JP6819952B2 - Laminated molding metal powder and laminated molding using metal powder - Google Patents
Laminated molding metal powder and laminated molding using metal powder Download PDFInfo
- Publication number
- JP6819952B2 JP6819952B2 JP2016118501A JP2016118501A JP6819952B2 JP 6819952 B2 JP6819952 B2 JP 6819952B2 JP 2016118501 A JP2016118501 A JP 2016118501A JP 2016118501 A JP2016118501 A JP 2016118501A JP 6819952 B2 JP6819952 B2 JP 6819952B2
- Authority
- JP
- Japan
- Prior art keywords
- metal powder
- base metal
- tic
- powder
- laser
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Powder Metallurgy (AREA)
Description
本発明は、高造形性および高強度を実現する積層造形用金属粉末およびそれを用いて製造した積層造形体製造の技術に関する。 The present invention relates to a metal powder for laminated molding that realizes high formability and high strength, and a technique for manufacturing a laminated model manufactured by using the metal powder.
近年、新たな製造技術として積層造形法、通称3Dプリンターが急速に注目を集めている。これは3Dプリンター自体にではなく、CADなどのデジタルデータから直接造形物を作り出すことができるというところに本質があり、ものづくりのデジタル化が広がる中で、3Dプリンターの運用により開発および試作期間が短縮されることが期待されている。3Dプリンターには大きく分けると樹脂を材料としても用いるものと、金属粉末を材料として用いるものがあり、どちらの3Dプリンターにおいても付加加工を基礎としている。 In recent years, additive manufacturing, commonly known as 3D printers, has rapidly attracted attention as a new manufacturing technology. The essence of this is that it is possible to create a modeled object directly from digital data such as CAD, not the 3D printer itself, and as the digitization of manufacturing spreads, the development and trial production period is shortened by operating the 3D printer. It is expected to be done. 3D printers can be broadly divided into those that use resin as a material and those that use metal powder as a material, and both 3D printers are based on additional processing.
付加加工とは、材料を付加して相互に接合することによって形状を付与する加工方法であり、除去加工や変形加工を用いないため、短時間で複雑な形状を造形することができる(非特許文献1参照)。よって、精度が求められる金型や機械部品、オーダーメイドが原則である人口骨や歯の補綴物として利用可能である。しかし、樹脂系3Dプリンターに比べると、金属用3Dプリンターでは造形物の高性能化の発展が遅れており、これは金属特有の特徴に起因している。 Additive processing is a processing method that imparts a shape by adding materials and joining them to each other. Since no removal processing or deformation processing is used, it is possible to form a complicated shape in a short time (non-patented). Reference 1). Therefore, it can be used as a mold or machine part that requires precision, or as an artificial bone or tooth prosthesis that is made to order in principle. However, compared to resin-based 3D printers, metal 3D printers lag behind in the development of higher performance of shaped objects, which is due to the characteristics peculiar to metals.
金属用3Dプリンターでは金属粉末をレーザーで焼結して融解と凝固を行い、それを積み重ねることにより造形を行う(非特許文献2参照)。したがって、造形品は粉末焼結品ではなく、鋳造品であり、それゆえ造形体は鋳造品と同等の凝固組織を有し、また鋳造品同等の欠陥に起因する強度低下が認められる。特に、溶融と凝固の繰り返しを行い、積層方向に伸長した粗大な結晶粒を有するため、従来の製造法により加工した金属製品と比較して強度が劣るという欠点を有しており、製品の適用範囲を限定してしまっていた。 In a 3D printer for metal, metal powder is sintered with a laser to melt and solidify, and the metal powder is stacked to perform modeling (see Non-Patent Document 2). Therefore, the modeled product is not a powder sintered product but a cast product, and therefore the modeled product has a solidification structure equivalent to that of the cast product, and a decrease in strength due to a defect equivalent to that of the cast product is observed. In particular, since it has coarse crystal grains that are repeatedly melted and solidified and elongated in the stacking direction, it has the disadvantage of being inferior in strength to metal products processed by conventional manufacturing methods, and is applicable to products. I had limited the range.
このような凝固組織を抑制する方法としては、異質核生成を用いた結晶粒微細化があげられる。金属の凝固には、不純物粒子などがない状態で核生成をして凝固する均質核生成と、不純物粒子(異質核)などから核生成して凝固する異質核生成があり、異質核生成では均質核生成に比べて核を生成する際のエネルギーが小さくなるため、容易に多数の核が生成することから、組織が微細化する。金属用3Dプリンターに用いる母相金属粉末に対して異質核となる金属粉末を添加することにより、造形時に生じてしまう組織の粗大化を抑制すると同時に、等軸晶の晶出による造形性の向上が期待される(非特許文献3参照)。この際、異質核として十分に働くためには、母相の金属よりも融点が高く、母相金属との原子配列の整合性が良い必要がある。 As a method of suppressing such a solidified structure, there is an example of grain refinement using heterologous nucleation. Metal coagulation includes homogeneous nucleation, which nucleates and solidifies in the absence of impurity particles, and heterogeneous nucleation, which nucleates from impurity particles (foreign nuclei) and solidifies. Heterogeneous nucleation is homogeneous. Since the energy for nucleation is smaller than that for nucleation, a large number of nuclei are easily generated, resulting in finer tissue. By adding a metal powder that becomes a heterogeneous nucleus to the matrix metal powder used in a 3D printer for metals, it is possible to suppress the coarsening of the structure that occurs during modeling, and at the same time, improve the formability by crystallizing equiaxed crystals. Is expected (see Non-Patent Document 3). At this time, in order to sufficiently work as a heterogeneous nucleus, it is necessary that the melting point is higher than that of the metal of the parent phase and the atomic arrangement of the metal of the mother phase is well matched.
金属の積層造形に用いられる主な金属としては、Ti−6Al−4V、マルエージング鋼、アルミニウム合金などがあげられる。本発明においては、これらの金属の中からTi合金であるTi−6Al−4Vを母相金属として選択したが、これにより材料系が限定されるものではない。このTi−6Al−4Vを母相金属として選択した場合、Ti−6Al−4Vに対して融点が高く、原子配列の整合性が高い異物質が異質核物質となる。原子配列の整合性を評価する指標としては不整合度δが定義されており、数1で表される。 Examples of the main metal used for laminated metal molding include Ti-6Al-4V, maraging steel, and aluminum alloy. In the present invention, Ti-6Al-4V, which is a Ti alloy, is selected as the matrix metal from these metals, but the material system is not limited thereto. When this Ti-6Al-4V is selected as the matrix metal, a foreign substance having a higher melting point than Ti-6Al-4V and a high atomic arrangement consistency becomes a heteronuclear substance. The degree of inconsistency δ is defined as an index for evaluating the consistency of the atomic arrangement, and is represented by Equation 1.
Ti−6Al−4Vは、まずβ相が初晶として晶出する。その後、変態点である995℃に相変態が生じてβ相がα相に変態し、最終的にα相とβ相の2相が室温で共存している状態になる(非特許文献5参照)。そのため、Ti−6Al−4Vの初晶 β相に対しての不整合度を求める。表1に数1を用いて算出したTiを含む各種金属間化合物の融点、結晶構造、格子定数および不整合度を示す。表1より、どの金属間化合物においても不整合度は10%以下を示している。その中でもZnTiは最も低い値である3.96%を示しており、不整合度の観点から言えばTi−6Al−4Vに対する有効な異質核になるといえる。しかし、すべての金属間化合物で融点はTi−6Al−4Vよりも低い値を示しており、有効な異質核として働きうる条件を満たさなかった。 In Ti-6Al-4V, the β phase first crystallizes as a primary crystal. After that, a phase transformation occurs at the transformation point of 995 ° C., the β phase is transformed into the α phase, and finally the two phases of the α phase and the β phase coexist at room temperature (see Non-Patent Document 5). ). Therefore, the degree of inconsistency with respect to the primary crystal β phase of Ti-6Al-4V is obtained. Table 1 shows the melting points, crystal structures, lattice constants, and inconsistencies of various intermetallic compounds containing Ti calculated using Equation 1. From Table 1, the degree of inconsistency is 10% or less for any of the intermetallic compounds. Among them, ZnTi shows the lowest value of 3.96%, and can be said to be an effective heterogeneous nucleus for Ti-6Al-4V from the viewpoint of inconsistency. However, the melting points of all the intermetallic compounds were lower than those of Ti-6Al-4V, which did not satisfy the conditions for acting as an effective heterogeneous nucleus.
そこで、Tiの炭化物、窒化物およびホウ化物であるTiC、TiNおよびTiBに着目した。表2にTiC、TiN、TiBの融点、結晶構造、格子定数および不整合度を示す。表2よりTiC、TiNおよびTiBはTi−6Al−4Vよりも高い融点を示しており、結晶構造としてはNaCl構造を有している。TiC、TiNおよびTiBのすべてにおいて不整合度は10%よりも低い値を示している。さらに、全体でもTiCは6.72%と最も小さい値をとっており、有効な異質核としての条件である融点の高さ、原子配列の整合性において最も良い値をとった。 Therefore, we focused on TiC, TiN, and TiB, which are carbides, nitrides, and borides of Ti. Table 2 shows the melting points, crystal structures, lattice constants and inconsistencies of TiC, TiN and TiB. From Table 2, TiC, TiN and TiB have higher melting points than Ti-6Al-4V and have a NaCl structure as a crystal structure. The degree of inconsistency is lower than 10% in all of TiC, TiN and TiB. Furthermore, TiC had the smallest value of 6.72% as a whole, and had the best values in terms of high melting point and atomic arrangement consistency, which are the conditions for an effective heterogeneous nucleus.
本明細書では,金属用3Dプリンターにおいて高強度かつ高造形性を特徴とした造形に用いられる異質核粒子を用いた混合粉末とそれを用いた造形体の製造方法ついて提供する。高強度の過程では、異質核生成による多数の凝固核の出現による結晶粒微細化を利用し、高造形性の過程では異質核生成による等軸晶の晶出を利用する。 In the present specification, a mixed powder using heteronuclear particles used for modeling characterized by high strength and high formability in a 3D printer for metal and a method for producing a modeled body using the mixed powder are provided. In the high-intensity process, grain refinement due to the appearance of a large number of solidified nuclei due to heterogeneous nucleation is used, and in the process of high formability, equiaxed crystal crystallization due to heterogeneous nucleation is used.
金属用3Dプリンターにおいて高強度かつ高造形性を特徴とする造形を行うために用いられる母材金属粉末とその凝固に対する異質核粒子からなる混合粉末。 A mixed powder consisting of a base metal powder used for performing modeling characterized by high strength and high formability in a 3D printer for metal and foreign nuclei particles against its solidification.
金属用3Dプリンターにおいて高強度かつ高造形性を特徴とする造形を行うために用いられる母材金属粉末に対して融点が高く、母材金属に対する原子配列の整合性が高い異質核粒子。 Heterogeneous nuclear particles having a high melting point with respect to the base metal powder used for performing modeling characterized by high strength and high formability in a metal 3D printer, and having high atomic arrangement consistency with the base metal.
金属用3Dプリンターにおいて高強度かつ高造形性を特徴とする造形を行うために用いられる母材金属粉末がTi−6Al−4Vであり、それに対して融点が高く、Ti−6Al−4Vに対する原子配列の整合性が高いTiCを異質核粒子とした混合粉末。 The base metal powder used for performing modeling characterized by high strength and high formability in a metal 3D printer is Ti-6Al-4V, which has a higher melting point and an atomic arrangement with respect to Ti-6Al-4V. A mixed powder containing TiC as a heterogeneous nuclear particle with high consistency.
金属用3Dプリンターにおいて高強度かつ高造形性を特徴とする造形を行うために用いられる母材金属粉末がTi−6Al−4Vであり、それに対して融点が高く、Ti−6Al−4Vに対する原子配列の整合性が高い異質核粒子がTiCであり、それらには粒径差があることを特徴とした混合粉末。 The base metal powder used for performing modeling characterized by high strength and high formability in a metal 3D printer is Ti-6Al-4V, which has a higher melting point and an atomic arrangement with respect to Ti-6Al-4V. The heteronuclear particles with high consistency are TiC, and they are mixed powders characterized by having a difference in particle size.
母材金属粉末がTi−6Al−4V、異質核粒子がTiCであり、粒径差を有するTi−6Al−4V粒子とTiC粒子とからなる混合粉末を用いた高強度かつ高造形性を特徴とする金属用3Dプリンターにおける造形体。 The base metal powder is Ti-6Al-4V, the heteronuclear particles are TiC, and it is characterized by high strength and high formability using a mixed powder composed of Ti-6Al-4V particles and TiC particles having different particle sizes. A model in a 3D printer for metal.
母材金属粉末がTi−6Al−4V、異質核粒子がTiCであり、粒径差を有するTi−6Al−4V粒子とTiC粒子とからなる混合粉末に対して真空場でレーザーにより融解と凝固を行い、これを積み重ねることによる、高強度かつ高造形性を特徴とする金属用3Dプリンターにおける造形体。 The base metal powder is Ti-6Al-4V, the heteronuclear particles are TiC, and the mixed powder consisting of Ti-6Al-4V particles and TiC particles having different particle sizes is melted and solidified by a laser in a vacuum field. A modeled body in a 3D printer for metal, which is characterized by high strength and high formability by performing and stacking the same.
母材金属粉末がTi−6Al−4V、異質核粒子がTiCであり、粒径差を有するTi−6Al−4V粒子とTiC粒子とからなる混合粉末に対して真空場でレーザーにより融解と凝固を行い、これを積み重ねることにより、結晶粒微細化による高強度かつ等軸晶の晶出に伴う高造形性を特徴とする金属用3Dプリンターにおける造形体。 The base metal powder is Ti-6Al-4V, the heteronuclear particles are TiC, and the mixed powder consisting of Ti-6Al-4V particles and TiC particles having different particle sizes is melted and solidified by a laser in a vacuum field. A modeled body in a 3D printer for metals, which is characterized by high strength due to fine grain size and high formability associated with crystallization of equiaxed crystals by stacking the same.
まず、本発明で開示する金属用3Dプリンターにおける高強度かつ高造形性を有する造形体の技術的特徴を示す。 First, the technical features of a modeled body having high strength and high formability in the 3D printer for metal disclosed in the present invention will be shown.
本発明で開示する金属用3Dプリンターにおける造形体は、母材金属粉末とその凝固に対する異質核粒子からなる混合粉末を用いることにより、結晶粒が微細で等軸晶の晶出による均等に成長した組織を有している。 In the modeled body in the 3D printer for metal disclosed in the present invention, by using a mixed powder consisting of a base metal powder and heteronuclear particles for coagulation thereof, the crystal grains were fine and uniformly grown due to the crystallization of equiaxed crystals. Has an organization.
本発明で開示する金属用3Dプリンターにおける造形体は、高強度かつ高造形性を特徴としている。造形体の強度を向上させることにより、強度が必要とされる材料への展開が可能になり、造形性の向上により造形体の空孔や曲率を抑えて精度の求められる材料への応用ができる。 The modeled body in the metal 3D printer disclosed in the present invention is characterized by high strength and high formability. By improving the strength of the modeled body, it is possible to develop it into materials that require strength, and by improving the formability, it is possible to suppress the pores and curvature of the modeled body and apply it to materials that require accuracy. ..
金属において合金の組成を損なうことは、望ましいことではないが本発明における造形体では、母材への異質核粒子の添加は非常に少ないものであるため組成の変化は非常に小さいものになる。逆に、添加した異質核は凝固後においても、その後の積層造形時に付加される不可避的加熱に伴う結晶粒成長をピン留めし、結晶粒の粗大化を防止することが期待されるのみならず、転位の移動を妨げる強化相としての役割も望める。 It is not desirable to impair the composition of the alloy in the metal, but in the model of the present invention, the addition of foreign nuclei particles to the base material is very small, so the change in composition is very small. On the contrary, the added heterogeneous nuclei are expected not only to pin the crystal grain growth due to the unavoidable heating added at the time of the subsequent laminated molding even after solidification, and to prevent the coarsening of the crystal grains. , It can also be expected to play a role as a strengthening phase that hinders the movement of dislocations.
次に、本発明で開示する金属用3Dプリンターにおける高強度かつ高造形性を有するための造形方法の技術的特徴を示す。 Next, the technical features of the modeling method for having high strength and high formability in the metal 3D printer disclosed in the present invention will be shown.
本発明で用いる造形方法では、造形テーブルに母材金属粉末のみではなく,母材金属粉末とそれに対する異質核粒子とからなる混合粉末を配することを特徴とする。図1に造形方法の概要を示す。まず、母材金属粉末に対して融点が高く、原子配列の整合性の高い異質核粒子を添加した混合粉末を粉末混合装置によって作製する。そして、図1(a)に示すように、粉末供給槽に混合粉末を充填し、チャンバ内を真空に引く。次に積層1ピッチ分だけ造形テーブルを下降させて、粉末供給層を積層1ピッチ分だけ上昇させた後、ブレードによって造形テーブル上に金属粉末を敷きつめる(図1(b)参照)。その後、レーザーを照射することにより1層分の混合粉末の余熱および融解と凝固を行う。この際に、母材金属粉末のみが融解し凝固するため、異質核粒子が異質核生成の際に凝固の核として働き、等軸晶の晶出および結晶粒が微細化する(図1(c)参照)。加えて、混合粉末の余熱を行うことにより、母材金属粉末は半溶融状態となる。そのため、余熱後に母材金属粉末の融解と凝固を行うと、造形物の凝固時の冷却速度が遅くなり、造形物内の残留応力の抑制ができる。1層分の凝固が終了すると、同様に混合粉末を積層1ピッチ分だけ造形物上に積層し、レーザーを照射することにより同様に混合粉末の余熱および融解と凝固を行う。本発明においてはこの積層、余熱、融解、凝固を繰り返すことにより造形を行い、空冷することにより高強度かつ高造形性を特徴とする造形体が得られる(図1(d)参照)。 The modeling method used in the present invention is characterized in that not only the base metal powder but also a mixed powder composed of the base metal powder and foreign nuclei particles corresponding to the base metal powder is arranged on the modeling table. FIG. 1 shows an outline of the modeling method. First, a mixed powder containing heteronuclear particles having a high melting point with respect to the base metal powder and having high atomic arrangement consistency is produced by a powder mixing device. Then, as shown in FIG. 1A, the powder supply tank is filled with the mixed powder, and the inside of the chamber is evacuated. Next, the modeling table is lowered by one pitch of lamination, the powder supply layer is raised by one pitch of lamination, and then the metal powder is spread on the modeling table by a blade (see FIG. 1 (b)). Then, by irradiating the laser, the mixed powder for one layer is preheated, melted and solidified. At this time, since only the base metal powder melts and solidifies, the heteronuclear particles act as solidification nuclei during heteronuclear nucleation, and equiaxed crystal crystallization and crystal grains become finer (Fig. 1 (c). )reference). In addition, by preheating the mixed powder, the base metal powder becomes a semi-molten state. Therefore, if the base metal powder is melted and solidified after the residual heat, the cooling rate at the time of solidification of the modeled object becomes slow, and the residual stress in the modeled object can be suppressed. When the solidification of one layer is completed, the mixed powder is similarly laminated on the modeled object by one pitch of the lamination, and the mixed powder is similarly preheated, melted and solidified by irradiating with a laser. In the present invention, modeling is performed by repeating this lamination, residual heat, melting, and solidification, and by air-cooling, a modeled body characterized by high strength and high formability can be obtained (see FIG. 1D).
造形におけるレーザー照射条件としては図2に示すレーザーの軌跡、走査ピッチ、走査速度およびレーザーの出力がある。本発明において、レーザーの出力は、図3に示すように、連続性[%]とレーザーの大きさ[W]に依存しており、この際に連続性が100%であるとレーザーは連続波を示す。 The laser irradiation conditions in modeling include the laser trajectory, scanning pitch, scanning speed, and laser output shown in FIG. In the present invention, as shown in FIG. 3, the output of the laser depends on the continuity [%] and the magnitude [W] of the laser. At this time, if the continuity is 100%, the laser is a continuous wave. Is shown.
母材金属粉末としてTi−6Al−4Vを異質核粒子としてTiCを用いた金属用3Dプリンターによる1層のみの造形を結晶粒微細化能調査の実施例として挙げるが、これが本発明の材料系を特定するものではない。図4に造形手順を示す。まず、造形テーブルに4つのくぼみの空いた金型を設置し、その中にTiCの添加量を変えたTi−6Al−4VとTiCの混合粉末を投入する(図4(a)参照)。次に、チャンバ内を真空雰囲気にし、レーザーをそれぞれの混合粉末に対して照射する。これにより、混合粉末中のTi−6Al−4Vのみが融解するため、TiCが凝固の際の異質核として働く。その後、造形体を空冷することで異質核生成により結晶粒が微細化した造形体が得られる(図4(b)参照)。 The molding of only one layer by a 3D printer for metals using Ti-6Al-4V as the base metal powder and TiC as the heteronuclear particles is given as an example of the grain refinement ability investigation, and this is the material system of the present invention. It is not specific. FIG. 4 shows the modeling procedure. First, a mold with four dents is installed on the modeling table, and a mixed powder of Ti-6Al-4V and TiC in which the amount of TiC added is changed is charged into the mold (see FIG. 4A). Next, the chamber is evacuated and a laser is applied to each mixed powder. As a result, only Ti-6Al-4V in the mixed powder is melted, so that TiC acts as a heterogeneous nucleus during solidification. Then, by air-cooling the modeled body, a modeled body in which the crystal grains are refined by the formation of heterogeneous nuclei can be obtained (see FIG. 4 (b)).
高強度、高造形性の造形体に供するための混合粉末を作製した。まず、出発材料として(株)大阪チタニウム社製の粒径45μm−65μmのガスアトマイズ粉TILOP64‐45と(株)高純度化学研究所製のTiC Powder 2−5μmをともに内容量500mlの容器に入れた。これを、(株)シンマルエンタープライゼス製のターブラーミキサー(T2F)粉末混合装置を利用して1時間の混合を行った。ここで、実施例においては混合粉末中のTiCの添加量を0vol%〜0.3vol%まで 0.1vol%毎変え、4種類の混合粉末を作製したが、これが本発明の請求範囲を限定するものではない。 A mixed powder was prepared for use in a high-strength, high-formability model. First, as starting materials, TILO P64-45, a gas atomizing powder having a particle size of 45 μm-65 μm manufactured by Osaka Titanium Technologies Co., Ltd., and TiC Powerer 2-5 μm manufactured by High Purity Chemical Laboratory Co., Ltd. were both placed in a container having a content of 500 ml. .. This was mixed for 1 hour using a Turbler mixer (T2F) powder mixing device manufactured by Simmal Enterprises Co., Ltd. Here, in the examples, the amount of TiC added to the mixed powder was changed every 0.1 vol% from 0 vol% to 0.3 vol% to prepare four kinds of mixed powders, which limits the claims of the present invention. It's not a thing.
次に、図5に示すような材質がSUS304である金型にあいた4つのくぼみにTiCの添加量を変えた4種類の混合粉末を投入した。そして、造形テーブル上に金型を固定し、装置内を真空にした。装置内を真空にするのは、レーザー照射時の混合粉末の酸化を防ぐためであり、同時に金属粉末中の水分や隙間の減少にもなる。 Next, four kinds of mixed powders in which the amount of TiC added was changed were put into the four dents in the mold whose material was SUS304 as shown in FIG. Then, the mold was fixed on the modeling table, and the inside of the device was evacuated. The purpose of creating a vacuum inside the device is to prevent oxidation of the mixed powder during laser irradiation, and at the same time, it also reduces the water content and gaps in the metal powder.
その後、各混合粉末に対してレーザーを照射することにより母相金属粉末のみを融解した。この際、レーザーの軌跡は図6に示す通りであり、照射条件は走査ピッチ0.10 mm、走査速度100 mm/s、連続性 25%であり、レーザーの大きさは150Wとした。造形体の大きさは、縦横5mmの正方形であり、厚さは固定していない。造形体の冷却は装置内の真空場で行う。このとき、任意の時間の保持を行ってもよく、実施例では保持時間30分とした。 Then, by irradiating each mixed powder with a laser, only the matrix metal powder was melted. At this time, the trajectory of the laser is as shown in FIG. 6, the irradiation conditions are a scanning pitch of 0.10 mm, a scanning speed of 100 mm / s, a continuity of 25%, and the size of the laser is 150 W. The size of the modeled body is a square with a length and width of 5 mm, and the thickness is not fixed. The model is cooled in a vacuum field inside the device. At this time, the holding time may be arbitrary, and in the example, the holding time is set to 30 minutes.
造形体のレーザーが照射される面を観察面とし、組織観察を行った。観察面を400番から2000番のエメリー紙で湿式研磨後、粒径1μmのアルミナ懸濁液でバフ研磨を施した。その後、フッ酸硝酸水溶液で腐食を行い光学顕微鏡によって組織観察を行った。図7(a)、(b)、(c)および(d)はそれぞれTiCの添加量が0vol%、0.1vol%、0.2vol%および0.3vol%の混合粉末を用いて造形をし、空冷にて冷却を行った造形体の観察面の組織観察写真である。図7より、どの造形体においてもTi−6Al−4Vの急冷凝固組織であるマルテンサイト組織と旧β相の粒界が確認できる。さらに、TiCを添加している造形体の方が、旧β相の結晶粒が微細になっている事がわかる。 The surface of the modeled object irradiated with the laser was used as the observation surface, and the structure was observed. The observation surface was wet-polished with No. 400 to No. 2000 emery paper, and then buffed with an alumina suspension having a particle size of 1 μm. Then, it was corroded with an aqueous solution of nitric acid hydrofluoric acid, and the structure was observed with an optical microscope. 7 (a), (b), (c) and (d) are modeled using mixed powders in which the amount of TiC added is 0 vol%, 0.1 vol%, 0.2 vol% and 0.3 vol%, respectively. , It is a structure observation photograph of the observation surface of the model body which was cooled by air cooling. From FIG. 7, the martensite structure, which is a quenching solidification structure of Ti-6Al-4V, and the grain boundaries of the former β phase can be confirmed in any of the shaped bodies. Furthermore, it can be seen that the crystal grains of the old β phase are finer in the model to which TiC is added.
次に、得られた組織観察写真をもとにMean Liner Intercept法にて、各造形体の旧β相の平均結晶粒径を算出した。加えて、各造形体のビッカース硬さ試験を行い機械的性質も調査した。図8に各混合粉末における旧β相の平均結晶粒径の測定結果とビッカース硬さ試験の結果を合わせて示す。TiCの添加量の増加に伴って、旧β相の平均結晶粒径が小さくなっている。これは、異質核生成により生成される核の量が増加したことによって生じており、TiCを0.3 vol%添加した場合に平均結晶粒径が最も小さい値をとった。ビッカース硬さ試験結果においてもTiCの添加量の増加に伴って、硬さが増加しており、旧β相の平均結晶粒径が小さくなることにより機械的性質が向上している。 Next, the average crystal grain size of the old β phase of each model was calculated by the Mean Liner Intercept method based on the obtained microstructure observation photograph. In addition, the Vickers hardness test of each model was conducted to investigate the mechanical properties. FIG. 8 shows the measurement results of the average crystal grain size of the old β phase and the results of the Vickers hardness test in each mixed powder together. As the amount of TiC added increases, the average crystal grain size of the old β phase becomes smaller. This is caused by an increase in the amount of nuclei produced by heterologous nucleation, and the average crystal grain size was the smallest when 0.3 vol% of TiC was added. Also in the Vickers hardness test results, the hardness increases as the amount of TiC added increases, and the mechanical properties are improved by reducing the average crystal grain size of the old β phase.
母材金属粉末としてTi−6Al−4Vを異質核粒子としてTiCを用いた金属用3Dプリンターによる積層造形を実施例として挙げるが、これが本発明の材料系を特定するものではない。図9に造形手順を示す。まず、図9(a)に示すように、粉末供給槽にTi−6Al−4VとTiCの混合粉末を充填し、チャンバ内を真空に引く。次に積層1ピッチ分だけ造形テーブルを下降させて、粉末供給層を積層1ピッチ分だけ上昇させた後、ブレードによって造形テーブル上に混合粉末を敷きつめる(図9(b)参照)。そして、レーザーを照射することにより1層分の混合粉末の余熱および融解と凝固を行う。この際に、Ti−6Al−4Vのみが融解し凝固するため、TiCが凝固の際に核として働き、等軸晶の晶出および結晶粒が微細化する(図9(c)参照)。加えて、混合粉末の余熱を行う事により、Ti−6Al−4Vは半溶融状態となる。そのため、余熱後にTi−6Al−4Vの融解と凝固を行うと、造形体の凝固時の冷却速度が遅くなり、造形物内の残留応力の抑制ができる。1層分の凝固が終了すると、同様に混合粉末を積層1ピッチ分だけ造形物上に積層し、レーザーを照射することにより混合粉末の余熱および融解と凝固を行う。本発明においてはこの積層、余熱、融解、凝固を繰り返すことにより造形を行い、空冷することにより高強度かつ高造形性を特徴とする造形体が得られる(図9(d)参照)。 Laminated modeling using a 3D printer for metals using Ti-6Al-4V as the base metal powder and TiC as heteronuclear particles is given as an example, but this does not specify the material system of the present invention. FIG. 9 shows the modeling procedure. First, as shown in FIG. 9A, the powder supply tank is filled with a mixed powder of Ti-6Al-4V and TiC, and the inside of the chamber is evacuated. Next, the modeling table is lowered by one pitch of lamination, the powder supply layer is raised by one pitch of lamination, and then the mixed powder is spread on the modeling table by a blade (see FIG. 9B). Then, by irradiating the laser, the residual heat, melting and solidification of the mixed powder for one layer are performed. At this time, since only Ti-6Al-4V melts and solidifies, TiC acts as a nucleus during solidification, and equiaxed crystal crystallization and crystal grains become finer (see FIG. 9C). In addition, by preheating the mixed powder, Ti-6Al-4V becomes a semi-molten state. Therefore, if Ti-6Al-4V is melted and solidified after the residual heat, the cooling rate at the time of solidification of the modeled body becomes slow, and the residual stress in the modeled object can be suppressed. When the solidification of one layer is completed, the mixed powder is similarly laminated on the modeled object by one pitch of the lamination, and the mixed powder is preheated, melted and solidified by irradiating with a laser. In the present invention, modeling is performed by repeating this lamination, residual heat, melting, and solidification, and by air-cooling, a modeled body characterized by high strength and high formability can be obtained (see FIG. 9D).
高強度、高造形性の造形体に供するための混合粉末を作製した。まず、(株)大阪チタニウム社製の粒径45μm−65μmのガスアトマイズ粉TILOP64−45と(株)高純度化学研究所製のTiC Powder 2−5μmをともに内容量2000mlの容器に入れた。これを、粉末混合装置を利用して1時間混合を行った。ここで、実施例2においては混合粉末中のTiCの添加量は0vol%と実施例1において最も効果の高かった0.3 vol%の2種類を作製した。しかし、これが本発明の請求範囲を限定するものではない。 A mixed powder was prepared for use in a high-strength, high-formability model. First, TILO P64-45, a gas atomizing powder having a particle size of 45 μm-65 μm manufactured by Osaka Titanium Technologies Co., Ltd. and TiC Powerer 2-5 μm manufactured by High Purity Chemical Laboratory Co., Ltd. were both placed in a container having a content of 2000 ml. This was mixed for 1 hour using a powder mixing device. Here, in Example 2, the amount of TiC added to the mixed powder was 0 vol%, and 0.3 vol%, which was the most effective in Example 1, was prepared. However, this does not limit the claims of the present invention.
次に、Ti−6Al−4VとTiCの混合粉末を粉末供給槽に充填し、装置内を真空にした。装置内を真空にするのは、レーザー照射時の混合粉末の酸化を防ぐためであり、同時に金属粉末中の水分や隙間の減少にもなる。そして、積層1ピッチ分だけ造形テーブルを下降させて、粉末供給層を積層1ピッチ分上昇させ、ブレードによって造形テーブル上に混合粉末を敷きつめた。積層1ピッチは0.10mmとし、これを積層厚さが1mmになるまで繰り返した。 Next, a mixed powder of Ti-6Al-4V and TiC was filled in a powder supply tank, and the inside of the apparatus was evacuated. The purpose of creating a vacuum inside the device is to prevent oxidation of the mixed powder during laser irradiation, and at the same time, it also reduces the water content and gaps in the metal powder. Then, the modeling table was lowered by one pitch of lamination, the powder supply layer was raised by one pitch of lamination, and the mixed powder was spread on the modeling table by a blade. The stacking 1 pitch was set to 0.10 mm, and this was repeated until the stacking thickness became 1 mm.
その後、混合粉末に対してレーザーを照射することにより余熱と融解を行った。この際、レーザーの軌跡は図10に示す通りである。まず、直径10mmの円形状にレーザーを照射することにより余熱を行い、その後、縦5mm、横7.5mmの長方形状に融解を行った。そして、1層ごとにレーザーの照射方向が逆になるようにクロススキャンした。照射条件は余熱では走査ピッチ0.10mm、走査速度1200mm/s、連続性40%、レーザーの大きさは70Wであり、融解では走査ピッチ0.10mm、走査速度50mm、連続性60%、レーザーの大きさ70Wとし、造形体の大きさは、縦5mm、横7.5mmの長方形とした。1層分の凝固が終了すると、同様に混合粉末を積層1ピッチ分だけ造形物上に積層し、レーザーを照射することにより混合粉末の余熱および融解と凝固を行った。本発明においてはこの積層、余熱、融解、凝固を繰り返すことにより造形を行った。造形体の冷却は装置内の真空場で行う。このとき、任意の時間の保持を行ってもよく、実施例では保持時間30分とした。 Then, the mixed powder was subjected to residual heat and melting by irradiating the mixed powder with a laser. At this time, the trajectory of the laser is as shown in FIG. First, residual heat was generated by irradiating a circular shape with a diameter of 10 mm with a laser, and then melting was performed in a rectangular shape having a length of 5 mm and a width of 7.5 mm. Then, a cross scan was performed for each layer so that the laser irradiation directions were reversed. The irradiation conditions are as follows: scanning pitch 0.10 mm, scanning speed 1200 mm / s, continuity 40% for residual heat, laser size 70 W, scanning pitch 0.10 mm, scanning speed 50 mm, continuity 60% for melting, laser The size was 70 W, and the size of the model was a rectangle with a length of 5 mm and a width of 7.5 mm. When the solidification of one layer was completed, the mixed powder was similarly laminated on the modeled object by one pitch of the lamination, and the mixed powder was preheated, melted and solidified by irradiating with a laser. In the present invention, modeling was performed by repeating this lamination, residual heat, melting, and solidification. The model is cooled in a vacuum field inside the device. At this time, the holding time may be arbitrary, and in the example, the holding time is set to 30 minutes.
造形体の積層断面を観察面とし、組織観察を行った。観察面を400番から2000番のエメリー紙で湿式研磨後、粒径1μmのアルミナ懸濁液でバフ研磨を施した。その後、フッ酸硝酸水溶液で腐食を行い光学顕微鏡によって組織観察を行った。図11(a)および(b)はそれぞれTiCの添加量が0vol%および0.3vol%の混合粉末を用いて造形をし、空冷にて冷却を行った造形体の観察面の断面組織観察写真である。図11よりどの造形体においても1層1層の間に隙間がある事がわかる。しかし、図11(a)と(b)を比べるとTiCを0.3vol%添加している造形体の方が、TiCを添加していないものよりも空孔が非常に少なくなっていることがわかる。 The structure was observed using the laminated cross section of the model as the observation surface. The observation surface was wet-polished with No. 400 to No. 2000 emery paper, and then buffed with an alumina suspension having a particle size of 1 μm. Then, it was corroded with an aqueous solution of nitric acid hydrofluoric acid, and the structure was observed with an optical microscope. 11 (a) and 11 (b) are photographs of the cross-sectional structure of the observation surface of the modeled body, which was modeled using a mixed powder in which the amount of TiC added was 0 vol% and 0.3 vol%, respectively, and cooled by air cooling. Is. From FIG. 11, it can be seen that there is a gap between each layer in any model. However, comparing FIGS. 11 (a) and 11 (b), it is found that the modeled body to which 0.3 vol% of TiC is added has much fewer pores than the one to which TiC is not added. Recognize.
次に、得られた組織観察写真より、連続した層の長軸平均長さと下部における曲率平均半径を求めた。表3にTiCを0vol%添加のものとTiCを0.3vol%添加したものの長軸平均長さと曲率平均半径を示す。表3よりTiCを0.3vol%添加したものはTiCを添加していないものよりも長軸平均長さ、曲率平均半径において大きい値をとっており、TiCを添加することにより、層の連続性の高い造形に加え、層の湾曲を抑えた造形ができていることがわかる。これは、凝固の際にTiCが異質核粒子として働くことにより異質核生成が生じ、かつ造形性が向上し、多くの等軸晶が均等に成長したことによると考えられる。 Next, from the obtained microstructure observation photographs, the long-axis average length of the continuous layers and the curvature average radius at the lower part were obtained. Table 3 shows the long-axis average length and the average radius of curvature of the one with 0 vol% of TiC added and the one with 0.3 vol% of TiC added. From Table 3, the ones to which 0.3 vol% of TiC was added had larger values in the major axis average length and the average radius of curvature than the ones to which TiC was not added, and by adding TiC, the continuity of the layers was obtained. It can be seen that in addition to the high-quality modeling, the modeling is performed with the curvature of the layer suppressed. It is considered that this is because TiC acts as heterogeneous nuclei particles during solidification to generate heterologous nucleation, improve the formability, and grow many equiaxed crystals evenly.
造形体の水平面を観察面とし、組織観察を行った。観察面を220番から2000番のエメリー紙で湿式研磨後、粒径1μmのアルミナ懸濁液でバフ研磨を施した。その後、フッ酸硝酸水溶液で腐食を行い光学顕微鏡によって組織観察を行った。図12(a)および(b)はそれぞれTiCの添加量が0vol%および0.3vol%の混合粉末を用いて造形をし、空冷にて冷却を行った造形体の観察面の組織観察写真である。水平面においても積層断面と同様に、図12(a)と(b)を比べるとTiCを0.3vol%添加している造形体の方が、TiCを添加していないものよりも空孔が非常に少なくなっていることがわかる。加えて、観察面での空孔が占める面積の割合はTiCの添加量が0vol%のもので20.6%、0.3vol%のもので7.6%であり、TiCを添加したものでは空孔が減少している。これは異質核生成により、等軸晶が形成し、また造形性が向上し凝固が均一に生じ、等軸晶が均等に成長したことによって生じている。 The structure was observed using the horizontal plane of the model as the observation surface. The observation surface was wet-polished with No. 220 to No. 2000 emery paper, and then buffed with an alumina suspension having a particle size of 1 μm. Then, it was corroded with an aqueous solution of nitric acid hydrofluoric acid, and the structure was observed with an optical microscope. 12 (a) and 12 (b) are photographs of the structure of the observation surface of the modeled body, which was modeled using a mixed powder in which the amount of TiC added was 0 vol% and 0.3 vol%, respectively, and cooled by air cooling. is there. As in the case of the laminated cross section on the horizontal plane, when comparing FIGS. 12 (a) and 12 (b), the modeled body to which 0.3 vol% of TiC is added has more pores than the one to which TiC is not added. It can be seen that the number has decreased. In addition, the ratio of the area occupied by the pores on the observation surface is 20.6% when the amount of TiC added is 0 vol% and 7.6% when the amount of TiC added is 0.3 vol%. The number of vacancies is decreasing. This is caused by the formation of equiaxed crystals due to heterologous nucleation, improved formability, uniform solidification, and uniform growth of equiaxed crystals.
図13(a)および(b)にそれぞれ図12の(a)および(b)の高倍率の組織観察写真を示す。図13よりどちらの造形体においてもTi−6Al−4Vの急冷凝固組織である旧β粒界とマルテンサイト組織が見られた。そして、各造形体の旧β相の平均結晶粒径はTiCの添加量が0vol%のもので63.2μm、0.3vol%のもので46.2μmであり、TiCを添加することにより異質核生成が生じて組織が微細化した。 13 (a) and 13 (b) show high-magnification tissue observation photographs of FIGS. 12 (a) and 12 (b), respectively. From FIG. 13, the former β grain boundaries and the martensite structure, which are the quenching solidification structures of Ti-6Al-4V, were observed in both of the shaped bodies. The average crystal grain size of the old β phase of each model is 63.2 μm when the amount of TiC added is 0 vol%, and 46.2 μm when the amount of TiC added is 0.3 vol%. Nucleation occurred and the structure became finer.
なお、上記実施例では母材金属粉末としてTi−6Al−4V、異質核粒子としてTiCを用いた。しかし、異質核を他の整合性の高い粒子に変更しても何ら問題なく、またTi−6Al−4Vをたとえばマルエージング鋼やアルミニウム合金などの積層造形に用いられている金属に変え、異質核粒子を選択した金属に対して融点が高く原子配列の整合性のいい金属間化合物に変えても同様な効果を得ることができる。重要なことは、母材金属粉末とそれに対する異質核粒子からなる混合粉末を用いて金属用3Dプリンターによって造形を行う事により、高強度かつ高造形性を持つ造形体を作製できる点にある。 In the above examples, Ti-6Al-4V was used as the base metal powder, and TiC was used as the heteronuclear particles. However, there is no problem in changing the heterogeneous nucleus to other highly consistent particles, and changing Ti-6Al-4V to a metal used for laminated molding such as maraging steel and aluminum alloy, the heterogeneous nucleus. The same effect can be obtained by changing the particles to an intermetallic compound having a high melting point and good atomic arrangement consistency with respect to the selected metal. What is important is that a modeled body having high strength and high formability can be produced by modeling with a 3D printer for metal using a mixed powder composed of a base metal powder and heterogeneous nuclear particles.
本発明は、精度が求められる金型や機械部品などに用いることができる。さらに、材料を生体用材料に変えれば、人工骨や歯の補綴物としても利用が可能であることから非常に幅広い製造形態に利用できる。 The present invention can be used for molds, machine parts, etc. where accuracy is required. Furthermore, if the material is changed to a biological material, it can be used as an artificial bone or a tooth prosthesis, so that it can be used in a very wide range of manufacturing forms.
以上、本発明の具体例を詳細に説明したが、これらは例示に過ぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。また、本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時の請求項に記載の組合せに限定されるものではない。加えて、本明細書または図面に例示した技術は複数の目的を同時に達成し得るものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。
Although specific examples of the present invention have been described in detail above, these are merely examples and do not limit the scope of claims. The techniques described in the claims include various modifications and modifications of the specific examples illustrated above. In addition, the technical elements described in the present specification or the drawings exhibit technical usefulness alone or in various combinations, and are not limited to the combinations described in the claims at the time of filing. In addition, the techniques exemplified in this specification or drawings can achieve a plurality of objectives at the same time, and achieving one of the objectives itself has technical usefulness.
Claims (7)
前記混合粉末に対して真空場でレーザーにより予熱および前記母材金属粉末のみの融解と凝固を行い、これを積み重ねることによる、結晶粒微細化による高強度かつ等軸晶の均一晶出に伴う高造形性を特徴とする金属用3Dプリンターにおける積層造形体。 The laminated model according to claim 1.
The mixed powder is preheated by a laser in a vacuum field, and only the base metal powder is melted and solidified, and by stacking these, high strength due to grain refinement and high due to uniform crystallization of equiaxed crystals. A laminated model in a 3D printer for metal, which is characterized by formability.
前記混合粉末に対して真空場でレーザーにより予熱および前記母材金属粉末のみの融解と凝固を行い、これを積み重ねることにより、結晶粒微細化による高強度かつ等軸晶の晶出に伴う高造形性を特徴とする金属用3Dプリンターにおける積層造形体。 The laminated model according to claim 4.
The mixed powder is preheated by a laser in a vacuum field, and only the base metal powder is melted and solidified. By stacking these, high strength and equiaxed crystal formation due to grain refinement are performed. A laminated model in a 3D printer for metals, which is characterized by its properties.
母材金属粉末と、前記母材金属粉末に対して融点が高く、原子配列の整合性が高く、かつ、粒径差を有する異質核粒子とからなる混合粉末に対してレーザーを照射して予熱する工程と
前記混合粉末に対して真空場でレーザーを照射して前記母材金属粉末のみを融解する工程であって、前記母材金属粉末がTi−6Al−4Vであり、前記異質核粒子がTiC、TiN、または、TiBである工程と
を含む、製造方法。
A method for producing a laminated model characterized by high strength by grain refinement and high formability associated with uniform crystallization of equiaxed crystals using a 3D printer for metal.
Preheat by irradiating a laser on a mixed powder composed of a base metal powder and a heteronuclear particle having a high melting point, high atomic arrangement consistency, and different particle sizes with respect to the base metal powder. With the process to do
In a step of irradiating the mixed powder with a laser in a vacuum field to melt only the base metal powder, the base metal powder is Ti-6Al-4V, and the heteronuclear particles are TiC and TiN. or comprises <br/> the process is TiB, production method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016118501A JP6819952B2 (en) | 2016-06-15 | 2016-06-15 | Laminated molding metal powder and laminated molding using metal powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016118501A JP6819952B2 (en) | 2016-06-15 | 2016-06-15 | Laminated molding metal powder and laminated molding using metal powder |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017222899A JP2017222899A (en) | 2017-12-21 |
JP6819952B2 true JP6819952B2 (en) | 2021-01-27 |
Family
ID=60688031
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016118501A Active JP6819952B2 (en) | 2016-06-15 | 2016-06-15 | Laminated molding metal powder and laminated molding using metal powder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6819952B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109396436A (en) * | 2018-12-04 | 2019-03-01 | 陕西理工大学 | A kind of pure titanium 3D printing increasing material manufacturing method |
CN110405209A (en) * | 2019-08-28 | 2019-11-05 | 上海工程技术大学 | The method in situ for reducing precinct laser fusion preparation titanium composite material residual stress |
CN110423910A (en) * | 2019-08-30 | 2019-11-08 | 上海工程技术大学 | High-temperature titanium alloy is the laser gain material manufacturing method of the titanium composite material component of matrix |
CN111961926A (en) * | 2020-07-08 | 2020-11-20 | 南京思锐迪科技有限公司 | 3D printed nanoparticle reinforced aluminum-based composite powder and preparation method thereof |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH055138A (en) * | 1991-06-26 | 1993-01-14 | Seiichi Suzuki | Titanium alloy composite material |
JPH06306508A (en) * | 1993-04-22 | 1994-11-01 | Nippon Steel Corp | Production of low anisotropy and high fatigue strength titanium base composite material |
JP2008196367A (en) * | 2007-02-13 | 2008-08-28 | Hitachi Metals Ltd | Cast impeller for compressor and its manufacturing method |
WO2011152359A1 (en) * | 2010-05-31 | 2011-12-08 | 東邦チタニウム株式会社 | Titanium alloy composite powder containing ceramics and manufacturing method thereof, and densified titanium alloy and manufacturing method thereof using the same |
FR3008014B1 (en) * | 2013-07-04 | 2023-06-09 | Association Pour La Rech Et Le Developpement De Methodes Et Processus Industriels Armines | METHOD FOR THE ADDITIVE MANUFACTURING OF PARTS BY FUSION OR SINTERING OF POWDER PARTICLES BY MEANS OF A HIGH ENERGY BEAM WITH POWDERS SUITABLE FOR THE PROCESS/MATERIAL TARGETED COUPLE |
JP6344004B2 (en) * | 2014-03-28 | 2018-06-20 | 国立大学法人大阪大学 | Method for producing single crystal |
-
2016
- 2016-06-15 JP JP2016118501A patent/JP6819952B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2017222899A (en) | 2017-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12012647B2 (en) | Additively manufactured oxide dispersion strengthened medium entropy alloys for high temperature applications | |
Gong et al. | Research status of laser additive manufacturing for metal: a review | |
JP6690789B2 (en) | Alloy material, product using the alloy material, and fluid machine having the product | |
Gong et al. | Comparison of stainless steel 316L parts made by FDM-and SLM-based additive manufacturing processes | |
Nguyen et al. | The role of powder layer thickness on the quality of SLM printed parts | |
Murr | A metallographic review of 3D printing/additive manufacturing of metal and alloy products and components | |
Yao et al. | Effects of heat treatment on microstructures and tensile properties of IN718/TiC nanocomposite fabricated by selective laser melting | |
Karmuhilan et al. | A review on additive manufacturing processes of inconel 625 | |
DE60214999T2 (en) | GINGING ALLOYS WITH ISOTROPIC GRAPHITE SHAPES | |
EP3065901B1 (en) | Method for preparation of a superalloy having a crystallographic texture controlled microstructure by electron beam melting | |
JP2021102814A (en) | Method for making nano-crystal article using additional production | |
JP6819952B2 (en) | Laminated molding metal powder and laminated molding using metal powder | |
JP2016505415A (en) | Method for additive fabrication of parts by selective melting or selective sintering of tightly optimized powder beds using high energy beams | |
Chen et al. | Characteristics of metal specimens formed by selective laser melting: a state-of-the-art review | |
JP2017186653A (en) | Three-dimensional shape molded article and manufacturing method therefor | |
Gong et al. | Microstructures of Inconel 718 by selective laser melting | |
Guo et al. | Laser powder bed fusion of a novel nano-modified tungsten alloy with refined microstructure and enhanced strength | |
JP7173397B2 (en) | Method for manufacturing alloy member, alloy member, and product using alloy member | |
WO2017195695A1 (en) | Composite member manufacturing method and composite member | |
Kulkarni | Additive manufacturing of nickel based superalloy | |
Farhang et al. | The evolution of microstructure and composition homogeneity induced by borders in laser powder bed fused Inconel 718 parts | |
Marchese et al. | Inconel 625 by direct metal laser sintering: Effects of the process parameters and heat treatments on microstructure and hardness | |
JP6997984B2 (en) | A powder for three-dimensional laminated modeling containing heterogeneous nuclear particles, a model using the powder, and a method for manufacturing the model. | |
Seramak et al. | Determinants of the surface quality, density and dimensional correctness in selective laser melting of the Ti-13Zr-13Nb alloy | |
Wang et al. | Reinforcing Inconel 718 superalloy by nano-TiC particles in selective laser melting |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190419 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200326 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200325 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200525 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20200525 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200629 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20200824 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201023 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20201126 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20201221 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6819952 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |