇する。また、Raがより低下することから、Duvを負にすればするほど、実験用基準光や実験用疑似基準光で実際の照明対象物等を照明した場合と、試験光で照明した場合の色の見えは差が大きくなり、また、それは悪化したものとなってしまうと予想された。特に白色は赤色(桃色)かかり、色の見えは全体に不自然に見えると予想された。
色の見えや、分光分布そのものが有する特徴、放射効率などを詳細に議論する準備として、また、色の見えを詳細に議論する準備として、本発明では、以下の定量指標を導入した。
[色の見えに関わる定量指標の導入]
先ず、当該試験光で対象物を照明した場合における対象物の位置で測定した試験光(本発明の照明方法に係る)、及び、発光装置が試験光を主たる放射方向に出射する場合における当該試験光(本発明の発光装置に係る)のCIE 1976 L*a*b*色空間における当該15種類の色票のa*値、b*値をそれぞれa* nSSL、b* nSSL(ただしnは1から15の自然数)、当該15種類の色票の色相角をそれぞれθnSSL(度)(ただしnは1から15の自然数)とし、上記試験光のCCTに応じて選択される計算用基準の光(5000K未満は黒体放射の光、5000K以上においてはCIE昼光)による照明を数学的に仮定した場合のCIE 1976 L*a*b*色空間における当該15種類の色票のa*値、b*値をそれぞれa* nref、b* nref(ただしnは1から15の自然数)、当該15種類の色票の色相角をそれぞれθnref(度)(ただしnは1から15の自然数)とし、当該2つの光で照明された場合の当該15種類の修正マンセル色票のそれぞれの色相角差Δhn(度)(ただしnは1から15の自然数)の絶対値を
|Δhn|=|θnSSL−θnref|
と定義した。
ΔCn=√{(a* nSSL)2+(b* nSSL)2}−√{(a* nref)2+(b* nref)2}
と定義した。また、当該15種類の修正マンセル色票の飽和度差の平均値(以下、SATavと称する場合がある。)である下記式(3)も重要な指標と考えた。
|ΔCmax−ΔCmin|
も重要な指標と考えた。これは試験光と実験用基準光あるいは実験用擬似基準光を用いて視覚実験を行うに当たり、さまざまな物体、あるいは物体の色の見えを全体として評価し、自然で、生き生きとした、視認性の高い、快適な、色の見え、物体の見えを実現する手段として、本発明で特別に選択した当該15種類の修正マンセル色票の飽和度差に関わる種々の特性は重要な指標になると考えたからである。
本発明では、分光分布の放射計測学的特性、測光学的特性も議論するために、以下の2つの定量指標を導入した。ひとつは指標Acgであって、もうひとつの指標は放射効率K(lm/W)である。
Yref=k∫φref(λ)・y(λ)dλ
YSSL=k∫φSSL(λ)・y(λ)dλ
ここで、計算用基準光と試験光の分光分布をそれぞれのYで規格化した規格化分光分布を
Sref(λ)=φref(λ)/Yref
SSSL(λ)=φSSL(λ)/YSSL
と定義し、これら規格化基準光分光分布と規格化試験光分光分布の差を
ΔS(λ)=Sref(λ)−SSSL(λ)
とした。さらに、ここで、指標Acgを以下のように定義した。
Λ1=380nm
Λ2=495nm
Λ3=590nm
とした。
ようにCIE昼光(CIE daylight)が選択されている。図34の場合は図中実線で示された試験光のCCTが5000K未満なので、基準の光は図中点線で示されるように黒体放射の光が選択されている。なお、図中網掛け部分は短波長領域、中間波長領域、長波長領域の積分範囲を模式的に示したものである。
Km:最大視感度(lm/W)
V(λ):分光視感効率
λ:波長(nm)
である。
前述の通り、第二ステップとしては、数学的に検討したスペクトル(試験光)を元に、パッケージLED光源、照明器具を試作した。また、計算用基準光に近接した色の見えとなる高Raかつ高Riである光(実験用擬似基準光)用の光源、これを内在させた照明器具も試作した。
具体的には、青色半導体発光素子で緑色蛍光体、赤色蛍光体を励起した光源、青色半導
体発光素子で黄色蛍光体、赤色蛍光体を励起した光源、紫色半導体発光素子で青色蛍光体、緑色蛍光体、赤色蛍光体を励起した光源を試作し、器具化した。
青色蛍光体としてはBAMまたはSBCAを用いた。緑色蛍光体としては、BSS、β−SiAlON、またはBSONを用いた。黄色蛍光体としてはYAGを用いた。赤色蛍光体としてはCASONまたはSCASNを用いた。
第三ステップとしては、実験用基準光(あるいは実験用擬似基準光)と試験光を切り替えて、多数の観察対象物の色の見えを被験者に評価してもらう比較視覚実験を行った。当該照明システムは暗室中に設置し外乱を排除した。また、観察対象物の位置における照度は、照明システムに搭載した実験用基準光(あるいは実験用擬似基準光)、試験光の器具数を変化させて、ほぼ一致させた。照度は約150lxから約5000lxの範囲で実験を行った。
実際に照明対象物、観察物としたものを以下に例示する。ここでは、紫色、青紫色、青色、青緑色、緑色、黄緑色、黄色、黄赤色、赤色、赤紫色等の全色相に渡る有彩色対象物を準備するように配慮した。さらに、白色物、黒色物などの無彩色の対象物も準備した。色を有する照明対象物を準備した。また、静物、生花、食品、衣料品、印刷物等、多数多種類なものを準備した。また、実験においては被験者(日本人)自身の肌も観察対象とした。なお、以下の物体名称前に一部付記した色名称は、通常の環境下でそのように見えるという意味で、厳密な色の表現ではない。
紫色生花
青紫布製ハンカチ、ブルージーンズ、青緑タオル
緑色パプリカ、レタス、千切りキャベツ、ブロッコリー、緑ライム、緑色りんご
黄色バナナ、黄色パプリカ、黄緑色レモン、黄色ガーベラ、卵焼き
橙色オレンジ、橙色パプリカ、にんじん
赤色トマト、赤色りんご、赤色パプリカ、赤色ウインナー、梅干
ピンク色ネクタイ、ピンクガーベラ、しゃけ塩焼き
小豆色ネクタイ、ベージュ作業着、コロッケ、とんかつ、ごぼう、クッキー、チョコレー
ト、落花生、木製器
被験者(日本人)自身の肌
新聞紙、白背景上の黒文字を含むカラー印刷物(多色ずり)、文庫本、週刊誌
外壁材色見本(三菱樹脂社製 アルポリック 白、青、緑、黄色、赤)
カラーチェッカー(X―rite社製 Color checker classic 18色の有彩色と6種類の無彩色(白1、灰色4、黒1)を含む計24色の色票)
なお、カラーチェッカー中の各色票の名称とマンセル表記は、以下の通りである。
Name Munsell Notation
Dark skin 3.05 YR 3.69/3.20
Light skin 2.2 YR 6.47/4.10
Blue sky 4.3 PB 4.95/5.55
Foliage 6.65 GY 4.19/4.15
Blue flower 9.65 PB 5.47/6.70
Bluish green 2.5 BG 7/6
Orange 5 YR 6/11
Purplish blue 7.5 PB 4/10.7
Moderate red 2.5 R 5/10
Purple 5 P 3/7
Yellow green 5 GY 7.08/9.1
Orange yellow 10 YR 7/10.5
Blue 7.5 PB 2.90/12.75
Green 0.1 G 5.38/9.65
Red 5 R 4/12
Yellow 5 Y 8/11.1
Magenta 2.5 RP 5/12
Cyan 5 B 5/8
White N 9.5/
Neutral 8 N 8/
Neutral 6.5 N 6.5/
Neutral 5 N 5/
Neutral 3.5 N 3.5/
Black N 2/
準備した実験用基準光、実験用擬似基準光、試験光を、照明対象物の位置で測定したCCT毎に(本発明の照明方法に係る)、又は、準備した実験用基準光、実験用擬似基準光、試験光の、主たる放射方向に出射された光を計測し、それぞれをCCT毎に(本発明の発光装置に係る)、6実験用に分類をした。すなわち、以下の通りである。
第四ステップでは、第二ステップで試作したLED光源/器具/システムを用いて、第三ステップで行った比較視覚実験の結果をまとめた。表2は実験Aに対応し、表3は実験Bに対応する結果である。以下同様に、表7は実験Fに対応する結果である。表2〜7において、基準光に対する試験光の総合評価は、同程度の見えを表す「0」を中心に、試験光が若干好ましいとの評価は「1」、試験光が好ましいとの評価は「2」、試験光がより好ましいとの評価は「3」、試験光が非常に好ましいとの評価は「4」、試験光が格段に好ましいとの評価は「5」とした。一方、試験光が若干好ましくないとの評価を「−1」、試験光が好ましくないとの評価を「−2」、試験光がより好ましくないとの評価を「−3」、試験光が非常に好ましくないとの評価を「−4」、試験光が格段に好ましくないとの評価を「−5」とした。
全体としては、本実験によって、Duvが適切な値で負の値をとり、かつ、指標Acg等が適切な範囲にある場合に、又は、|Δhn|、SATav、ΔCn、|ΔCmax−ΔCmin|等が適切な範囲にある場合に、試験光で照明していた実観察物の物体の見え
、色の見えは、実験用基準光で照明した場合よりも好ましいと判断された。これはステップ1で「現在広く信じられている常識に照らした結果」に対して予想外であった。
以下実験結果を考察する。なお、表中の試験光及び比較試験光を総称して「試験光」と称する場合がある。
1)試験光のDuvが、実験用基準光(あるいは実験用疑似基準光)よりも正側であった場合
表4、表5、表7には、試験光のDuvが、実験用基準光(あるいは実験用疑似基準光
)よりも正側の結果が含まれている。ここから、試験光のDuvが正になればなるほど、照明対象物の色の見えや物体の見えに関し、被験者は好ましくなくなったとの判断をしたことが分かる。具体的には、以下の通りであった。
試験光のDuvが正になればなるほど、全体的傾向としてRaが低下することから、これらの結果のいくつかは、ステップ1の数学的な詳細検討から予想可能な範囲であったと言える。
表2から表7のすべてに、試験光のDuvが、実験用基準光(あるいは実験用疑似基準光)よりも負側の結果が含まれている。これらによれば、試験光のDuvが適正範囲で負であって、かつ、表中の各種指標が適正範囲に入っていれば、照明対象物の色の見えや物体の見えに関し、被験者は若干好ましい、好ましい、より好ましい、非常に好ましい、また、格段に好ましいと判断したことが分かる。一方、試験光のDuvが同様の範囲で負であっても、表中の各種指標が適正範囲になかった場合においては、表5に示されるように、試験光による色の見えや物体の見えが好ましくないと判断されたことも分かる。
さらに、カラーチェッカーの灰色部分は、試験光のDuvが適正範囲で負で、かつ、表中の各種指標が適正範囲内の場合では、実験用基準光(あるいは実験用疑似基準光)で照明した場合と比較して、それぞれの明度差が、若干増したように見えた、増したように見えた、より増したように見えた、非常に増したように見えた、格段に増したように見えたと被験者は判断した。また、被験者は、最適範囲に近接するにつれ、より自然でより視認性の高い見えになっていったことを指摘した。これは全く予想外の結果であった。
さらに、印刷物の文字は、試験光のDuvが適正範囲で負で、かつ、表中の各種指標が適正範囲内の場合では、実験用基準光(あるいは実験用疑似基準光)で照明した場合と比較して、若干見やすくなった、見やすくなった、より見やすくなった、非常に見やすくなった、格段に見やすくなったと被験者は判断した。また、被験者は、最適範囲に近接するにつれ、より自然でより視認性の高い文字の見えになっていったことを指摘した。これは全く予想外の結果であった。
さらに、各種外壁材色見本の色の見えは、試験光のDuvが適正範囲で負で、かつ、表中の各種指標が適正範囲内の場合では、実験用基準光(あるいは実験用疑似基準光)で照明した場合と比較して、屋外で見た際の記憶と、若干近接していた、近接していた、より近接していた、非常に近接していた、また、格段に近接していたと被験者は判断した。また、被験者は、最適範囲に近接するにつれ、より自然で、屋外で見た際の記憶と近接した好ましい色の見えになっていったことを指摘した。これは全く予想外の結果であった。
さらに、同種類似色の生花花弁の色差は、試験光のDuvが適正範囲で負で、かつ、表中の各種指標が適正範囲内の場合では、実験用基準光(あるいは実験用疑似基準光)で照明した場合と比較して、若干識別しやすかった、識別しやすかった、より識別しやすかった、非常に識別しやすかった、また、格段に識別しやすかったと被験者は判断した。また、被験者は、Duvが実験した範囲内で適正上限よりも負になればなるほど、より識別しやすかったことを指摘した。これは全く予想外の結果であった。
表2から表7にある通り、Raの値のみに注目すれば、Raが95以上である試験光も多数あったにも関わらず、たとえば、総合的に「格段に良好」とされた試験光のRaは82から91程度であった。また、今回の比較視覚実験は、ANSI C78.377−2008に記載されているDuvの範囲を超えて行っている。よって上記の結果は、現在の常識的推奨色度範囲の外に、照明された物体の色の見えに関する知覚良好領域があることを新たに見出したものと言える。
また、本発明におけるDuvは、−0.0350以上であって、若干好ましくは−0.0340以上であって、好ましくは、−0.0290以上であって、より好ましくは−0.0250以上であって、非常に好ましくは−0.0230以上であって、格段に好ましくは−0.0200以上であった。
また、本発明の第一の実施態様に係る発光装置から主たる放射方向に出射される光の分光分布から導出されるAcgは−360以上であって、若干好ましくは−330以上であって、好ましくは−260以上であって、非常に好ましくは−181以上であって、格段に好ましくは−178以上であった。
なお、視覚実験で実試験光を用いた検討がなされ、当該検討中の好ましい実験結果の内側にあるAcgの好ましい範囲は、−322以上、−12以下であった。
関しては、以下の通りであった。
本発明の第一の実施態様に係る発光装置による分光分布が有する放射効率は、好適には180(lm/W)から320(lm/W)の範囲であって、通常の白熱電球等の値である150(lm/W)よりも最低でも20%以上高かった。これは半導体発光素子からの放射や蛍光体からの放射が内在しており、かつ、V(λ)との関係において、分光分布の適切な位置に適切な凹凸があったためであると考えられる。色の見えとの両立との観点では、本発明の第一の実施態様に係る発光装置から主たる放射方向に出射される光が有する分光分布から求められる放射効率は、以下の範囲が好ましかった。
なお、視覚実験で実試験光を用いた検討がなされ、当該検討中の好ましい実験結果の内側にあるKの好ましい範囲は、206(lm/W)以上、288(lm/W)以下であった。
さらに図37と図38は、表5の中で、総合判断として「格段に好ましい」と判断された試験光15の結果を上記と同様にまとめたもので、図39と図40は、表6中で、総合判断として「格段に好ましい」と判断された試験光19の結果を上記と同様にまとめたものである。
度が比較的均等に向上していることが分かる。また、この観点で4000K近傍のCCTは、好ましいことも分かる。
本発明の第一の実施態様に係る発光装置におけるDuvは、前述の通り、−0.0040以下であって、若干好ましくは−0.0042以下であって、好ましくは、−0.0070以下であって、より好ましくは−0.0100以下であって、非常に好ましくは−0.0120以下であって、格段に好ましくは−0.0160以下であった。
また、本発明の第一の実施態様に係る発光装置におけるDuvは、−0.0350以上であって、若干好ましくは−0.0340以上であって、好ましくは、−0.0290以上であって、より好ましくは−0.0250以上であって、非常に好ましくは−0.0230以上であって、格段に好ましくは−0.0200以上であった。
なお、本発明の第一の実施態様に係る発光装置における|Δhn|は0以上が好適であり、視覚実験時の最小値は0.0029であった。さらに、視覚実験で実試験光を用いた検討がなされ、当該検討中の好ましい実験結果の内側にある|Δhn|の好ましい範囲は、8.3以下、0.003以上であった。
また、7.0以下であることが好適であり、好ましくは6.4以下であって、非常に好ましくは、5.1以下であって、格段に好ましくは4.7以下であった。
なお、視覚実験で実試験光を用いた検討がなされ、当該検討中の好ましい実験結果の内側にある上記指標の好ましい範囲は、1.2以上、6.3以下であった。
また、本発明の第一の実施態様に係る発光装置におけるΔCnは、18.6以下であることが好適であり、非常に好ましくは17.0以下であって、格段に好適には15.0以下であった。
なお、視覚実験で実試験光を用いた検討がなされ、当該検討中の好ましい実験結果の内側にあるΔCnの好ましい範囲は、−3.4以上、16.8以下であった。
.6以下であることが好適であり、17.9以下であることが非常に好ましく、15.2以下であることが格段に好ましかった。加えて、|ΔCmax−ΔCmin|は小さいことがより好ましいと考えられ、14.0以下がさらに格段に好ましく、13.0以下が非常に格段に好ましいと考えられる。
また、本発明の第一の実施態様に係る発光装置における|ΔCmax−ΔCmin|は2.8以上であることが好適であり、視覚実験時の最小値は3.16であった。さらに、視覚実験で実試験光を用いた検討がなされ、当該検討中の好ましい実験結果の内側にある|ΔCmax−ΔCmin|の好ましい範囲は、3.2以上、17.8以下であった。
なお、視覚実験で実試験光を用いた検討がなされ、当該検討中の好ましい実験結果の内側にあるCCTの好ましい範囲は、2550(K)以上、5650(K)以下であった。
本発明の第二の実施態様に係る発光装置の設計方法、及び第三の実施態様に係る発光装置の駆動方法に係る上記各パラメータについても、上記第一の実施態様に係る発光装置と同様である。
範囲で15色票の飽和度が比較的均等に向上している場合が理想的であると推察できる。
さらに図37と図38は、表5の中で、総合判断として「格段に好ましい」と判断された試験光15の結果を上記と同様にまとめたもので、図39と図40は、表6中で、総合判断として「格段に好ましい」と判断された試験光19の結果を上記と同様にまとめたものである。
本発明の第四の実施態様に係る照明方法におけるDuvは、−0.0040以下であって、若干好ましくは−0.0042以下であって、好ましくは、−0.0070以下であって、より好ましくは−0.0100以下であって、非常に好ましくは−0.0120以下であって、格段に好ましくは−0.0160以下であった。
また、本発明の第四の実施態様に係る照明方法におけるDuvは、−0.0350以上であって、若干好ましくは−0.0340以上であって、好ましくは、−0.0290以上であって、より好ましくは−0.0250以上であって、非常に好ましくは−0.0230以上であって、格段に好ましくは−0.0200以上であった。
なお、本発明の第四の実施態様に係る照明方法における|Δhn|は0以上で、視覚実験時の最小値は0.0029であった。さらに、視覚実験で実試験光を用いた検討がなされ、当該検討中の好ましい実験結果の内側にある|Δhn|の好ましい範囲は、8.3以下、0.003以上であった。
は2.3以上であって、格段に好ましくは2.6以上であった。
また、7.0以下であって、好ましくは6.4以下であって、非常に好ましくは、5.1以下であって、格段に好ましくは4.7以下であった。
なお、視覚実験で実試験光を用いた検討がなされ、当該検討中の好ましい実験結果の内側にある上記指標の好ましい範囲は、1.2以上、6.3以下であった。
また、本発明の第四の実施態様に係る照明方法におけるΔCnは、18.6以下であって、非常に好ましくは17.0以下であって、格段に好ましくは15.0以下であった。さらに、視覚実験で実試験光を用いた検討がなされ、当該検討中の好ましい実験結果の内側にあるΔCnの好ましい範囲は、−3.4以上、16.8以下であった。
また、本発明の第四の実施態様に係る照明方法における|ΔCmax−ΔCmin|は2.8以上で、視覚実験時の最小値は3.16であった。さらに、視覚実験で実試験光を用いた検討がなされ、当該検討中の好ましい実験結果の内側にある|ΔCmax−ΔCmin|の好ましい範囲は、3.2以上、17.8以下であった。
また、本発明におけるDuvは、−0.0350以上であって、若干好ましくは−0.0340以上であって、好ましくは、−0.0290以上であって、より好ましくは−0.0250以上であって、非常に好ましくは−0.0230以上であって、格段に好ましくは−0.0200以上であった。
表2から表7の結果より、本発明の第四の実施態様に係る照明方法の好適な分光分布はAcgが−10以下であって−360以上であった。正確な定義は前述の通りであるが、この物理的なおおよその意味、見通しの良い解釈は、以下の通りである。Acgが適切な範囲で負の値を取るとの意味は、規格化試験光分光分布に適切な凹凸があり、380nmから495nm間の短波長領域では、数学的な規格化基準光分光分布よりも規格化試験光分光分布の放射束強度が強い傾向にあり、および/または、495nmから590nmの中間波長領域では、数学的な規格化基準光分光分布よりも規格化試験光分光分布の放射束強度が弱い傾向にあり、および/または、590nmからΛ4までの長波長領域では、数学的な規格化基準光分光分布よりも規格化試験光分光分布の放射束強度が強い傾向にあることを意味している。Acgは短波長領域、中間波長領域、長波長領域におけるそれぞれの要素の総和なので、各個別の要素は、必ずしも上記傾向でない場合もあり得る。そのうえで、Acgが定量的に−10以下−360以上の場合に、良好な色の見え、良好な物体
の見えとなったと理解できる。
また、本発明の第四の実施態様に係る照明方法においては、Acgは好適には−360以上であって、若干好ましくは−330以上であって、好ましくは−260以上であって、非常に好ましくは−181以上であって、格段に好ましくは−178以上であった。
なお、視覚実験で実試験光を用いた検討がなされ、当該検討中の好ましい実験結果の内側にあるAcgの好ましい範囲は、−322以上、−12以下であった。
本発明の第四の実施態様に係る照明方法による分光分布が有する放射効率は、好適には180(lm/W)から320(lm/W)の範囲であって、通常の白熱電球等の値である150(lm/W)よりも最低でも20%以上高かった。これは半導体発光素子からの放射や蛍光体からの放射が内在しており、かつ、V(λ)との関係において、分光分布の適切な位置に適切な凹凸があったためであると考えられる。色の見えとの両立との観点では、本発明の照明方法の放射効率は、以下の範囲が好ましかった。
なお、視覚実験で実試験光を用いた検討がなされ、当該検討中の好ましい実験結果の内側にあるKの好ましい範囲は、206(lm/W)以上、288(lm/W)以下であった。
なお、視覚実験で実試験光を用いた検討がなされ、当該検討中の好ましい実験結果の内側にあるCCTの好ましい範囲は、2550(K)以上、5650(K)以下であった。
第五ステップでは、複数の発光領域を有する発光装置を想定し、各発光領域の放射束量
(光束量)を調節することで、発光装置の色の見えがどのように変化するかの検討を行った。すなわち、各発光領域及び発光装置から主たる放射方向に出射された光の指標Acg、CCT(K)、DuvSSL、放射効率K(lm/W)などの数値の特徴を抽出した。同時に、計算用基準光で照明した場合を仮定した当該15色票の色の見えと、実測した試験光分光分布で照明した場合を仮定した当該15色票の色の見えの間の差に関しても、|Δhn|、SATav、ΔCn、|ΔCmax−ΔCmin|を指標としてまとめた。なお、|Δhn|、ΔCnは、nを選択すると値が変化するが、ここでは最大値と最小値を示した。これらの値も表8〜12に合わせて記載した。なお、第五ステップにおける検討は、本発明に係る実施例、比較例をも表すものである。
以下、本発明に係る実験について説明する。
図43に記載のように、計2個の発光部が存在する5mm直径の樹脂パッケージを準備する。ここで発光領域1中には、青色半導体発光素子、緑色蛍光体、赤色蛍光体を搭載し、封止する。また、発光領域1の青色半導体発光素子は、1つの独立した回路構成となるようにパッケージLEDの配線を構成し、電源に結合する。一方、発光領域2中には、紫色半導体発光素子、青色蛍光体、緑色蛍光体、赤色蛍光体を搭載し、封止する。また、発光領域2の紫色半導体発光素子は、1つの独立した回路構成となるようにパッケージLEDの配線を構成し、別の独立した電源に結合する。このように、発光領域1と発光領域2は、それぞれ独立に電流注入できるようにする。
次に、発光領域1と発光領域2を有する当該パッケージLED10の各発光領域に注入する電流値を適宜調整すると、例えば、当該パッケージLEDの軸上に放射される図44〜図48に示す5種類の分光分布が実現される。図44は発光領域1のみに電流を注入し、発光領域1と発光領域2の放射束比を3:0にする場合であって、図48は、逆に、発光領域2のみに電流を注入し、発光領域1と発光領域2の放射束比を0:3にする場合である。さらに、発光領域1と発光領域2の放射束比を、2:1にする場合を図45に、1.5:1.5にする場合を図46に、1:2にする場合を図47に示す。このように、パッケージLED10の各領域に注入する電流を変化させることで、パッケージLED本体から軸上に放射される放射束を変化させることができる。また各図に示したCIELABプロットは、#01から#15の15種類の修正マンセル色票を照明対象物とした場合を数学的に仮定し、当該パッケージLEDで照明した場合と、当該パッケージLEDの相関色温度から導出される基準の光で照明した場合のa*値、b*値をそれぞれプロットしたものである。なお、ここでは、発光装置としての放射束に対して、発光領域1の放射束寄与が大きい順に駆動点Aから駆動点Eまでの駆動点名を与えてある。図49はこれら駆動点AからEまでの色度点をCIE 1976 u’v’色度図上に示したものである。一方、それぞれの駆動点において、予想される測光学的特性、測色学的特性は、表8にまとめる。
駆動点Aから駆動点Eとさらにはその間においては、屋外で見たような、自然で、生き生きとした、視認性の高い、快適な、色の見え、物体の見えを実現可能と考えられる。よって、たとえば、駆動点Aと駆動点Eの間では、このような色の見えを実現しつつ、パッケージLEDとしての相関色温度を2700Kから5505Kまで可変でき、DuvSSLも−0.00997から−0.01420まで可変できる。さらに当該15種類の修正マンセル色票の平均飽和度も2.80から2.17まで可変となる。このようにすると、好ましい色の見えを実現可能な領域において、発光装置の利用者の年齢、性別などによって、また、照明する空間、目的等に合わせて、より最適と考えられる照明条件を、可変範囲から容易に選択することができる。
この際には、さらに、次のような駆動制御をすることも可能である。
第一に、指標Acg、相関色温度TSSL(K)、及び黒体放射軌跡からの距離DuvSSLの少なくとも1つを変化させた際に、発光装置から主たる放射方向に出射される光束かつ/または放射束を不変とすることもできる。このような制御を行うと照明対象物の照度に依存せずに、分光分布の形状変化に由来する色の見えの差を容易に調べることができるため、好ましい。
第二に、指標Acgを適切な範囲で減少させる際に、発光装置としての光束かつ/または放射束を下げて、照明対象物の照度を低下させる制御を行うこともできる。また、第三に、DuvSSLを適切な範囲で下げる場合にも、発光装置としての光束かつ/または放射束を下げて、照明対象物の照度を下げる制御もできる。これら第二、第三の場合は、一般に明るさ感が増す場合が多いので、照度を下げてエネルギー消費を抑制することも可能であって、好ましい。
第四に、当該相関色温度を上げる際には、発光装置としての光束かつ/または放射束を上げて、照明対象物の照度を上げるような制御もできる。一般の照明環境下では、低色温度領域では相対的に低照度環境において心地良いと判断されることが多く、また、高色温度領域では、相対的に高照度環境において心地良いと判断されることが多い。このような心理的効果は、クルーゾフ効果として知られているが、この様な効果を取り込んだ制御を行うことも可能であって、相関色温度を上げる際には、発光装置としての光束かつ/または放射束を上げて、照明対象物の照度を上げるような制御が好ましい。
図50に記載のように、計6個の発光部が存在する縦6mm、横9mmのセラミックパッケージを準備する。ここで発光領域1−1、発光領域1−2、発光領域1−3中には、青色半導体発光素子、緑色蛍光体、赤色蛍光体を搭載、封止し、等価な発光領域を形成する。また、発光領域1−1、発光領域1−2、発光領域1−3の半導体発光素子は直列に接続され1つの独立した電源に結合する。一方、発光領域2−1、発光領域2−2、発光領域2−3中には、紫色半導体発光素子、青色蛍光体、緑色蛍光体、赤色蛍光体を搭載、封止し、等価な発光領域を形成する。また、発光領域2−1、発光領域2−2、発光領域2−3の半導体発光素子は直列に接続され別の独立した電源に結合する。発光領域1と発光領域2は、それぞれ独立に電流注入できるようにする。
次に、発光領域1と発光領域2を有する当該パッケージLEDの各発光領域に注入する電流値を適宜調整すると、例えば、当該パッケージLEDの軸上に放射される図51〜図55に示す5種類の分光分布が実現される。図51は発光領域1のみに電流を注入し、発光領域1と発光領域2の放射束比を3:0にする場合であって、図55は、逆に、発光領域2のみに電流を注入し、発光領域1と発光領域2の放射束比を0:3にする場合である。さらに、発光領域1と発光領域2の放射束比を、2:1にする場合を図52に、1.5:1.5にする場合を図53に、1:2にする場合を図54に示す。このように、パッケージLED20の各領域に注入する電流を変化させることで、パッケージLED本体から軸上に放射される放射束を変化させることができる。また各図に示したCIELABプロットは、#01から#15の15種類の修正マンセル色票を照明対象物とした場合を数学的に仮定し、当該パッケージLEDで照明した場合と、当該パッケージLEDの相関色温
度から導出される基準の光で照明した場合のa*値、b*値をそれぞれプロットしたものである。なお、ここでは、発光装置としての放射束に対して、発光領域1の放射束寄与が大きい順に駆動点Aから駆動点Eまでの駆動点名を与えてある。図56はこれら駆動点AからEまでの色度点をCIE 1976 u’v’色度図上に示したものである。一方、それぞれの駆動点において、予想される測光学的特性、測色学的特性は、表9にまとめる。
駆動点A、駆動点D,駆動点EにおいてはDuvSSL、Acgのいずれか、あるいは両方が本発明の適切な範囲に入らないが、駆動点B、駆動点Cさらにはその間並びに近傍においては、屋外で見たような、自然で、生き生きとした、視認性の高い、快適な、色の見え、物体の見えを実現可能と考えられる。よって、たとえば、駆動点Bと駆動点Cの間では、このような色の見えを実現しつつ、パッケージLEDとしての相関色温度を3475Kから3931Kまで可変でき、DuvSSLも−0.00642から−0.00585まで可変できる。さらに当該15種類の修正マンセル色票の平均飽和度も1.42から1.26まで可変となる。このようにすると、好ましい色の見えを実現可能な領域において、発光装置の利用者の年齢、性別などによって、また、照明する空間、目的等に合わせて、より最適と考えられる照明条件を、可変範囲から容易に選択することができる。
この際には、さらに、次のような駆動制御をすることも可能である。
第一に、指標Acg、相関色温度TSSL(K)、及び黒体放射軌跡からの距離DuvSSLの少なくとも1つを変化させた際に、発光装置から主たる放射方向に出射される光束かつ/または放射束を不変とすることもできる。このような制御を行うと照明対象物の照度に依存せずに、分光分布の形状変化に由来する色の見えの差を容易に調べることができるため、好ましい。
第二に、指標Acgを適切な範囲で減少させる際に、発光装置としての光束かつ/または放射束を下げて、照明対象物の照度を低下させる制御を行うこともできる。また、第三に、DuvSSLを適切な範囲で下げる場合にも、発光装置としての光束かつ/または放射束を下げて、照明対象物の照度を下げる制御もできる。これら第二、第三の場合は、一般に明るさ感が増す場合が多いので、照度を下げてエネルギー消費を抑制することも可能であって、好ましい。
第四に、当該相関色温度を上げる際には、発光装置としての光束かつ/または放射束を上げて、照明対象物の照度を上げるような制御もできる。一般の照明環境下では、低色温度領域では相対的に低照度環境において心地良いと判断されることが多く、また、高色温度領域では、相対的に高照度環境において心地良いと判断されることが多い。このような心理的効果は、クルーゾフ効果として知られているが、この様な効果を取り込んだ制御を行うことも可能であって、相関色温度を上げる際には、発光装置としての光束かつ/または放射束を上げて、照明対象物の照度を上げるような制御が好ましい。
図57に記載のように、計16個の発光部であるLED電球が存在する縦60cm、横120cmの天井に埋め込まれた照明システムである発光装置を準備する。ここで図中実線斜線部分は発光領域1として同等のLEDバルブを搭載し、等価な発光領域を形成する。また、図中点線斜線部分は発光領域2として同等のLEDバルブを搭載し、等価な発光領域を形成する。ここで複数の発光領域1に搭載されたLED電球は並列に接続され1つの独立した電源に結合する。一方、複数の発光領域2に搭載されたLED電球は並列に接続され別の独立した電源に結合する。発光領域1と発光領域2は、それぞれ独立に駆動できるようにする。なお、発光領域1を形成するLED電球は青色半導体発光素子、緑色蛍光体、赤色蛍光体を含み、発光領域2を形成するLED電球は、異なる調整をした青色半導体発光素子、緑色蛍光体、赤色蛍光体を含むものとできる。
次に、発光領域1と発光領域2を構成するLED電球の放射束をそれぞれ独立した電源に搭載されている調光コントローラーを用いて適宜調整すると、例えば、照明システム中心軸上に放射される図58〜図62に示す5種類の分光分布が実現される。図58は発光領域1を構成するLED電球のみを駆動し、発光領域1と発光領域2の放射束比を3:0にする場合であって、図62は、逆に、発光領域2を構成するLED電球のみを駆動し、発光領域1と発光領域2の放射束比を0:3にする場合である。さらに、発光領域1を構成するLED電球と発光領域2を構成するLED電球の放射束比を、2:1にする場合を図59に、1.5:1.5にする場合を図60に、1:2にする場合を図61に示す。このように、各発光領域を構成するLED電球の駆動条件を変化させることで、照明システ
ム中心軸上に放射される放射束を変化させることができる。
また各図に示したCIELABプロットは、#01から#15の15種類の修正マンセル色票を照明対象物とした場合を数学的に仮定し、当該照明システムである発光装置で照明した場合と、当該照明システムである発光装置の相関色温度から導出される基準の光で照明した場合のa*値、b*値をそれぞれプロットしたものである。なお、ここでは、照明システム(発光装置)としての放射束に対して、発光領域1を構成するLED電球の放射束寄与が大きい順に駆動点Aから駆動点Eまでの駆動点名を与えてある。図63はこれら駆動点AからEまでの色度点をCIE 1976 u’v’色度図上に示したものである。一方、それぞれの駆動点において、予想される測光学的特性、測色学的特性は、表10にまとめる。
駆動点D、駆動点EにおいてはDuvSSL、Acgのいずれも本発明の適切な範囲に入らないが、駆動点A、駆動点B、駆動点Cさらにはその間並びに近傍においては、屋外で見たような、自然で、生き生きとした、視認性の高い、快適な、色の見え、物体の見えを実現可能と考えられる。よって、たとえば、駆動点Aと駆動点Cの間では、このような色の見えを実現しつつ、照明システムとしての相関色温度を2700Kから2806Kまで可変でき、DuvSSLも−0.03000から−0.00942まで可変できる。さらに当該15種類の修正マンセル色票の平均飽和度も5.78から2.14まで可変となる。このようにすると、好ましい色の見えを実現可能な領域において、発光装置の利用者の年齢、性別などによって、また、照明する空間、目的等に合わせて、より最適と考えられる照明条件を、可変範囲から容易に選択することができる。
この際には、さらに、次のような駆動制御をすることも可能である。
第一に、指標Acg、相関色温度TSSL(K)、及び黒体放射軌跡からの距離DuvSSLの少なくとも1つを変化させた際に、発光装置から主たる放射方向に出射される光束かつ/または放射束を不変とすることもできる。このような制御を行うと照明対象物の照度に依存せずに、分光分布の形状変化に由来する色の見えの差を容易に調べることができるため、好ましい。
第二に、指標Acgを適切な範囲で減少させる際に、発光装置としての光束かつ/または放射束を下げて、照明対象物の照度を低下させる制御を行うこともできる。また、第三に、DuvSSLを適切な範囲で下げる場合にも、発光装置としての光束かつ/または放射束を下げて、照明対象物の照度を下げる制御もできる。これら第二、第三の場合は、一般に明るさ感が増す場合が多いので、照度を下げてエネルギー消費を抑制することも可能であって、好ましい。
第四に、当該相関色温度を上げる際には、発光装置としての光束かつ/または放射束を上げて、照明対象物の照度を上げるような制御もできる。一般の照明環境下では、低色温度領域では相対的に低照度環境において心地良いと判断されることが多く、また、高色温度領域では、相対的に高照度環境において心地良いと判断されることが多い。このような心理的効果は、クルーゾフ効果として知られているが、この様な効果を取り込んだ制御を行うことも可能であって、相関色温度を上げる際には、発光装置としての光束かつ/または放射束を上げて、照明対象物の照度を上げるような制御が好ましい。
図64に記載のように、1個の発光領域が存在する縦5mm、横5mmのセラミックパッケージを2個近接させて、一対のセラミックパッケージ対を準備する。ここで一方を発光領域1、もう一方を発光領域2とすべく、以下のようにする。発光領域1には、紫色半導体発光素子、青色蛍光体、緑色蛍光体、赤色蛍光体を搭載、封止する。また、発光領域1は1つの独立した電源に結合する。一方、発光領域2には、青色半導体発光素子、黄色蛍光体を搭載、封止する。また、発光領域2は別の独立した電源に結合する。このようにして、発光領域1と発光領域2は、それぞれ独立に電流注入できるようにする。
次に、発光領域1と発光領域2である当該1対のパッケージLED40の各発光領域に注入する電流値を適宜調整すると、例えば、当該1対のパッケージLEDの軸上に放射される図65〜図69に示す5種類の分光分布が実現される。図65は発光領域1のみに電流を注入し、発光領域1と発光領域2の放射束比を9:0にする場合であって、図69は、逆に、発光領域2のみに電流を注入し、発光領域1と発光領域2の放射束比を0:9にする場合である。さらに、発光領域1と発光領域2の放射束比を、6:3にする場合を図66に、4.5:4.5にする場合を図67に、1:8にする場合を図68に示す。このように、1対のパッケージLED40の各領域に注入する電流を変化させることで、1対のパッケージLED本体から中心軸上に放射される放射束を変化させることができる。また各図に示したCIELABプロットは、#01から#15の15種類の修正マンセル色票を照明対象物とした場合を数学的に仮定し、当該1対のパッケージLEDで照明した場合と、当該1対のパッケージLEDの相関色温度から導出される基準の光で照明した場合
のa*値、b*値をそれぞれプロットしたものである。なお、ここでは、発光装置としての放射束に対して、発光領域1の放射束寄与が大きい順に駆動点Aから駆動点Eまでの駆動点名を与えてある。図70はこれら駆動点AからEまでの色度点をCIE 1976 u’v’色度図上に示したものである。一方、それぞれの駆動点において、予想される測光学的特性、測色学的特性は、表11にまとめる。
駆動点A、駆動点D,駆動点EにおいてはDuvSSL、Acgのいずれか、あるいは両方が本発明の適切な範囲に入らないが、駆動点B、駆動点Cさらにはその間並びに近傍においては、屋外で見たような、自然で、生き生きとした、視認性の高い、快適な、色の見え、物体の見えを実現可能と考えられる。よって、たとえば、駆動点Bと駆動点Cの間では、このような色の見えを実現しつつ、パッケージLEDとしての相関色温度を5889Kから6100Kまで可変でき、DuvSSLも−0.02163から−0.01646まで可変できる。さらに当該15種類の修正マンセル色票の平均飽和度も2.57から1.43まで可変となる。このようにすると、好ましい色の見えを実現可能な領域において、発光装置の利用者の年齢、性別などによって、また、照明する空間、目的等に合わせて、より最適と考えられる照明条件を、可変範囲から容易に選択することができる。
この際には、さらに、次のような駆動制御をすることも可能である。
第一に、指標Acg、相関色温度TSSL(K)、及び黒体放射軌跡からの距離DuvSSLの少なくとも1つを変化させた際に、発光装置から主たる放射方向に出射される光束かつ/または放射束を不変とすることもできる。このような制御を行うと照明対象物の照度に依存せずに、分光分布の形状変化に由来する色の見えの差を容易に調べることができるため、好ましい。
第二に、指標Acgを適切な範囲で減少させる際に、発光装置としての光束かつ/または放射束を下げて、照明対象物の照度を低下させる制御を行うこともできる。また、第三に、DuvSSLを適切な範囲で下げる場合にも、発光装置としての光束かつ/または放射束を下げて、照明対象物の照度を下げる制御もできる。これら第二、第三の場合は、一般に明るさ感が増す場合が多いので、照度を下げてエネルギー消費を抑制することも可能であって、好ましい。
第四に、当該相関色温度を上げる際には、発光装置としての光束かつ/または放射束を上げて、照明対象物の照度を上げるような制御もできる。一般の照明環境下では、低色温度領域では相対的に低照度環境において心地良いと判断されることが多く、また、高色温度領域では、相対的に高照度環境において心地良いと判断されることが多い。このような心理的効果は、クルーゾフ効果として知られているが、この様な効果を取り込んだ制御を行うことも可能であって、相関色温度を上げる際には、発光装置としての光束かつ/または放射束を上げて、照明対象物の照度を上げるような制御が好ましい。
以下を除いて、実施例1と同様の樹脂パッケージLEDを準備する。発光領域1中には、青色半導体発光素子、緑色蛍光体、赤色蛍光体を搭載、封止するが、実施例1の場合とは異なり、その調合を変化させ、発光領域1のみに通電した場合の分光分布を実施例3の駆動点Eと同様にする。また、発光領域2中には、実施例1と異なり、青色半導体発光素子、黄色蛍光体を搭載、封止し、発光領域2のみに通電した場合の分光分布を実施例4の駆動点Eと同様にする。
次に、発光領域1と発光領域2を有する当該パッケージLEDの各発光領域に注入する電流値を適宜調整すると、例えば、当該パッケージLEDの軸上に放射される図71〜図75に示す5種類の分光分布が実現される。図71は発光領域1のみに電流を注入し、発光領域1と発光領域2の放射束比を3:0にする場合であって、図75は、逆に、発光領域2のみに電流を注入し、発光領域1と発光領域2の放射束比を0:3にする場合である。さらに、発光領域1と発光領域2の放射束比を、2:1にする場合を図72に、1.5:1.5にする場合を図73に、1:2にする場合を図74に示す。このように、パッケージLEDの各領域に注入する電流を変化させることで、パッケージLED本体から軸上に放射される放射束を変化させることができる。また各図に示したCIELABプロットは、#01から#15の15種類の修正マンセル色票を照明対象物とした場合を数学的に仮定し、当該パッケージLEDで照明した場合と、当該パッケージLEDの相関色温度から導出される基準の光で照明した場合のa*値、b*値をそれぞれプロットしたものである。なお、ここでは、発光装置としての放射束に対して、発光領域1の放射束寄与が大き
い順に駆動点Aから駆動点Eまでの駆動点名を与えてある。図76はこれら駆動点AからEまでの色度点をCIE 1976 u’v’色度図上に示したものである。一方、それぞれの駆動点において、予想される測光学的特性、測色学的特性は、表12にまとめる。
駆動点Aから駆動点Eのいずれにおいても、DuvSSL、Acgのいずれか、あるいは両方が本発明の適切な範囲に入らない。このため、パッケージLEDとしての可変範囲に、屋外で見たような、自然で、生き生きとした、視認性の高い、快適な、色の見え、物体の見えを実現可能な駆動点は存在しない。
図50に記載のように、計6個の発光部が存在する縦6mm、横9mmのセラミックパッケージを準備する。ここで発光領域1−1、発光領域1−2、発光領域1−3中には、青色半導体発光素子、緑色蛍光体、赤色蛍光体を搭載、封止し、等価な発光領域を形成する。また、発光領域1−1、発光領域1−2、発光領域1−3の半導体発光素子は直列に接続され1つの独立した電源に結合する。一方、発光領域2−1、発光領域2−2、発光領域2−3中にも、異なる調整をした青色半導体発光素子、緑色蛍光体、赤色蛍光体を搭載、封止し、等価な発光領域を形成する。また、発光領域2−1、発光領域2−2、発光領域2−3の半導体発光素子は直列に接続され別の独立した電源に結合する。発光領域1と発光領域2は、それぞれ独立に電流注入できるようにする。
次に、発光領域1と発光領域2を有する当該パッケージLEDの各発光領域に注入する電流値を適宜調整すると、例えば、当該パッケージLEDの軸上に放射される分光分布は、図77〜図81に示す5種類が実現される。図77は発光領域1のみに電流を注入し、発光領域1と発光領域2の放射束比を3:0にする場合であって、図81は、逆に、発光領域2のみに電流を注入し、発光領域1と発光領域2の放射束比を0:3にする場合である。さらに、発光領域1と発光領域2の放射束比を、2:1にする場合を図78に、1.5:1.5にする場合を図79に、1:2にする場合を図80に示す。このように、パッケージLED20の各領域に注入する電流を変化させることで、パッケージLED本体から軸上に放射される放射束を変化させることができる。また各図に示したCIELABプロットは、#01から#15の15種類の修正マンセル色票を照明対象物とした場合を数学的に仮定し、当該パッケージLEDで照明した場合と、当該パッケージLEDの相関色温度から導出される基準の光で照明した場合のa*値、b*値をそれぞれプロットしたものである。なお、ここでは、発光装置としての放射束に対して、発光領域1の放射束寄与が大きい順に駆動点Aから駆動点Eまでの駆動点名を与えてある。図82はこれら駆動点AからEまでの色度点をCIE 1976 u’v’色度図上に示したものである。一方、それぞれの駆動点において、予想される測光学的特性、測色学的特性は、表13にまとめる。
駆動点A、駆動点C、駆動点D,駆動点EにおいてはDuvSSL、Acgのいずれか、あるいは両方が本発明の適切な範囲に入らないが、駆動点Bの近傍においては、屋外で見たような、自然で、生き生きとした、視認性の高い、快適な、色の見え、物体の見えを実現可能と考えられる。よって、たとえば、駆動点B近傍では、このような色の見えを実現しつつ、パッケージLEDとしての相関色温度を3542K近傍で可変でき、DuvSSLも−0.00625近傍で可変できる。さらに当該15種類の修正マンセル色票の平均飽和度も1.72近傍で可変となる。このようにすると、好ましい色の見えを実現可能な領域において、発光装置の利用者の年齢、性別などによって、また、照明する空間、目的等に合わせて、より最適と考えられる照明条件を、可変範囲から容易に選択することができる。
この際には、さらに、次のような駆動制御をすることも可能である。
第一に、指標Acg、相関色温度TSSL(K)、及び黒体放射軌跡からの距離DuvSSLの少なくとも1つを変化させた際に、発光装置から主たる放射方向に出射される光束かつ/または放射束を不変とすることもできる。このような制御を行うと照明対象物の照度に依存せずに、分光分布の形状変化に由来する色の見えの差を容易に調べることができるため、好ましい。
第二に、指標Acgを適切な範囲で減少させる際に、発光装置としての光束かつ/または放射束を下げて、照明対象物の照度を低下させる制御を行うこともできる。また、第三に、DuvSSLを適切な範囲で下げる場合にも、発光装置としての光束かつ/または放射束を下げて、照明対象物の照度を下げる制御もできる。これら第二、第三の場合は、一般に明るさ感が増す場合が多いので、照度を下げてエネルギー消費を抑制することも可能であって、好ましい。
第四に、当該相関色温度を上げる際には、発光装置としての光束かつ/または放射束を上げて、照明対象物の照度を上げるような制御もできる。一般の照明環境下では、低色温度領域では相対的に低照度環境において心地良いと判断されることが多く、また、高色温度領域では、相対的に高照度環境において心地良いと判断されることが多い。このような心理的効果は、クルーゾフ効果として知られているが、この様な効果を取り込んだ制御を行うことも可能であって、相関色温度を上げる際には、発光装置としての光束かつ/または放射束を上げて、照明対象物の照度を上げるような制御が好ましい。
図43に記載のように、計2個の発光部が存在する5mm直径の樹脂パッケージを準備する。ここで発光領域1中には、青色半導体発光素子、緑色蛍光体、赤色蛍光体を搭載し、封止する。また、発光領域1の青色半導体発光素子は、1つの独立した回路構成となるようにパッケージLEDの配線を構成し、電源に結合する。一方、発光領域2中にも、異なる調整をした青色半導体発光素子、緑色蛍光体、赤色蛍光体を搭載し、封止する。また、発光領域2の青色半導体発光素子は、1つの独立した回路構成となるようにパッケージLEDの配線を構成し、別の独立した電源に結合する。このように、発光領域1と発光領域2は、それぞれ独立に電流注入できるようにする。
次に、発光領域1と発光領域2を有する当該パッケージLED10の各発光領域に注入する電流値を適宜調整すると、例えば、当該パッケージLEDの軸上に放射される図83〜図87に示す5種類の分光分布が実現される。図83は発光領域1のみに電流を注入し、発光領域1と発光領域2の放射束比を3:0にする場合であって、図87は、逆に、発光領域2のみに電流を注入し、発光領域1と発光領域2の放射束比を0:3にする場合である。さらに、発光領域1と発光領域2の放射束比を、2:1にする場合を図84に、1.5:1.5にする場合を図85に、1:2にする場合を図86に示す。このように、パッケージLED10の各領域に注入する電流を変化させることで、パッケージLED本体から軸上に放射される放射束を変化させることができる。また各図に示したCIELABプロットは、#01から#15の15種類の修正マンセル色票を照明対象物とした場合を数学的に仮定し、当該パッケージLEDで照明した場合と、当該パッケージLEDの相関
色温度から導出される基準の光で照明した場合のa*値、b*値をそれぞれプロットしたものである。なお、ここでは、発光装置としての放射束に対して、発光領域1の放射束寄与が大きい順に駆動点Aから駆動点Eまでの駆動点名を与えてある。図88はこれら駆動点AからEまでの色度点をCIE 1976 u’v’色度図上に示したものである。一方、それぞれの駆動点において、予想される測光学的特性、測色学的特性は、表14にまとめる。
駆動点Aから駆動点Eとさらにはその間においては、屋外で見たような、自然で、生き生きとした、視認性の高い、快適な、色の見え、物体の見えを実現可能と考えられる。よって、たとえば、駆動点Aと駆動点Eの間では、このような色の見えを実現しつつ、パッケージLEDとしての相関色温度を3160Kから5328Kまで可変でき、DuvSSLも−0.01365から−0.01629まで可変できる。さらに当該15種類の修正マンセル色票の平均飽和度も3.79から3.40まで可変となる。このようにすると、好ましい色の見えを実現可能な領域において、発光装置の利用者の年齢、性別などによって、また、照明する空間、目的等に合わせて、より最適と考えられる照明条件を、可変範囲から容易に選択することができる。
この際には、さらに、次のような駆動制御をすることも可能である。
第一に、指標Acg、相関色温度TSSL(K)、及び黒体放射軌跡からの距離DuvSSLの少なくとも1つを変化させた際に、発光装置から主たる放射方向に出射される光束かつ/または放射束を不変とすることもできる。このような制御を行うと照明対象物の照度に依存せずに、分光分布の形状変化に由来する色の見えの差を容易に調べることができるため、好ましい。
第二に、指標Acgを適切な範囲で減少させる際に、発光装置としての光束かつ/または放射束を下げて、照明対象物の照度を低下させる制御を行うこともできる。また、第三に、DuvSSLを適切な範囲で下げる場合にも、発光装置としての光束かつ/または放射束を下げて、照明対象物の照度を下げる制御もできる。これら第二、第三の場合は、一般に明るさ感が増す場合が多いので、照度を下げてエネルギー消費を抑制することも可能であって、好ましい。
第四に、当該相関色温度を上げる際には、発光装置としての光束かつ/または放射束を上げて、照明対象物の照度を上げるような制御もできる。一般の照明環境下では、低色温度領域では相対的に低照度環境において心地良いと判断されることが多く、また、高色温度領域では、相対的に高照度環境において心地良いと判断されることが多い。このような心理的効果は、クルーゾフ効果として知られているが、この様な効果を取り込んだ制御を行うことも可能であって、相関色温度を上げる際には、発光装置としての光束かつ/または放射束を上げて、照明対象物の照度を上げるような制御が好ましい。
図57に記載のように、計16個の発光部であるLED電球が存在する縦60cm、横120cmの天井に埋め込まれた照明システムである発光装置を準備する。ここで図中実線斜線部分は発光領域1として同等のLEDバルブを搭載し、等価な発光領域を形成する。また、図中点線斜線部分は発光領域2として同等のLEDバルブを搭載し、等価な発光領域を形成する。ここで複数の発光領域1に搭載されたLED電球は並列に接続され1つの独立した電源に結合する。一方、複数の発光領域2に搭載されたLED電球は並列に接続され別の独立した電源に結合する。発光領域1と発光領域2は、それぞれ独立に駆動できるようにする。なお、発光領域1を形成するLED電球は青色半導体発光素子、緑色蛍光体、赤色蛍光体を含み、発光領域2を形成するLED電球は、異なる調整をした紫色半導体発光素子、青色蛍光体、緑色蛍光体、赤色蛍光体を含むものとできる。
次に、発光領域1と発光領域2を構成するLED電球の放射束をそれぞれ独立した電源に搭載されている調光コントローラーを用いて適宜調整すると、例えば、照明システム中心軸上に放射される図89〜図93に示す5種類の分光分布が実現される。図89は発光領域1を構成するLED電球のみを駆動し、発光領域1と発光領域2の放射束比を5:0にする場合であって、図93は、逆に、発光領域2を構成するLED電球のみを駆動し、発光領域1と発光領域2の放射束比を0:5にする場合である。さらに、発光領域1を構成するLED電球と発光領域2を構成するLED電球の放射束比を、4:1にする場合を図90に、2.5:2.5にする場合を図91に、1:4にする場合を図92に示す。このように、各発光領域を構成するLED電球の駆動条件を変化させることで、照明システム中心軸上に放射される放射束を変化させることができる。
また各図に示したCIELABプロットは、#01から#15の15種類の修正マンセル色票を照明対象物とした場合を数学的に仮定し、当該照明システムである発光装置で照明した場合と、当該照明システムである発光装置の相関色温度から導出される基準の光で照明した場合のa*値、b*値をそれぞれプロットしたものである。なお、ここでは、照明システム(発光装置)としての放射束に対して、発光領域1を構成するLED電球の放射束寄与が大きい順に駆動点Aから駆動点Eまでの駆動点名を与えてある。図94はこれら駆動点AからEまでの色度点をCIE 1976 u’v’色度図上に示したものである。一方、それぞれの駆動点において、予想される測光学的特性、測色学的特性は、表15にまとめる。
駆動点D、駆動点EにおいてはDuvSSL、Acgのいずれも本発明の適切な範囲に入らないが、駆動点A、駆動点B、駆動点Cさらにはその間並びに近傍においては、屋外で見たような、自然で、生き生きとした、視認性の高い、快適な、色の見え、物体の見えを実現可能と考えられる。よって、たとえば、駆動点Aと駆動点Cの間では、このような色の見えを実現しつつ、照明システムとしての相関色温度を3327Kから3243Kまで可変でき、DuvSSLも−0.01546から−0.00660まで可変できる。さらに当該15種類の修正マンセル色票の平均飽和度も4.06から2.09まで可変となる。このようにすると、好ましい色の見えを実現可能な領域において、発光装置の利用者の年齢、性別などによって、また、照明する空間、目的等に合わせて、より最適と考えられる照明条件を、可変範囲から容易に選択することができる。
この際には、さらに、次のような駆動制御をすることも可能である。
第一に、指標Acg、相関色温度TSSL(K)、及び黒体放射軌跡からの距離DuvSSLの少なくとも1つを変化させた際に、発光装置から主たる放射方向に出射される光束かつ/または放射束を不変とすることもできる。このような制御を行うと照明対象物の照度に依存せずに、分光分布の形状変化に由来する色の見えの差を容易に調べることができるため、好ましい。
第二に、指標Acgを適切な範囲で減少させる際に、発光装置としての光束かつ/または放射束を下げて、照明対象物の照度を低下させる制御を行うこともできる。また、第三に、DuvSSLを適切な範囲で下げる場合にも、発光装置としての光束かつ/または放射束を下げて、照明対象物の照度を下げる制御もできる。これら第二、第三の場合は、一般に明るさ感が増す場合が多いので、照度を下げてエネルギー消費を抑制することも可能であって、好ましい。
第四に、当該相関色温度を上げる際には、発光装置としての光束かつ/または放射束を上げて、照明対象物の照度を上げるような制御もできる。一般の照明環境下では、低色温度領域では相対的に低照度環境において心地良いと判断されることが多く、また、高色温度領域では、相対的に高照度環境において心地良いと判断されることが多い。このような心理的効果は、クルーゾフ効果として知られているが、この様な効果を取り込んだ制御を行うことも可能であって、相関色温度を上げる際には、発光装置としての光束かつ/または放射束を上げて、照明対象物の照度を上げるような制御が好ましい。
図100に記載のように、直径7mmの発光部が計6個の小発光部に分割されているセラミックパッケージを準備する。ここで発光領域1−1、発光領域1−2中には、青色半導体発光素子、緑色蛍光体、赤色蛍光体を搭載、封止し、等価な発光領域を形成する。また、発光領域1−1、発光領域1−2の半導体発光素子は直列に接続され1つの独立した電源に結合する。一方、発光領域2−1、発光領域2−2には、異なる調整をした青色半導体発光素子、緑色蛍光体、赤色蛍光体を搭載、封止し、等価な発光領域を形成する。また、発光領域2−1、発光領域2−2の半導体発光素子は直列に接続され別の独立した電源に結合する。さらに、発光領域3−1、発光領域3−2には、発光領域1、発光領域2のいずれとも異なる調整をした青色半導体発光素子、緑色蛍光体、赤色蛍光体を搭載、封止し、等価な発光領域を形成する。また、発光領域3−1、発光領域3−2の半導体発光素子は直列に接続され別の独立した電源に結合する。ここで、発光領域1、発光領域2、発光領域3は、それぞれ独立に電流注入できるようにする。
次に、発光領域1、発光領域2、発光領域3を有する当該パッケージLEDの各発光領域に注入する電流値を適宜調整すると、例えば、当該パッケージLEDの軸上に放射される図95〜図98に示す4種類の分光分布が実現される。図95は、発光領域1(図77と同じ調整をしたもの)のみに電流を注入し、発光領域1、発光領域2、発光領域3の放射束比を3:0:0にする場合である。図96は、発光領域2(図81と同じ調整をしたもの)のみに電流を注入し、発光領域1、発光領域2、発光領域3の放射束比を0:3:0にする場合である。図97は、発光領域3(図83と同じ調整をしたもの)のみに電流
を注入し、発光領域1、発光領域2、発光領域3の放射束比を0:0:3にする場合である。最後に、図98は、発光領域1、発光領域2、発光領域3の全ての発光領域に電流を注入し、それぞれの放射束比を1:1:1にする場合である。このように、図100に示したパッケージLED25の各領域に注入する電流を変化させることで、パッケージLED本体から軸上に放射される放射束を変化させることができる。また各図に示したCIELABプロットは、#01から#15の15種類の修正マンセル色票を照明対象物とした場合を数学的に仮定し、当該パッケージLEDで照明した場合と、当該パッケージLEDの相関色温度から導出される基準の光で照明した場合のa*値、b*値をそれぞれプロットしたものである。なお、ここでは、発光装置としての放射束に対して、駆動点Aから駆動点Dまでの駆動点名を与えてある。図99はこれら駆動点AからDまでの色度点をCIE 1976 u’v’色度図上に示したものである。一方、それぞれの駆動点において、予想される測光学的特性、測色学的特性は、表16にまとめる。
駆動点A、駆動点BにおいてはDuvSSL、Acgの両方が本発明の適切な範囲に入らないが、駆動点C、駆動点Dの近傍、さらにはその間の近傍においては、屋外で見たような、自然で、生き生きとした、視認性の高い、快適な、色の見え、物体の見えを実現可能と考えられる。よって、たとえば、駆動点C,駆動点Dの近傍、さらにはその間の近傍では、このような色の見えを実現しつつ、パッケージLEDとしての相関色温度を3160Kから3749Kまで可変でき、DuvSSLも−0.01365から−0.00902まで可変できる。さらに当該15種類の修正マンセル色票の平均飽和度も3.79から2.27まで可変となる。このようにすると、好ましい色の見えを実現可能な領域において、発光装置の利用者の年齢、性別などによって、また、照明する空間、目的等に合わせて、より最適と考えられる照明条件を、可変範囲から容易に選択することができる。
特に、本実施例においては、異なる色調整をされた3種発光領域が1つの発光装置内にあるため、異なる色調整をされた2種発光領域が1つの発光装置内にある場合と比較して、その可変範囲を広く確保可能なため、好ましい。
この際には、さらに、次のような駆動制御をすることも可能である。
第一に、指標Acg、相関色温度TSSL(K)、及び黒体放射軌跡からの距離DuvSSLの少なくとも1つを変化させた際に、発光装置から主たる放射方向に出射される光束かつ/または放射束を不変とすることもできる。このような制御を行うと照明対象物の照度に依存せずに、分光分布の形状変化に由来する色の見えの差を容易に調べることができるため、好ましい。
第二に、指標Acgを適切な範囲で減少させる際に、発光装置としての光束かつ/または放射束を下げて、照明対象物の照度を低下させる制御を行うこともできる。また、第三に、DuvSSLを適切な範囲で下げる場合にも、発光装置としての光束かつ/または放射束を下げて、照明対象物の照度を下げる制御もできる。これら第二、第三の場合は、一般に明るさ感が増す場合が多いので、照度を下げてエネルギー消費を抑制することも可能であって、好ましい。
第四に、当該相関色温度を上げる際には、発光装置としての光束かつ/または放射束を上げて、照明対象物の照度を上げるような制御もできる。一般の照明環境下では、低色温度領域では相対的に低照度環境において心地良いと判断されることが多く、また、高色温度領域では、相対的に高照度環境において心地良いと判断されることが多い。このような心理的効果は、クルーゾフ効果として知られているが、この様な効果を取り込んだ制御を行うことも可能であって、相関色温度を上げる際には、発光装置としての光束かつ/または放射束を上げて、照明対象物の照度を上げるような制御が好ましい。
以上の実験結果から、以下に示す発明事項を導き出すことができる。
すなわち、発光装置の主たる放射方向に各発光領域から出射される光の分光分布をφSSLN(λ)(Nは1からM)とし、前記発光装置から当該放射方向に出射されるすべての光の分光分布φSSL(λ)が、
条件1:
前記発光装置から出射される光は、ANSI C78.377で定義される黒体放射軌
跡からの距離DuvSSLが、−0.0350 ≦ DuvSSL ≦ −0.0040となる光を主たる放射方向に含む。
条件2:
前記発光装置から当該放射方向に出射される光の分光分布をφSSL(λ)、前記発光装置から当該放射方向に出射される光の相関色温度TSSL(K)に応じて選択される基準の光の分光分布をφref(λ)、前記発光装置から当該放射方向に出射される光の三刺激値を(XSSL、YSSL、ZSSL)、前記発光装置から当該放射方向に出射される光の相関色温度TSSL(K)に応じて選択される基準の光の三刺激値を(Xref、Yref、Zref)とし、
前記発光装置から当該放射方向に出射される光の規格化分光分布SSSL(λ)と、前記発光装置から当該放射方向に出射される光の相関色温度TSSL(K)に応じて選択される基準の光の規格化分光分布Sref(λ)と、これら規格化分光分布の差ΔS(λ)をそれぞれ、
SSSL(λ)=φSSL(λ)/YSSL
Sref(λ)=φref(λ)/Yref
ΔS(λ)=Sref(λ)−SSSL(λ)
と定義し、
波長380nm以上780nm以内の範囲で、SSSL(λ)の最長波長極大値を与える波長をλR(nm)とした際に、λRよりも長波長側にSSSL(λR)/2となる波長Λ4が存在する場合において、
下記数式(1)で表される指標Acgが、−360 ≦ Acg ≦ −10を満たし、
波長380nm以上780nm以内の範囲で、SSSL(λ)の最長波長極大値を与える波長をλR(nm)とした際に、λRよりも長波長側にSSSL(λR)/2となる波長Λ4が存在しない場合において、
下記数式(2)で表される指標Acgが、−360 ≦ Acg ≦ −10を満たす。
発光領域が2種類の場合には、発光装置としての制御が容易であるため好ましい態様である。
発光領域が3種類の場合には、制御領域が色度座標上で、線状ではなく面状となるため、広い範囲で色の見えを調整することが可能となり好ましい。
発光領域が4種類以上の場合には、上記のとおり、色度座標上で面状の制御となることに加え、相関色温度、DuvSSL、色の見えを独立に制御できるため好ましい。また、色度を変更することなく色の見えを調整することも可能となるため好ましい。
一方、発光領域は過剰に存在すると現実の発光装置においては制御が煩雑となるため、10以下であることが好ましく、8以下であることがより好ましい。
また、複数種類の発光領域を有する本発明の発光装置においては、各種の発光領域の光
束量、あるいは放射束量を変化させるには、以下のような方法を採用することが可能である。第一に各発光領域に供給する電力を変化させる方法がある。また、この際には、電流を変化させる方法が簡便であって好ましい。さらに、各発光領域に光学的なNDフィルターを設置可能としておき、フィルターを物理的に交換することで、また、電気的に偏光フィルター等の透過率を変化させることで発光領域から出射される光束量かつ/または放射束量を変化させてもよい。
条件3:
当該放射方向に出射される光による照明を数学的に仮定した場合の#01から#15の下記15種類の修正マンセル色票のCIE 1976 L*a*b*色空間におけるa*値、b*値をそれぞれa* nSSL、b* nSSL(ただしnは1から15の自然数)とし、
当該放射方向に出射される光の相関色温度TSSL(K)に応じて選択される基準の光での照明を数学的に仮定した場合の当該15種類の修正マンセル色票のCIE 1976
L*a*b*色空間におけるa*値、b*値をそれぞれa* nref、b* nref(ただしnは1から15の自然数)とした場合に、飽和度差ΔCnが
−3.8 ≦ ΔCn ≦ 18.6 (nは1から15の自然数)
を満たし、上記式(3)で表される飽和度差の平均SATavが下記式(4)を満たし、
1.0 ≦ SATav ≦ 7.0 (4)
かつ飽和度差の最大値をΔCmax、飽和度差の最小値をΔCminとした場合に、飽和度差の最大値と、飽和度差の最小値との間の差|ΔCmax−ΔCmin|が
2.8 ≦ |ΔCmax−ΔCmin| ≦ 19.6
を満たす。
ただし、ΔCn=√{(a* nSSL)2+(b* nSSL)2}−√{(a* nref)2+(b* nref)2}とする。
15種類の修正マンセル色票
#01 7.5 P 4 /10
#02 10 PB 4 /10
#03 5 PB 4 /12
#04 7.5 B 5 /10
#05 10 BG 6 / 8
#06 2.5 BG 6 /10
#07 2.5 G 6 /12
#08 7.5 GY 7 /10
#09 2.5 GY 8 /10
#10 5 Y 8.5/12
#11 10 YR 7 /12
#12 5 YR 7 /12
#13 10 R 6 /12
#14 5 R 4 /14
#15 7.5 RP 4 /12
条件4:
当該放射方向に出射される光による照明を数学的に仮定した場合の上記15種類の修正マンセル色票のCIE 1976 L*a*b*色空間における色相角をθnSSL(度)(ただしnは1から15の自然数)とし、
当該放射方向に出射される光の相関色温度TSSL(K)に応じて選択される基準の光での照明を数学的に仮定した場合の当該15種類の修正マンセル色票のCIE 1976
L*a*b*色空間における色相角をθnref(度)(ただしnは1から15の自然数)とした場合に、色相角差の絶対値|Δhn|が
0 ≦ |Δhn| ≦ 9.0(度)(nは1から15の自然数)
を満たす。
ただし、Δhn=θnSSL−θnrefとする。
一方、実施例2、実施例5で示したような、単独の発光領域から出射される光のみでは、屋外で見たような、自然で、生き生きとした、視認性の高い、快適な、色の見え、物体の見えを実現できない場合も存在する。そのような場合であっても、発光領域の組合せや光束かつ/または放射束の割合の調整により、屋外で見たような、自然で、生き生きとした、視認性の高い、快適な、色の見え、物体の見えを実現できるものも存在する。このような発光装置についても、本発明の範囲に属することは言うまでもない。
(あ):各種色度図上の色度座標が大きく離れた発光領域を組み合わせた発光装置とする。
(い):相関色温度が定義できる場合には、これが大きく離れた複数の発光領域を組み合わせた発光装置とする。
(う):黒体放射軌跡からの距離Duvが定義できる場合には、これが大きく離れた複数の発光領域を組み合わせた発光装置とする。
以下この点をさらに詳細に説明する。屋外で見たような、自然で、生き生きとした、視認性の高い、快適な、色の見え、物体の見えを実現するための要件については既に説明したとおりであり、発光装置においては、光の分光分布に関するいくつかのパラメータが特定の値を満たすことが必要である。そのうち、重要なパラメータとしては黒体放射軌跡からの距離Duvがあげられるので、良好な色の見えが実現できない光源同士を組み合わせることで、本発明の屋外で見たような、自然で、生き生きとした、視認性の高い、快適な、色の見え、物体の見えが実現できる理由について、Duvを例示し、説明する。
図56はCIE1976u’v’色度図上であり、図面上の二点鎖線は、本発明における条件1を満たすDuvの範囲を示している。
当該範囲を外れる光源である図中Aの光源と図中Eの光源は、単独では良好な色の見えを達成できない。しかしながら、図中Aの光源と図中Eの光源を組合せる場合には、その
放射束割合、あるいは光束割合を変化させることで、A点とE点とを結ぶ直線上を動き得ることとなる。そうすると、Duvの本発明に従った適正な範囲は直線に伸びる帯状ではなく弧を描くように存在するため、特定の割合で両光源からの光を組み合わせたB点やC点は、良好な色の見えを達成し得る領域に存在することとなる。
このような組合せは無数に存在し、図56では相関色温度が低い(2700K)光源Aと、相関色温度が高い(5506K)との組合せで達成している。図82の色度図もこれと類似のものである。また、Duvの値が極めて低く、良好な色の見えを達成し得るDuvの範囲を外れる光源と、Duvの値が極めて高く、良好な色の見えを達成し得るDuvの範囲を外れる光源とを組み合わせることでも可能となる。
よって、これら(あ)、(い)、(う)においては、特に、本発明の開示するDuv範囲である−0.0350以上−0.004以下の範囲と、発光領域の組み合わせによって実現できる色度範囲が、少なくとも一部で重なるようにすることが好ましく、3つ以上の発光領域を用いて色度図上で面上に重なるようにすることがさらに好ましい。
さらに、条件(い)に関しては、発光装置を構成する複数の発光領域中で、最も異なる相関色温度を有する2発光領域間の相関色温度差が2000K以上である事が好ましく、2500K以上である事がより好ましく、3000K以上である事が非常に好ましく、3500K以上である事が格段に好ましく、4000K以上である事が最も好ましい。また、条件(う)に関しては、発光装置を構成する複数の発光領域中で、最も異なる相関色温度を有する2発光領域間のDuv差の絶対値が、0.005以上である事が好ましく、0.010以上である事がより好ましく、0.015以上である事が非常に好ましく、0.020以上である事が格段に好ましい。
(え):Acgが大きく離れた色の見えとなる複数の発光領域を組み合わせた発光装置とする。
(お):飽和度差ΔCnが大きく離れた色の見えとなる複数の発光領域を組み合わせた発光装置とする。
(か):飽和度差の平均SATavが大きく離れた色の見えとなる複数の発光領域を組み合わせた発光装置とする。
これら(え)、(お)、(か)においても、特に、本発明の開示するそれぞれの範囲と、発光領域の組み合わせによって実現できる各パラメータの範囲が、少なくとも一部で重なるようにすることが好ましく、3つ以上の発光領域を用いて色度図上で、面上に重なるようにすることがさらに好ましい。
なお、本発明においては、ある発光領域が、他の発光領域に対して電気的に従属するように駆動しても構わない。例えば、2つの発光領域に電流を注入する際に、1つの発光領域に注入する電流を増やす際に、もう一方の発光領域に注入する電流を減らすように、一方に対して他方を電気的に従属されることも可能である。このような回路は、たとえば可変抵抗等を用いた構成で容易に実現でき、かつ、電源を複数必要としないので、好ましい。
発光領域全体を包絡する仮想外周上にある任意の2点がつくる最大距離Lについて、図を用いて説明する。
図50は実施例2で用いたパッケージLED20を示すが、発光領域22に最近接する発光領域は発光領域11、12及び13である。このうち発光領域12を包絡する仮想外周7が最も大きい仮想外周となり、当該外周上にある任意の二点71が最大距離Lとなる。すなわち最大距離Lは2点間の距離72で表され、0.4mm以上200mm以下である場合が好ましい態様である。
図57に示す実施例3で用いた照明システム30、及び図64に示す実施例4で用いた1対のパッケージLED40も同様である。
cgを適切な範囲で低減させた際に、発光装置から主たる放射方向に出射される光束かつ/または放射束を低減させる駆動方法、相関色温度TSSL(K)を増加させた際に、発光装置から主たる放射方向に出射される光束かつ/または放射束を増加させる駆動方法、黒体放射軌跡からの距離DuvSSLを適切な範囲で低減させた際に、発光装置から主たる放射方向に出射される光束かつ/または放射束を低減させる駆動方法が好ましい。また、これらは同時に、前記数式(1)又は(2)で表される指標Acgを適切な範囲で増加させた際に、発光装置から主たる放射方向に出射される光束かつ/または放射束を増加させる駆動方法、相関色温度TSSL(K)を低減させた際に、発光装置から主たる放射方向に出射される光束かつ/または放射束を低減させる駆動方法、黒体放射軌跡からの距離DuvSSLを適切な範囲で増加させた際に、発光装置から主たる放射方向に出射される光束かつ/または放射束を増加させる駆動方法が好ましいことを意味している。
また、相関色温度TSSL(K)を増加させる場合に光束かつ/または放射束を増加させるように駆動することで、クルーゾフ効果により、快適な照明が実現できる。また、逆に、当該色温度を下げる際には、発光装置としての光束かつ/または放射束を下げて、照明対象物の照度を下げる制御もできる。これらは前述のクルーゾフ効果を取り込んだ制御であって、好ましい。
また、黒体放射軌跡からの距離DuvSSLを適切な範囲で低減させる場合には、屋外で見たような、自然で、生き生きとした、視認性の高い、快適な、色の見え、物体の見えを実現可能となる。各種視覚実験によれば、このように黒体放射軌跡からの距離DuvSSLを適切な範囲で低減させると、明るさ感が向上するので、たとえ計測される光束かつ/または放射束、あるいは照度を低減させても、照明対象物は良好な色の見えを維持可能であって、このようにすると発光装置のエネルギー消費を抑制可能なため好ましい。同様に、黒体放射軌跡からの距離DuvSSLを適切な範囲で増加させる場合には、計測される光束かつ/または放射束、あるいは照度を増加させて、照明対象物の良好な色の見えを維持することも好ましい。
すなわち、対象物を準備する照明対象物準備工程、および、M個(Mは2以上の自然数)の発光領域が内在し、少なくとも一つの発光領域内に半導体発光素子を発光要素として備える発光装置から出射される光により対象物を照明する照明工程、を含む照明方法であって、
前記照明工程において、前記発光装置から出射される光が対象物を照明した際に、前記対象物の位置で測定した光が以下の<1>、<2>及び<3>を満たすように照明する照明方法である場合に、本発明の効果が得られる。
<1>前記対象物の位置で測定した光のANSI C78.377で定義される黒体放射軌跡からの距離DuvSSLが、−0.0350 ≦ DuvSSL ≦ −0.0040である。
<2>前記対象物の位置で測定した光による照明を数学的に仮定した場合の#01から#
15の下記15種類の修正マンセル色票のCIE 1976 L*a*b*色空間におけるa*値、b*値をそれぞれa* nSSL、b* nSSL(ただしnは1から15の自然数)とし、
前記対象物の位置で測定した光の相関色温度TSSL(K)に応じて選択される基準の光による照明を数学的に仮定した場合の当該15種類の修正マンセル色票のCIE 1976 L*a*b*色空間におけるa*値、b*値をそれぞれa* nref、b* nref(ただしnは1から15の自然数)とした場合に、飽和度差ΔCnが
−3.8 ≦ ΔCn ≦ 18.6 (nは1から15の自然数)
を満たし、
上記式(3)で表される飽和度差の平均SATavが下記式(4)を満たし、
1.0 ≦ SATav ≦ 7.0 (4)
かつ、飽和度差の最大値をΔCmax、飽和度差の最小値をΔCminとした場合に、飽和度差の最大値と、飽和度差の最小値との間の差|ΔCmax−ΔCmin|が
2.8 ≦ |ΔCmax−ΔCmin| ≦ 19.6
を満たす。
ただし、ΔCn=√{(a* nSSL)2+(b* nSSL)2}−√{(a* nref)2+(b* nref)2}とする。
15種類の修正マンセル色票
#01 7.5 P 4 /10
#02 10 PB 4 /10
#03 5 PB 4 /12
#04 7.5 B 5 /10
#05 10 BG 6 / 8
#06 2.5 BG 6 /10
#07 2.5 G 6 /12
#08 7.5 GY 7 /10
#09 2.5 GY 8 /10
#10 5 Y 8.5/12
#11 10 YR 7 /12
#12 5 YR 7 /12
#13 10 R 6 /12
#14 5 R 4 /14
#15 7.5 RP 4 /12
<3>前記対象物の位置で測定した光による照明を数学的に仮定した場合の上記15種類の修正マンセル色票のCIE 1976 L*a*b*色空間における色相角をθnSSL(度)(ただしnは1から15の自然数)とし、
前記対象物の位置で測定した光の相関色温度TSSL(K)に応じて選択される基準の光による照明を数学的に仮定した場合の当該15種類の修正マンセル色票のCIE 1976 L*a*b*色空間における色相角をθnref(度)(ただしnは1から15の自然数)とした場合に、色相角差の絶対値|Δhn|が
0 ≦ |Δhn| ≦ 9.0(度)(nは1から15の自然数)
を満たす。
ただし、Δhn=θnSSL−θnrefとする。
照度を不変とするとは、実質的に照度が変更しないことを意味するものであり、照度の変化が±20%以下であることが好ましく、±15%以下であることがより好ましく、±10%以下であることが更に好ましく、±5%以下であることが特に好ましく、±3%以下であることが最も好ましい。このようにすると、照明対象物の照度に依存せずに、分光分布の形状変化に由来する色の見えの差を容易に調べることができ、照明環境、対象物、目的等によって最適な分光分布を比較的容易に見いだせるため、好ましい。
また、相関色温度TSSL(K)を増加させた際には、当該対象物における照度を増加する照明方法が好ましい。相関色温度TSSL(K)を増加させる場合に照度を増加させるように駆動することで、クルーゾフ効果により、快適な照明が実現できる。また、逆に、当該色温度を下げる際には、照明対象物の照度を下げる制御もできる。これらは前述のクルーゾフ効果を取り込んだ制御であって、好ましい。
また、黒体放射軌跡からの距離DuvSSLを低減させる際に、当該対象物における照度を低減する照明方法が好ましい。各種視覚実験によれば、このように黒体放射軌跡からの距離DuvSSLを適切な範囲で低減させると、明るさ感が向上するので、照度を低減させても、照明対象物は良好な色の見えを維持可能であって、このようにすると発光装置のエネルギー消費を抑制可能なため好ましい。同様に、黒体放射軌跡からの距離DuvSSLを適切な範囲で増加させる場合には、照度を増加させて照明対象物の良好な色の見えを維持することも好ましい。
この際、距離を測定する発光装置の基点は、発光装置の照射口である。
このような照明方法により、発光装置を照明対象物の位置から観測した際に、光源としての色分離が視認し難く、照明対象物に対して空間的に色ムラが発生しにくくなるため好ましい。
らに別な発光要素(発光材料)を有することが好ましい。これはそれぞれの発光要素を独立して強度設定あるいは強度制御することが、好ましい色の見えを容易に実現し得るからである。
素が当該波長領域内にともに存在していることもより好ましい。
半導体発光素子としては、サファイア基板上やGaN基板上に形成されたIn(Al)GaN系材料を活性層構造中に含む紫色発光素子(ピーク波長が395nmから420nm程度)、青紫色発光素子(ピーク波長が420nmから455nm程度)、青色発光素子(ピーク波長が455nmから485nm程度)が好ましい。さらに、GaAs基板上に形成されたZn(Cd)(S)Se系材料を活性層構造中に含む青色発光素子(ピーク波長が455nmから485nm程度)も好ましい。
以下に述べる半導体発光素子や蛍光体等の発光要素(発光材料)の呈する放射束の分光分布やそのピーク波長についても、同様のことが言える。
(Ba,Sr,Ca)MgAl10O17:Mn,Eu (5)
(一般式(5)で表されるアルカリ土類アルミン酸塩蛍光体をBAM蛍光体と呼ぶ。)
SraBabEux(PO4)cXd (5)´
(一般式(5)´において、XはClである。また、c、d及びxは、2.7≦c≦3.3、0.9≦d≦1.1、0.3≦x≦1.2を満足する数である。さらに、a及びbは、a+b=5−xかつ0≦b/(a+b)≦0.6の条件を満足する。)(一般式(5)
´で表されるアルカリ土類ハロリン酸塩蛍光体のうちBaを含有するものをSBCA蛍光体と呼び、Baを含有しないものをSCA蛍光体と呼ぶ。)
これらの蛍光体である、BAM蛍光体、SBCA蛍光体、SCA蛍光体、およびBa−SION蛍光体((Ba,Sr,Ca,Mg)Si2O2N2:Eu)、(Sr,Ba)3MgSi2O8:Eu2+蛍光体などが好ましく例示できる。
半導体発光素子としては、サファイア基板上あるいはGaN基板上のIn(Al)GaN系材料を活性層構造中に含む青緑発光素子(ピーク波長が495nmから500nm程度)、緑色発光素子(ピーク波長が500nmから530nm程度)、黄緑色発光素子(ピーク波長が530nmから570nm程度)、黄色発光素子(ピーク波長が570nmから580nm程度)が好ましい。また、GaP基板上のGaPによる黄緑色発光素子(ピーク波長が530nmから570nm程度)、GaP基板上のGaAsPによる黄色発光素子(ピーク波長が570nmから580nm程度)も好ましい。さらに、GaAs基板上のAlInGaPによる黄色発光素子(ピーク波長が570nmから580nm程度)も好ましい。
特に、In(Al)GaN系材料を用いた場合には、黄色発光素子と比較すると活性層構造内でIn濃度が低くなる黄緑色発光素子、緑色発光素子、青緑色発光素子は、Inの偏析による発光波長ゆらぎが小さくなり発光スペクトルの半値全幅が狭くなるために、好ましい。すなわち、本発明においてΛ2(495nm)からΛ3(590nm)の中間波長領域に発光ピークを有する半導体発光素子は、黄色発光素子(ピーク波長が570nmから580nm程度)が好ましく、これより波長の短い黄緑色発光素子(ピーク波長が530nmから570nm程度)がより好ましくこれより波長の短い緑色発光素子(ピーク波長が500nmから530nm程度)が非常に好ましく、青緑色発光素子(ピーク波長が495nmから500nm程度)が格段に好ましい。
面上に形成された素子が好ましい。これは結晶成長方向に対する圧電分極効果が低減されるため、量子井戸層内の空間的な電子と正孔の波動関数の空間的な重なりが大きくなり、原理的に発光効率の向上とスペクトルの狭帯域化が実現できるからである。よって半極性あるいは無極性GaN基板上の半導体発光素子を用いることは、本発明との格段の相乗効果が期待できるため、非常に好ましい。
特にGaN基板上に中間波長領域の半導体発光素子を作成した場合においては、GaN基板側壁からの光取り出しを助長するように、基板は厚いことが好ましく、100μm以上が好ましく、200μm以上がより好ましく、400μm以上が非常に好ましく、600μm以上が格段に好ましい。一方で素子作成上の便から基板厚みは2mm以下が好ましく、1.8mm以下がより好ましく、1.6mm以下が非常に好ましく、1.4mm以下が格段に好ましい。
例えば、特定の発光領域において紫色半導体発光素子のような紫色光を発する発光要素を用い、かつ、同じ発光領域内に青色蛍光体を同時に用いる場合は、前述の青色蛍光体と中間波長領域の蛍光体材料との分光分布の重なりから、中間波長領域で発光する蛍光体は狭帯域発光する事が好ましい。これは中間波長領域の蛍光体材料の半値全幅が狭い方が、特に465nm以上525nm以下の範囲に適切なくぼみ(相対分光強度の低い部分)を形成できるからであって、この適切なくぼみ部分は「自然で、生き生きとした、視認性の高い、快適な、色の見え、物体の見え」を実現する上で、重要であるからである。
この場合には、中間波長領域の蛍光体材料のピーク波長は、Duvの制御性をも考慮し、495nmから500nmであることが好ましく、ピーク波長が500nmから530nmである場合と、ピーク波長が570nmから580nmである場合が同程度により好ましく、ピーク波長が530nmから570nmであることが非常に好ましい。
また、特定の発光領域において紫色半導体発光素子のような紫色光を発する発光要素を用い、かつ、同じ発光領域内に青色蛍光体を同時に用いる場合は、中間波長領域で用いる蛍光体材料の、室温で光励起された場合の発光スペクトルの半値全幅は、130nm以下が好ましく、110nm以下がより好ましく、90nm以下が非常に好ましく、70nm
以下は格段に好ましい。また、極端な狭帯域スペクトルは、多種類の発光要素を発光装置内に搭載しなければ所望の特性を実現できない場合もあることから、紫色の光を発する発光要素を用いる場合においては、中間波長領域で用いる蛍光体材料の半値全幅は、2nm以上が好ましく、4nm以上がより好ましく、6nm以上が非常に好ましく、8nm以上が格段に好ましい。
この場合には、中間波長領域の蛍光体材料のピーク波長は、Duvの制御性をも考慮し、511nmから543nmであることが好ましく、ピーク波長が514nmから540nmである場合がより好ましく、ピーク波長が520nmから540nmである場合が非常に好ましく、ピーク波長が520nmから530nmであること格段に好ましい。
また、特定の発光領域において青色半導体発光素子のような青色光を発する発光要素を用いる場合には、中間波長領域で用いる蛍光体材料の、室温で光励起された場合の発光スペクトルの半値全幅は、90nm以上が好ましく、96nm以上がより好ましく、97nm以上が非常に好ましい。また、極端な広帯域スペクトルは、「自然で、生き生きとした、視認性の高い、快適な、色の見え、物体の見え」を実現する上で重要な465nm以上525nm以下に形成される分光分布中のくぼみが過小(相対分光強度が高すぎる)となってしまい、所望の特性を実現しにくくなる場合もあることから、中間波長領域で用いる蛍光体材料の半値全幅は、110nm以下が好ましく、108nm以下がより好ましく、104nm以下が非常に好ましく、103nm以下が格段に好ましい。
BaaCabSrcMgdEuxSiO4 (6)
(一般式(6)においてa、b、c、dおよびxが、a+b+c+d+x=2、1.0 ≦ a ≦ 2.0、0 ≦ b < 0.2、0.2 ≦ c ≦ 1.0、0 ≦ d < 0.2
および0 < x ≦ 0.5を満たす。)(一般式(6)で表されるアルカリ土類ケイ酸塩をBSS蛍光体と呼ぶ。)
Ba1−x−ySrxEuyMg1−zMnzAl10O17 (6)´
(一般式(6)´においてx、yおよびzはそれぞれ0.1≦x≦0.4、0.25≦y≦0.6及び0.05≦z≦0.5を満たす。)(一般式(6)´で表されるアルカリ土類アルミン酸塩蛍光体をG−BAM蛍光体と呼ぶ。)
(ただし0<z<4.2)で表される蛍光体が挙げられる(これをβ−SiAlON蛍光体と呼ぶ)。Ce3+を付活剤とする好適な緑色蛍光体としては、ガーネット型酸化物結晶を母体とする緑色蛍光体、例えばCa3(Sc,Mg)2Si3O12:Ceや、アルカリ土
類金属スカンジウム酸塩結晶を母体とする緑色蛍光体、例えばCaSc2O4:Ceがある。その他、SrGaS4:Eu2+なども挙げられる。
さらにその他としては、(Ba,Ca,Sr,Mg,Zn,Eu)3Si6O12N2 で
表される酸窒化物蛍光体が挙げられる(これをBSON蛍光体と呼ぶ)。
Ya(Ce,Tb,Lu)b(Ga,Sc)cAldOe (8)
(一般式(8)において、a、b、c、d、eが、a+b=3、0≦b≦0.2、4.5≦c+d≦5.5、0.1≦c≦2.6、および10.8≦e≦13.4を満たす。)(一般式(8)で表されるCe3+付活アルミン酸塩蛍光体をG−YAG蛍光体と呼ぶ。)
特にG−YAG蛍光体においては、一般式(8)を満たす前記組成範囲を適宜選択可能である。さらに、蛍光体単体の光励起時の発光強度最大値を与える波長と半値全幅が、本実施態様において好ましくなるのは以下の範囲である。
0.01≦b≦0.05かつ0.1≦c≦2.6である事が好ましく、
0.01≦b≦0.05かつ0.3≦c≦2.6である事がより好ましく、
0.01≦b≦0.05かつ1.0≦c≦2.6である事が非常に好ましい。
また、
0.01≦b≦0.03かつ0.1≦c≦2.6である事も好ましく、
0.01≦b≦0.03かつ0.3≦c≦2.6である事がより好ましく、
0.01≦b≦0.03かつ1.0≦c≦2.6である事が非常に好ましい。
Lua(Ce,Tb,Y)b(Ga,Sc)cAldOe (9)
(一般式(9)において、a、b、c、d、eが、a+b=3、0≦b≦0.2、4.5≦c+d≦5.5、0≦c≦2.6、および10.8≦e≦13.4を満たす。)(一般式(9)で表されるCe3+付活イットリウムアルミニウム酸化物系蛍光体をLuAG蛍光体と呼ぶ。)
特にLuAG蛍光体においては、一般式(9)を満たす前記組成範囲を適宜選択可能である。さらには、蛍光体単体の光励起時の発光強度最大値を与える波長と半値全幅が、本実施態様において好ましくなるのは以下の範囲である。
0.00≦b≦0.13である事が好ましく、
0.02≦b≦0.13である事がより好ましく、
0.02≦b≦0.10である事が非常に好ましい。
M1 aM2 bM3 cOd (10)
(一般式(10)において、M1は2価の金属元素、M2は3価の金属元素、M3は4価の金属元素をそれぞれ示し、a、b、cおよびdが、2.7≦a≦3.3、1.8≦b≦2.2、2.7≦c≦3.3、11.0≦d≦13.0を満たす。)(一般式(10)で表される蛍光体をCSMS蛍光体と呼ぶ。)
M2は3価の金属元素であるが、Al、Sc、Ga、Y、In、La、Gd、及びLuからなる群から選択された少なくとも1種であるのが好ましく、Al、Sc、Y、又はLuであるのが更に好ましく、Scが特に好ましい。この場合、Scは単独系でもよく、YまたはLuとの複合系でもよい。また、M2はCeを含むことを必須とし、M2は他の3
価の金属元素を含んでいてもよい。
M3は4価の金属元素であるが、少なくともSiを含むことが好ましい。Si以外の4価の金属元素M3の具体例としては、Ti、Ge、Zr、Sn、及びHfからなる群から選択された少なくとも1種であるのが好ましく、Ti、Zr、Sn、及びHfからなる群から選択された少なくとも1種であるのがより好ましく、Snであることが特に好ましい。特に、M3がSiであることが好ましい。また、M3は他の4価の金属元素を含んでいてもよい。
M1 aM2 bM3 cOd (11)
(一般式(11)において、M1は少なくともCeを含む付活剤元素、M2は2価の金属元素、M3は3価の金属元素をそれぞれ示し、a、b、cおよびdが、0.0001≦a≦0.2、0.8≦b≦1.2、1.6≦c≦2.4、および3.2≦d≦4.8を満たす。)(一般式(11)で表される蛍光体をCSO蛍光体と呼ぶ。)
少なくともCeを含む。また、Cr、Mn、Fe、Co、Ni、Cu、Ce、Pr、Nd、Sm、Eu、Tb、Dy、Ho、Er、Tm、及びYbからなる群から選択された少なくとも1種の2〜4価の元素を含有させることができる。
M2は2価の金属元素であるが、Mg、Ca、Zn、Sr、Cd、及びBaからなる群から選択された少なくとも1種であるのが好ましく、Mg、Ca、又は、Srであるのが更に好ましく、M2の元素の50モル%以上がCaであることが特に好ましい。
M3は3価の金属元素であるが、Al、Sc、Ga、Y、In、La、Gd、Yb、及びLuからなる群から選択された少なくとも1種であるのが好ましく、Al、Sc、Yb、又はLuであるのが更に好ましく、Sc、又はScとAl、又はScとLuであるのがより一層好ましく、M3の元素の50モル%以上がScであることが特に好ましい。
M2及びM3は、それぞれ2価及び3価の金属元素を表すが、M2及び/又はM3のごく一部を1価、4価、5価のいずれかの価数の金属元素としてもよく、さらに、微量の陰イオン、たとえば、ハロゲン元素(F、Cl、Br、I)、窒素、硫黄、セレンなどが、化合物の中に含まれていてもよい。
0.005≦a≦0.200である事が好ましく、
0.005≦a≦0.012である事がより好ましく、
0.007≦a≦0.012である事が非常に好ましい。
BaaCabSrcMgdEuxSiO4 (12)
(一般式(12)においてa、b、c、dおよびxが、a+b+c+d+x=2、1.0 ≦ a ≦ 2.0、0 ≦ b < 0.2、0.2 ≦ c ≦1,0、0 ≦ d < 0.2および0 < x ≦ 0.5を満たす。)(一般式(12)で表されるアルカリ土類ケイ酸塩蛍光体をBSS蛍光体と呼ぶ。)
BSS蛍光体においては、一般式(12)を満たす前記組成範囲を適宜選択可能である。さらには、蛍光体単体の光励起時の発光強度最大値を与える波長と半値全幅が、本実施態様において好ましくなるのは以下の範囲である。
0.20≦ c ≦1.00かつ0.25< x ≦ 0.50である事がより好ましく、
0.20≦ c ≦ 1.00かつ0.25< x ≦ 0.30である事が非常に好ましい。
さらに、
0.50≦ c ≦ 1.00かつ0.00< x ≦ 0.50である事が好ましく、
0.50≦ c ≦ 1.00かつ0.25< x ≦ 0.50である事がより好ましく、
0.50≦ c ≦ 1.00かつ0.25< x ≦ 0.30である事が非常に好ましい。
(Ba,Ca,Sr,Mg,Zn,Eu)3Si6O12N2 (13) (これをBSON蛍光体と呼ぶ)。
BSON蛍光体においては、一般式(13)を満たす前記組成範囲を適宜選択可能である。さらには、蛍光体単体の光励起時の発光強度最大値を与える波長と半値全幅が、本実施態様において好ましくなるのは以下の範囲である。
一般式(13)において選択できる2価金属元素(Ba,Ca,Sr,Mg,Zn,Eu)のうち、BaとSrとEuの組合せとすることが好ましく、さらには、Baに対する
Srの比率は10〜30%とすることがより好ましい。
半導体発光素子としては、GaAs基板上に形成されたAlGaAs系材料、GaAs基板上に形成された(Al)InGaP系材料を活性層構造中に含む橙色発光素子(ピーク波長が590nmから600nm程度)、赤色発光素子(600nmから780nm)が好ましい。また、GaP基板上に形成されたGaAsP系材料を活性層構造中に含む赤色発光素子(600nmから780nm)が好ましい。
起された場合の発光スペクトルの半値全幅は、130nm以下が好ましく、110nm以下がより好ましく、90nm以下が非常に好ましく、70nm以下は格段に好ましい。また、極端な狭帯域スペクトルは、多種類の発光要素を発光装置内に搭載しなければ所望の特性を実現できない場合もあることから、長波長領域で用いる蛍光体材料の半値全幅は、2nm以上が好ましく、4nm以上がより好ましく、6nm以上が非常に好ましく、8nm以上が格段に好ましい。
長波長領域の蛍光体材料においては、ピーク波長はDuv制御性と放射効率の両立を考慮し、他の材料と一体として発光装置を作成した際に、そのピーク波長が630nmに近接することが非常に好ましい。すなわち、本発明においてΛ3(590nm)から780nmの長波長領域に発光ピークを有する蛍光体材料は、590nmから600nmの間にピークを有するようになることが好ましく、600nmから780nm程度にピークを有するようになることがより好ましく、ピーク波長が630nmに近接することが非常に好ましい。特にピーク波長が620nmから655nmとなる蛍光体材料が非常に好ましい。
(La1−x−yEuxLny)2O2S (7)
(一般式(7)において、x及びyはそれぞれ0.02≦x≦0.50及び0≦y≦0.50を満たす数を表し、LnはY、Gd、Lu、Sc、Sm及びErの少なくとも1種の3価希土類元素を表す。)(一般式(7)で表される酸硫化ランタン蛍光体をLOS蛍光
体と呼ぶ。)
(k−x)MgO・xAF2・GeO2:yMn4+ (7)´
(一般式(7)´において、k、x、yは、各々、2.8≦k≦5、0.1≦x≦0.7、0.005≦y≦0.015を満たす数を表し、Aはカルシウム(Ca)、ストロンチウム(Sr)、バリウム(Ba)、亜鉛(Zn)、またはこれらの混合物である。)(一般式(7)で表されるジャーマネート蛍光体をMGOF蛍光体と呼ぶ。)
紫色LED(ピーク波長が395nmから420nm程度)を、短波長領域の発光要素とし、さらに短波長領域における発光要素として比較的狭帯域な蛍光体であるSBCA、SCA、BAMの中から選択される少なくとも1以上を光源に内在させ、中間波長領域における発光要素として比較的狭帯域な蛍光体であるβ−SiAlON、BSS、BSON、G−BAMの中から選択される少なくとも1以上を光源に内在させ、長波長領域における発光要素としてCASON、SCASN、LOS、KSF、KSNAFの中から選択される少なくとも1以上を光源に内在させることは好ましい。
紫色LED(ピーク波長が395nmから420nm程度)を、短波長領域の第一発光要素とし、さらに短波長領域における第二発光要素として比較的狭帯域な蛍光体であるSBCAを光源に内在させ、中間波長領域における第一発光要素として比較的狭帯域な蛍光体であるβ−SiAlONを用い、長波長領域における第一発光要素としてCASONを用いることは非常に好ましい。
加えて、紫色LED(ピーク波長が395nmから420nm程度)を短波長領域の第一発光要素とし、さらに短波長領域における第二発光要素として比較的狭帯域な蛍光体であるSCAを光源に内在させ、中間波長領域における第一発光要素として比較的狭帯域な蛍光体であるβ−SiAlONを用い、長波長領域における第一発光要素としてCASONを用いることは非常に好ましい。
加えて、紫色LED(ピーク波長が395nmから420nm程度)を短波長領域の第一発光要素とし、さらに短波長領域における第二発光要素として比較的狭帯域な蛍光体であるBAMを光源に内在させ、中間波長領域における第一発光要素として比較的狭帯域な蛍光体であるBSSを用い、長波長領域における第一発光要素としてCASONを用いることは非常に好ましい。
一方、青紫色LED(ピーク波長が420nmから455nm程度)かつ/または青色LED(ピーク波長が455nmから485nm程度)を短波長領域の発光要素とし、中間波長領域における発光要素として比較的狭帯域な蛍光体であるβ−SiAlON、BSS、BSON、G−BAMの中から選択される少なくとも1以上を光源に内在させ、長波長領域における発光要素としてCASON、SCASN、LOS、KSF、KSNAFの中から選択される少なくとも1以上を光源に内在させることは好ましい。
青紫色LED(ピーク波長が420nmから455nm程度)かつ/または青色LED(ピーク波長が455nmから485nm程度)を短波長領域の発光要素とし、さらに中間波長領域における第一発光要素として比較的狭帯域な蛍光体であるBSONを用い、長波長領域における第一発光要素としてSCASNを用いることは非常に好ましい。
青紫色LED(ピーク波長が420nmから455nm程度)かつ/または青色LED(ピーク波長が455nmから485nm程度)を短波長領域の発光要素とし、さらに中間波長領域における第一発光要素として比較的狭帯域な蛍光体であるβ−SiAlONを用い、長波長領域における第一発光要素としてCASONを用いることは非常に好ましい。
青紫色LED(ピーク波長が420nmから455nm程度)かつ/または青色LED(ピーク波長が455nmから485nm程度)を短波長領域の発光要素とし、さらに中間波長領域における第一発光要素として比較的狭帯域な蛍光体であるβ−SiAlONを用い、長波長領域における第一発光要素としてCASONを用い、長波長領域における第二発光要素としてKSFもしくはKSNAFを用いることは非常に好ましい。
青紫色LED(ピーク波長が420nmから455nm程度)かつ/または青色LED(ピーク波長が455nmから485nm程度)を短波長領域の発光要素とし、さらに中間波長領域における第一発光要素として比較的狭帯域な蛍光体であるβ−SiAlONを用い、長波長領域における第一発光要素としてSCASNを用いることは非常に好ましい。
青紫色LED(ピーク波長が420nmから455nm程度)かつ/または青色LED(ピーク波長が455nmから485nm程度)を短波長領域の発光要素とし、さらに中間波長領域における第一発光要素として比較的狭帯域な蛍光体であるβ−SiAlONを用い、長波長領域における第一発光要素としてSCASNを用い、長波長領域における第二発光要素としてKSFもしくはKSNAFを用いることは非常に好ましい。
特定の発光領域に、青色発光素子を含み、中間波長領域における蛍光体としてCa3(Sc,Mg)2Si3O12:Ce(CSMS蛍光体)、CaSc2O4:Ce(CSO蛍光体)、Lu3Al5O12:Ce(LuAG蛍光体)、Y3(Al,Ga)5O12:Ce(G−YAG蛍光体)から選択される少なくとも1つの緑色蛍光体を含み、さらに、(Sr,Ca)AlSiN3:Eu(SCASN蛍光体)、CaAlSi(ON)3:Eu(CASON蛍光体)、またはCaAlSiN3:Eu(CASN蛍光体)から選択される少なくとも1つの赤色蛍光体を含む事は好ましく、このような発光領域を含む発光装置とする事は好ましい。
位置をさらに長波長側に移動させる、中間波長領域内の発光要素の発光位置を555nmからずらすなどのことが可能である。さらに、短波長領域内の発光要素の相対的発光強度を上げる、長波長領域内の発光要素の相対的発光強度を上げる、中間波長領域内の発光要素の相対的発光強度を下げるなどのことが可能である。また、この際にCCTを変化させずにDuvを変化させるには、短波長領域内の発光要素の発光位置を短波長側に移動させ、かつ、長波長領域内の発光要素の発光位置を長波長側に移動させるなどのことを同時に行えばよい。さらに、Duvを正側に変化させるには、上記記載と逆の操作を行えばよい。
本発明の照明方法に用いる発光装置としては、このような照明が可能な装置であれば、どのような構成をとる装置であっても構わない。当該装置は、たとえば照明光源単体であっても、当該光源を放熱板等の上に少なくとも1以上搭載している照明用モジュールであっても、当該光源あるいはモジュールにレンズ、反射機構、駆動用電気回路等を付与した照明器具であってもよい。さらには、光源単体、モジュール単体、器具単体等を集合させ、少なくともこれらを支持する機構を有する照明システムであってもよい。
装置とすることであって、かつ、指標Acgを適切な範囲とした発光装置とすることである。
当該装置は、たとえば照明光源単体であっても、当該光源を放熱板等の上に少なくとも1以上搭載している照明用モジュールであっても、当該光源あるいはモジュールにレンズ、反射機構、駆動用電気回路等を付与した照明器具であってもよい。さらには、光源単体、モジュール単体、器具単体等を集合させ、少なくともこれらを支持する機構を有する照明システムであってもよい。
1 発光領域1
11 発光領域1−1
12 発光領域1−2
13 発光領域1−3
2 発光領域2
21 発光領域2−1
22 発光領域2−2
23 発光領域2−3
3 発光領域3
31 発光領域3−1
32 発光領域3−2
4 発光領域4
5 発光領域5
6 半導体発光素子
7 仮想外周
71 仮想外周上の2点
72 仮想外周上の2点間の距離
10 パッケージLED
20 パッケージLED
25 パッケージLED
30 照明システム
301 LEDバルブ(発光領域1)
302 LEDバルブ(発光領域2)
303 天井
40 1対のパッケージLED
400 パッケージLED
401 発光領域1
402 発光領域2
このために、例えば、一般の白色紙上の黒文字等が読みやすくなる。このような特長を
生かし、読書灯、学習机用照明、事務用照明等の作業用照明に応用することは好ましい。さらに、作業内容によっては、工場等において、細かな部品の外観検査を行う、布地などにおいて近接した色の識別を行う、生肉の鮮度確認のための色確認を行う、限度見本に照らした製品検査を行う等も考えられるが、本発明の照明方法により照明した場合には、近接した色相における色識別が容易になり、あたかも高照度環境下の様な快適な作業環境を実現しうる。よってこのような観点でも作業用照明に適応することは好ましい。
よって、本発明の発光装置又は照明方法を家庭用等の一般照明に応用したとすれば、食品は新鮮に、かつ、食欲をそそるように見え、新聞や雑誌等も見やすく、段差等の視認性も上がり家庭内の安全性向上にもつながると考えられる。よって、本発明を家庭用照明に応用することは好ましい。また、衣料品、食品、車、かばん、靴、装飾品、家具等の展示物用照明としても好ましく、周辺から際立って視認させうる照明が可能である。化粧品等の、色の微妙な差が購入の決め手となる物品の照明としても好ましい。白色のドレス等の展示物用照明として使用すると、同じ白色でも、青みがかった白、クリーム色に近い白などの、微妙な色の差が視認しやすくなるため、本人の希望通りの色を選択することが可能となる。さらには、結婚式場、劇場等での演出用照明としても好適で、純粋な白色のドレス等は純白に見え、歌舞伎等の着物、隈取等もはっきりと見えるようになる。さらに肌色も際立ち好ましい。また、美容室の照明として使用すると、毛髪をカラー処理する場合、屋外で見たときと齟齬がないような色にすることが可能となり、染めすぎや染め不足を防ぐことができる。
の不特定多数の方が利用する公共施設等における照明にも好適に利用可能である。
Claims (15)
- M個(Mは2以上の自然数)の発光領域が内在し、少なくとも一つの前記発光領域内に青紫色又は青色半導体発光素子を発光要素として備える発光装置であって、
当該発光装置の主たる放射方向に各発光領域から出射される光の分光分布をφSSLN(λ)(Nは1からM)とし、前記発光装置から当該放射方向に出射されるすべての光の分光分布φSSL(λ)が、
のときに、
前記発光領域から出射される光束量かつ/または放射束量を変化させることで、φSSL(λ)が条件1−4を満たすように出来る発光領域が内在する発光装置。
条件1:
前記発光装置から出射される光は、ANSI C78.377で定義される黒体放射軌跡からの距離D uvSSL が、−0.0350 ≦ D uvSSL < 0となる光を主たる放射方向に含む。
条件2:
前記発光装置から当該放射方向に出射される光の分光分布をφ SSL (λ)、前記発光装置から当該放射方向に出射される光の相関色温度T SSL (K)に応じて選択される基準の光の分光分布をφ ref (λ)、前記発光装置から当該放射方向に出射される光の三刺激値を(X SSL 、Y SSL 、Z SSL )、前記発光装置から当該放射方向に出射される光の相関色温度T SSL (K)に応じて選択される基準の光の三刺激値を(X ref 、Y ref 、Z ref )とし、
前記発光装置から当該放射方向に出射される光の規格化分光分布S SSL (λ)と、前記発光装置から当該放射方向に出射される光の相関色温度T SSL (K)に応じて選択される基準の光の規格化分光分布S ref (λ)と、これら規格化分光分布の差ΔS(λ)
をそれぞれ、
S SSL (λ)=φ SSL (λ)/Y SSL
S ref (λ)=φ ref (λ)/Y ref
ΔS(λ)=S ref (λ)−S SSL (λ)
と定義し、
波長380nm以上780nm以内の範囲で、S SSL (λ)の最長波長極大値を与える波長をλ R (nm)とした際に、λ R よりも長波長側にS SSL (λ R )/2となる波長Λ4が存在する場合において、
下記数式(1)で表される指標A cg が、−360 ≦ A cg ≦ −10を満たし、
波長380nm以上780nm以内の範囲で、S SSL (λ)の最長波長極大値を与える波長をλ R (nm)とした際に、λ R よりも長波長側にS SSL (λ R )/2となる波長Λ4が存在しない場合において、
下記数式(2)で表される指標A cg が、−360 ≦ A cg ≦ −10を満たす。
条件3:
当該放射方向に出射される光による照明を数学的に仮定した場合の#01から#15の下記15種類の修正マンセル色票のCIE 1976 L*a*b*色空間におけるa*値、b*値をそれぞれa* nSSL、b* nSSL(ただしnは1から15の自然数)とし、
当該放射方向に出射される光の相関色温度TSSL(K)に応じて選択される基準の光での照明を数学的に仮定した場合の当該15種類の修正マンセル色票のCIE 1976
L*a*b*色空間におけるa*値、b*値をそれぞれa* nref、b* nref(ただしnは1から15の自然数)とした場合に、飽和度差ΔCnが
−3.8 ≦ ΔCn ≦ 18.6 (nは1から15の自然数)
を満たし、下記式(3)で表される飽和度差の平均が下記式(4)を満たし、
かつ飽和度差の最大値をΔCmax、飽和度差の最小値をΔCminとした場合に、飽和度差の最大値と、飽和度差の最小値との間の差|ΔCmax−ΔCmin|が
2.8 ≦ |ΔCmax−ΔCmin| ≦ 19.6
を満たす。
ただし、ΔCn=√{(a* nSSL)2+(b* nSSL)2}−√{(a* nref)2+(b* nref)2}とする。
15種類の修正マンセル色票
#01 7.5 P 4 /10
#02 10 PB 4 /10
#03 5 PB 4 /12
#04 7.5 B 5 /10
#05 10 BG 6 / 8
#06 2.5 BG 6 /10
#07 2.5 G 6 /12
#08 7.5 GY 7 /10
#09 2.5 GY 8 /10
#10 5 Y 8.5/12
#11 10 YR 7 /12
#12 5 YR 7 /12
#13 10 R 6 /12
#14 5 R 4 /14
#15 7.5 RP 4 /12
条件4:
当該放射方向に出射される光による照明を数学的に仮定した場合の上記15種類の修正マンセル色票のCIE 1976 L*a*b*色空間における色相角をθnSSL(度)(ただしnは1から15の自然数)とし、
当該放射方向に出射される光の相関色温度TSSL(K)に応じて選択される基準の光での照明を数学的に仮定した場合の当該15種類の修正マンセル色票のCIE 1976
L*a*b*色空間における色相角をθnref(度)(ただしnは1から15の自然数)とした場合に、色相角差の絶対値|Δhn|が
0 ≦ |Δhn| ≦ 9.0(度)(nは1から15の自然数)
を満たす。
ただし、Δhn=θnSSL−θnrefとする。 - 請求項1に記載の発光装置であって、
すべてのφSSLN(λ)(Nは1からM)が、前記条件1−4を満たす発光装置。 - 請求項1又は2に記載の発光装置であって、
前記M個の発光領域中の、少なくとも1つの発光領域が、他の発光領域に対して電気的に独立に駆動しうる配線となっている発光装置。 - 請求項3に記載の発光装置であって、
M個の発光領域すべてが、他の発光領域に対して電気的に独立に駆動しうる配線となっている発光装置。 - 請求項1〜4のいずれか1項に記載の発光装置であって、
最近接している異なる発光領域全体を包絡する仮想外周上にある任意の2点がつくる最大距離Lが、0.4mm以上200mm以下である発光装置。 - 請求項1〜5のいずれか1項に記載の発光装置であって、
前記発光装置から当該放射方向に出射される光は、分光分布φSSL(λ)から導出される波長380nm以上780nm以下の範囲の放射効率K(lm/W)が
180(lm/W) ≦ K(lm/W) ≦ 320(lm/W)
を満たすように出来ることを特徴とする発光装置。 - 請求項1〜6のいずれか1項に記載の発光装置であって、
前記発光装置から当該放射方向に出射される光は、相関色温度TSSL(K)が
2000(K) ≦ TSSL(K) ≦ 7000(K)
を満たすように出来ることを特徴とする発光装置。 - 請求項1〜7のいずれか1項に記載の発光装置であって、
相関色温度TSSL(K)が変化し得る発光装置。 - 請求項8に記載の発光装置であって、
相関色温度TSSL(K)が変化した際に、発光装置から主たる放射方向に出射される光束かつ/または放射束を独立に制御しうることを特徴とする発光装置。 - 請求項1〜9のいずれか1項に記載の発光装置であって、
発光要素として緑色蛍光体及び赤色蛍光体を備え、
前記緑色蛍光体は、BSS蛍光体、G−BAM蛍光体、β−SiAlON蛍光体、(Ba,Ca,Sr,Mg,Zn,Eu)3Si6O12N2で表される蛍光体、LSN蛍光体、YAG蛍光体、Ya(Ce,Tb,Lu)b(Ga,Sc)cAldOeで表される蛍光体(ただし、a、b、c、d、eが、a+b=3、0≦b≦0.2、4.5≦c+d≦5.5、0.1≦c≦2.6、および10.8≦e≦13.4を満たす。)、Lua(Ce,Tb,Y)b(Ga,Sc)cAldOeで表される蛍光体(ただし、a、b、c、d、eが、a+b=3、0≦b≦0.2、4.5≦c+d≦5.5、0≦c≦2.6、および10.8≦e≦13.4を満たす。)、CSMS蛍光体、及びCSO蛍光体からなる群から選択される少なくとも1種の緑色蛍光体を含み、
前記赤色蛍光体は、(Ca,Sr,Ba)AlSiN3:Euで表される蛍光体、CASON蛍光体、KSF蛍光体、KSNAF蛍光体、LOS蛍光体、及びMGOF蛍光体からなる群から選択される少なくとも1種の緑赤色蛍光体を含むことを特徴とする発光装置。 - 対象物を準備する照明対象物準備工程、および、M個(Mは2以上の自然数)の発光領域が内在し、少なくとも一つの発光領域内に青紫色又は青色半導体発光素子を発光要素として備える発光装置から出射される光により対象物を照明する照明工程、を含む照明方法であって、
前記照明工程において、前記発光装置から出射される光が対象物を照明した際に、前記対象物の位置で測定した光が以下の<1−1>、<1−2>、<2>、及び<3>を満たすように照明する照明方法。
<1−1>:
前記対象物の位置で測定した光のANSI C78.377で定義される黒体放射軌跡からの距離D uvSSL が、−0.0350 ≦ D uvSSL < 0である。
<1−2>:
前記対象物の位置で測定した光の分光分布をφ SSL (λ)、前記対象物の位置で測定した光の相関色温度T SSL (K)に応じて選択される基準の光の分光分布をφ ref (λ)、前記対象物の位置で測定した光の三刺激値を(X SSL 、Y SSL 、Z SSL )、前記対象物の位置で測定した光の相関色温度T SSL (K)に応じて選択される基準の光の三刺激値を(X ref 、Y ref 、Z ref )とし、
前記対象物の位置で測定した光の規格化分光分布S SSL (λ)と、前記対象物の位置
で測定した光の相関色温度T SSL (K)に応じて選択される基準の光の規格化分光分布S ref (λ)と、これら規格化分光分布の差ΔS(λ)をそれぞれ、
S SSL (λ)=φ SSL (λ)/Y SSL
S ref (λ)=φ ref (λ)/Y ref
ΔS(λ)=S ref (λ)−S SSL (λ)
と定義し、
波長380nm以上780nm以内の範囲で、S SSL (λ)の最長波長極大値を与える波長をλ R (nm)とした際に、λ R よりも長波長側にS SSL (λ R )/2となる波長Λ4が存在する場合において、
下記数式(1)で表される指標A cg が、−360 ≦ A cg ≦ −10を満たし、
波長380nm以上780nm以内の範囲で、S SSL (λ)の最長波長極大値を与える波長をλ R (nm)とした際に、λ R よりも長波長側にS SSL (λ R )/2となる波長Λ4が存在しない場合において、
下記数式(2)で表される指標A cg が、−360 ≦ A cg ≦ −10を満たす。
<2>:
前記対象物の位置で測定した光による照明を数学的に仮定した場合の#01から#15の下記15種類の修正マンセル色票のCIE 1976 L*a*b*色空間におけるa*値、b*値をそれぞれa* nSSL、b* nSSL(ただしnは1から15の自然数)とし、
前記対象物の位置で測定した光の相関色温度TSSL(K)に応じて選択される基準の光による照明を数学的に仮定した場合の当該15種類の修正マンセル色票のCIE 1976 L*a*b*色空間におけるa*値、b*値をそれぞれa* nref、b* nref(ただしnは1から15の自然数)とした場合に、飽和度差ΔCnが
−3.8 ≦ ΔCn ≦ 18.6 (nは1から15の自然数)
を満たし、下記式(3)で表される飽和度差の平均が下記式(4)を満たし、
かつ、飽和度差の最大値をΔCmax、飽和度差の最小値をΔCminとした場合に、飽和度差の最大値と、飽和度差の最小値との間の差|ΔCmax−ΔCmin|が
2.8 ≦ |ΔCmax−ΔCmin| ≦ 19.6
を満たす。
ただし、ΔCn=√{(a* nSSL)2+(b* nSSL)2}−√{(a* nref)2+(b* nref)2}とする。
15種類の修正マンセル色票
#01 7.5 P 4 /10
#02 10 PB 4 /10
#03 5 PB 4 /12
#04 7.5 B 5 /10
#05 10 BG 6 / 8
#06 2.5 BG 6 /10
#07 2.5 G 6 /12
#08 7.5 GY 7 /10
#09 2.5 GY 8 /10
#10 5 Y 8.5/12
#11 10 YR 7 /12
#12 5 YR 7 /12
#13 10 R 6 /12
#14 5 R 4 /14
#15 7.5 RP 4 /12
<3>:
前記対象物の位置で測定した光による照明を数学的に仮定した場合の上記15種類の修正マンセル色票のCIE 1976 L*a*b*色空間における色相角をθnSSL(度)(ただしnは1から15の自然数)とし、
前記対象物の位置で測定した光の相関色温度TSSL(K)に応じて選択される基準の光による照明を数学的に仮定した場合の当該15種類の修正マンセル色票のCIE 1976 L*a*b*色空間における色相角をθnref(度)(ただしnは1から15の自然数)とした場合に、色相角差の絶対値|Δhn|が
0 ≦ |Δhn| ≦ 9.0(度)(nは1から15の自然数)
を満たす。
ただし、Δhn=θnSSL−θnrefとする。 - 請求項11に記載の照明方法であって、
前記式(3)で表される飽和度差の平均
、及び相関色温度TSSL(K)からなる群から選択される少なくとも1つを変化させた際に、当該対象物における照度を不変とする照明方法。 - 請求項11に記載の照明方法であって、
前記式(3)で表される飽和度差の平均
を増加させた際に、当該対象物における照度を低減する照明方法。 - 請求項11に記載の照明方法であって、
相関色温度TSSL(K)を増加させた際に、当該対象物における照度を増加する照明方法。 - 請求項11〜14のいずれか1項に記載の照明方法であって、
最近接している異なる発光領域全体を包絡する仮想外周上にある任意の2点がつくる最大距離をL、発光装置と照明対象物の距離をHとした際に、
5×L≦H≦500×L
となるように距離Hを設定する照明方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013042268 | 2013-03-04 | ||
JP2013042268 | 2013-03-04 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014041249A Division JP6362877B2 (ja) | 2013-03-04 | 2014-03-04 | 半導体発光素子を含む発光装置、発光装置の設計方法、発光装置の駆動方法、および照明方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018164105A JP2018164105A (ja) | 2018-10-18 |
JP6820064B2 true JP6820064B2 (ja) | 2021-01-27 |
Family
ID=52358249
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014041249A Active JP6362877B2 (ja) | 2013-03-04 | 2014-03-04 | 半導体発光素子を含む発光装置、発光装置の設計方法、発光装置の駆動方法、および照明方法 |
JP2018121449A Active JP6820064B2 (ja) | 2013-03-04 | 2018-06-27 | 半導体発光素子を含む発光装置、発光装置の設計方法、発光装置の駆動方法、および照明方法 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014041249A Active JP6362877B2 (ja) | 2013-03-04 | 2014-03-04 | 半導体発光素子を含む発光装置、発光装置の設計方法、発光装置の駆動方法、および照明方法 |
Country Status (1)
Country | Link |
---|---|
JP (2) | JP6362877B2 (ja) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6362877B2 (ja) * | 2013-03-04 | 2018-07-25 | シチズン電子株式会社 | 半導体発光素子を含む発光装置、発光装置の設計方法、発光装置の駆動方法、および照明方法 |
WO2016093119A1 (ja) * | 2014-12-09 | 2016-06-16 | 信越化学工業株式会社 | 車載ヘッドライト用led光源 |
KR101686715B1 (ko) * | 2014-12-24 | 2016-12-14 | 엘지전자 주식회사 | 디스플레이 장치 |
JP2016162857A (ja) * | 2015-02-27 | 2016-09-05 | 東芝ライテック株式会社 | 照明装置 |
WO2018021568A1 (ja) * | 2016-07-28 | 2018-02-01 | シチズン時計株式会社 | Led電球 |
CN110352318B (zh) * | 2017-02-27 | 2021-02-05 | 西铁城电子株式会社 | 半导体发光装置和照明装置 |
JPWO2019107281A1 (ja) * | 2017-11-28 | 2020-12-03 | 京セラ株式会社 | 発光装置および照明装置 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8125137B2 (en) * | 2005-01-10 | 2012-02-28 | Cree, Inc. | Multi-chip light emitting device lamps for providing high-CRI warm white light and light fixtures including the same |
JP2007109837A (ja) * | 2005-10-13 | 2007-04-26 | Hitachi Ltd | 照明装置 |
JP3118485U (ja) * | 2005-11-11 | 2006-01-26 | 優佰利股▲分▼有限公司 | 白色光発光装置 |
JP5012189B2 (ja) * | 2007-05-14 | 2012-08-29 | Dic株式会社 | 照明装置 |
US8247959B2 (en) * | 2007-10-17 | 2012-08-21 | General Electric Company | Solid state illumination system with improved color quality |
KR20100118149A (ko) * | 2008-02-28 | 2010-11-04 | 코닌클리즈케 필립스 일렉트로닉스 엔.브이. | 발광 다이오드 장치 |
US7990045B2 (en) * | 2008-03-15 | 2011-08-02 | Sensor Electronic Technology, Inc. | Solid-state lamps with partial conversion in phosphors for rendering an enhanced number of colors |
EP2398079A1 (en) * | 2009-04-27 | 2011-12-21 | Toshiba Lighting&Technology Corporation | Illuminating device |
JP2012060097A (ja) * | 2010-06-25 | 2012-03-22 | Mitsubishi Chemicals Corp | 白色半導体発光装置 |
JP5654328B2 (ja) * | 2010-11-24 | 2015-01-14 | パナソニックIpマネジメント株式会社 | 発光装置 |
JP2012142163A (ja) * | 2010-12-28 | 2012-07-26 | Toshiba Lighting & Technology Corp | 光源装置及び照明装置 |
US8933620B2 (en) * | 2011-02-03 | 2015-01-13 | Panasonic Intellectual Property Management Co., Ltd. | White light LED module with green and red phosphors and illumination device having the same |
JP6362877B2 (ja) * | 2013-03-04 | 2018-07-25 | シチズン電子株式会社 | 半導体発光素子を含む発光装置、発光装置の設計方法、発光装置の駆動方法、および照明方法 |
-
2014
- 2014-03-04 JP JP2014041249A patent/JP6362877B2/ja active Active
-
2018
- 2018-06-27 JP JP2018121449A patent/JP6820064B2/ja active Active
Also Published As
Publication number | Publication date |
---|---|
JP2014197673A (ja) | 2014-10-16 |
JP6362877B2 (ja) | 2018-07-25 |
JP2018164105A (ja) | 2018-10-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6811804B2 (ja) | 照明方法及び発光装置 | |
JP6567112B2 (ja) | 照明方法及び発光装置 | |
CN106888522B (zh) | 发光装置 | |
JP6820064B2 (ja) | 半導体発光素子を含む発光装置、発光装置の設計方法、発光装置の駆動方法、および照明方法 | |
JP6584030B2 (ja) | 照明方法及び発光装置 | |
JP6632704B2 (ja) | 発光装置及び発光装置の製造方法 | |
JP2014170843A (ja) | Led照明装置 | |
JP2014170853A (ja) | 発光装置及び照明方法 | |
JP2016054044A (ja) | 半導体発光素子を含む発光装置、発光装置の設計方法、発光装置の駆動方法、および照明方法 | |
JP2014049319A (ja) | 発光装置及び照明方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180726 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180801 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190604 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190802 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200128 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200330 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200602 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20201201 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20201224 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6820064 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |