JP6818031B2 - Salts of morpholine derivatives, crystalline forms, methods for producing them, pharmaceutical compositions containing them and their uses - Google Patents
Salts of morpholine derivatives, crystalline forms, methods for producing them, pharmaceutical compositions containing them and their uses Download PDFInfo
- Publication number
- JP6818031B2 JP6818031B2 JP2018534034A JP2018534034A JP6818031B2 JP 6818031 B2 JP6818031 B2 JP 6818031B2 JP 2018534034 A JP2018534034 A JP 2018534034A JP 2018534034 A JP2018534034 A JP 2018534034A JP 6818031 B2 JP6818031 B2 JP 6818031B2
- Authority
- JP
- Japan
- Prior art keywords
- morpholine derivative
- shows
- morpholine
- tartrate
- plot
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 150000002780 morpholines Chemical class 0.000 title claims description 30
- 150000003839 salts Chemical class 0.000 title description 39
- 238000000034 method Methods 0.000 title description 12
- 239000008194 pharmaceutical composition Substances 0.000 title description 9
- -1 morpholine derivative malate Chemical class 0.000 claims description 176
- 229940095064 tartrate Drugs 0.000 claims description 68
- 238000000634 powder X-ray diffraction Methods 0.000 claims description 54
- 239000013078 crystal Substances 0.000 claims description 53
- 229940049920 malate Drugs 0.000 claims description 33
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 claims description 14
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 claims description 10
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 claims description 7
- 150000004685 tetrahydrates Chemical class 0.000 claims description 6
- 150000001875 compounds Chemical class 0.000 claims description 4
- 150000004683 dihydrates Chemical class 0.000 claims description 4
- 235000011090 malic acid Nutrition 0.000 claims description 4
- 229940116298 l- malic acid Drugs 0.000 claims description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 74
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 53
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 42
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 42
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 28
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 28
- 239000000243 solution Substances 0.000 description 25
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 18
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 17
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical class C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 17
- 238000001938 differential scanning calorimetry curve Methods 0.000 description 17
- 239000007787 solid Substances 0.000 description 17
- 238000001757 thermogravimetry curve Methods 0.000 description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 16
- 239000000203 mixture Substances 0.000 description 15
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 14
- 239000012458 free base Substances 0.000 description 14
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 14
- 238000002360 preparation method Methods 0.000 description 12
- 230000004580 weight loss Effects 0.000 description 12
- 238000004458 analytical method Methods 0.000 description 11
- 238000000113 differential scanning calorimetry Methods 0.000 description 11
- 238000001914 filtration Methods 0.000 description 11
- 238000004519 manufacturing process Methods 0.000 description 11
- 238000012360 testing method Methods 0.000 description 11
- YZMHQCWXYHARLS-UHFFFAOYSA-N naphthalene-1,2-disulfonic acid Chemical compound C1=CC=CC2=C(S(O)(=O)=O)C(S(=O)(=O)O)=CC=C21 YZMHQCWXYHARLS-UHFFFAOYSA-N 0.000 description 10
- 238000001179 sorption measurement Methods 0.000 description 9
- 238000000354 decomposition reaction Methods 0.000 description 8
- 238000002076 thermal analysis method Methods 0.000 description 7
- 238000000386 microscopy Methods 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 239000002244 precipitate Substances 0.000 description 4
- 235000002906 tartaric acid Nutrition 0.000 description 4
- 239000011975 tartaric acid Substances 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 238000013112 stability test Methods 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 238000002411 thermogravimetry Methods 0.000 description 3
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 229920002472 Starch Polymers 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 239000001506 calcium phosphate Substances 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 235000010980 cellulose Nutrition 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 238000004296 chiral HPLC Methods 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 235000019359 magnesium stearate Nutrition 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000012046 mixed solvent Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000000546 pharmaceutical excipient Substances 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 238000000527 sonication Methods 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 235000019698 starch Nutrition 0.000 description 2
- 229940032147 starch Drugs 0.000 description 2
- UUDLQDCYDSATCH-UHFFFAOYSA-N 2,3-dihydroxybutanedioic acid;hydrate Chemical compound O.OC(=O)C(O)C(O)C(O)=O UUDLQDCYDSATCH-UHFFFAOYSA-N 0.000 description 1
- KXDHJXZQYSOELW-UHFFFAOYSA-M Carbamate Chemical compound NC([O-])=O KXDHJXZQYSOELW-UHFFFAOYSA-M 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- 229920002785 Croscarmellose sodium Polymers 0.000 description 1
- 208000007342 Diabetic Nephropathies Diseases 0.000 description 1
- 235000019739 Dicalciumphosphate Nutrition 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- 206010019280 Heart failures Diseases 0.000 description 1
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- 206010020772 Hypertension Diseases 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-L L-tartrate(2-) Chemical compound [O-]C(=O)[C@H](O)[C@@H](O)C([O-])=O FEWJPZIEWOKRBE-JCYAYHJZSA-L 0.000 description 1
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 1
- 229920000881 Modified starch Polymers 0.000 description 1
- 239000004368 Modified starch Substances 0.000 description 1
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 206010037660 Pyrexia Diseases 0.000 description 1
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 1
- 102100028255 Renin Human genes 0.000 description 1
- 108090000783 Renin Proteins 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- VJHCJDRQFCCTHL-UHFFFAOYSA-N acetic acid 2,3,4,5,6-pentahydroxyhexanal Chemical compound CC(O)=O.OCC(O)C(O)C(O)C(O)C=O VJHCJDRQFCCTHL-UHFFFAOYSA-N 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000008119 colloidal silica Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000008120 corn starch Substances 0.000 description 1
- 239000006059 cover glass Substances 0.000 description 1
- 229960005168 croscarmellose Drugs 0.000 description 1
- 229960000913 crospovidone Drugs 0.000 description 1
- 239000001767 crosslinked sodium carboxy methyl cellulose Substances 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 208000033679 diabetic kidney disease Diseases 0.000 description 1
- NEFBYIFKOOEVPA-UHFFFAOYSA-K dicalcium phosphate Chemical compound [Ca+2].[Ca+2].[O-]P([O-])([O-])=O NEFBYIFKOOEVPA-UHFFFAOYSA-K 0.000 description 1
- 229910000390 dicalcium phosphate Inorganic materials 0.000 description 1
- 229940038472 dicalcium phosphate Drugs 0.000 description 1
- 239000007884 disintegrant Substances 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- MVPICKVDHDWCJQ-UHFFFAOYSA-N ethyl 3-pyrrolidin-1-ylpropanoate Chemical compound CCOC(=O)CCN1CCCC1 MVPICKVDHDWCJQ-UHFFFAOYSA-N 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 229960004667 ethyl cellulose Drugs 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- 229910052588 hydroxylapatite Inorganic materials 0.000 description 1
- 229920003063 hydroxymethyl cellulose Polymers 0.000 description 1
- 229940031574 hydroxymethyl cellulose Drugs 0.000 description 1
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 1
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 1
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 1
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 238000010253 intravenous injection Methods 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000003760 magnetic stirring Methods 0.000 description 1
- 239000001630 malic acid Substances 0.000 description 1
- 229940099690 malic acid Drugs 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000010907 mechanical stirring Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000008108 microcrystalline cellulose Substances 0.000 description 1
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 1
- 229940016286 microcrystalline cellulose Drugs 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 235000019426 modified starch Nutrition 0.000 description 1
- 238000001565 modulated differential scanning calorimetry Methods 0.000 description 1
- 210000004985 myeloid-derived suppressor cell Anatomy 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 description 1
- 239000006187 pill Substances 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920000523 polyvinylpolypyrrolidone Polymers 0.000 description 1
- 235000013809 polyvinylpolypyrrolidone Nutrition 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000002461 renin inhibitor Substances 0.000 description 1
- 229940086526 renin-inhibitors Drugs 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- 229920003109 sodium starch glycolate Polymers 0.000 description 1
- 239000008109 sodium starch glycolate Substances 0.000 description 1
- 229940079832 sodium starch glycolate Drugs 0.000 description 1
- 229940045902 sodium stearyl fumarate Drugs 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 238000010254 subcutaneous injection Methods 0.000 description 1
- 239000007929 subcutaneous injection Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 239000003826 tablet Substances 0.000 description 1
- 150000003892 tartrate salts Chemical class 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- AQLJVWUFPCUVLO-UHFFFAOYSA-N urea hydrogen peroxide Chemical compound OO.NC(N)=O AQLJVWUFPCUVLO-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D471/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
- C07D471/02—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
- C07D471/04—Ortho-condensed systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/535—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
- A61K31/5375—1,4-Oxazines, e.g. morpholine
- A61K31/5377—1,4-Oxazines, e.g. morpholine not condensed and containing further heterocyclic rings, e.g. timolol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P13/00—Drugs for disorders of the urinary system
- A61P13/12—Drugs for disorders of the urinary system of the kidneys
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/08—Drugs for disorders of the metabolism for glucose homeostasis
- A61P3/10—Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/12—Antihypertensives
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C309/00—Sulfonic acids; Halides, esters, or anhydrides thereof
- C07C309/01—Sulfonic acids
- C07C309/28—Sulfonic acids having sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
- C07C309/33—Sulfonic acids having sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton of six-membered aromatic rings being part of condensed ring systems
- C07C309/34—Sulfonic acids having sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton of six-membered aromatic rings being part of condensed ring systems formed by two rings
- C07C309/35—Naphthalene sulfonic acids
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C51/00—Preparation of carboxylic acids or their salts, halides or anhydrides
- C07C51/41—Preparation of salts of carboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C51/00—Preparation of carboxylic acids or their salts, halides or anhydrides
- C07C51/42—Separation; Purification; Stabilisation; Use of additives
- C07C51/43—Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C53/00—Saturated compounds having only one carboxyl group bound to an acyclic carbon atom or hydrogen
- C07C53/08—Acetic acid
- C07C53/10—Salts thereof
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C59/00—Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
- C07C59/235—Saturated compounds containing more than one carboxyl group
- C07C59/245—Saturated compounds containing more than one carboxyl group containing hydroxy or O-metal groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C59/00—Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
- C07C59/235—Saturated compounds containing more than one carboxyl group
- C07C59/245—Saturated compounds containing more than one carboxyl group containing hydroxy or O-metal groups
- C07C59/255—Tartaric acid
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B2200/00—Indexing scheme relating to specific properties of organic compounds
- C07B2200/13—Crystalline forms, e.g. polymorphs
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Veterinary Medicine (AREA)
- Pharmacology & Pharmacy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Diabetes (AREA)
- Epidemiology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heart & Thoracic Surgery (AREA)
- Cardiology (AREA)
- Obesity (AREA)
- Urology & Nephrology (AREA)
- Hematology (AREA)
- Endocrinology (AREA)
- Emergency Medicine (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)
- Nitrogen Condensed Heterocyclic Rings (AREA)
Description
本発明は医化学分野、特にモルホリン誘導体の塩、結晶形、その製造方法、これらを含む医薬組成物およびその用途に関する。 The present invention relates to the field of medical chemistry, particularly to salts of morpholine derivatives, crystalline forms, methods for producing the same, pharmaceutical compositions containing these, and uses thereof.
化学名が、(3-(3-((R)-1-((R)-N-シクロプロピルモルホリノ-2-カルボキサミド)エチル)-6-メチル-1H-ピラゾロ[3,4-b]ピリミジン-1-イル)n-プロピル)カルバミン酸メチルであるモルホリン誘導体は次の構造式:
CN103562191 (201280013626.5)は、該モルホリン誘導体の遊離塩、その製造方法およびレニン阻害作用を開示している。その遊離塩は半固体または非結晶粉末で水溶性が低く、また比較的容易に酸化されるため、長期間の保存には適さない。
The chemical name is (3- (3-((R) -1-((R) -N-cyclopropylmorpholino-2-carboxamide) ethyl) -6-methyl-1H-pyrazolo [3,4-b] pyrimidine. The morpholine derivative, which is methyl -1-yl) n-propyl) carbamate, has the following structural formula:
CN103562191 (201280013626.5) discloses a free salt of the morpholine derivative, a method for producing the same, and a renin inhibitory effect. The free salt is a semi-solid or non-crystalline powder with low water solubility and is relatively easily oxidized, making it unsuitable for long-term storage.
先行技術の欠点に鑑み、本発明は、リンゴ酸塩、酒石酸塩、塩酸塩、酢酸塩およびナフタレンジスルホン酸塩を包含する、モルホリン誘導体の新たな医薬的に許容される塩を提供する。ここで、酒石酸塩は三つの結晶形、即ち結晶形A(四水和物)、結晶形B(無水)および二水和物;リンゴ酸塩、塩酸塩および酢酸塩はそれぞれ一つの結晶形を有し;そしてナフタレンジスルホン酸塩は非結晶である。本発明は、既知のモルホリン誘導体遊離塩に比して、ひとつまたはそれ以上の改良された性質を提供する。本発明はさらに、これらモルホリン誘導体塩の製造方法、結晶形、その医薬組成物および用途を提供する。 In view of the drawbacks of the prior art, the present invention is, malate, provides tartrate, hydrochloride, including acetate and naphthalene disulfonate, a new pharmaceutically acceptable salt of the morpholine derivative. Here, tartrate has three crystalline forms, namely crystalline form A (tetrahydrate), crystalline form B (anhydrous) and dihydrate; malate, hydrochloride and acetate each have one crystalline form. a; and naphthalene disulfonate is amorphous. The present invention provides one or more improved properties as compared to known morpholine derivative free salts. The present invention further provides methods, crystalline forms, pharmaceutical compositions and uses thereof for these morpholine derivative salts.
本発明の一つの側面では、モルホリン誘導体リンゴ酸塩およびその製造法を提供する。
該モルホリン誘導体リンゴ酸塩はモルホリン誘導体とL−リンゴ酸がモル比1:1で形成され、次の構造式:
The morpholine derivative malate is formed by forming a morpholine derivative and L-malic acid in a molar ratio of 1: 1.
該モルホリン誘導体リンゴ酸塩は、粉末X線回折パターンにおいて特性ピーク2θ:7.767°±0.2°、13.897°±0.2°、14.775°±0.2°、17.098°±0.2°、18.999°±0.2°、20.153±0.2°、20.960°±0.2°、21.423°±0.2°、26.348°±0.2°、27.892°±0.2°で示される結晶形を有する。 The morpholine derivative malate has characteristic peaks 2θ: 7.767 ° ± 0.2 °, 13.897 ° ± 0.2 °, 14.775 ° ± 0.2 °, 17.098 ° ± 0.2 °, 18.999 ° ± 0.2 °, 20.153 ± in the powder X-ray diffraction pattern. It has the crystalline forms shown at 0.2 °, 20.960 ° ± 0.2 °, 21.423 ° ± 0.2 °, 26.348 ° ± 0.2 ° and 27.892 ° ± 0.2 °.
好ましくは、該モルホリン誘導体リンゴ酸塩結晶形は、粉末X線回折パターンにおいて特性ピーク2θ:
5.598°±0.2°、7.357°±0.2°、7.767°±0.2°、10.395°±0.2°、11.108°±0.2°、13.897°±0.2°、14.775°±0.2°、16.037°±0.2°、16.523°±0.2°、17.098°±0.2°、18.999°±0.2°、19.410°±0.2°、20.153°±0.2°、20.960°±0.2°、21.423°±0.2°、22.645°±0.2°、26.348°±0.2°、26.630°±0.2°、26.891°±0.2°、27.380°±0.2°、27.892°±0.2°、31.056°±0.2°、33.306°±0.2°、33.775°±0.2°、39.231°±0.2°を有する。
Preferably, the morpholine derivative malate crystal form has a characteristic peak 2θ: in the powder X-ray diffraction pattern.
5.598 ° ± 0.2 °, 7.357 ° ± 0.2 °, 7.767 ° ± 0.2 °, 10.395 ° ± 0.2 °, 11.108 ° ± 0.2 °, 13.897 ° ± 0.2 °, 14.775 ° ± 0.2 °, 16.037 ° ± 0.2 °, 16.523 ° ± 0.2 °, 17.098 ° ± 0.2 °, 18.999 ° ± 0.2 °, 19.410 ° ± 0.2 °, 20.153 ° ± 0.2 °, 20.960 ° ± 0.2 °, 21.423 ° ± 0.2 °, 22.645 ° ± 0.2 °, 26.348 ° ± 0.2 °, 26.630 ° ± 0.2 °, 26.891 ° ± 0.2 °, 27.380 ° ± 0.2 °, 27.892 ° ± 0.2 °, 31.056 ° ± 0.2 °, 33.306 ° ± 0.2 °, 33.775 ° ± 0.2 °, 39.231 ° ± 0.2 ° Have.
さらには、該モルホリン誘導体リンゴ酸塩はFIG.1の粉末X線回折パターン(XRPD)を示す。
さらには、該モルホリン誘導体リンゴ酸塩はFIG.2の偏光顕微鏡法像(PLM)を示す。
さらには、該モルホリン誘導体リンゴ酸塩はFIG.3の熱重量分析(TGA)プロットを示す。このTGAプロットは該モルホリン誘導体リンゴ酸塩が約185.8℃で分解し、分解まで試料の重量損失がないことを示している。
さらには、該モルホリン誘導体リンゴ酸塩はFIG.4の示差走査熱量測定(DSC)プロットを示す。このDSCプロットは約121℃で吸熱ピーク(95 J/g)を示す。
さらには、該モルホリン誘導体リンゴ酸塩はFIG.5の動的蒸気吸着分析(DVS)プロットを示す。このDVSプロットは該モルホリン誘導体リンゴ酸塩の重量が湿度20%-80%の範囲で約1.2%変化することを示す。
Furthermore, the morpholine derivative malate exhibits the powder X-ray diffraction pattern (XRPD) of FIG.1.
Furthermore, the morpholine derivative malate shows a polarizing microscope image (PLM) of FIG.2.
Furthermore, the morpholine derivative malate shows a FIG. 3 thermogravimetric analysis (TGA) plot. This TGA plot shows that the morpholine derivative malate decomposes at about 185.8 ° C and there is no weight loss of the sample until decomposition.
Furthermore, the morpholine derivative malate shows a differential scanning calorimetry (DSC) plot of FIG. This DSC plot shows an endothermic peak (95 J / g) at about 121 ° C.
Furthermore, the morpholine derivative malate shows the Dynamic Vapor Adsorption Analysis (DVS) plot of FIG. This DVS plot shows that the weight of the morpholine derivative malate varies by about 1.2% in the humidity range of 20% -80%.
該モルホリン誘導体リンゴ酸塩の調製方法は以下の工程よりなる:即ち、該モルホリン誘導体遊離塩をアセトン、クロロホルム、アセトニトリル、酢酸エチル、メタノールまたはテトラヒドロフラン(好ましくはアセトン)に溶解し、該モルホリン誘導体遊離塩のアセトン、クロロホルム、アセトニトリル、酢酸エチル、メタノールまたはテトラヒドロフラン溶液を得、L−リンゴ酸をエタノールに溶解してL−リンゴ酸のエタノール溶液を調製し、該モルホリン誘導体遊離塩のアセトン、クロロホルム、アセトニトリル、酢酸エチル、メタノールまたはテトラヒドロフラン溶液中にこのL−リンゴ酸のエタノール溶液を滴下して室温で終夜撹拌することにより白色固体を析出させこれを濾取する。好ましくは、該モルホリン誘導体遊離塩とリンゴ酸のモル比は1:1.1から1:3.3であり、好ましくは1:1.1である。 The method for preparing the morpholin derivative malate comprises the following steps: that is, the morpholin derivative free salt is dissolved in acetone, chloroform, acetonitrile, ethyl acetate, methanol or tetrahydrofuran (preferably acetone), and the morpholin derivative free salt is dissolved. A solution of acetone, chloroform, acetonitrile, ethyl acetate, methanol or tetrahydrofuran is obtained, and L-apple acid is dissolved in ethanol to prepare an ethanol solution of L-apple acid, and the morpholin derivative free salt of acetone, chloroform, acetonitrile, etc. An ethanol solution of this L-apple acid is added dropwise to a solution of ethyl acetate, methanol or tetrahydrofuran, and the mixture is stirred overnight at room temperature to precipitate a white solid, which is collected by filtration. Preferably, the molar ratio of the morpholine derivative free salt to malic acid is 1: 1.1 to 1: 3.3, preferably 1: 1.1.
先行技術と比較して、該モルホリン誘導体リンゴ酸塩は、ひとつまたはそれ以上の改良された性質を有していて、例えば、結晶状態が良好で湿度20%-80%の範囲において殆ど吸湿せず、一方、水溶性は大きく改善されて(~100mg/mL)、光および酸化条件下で良好な安定性を示す。 Compared to the prior art, the morpholine derivative malate has one or more improved properties, eg, good crystalline state and little moisture absorption in the humidity range of 20% -80%. On the other hand, the water solubility is greatly improved (~ 100 mg / mL) and shows good stability under light and oxidizing conditions.
本発明の二つ目の側面では、モルホリン誘導体酒石酸塩およびその製造法を提供する。
該モルホリン誘導体酒石酸塩はモルホリン誘導体とL−酒石酸がモル比1:1で形成され、次の構造式:
The morpholine derivative tartrate is formed by forming a morpholine derivative and L-tartaric acid in a molar ratio of 1: 1 and has the following structural formula:
該モルホリン誘導体酒石酸塩の調製方法は以下の工程よりなる:即ち、該モルホリン誘導体遊離塩をアセトン、クロロホルム、アセトニトリル、酢酸エチル、メタノールまたはテトラヒドロフラン(好ましくはアセトン)に溶解し、一方、酒石酸を水に溶解し、該モルホリン誘導体遊離塩のアセトン、クロロホルム、アセトニトリル、酢酸エチル、メタノールまたはテトラヒドロフラン溶液中にこの酒石酸の水溶液を滴下して室温で終夜撹拌することにより白色固体を析出させ、これを濾取する。好ましくは、該モルホリン誘導体遊離塩と酒石酸のモル比は1:1.03から1:2.2であり、好ましくは1:1.03である。
該モルホリン誘導体酒石酸塩はモルホリン誘導体酒石酸塩の結晶形Bであり、粉末X線回折パターンにおいて特性ピーク2θ:3.339°±0.2°、6.562°±0.2°、11.331°±0.2°、16.396°±0.2°、22.041°±0.2°を有する。
好ましくは、該モルホリン誘導体酒石酸塩結晶形Bは、粉末X線回折パターンにおいて特性ピーク2θ:
3.339°±0.2°、5.078°±0.2°、6.562°±0.2°、6.864°±0.2°、
8.250°±0.2°、8.444°±0.2°、11.030°±0.2°、11.331°±0.2°、
12.864°±0.2°、13.907°±0.2°、14.642°±0.2°、16.396°±0.2°、
19.100°±0.2°、19.359°±0.2°、22.041°±0.2°、25.251°±0.2°、
26.768°±0.2°、27.894°±0.2°、29.510°±0.2°、38.343°±0.2° を有する。
The method for preparing the morpholin derivative tartrate comprises the following steps: that is, the morpholin derivative free salt is dissolved in acetone, chloroform, acetonitrile, ethyl acetate, methanol or tetrahydrofuran (preferably acetone), while tartrate is dissolved in water. A white solid is precipitated by dissolving and stirring the aqueous solution of tartrate in acetone, chloroform, acetonitrile, ethyl acetate, methanol or tetrahydrofuran solution of the free salt of the morpholin derivative at room temperature overnight, and the mixture is collected by filtration. .. Preferably, the molar ratio of the morpholine derivative free salt to tartaric acid is 1: 1.03 to 1: 2.2, preferably 1: 1.03.
The morpholine derivative tartrate is a crystalline form B of the morpholine derivative tartrate, and has characteristic peaks 2θ: 3.339 ° ± 0.2 °, 6.562 ° ± 0.2 °, 11.331 ° ± 0.2 °, 16.396 ° ± 0.2 ° in the powder X-ray diffraction pattern. , 22.041 ° ± 0.2 °.
Preferably, the morpholine derivative tartrate crystal form B has a characteristic peak 2θ: in the powder X-ray diffraction pattern.
3.339 ° ± 0.2 °, 5.078 ° ± 0.2 °, 6.562 ° ± 0.2 °, 6.864 ° ± 0.2 °,
8.250 ° ± 0.2 °, 8.444 ° ± 0.2 °, 11.030 ° ± 0.2 °, 11.331 ° ± 0.2 °,
12.864 ° ± 0.2 °, 13.907 ° ± 0.2 °, 14.642 ° ± 0.2 °, 16.396 ° ± 0.2 °,
19.100 ° ± 0.2 °, 19.359 ° ± 0.2 °, 22.041 ° ± 0.2 °, 25.251 ° ± 0.2 °,
It has 26.768 ° ± 0.2 °, 27.894 ° ± 0.2 °, 29.510 ° ± 0.2 ° and 38.343 ° ± 0.2 °.
さらには、該モルホリン誘導体酒石酸塩結晶形BはFIG.6のXRPDパターンを示す。
さらには、該モルホリン誘導体酒石酸塩結晶形BはFIG.7のPLM像を示す。
さらには、該モルホリン誘導体酒石酸塩結晶形BはFIG.8のTGAプロットを示す。このTGAプロットは該モルホリン誘導体酒石酸塩結晶形Bが約186.0℃で分解し、重量の2.5%が分解まで徐々に失われることを示している(重量損失は約150℃で始まる)。
さらには、該モルホリン誘導体酒石酸塩結晶形BはFIG.9のDSCプロットを示す。このDSCプロットは約161.5℃で吸熱ピーク(38 J/g)を示す。
さらには、該モルホリン誘導体酒石酸塩結晶形BはFIG.10のDVSプロットを示す。このDVSプロットは該モルホリン誘導体リンゴ酸塩の重量が湿度20%-80%で約7%変化し、吸湿性であって水和物となる。
該モルホリン誘導体酒石酸塩結晶形Bをアセトンと水の混合溶媒に加えて、混合物を室温で2日間撹拌し、それからろ過するとモルホリン誘導体酒石酸塩二水和物を得る。アセトンと水の体積比は好ましくは30:1である。
Furthermore, the morpholine derivative tartrate crystal form B shows the XRPD pattern of FIG.6.
Furthermore, the morpholine derivative tartrate crystal form B shows a PLM image of FIG. 7.
Furthermore, the morpholine derivative tartrate crystal form B shows the TGA plot of FIG. 8. This TGA plot shows that the morpholine derivative tartrate crystal form B degrades at about 186.0 ° C and 2.5% of its weight is gradually lost until degradation (weight loss begins at about 150 ° C).
Furthermore, the morpholine derivative tartrate crystal form B shows the DSC plot of FIG. This DSC plot shows an endothermic peak (38 J / g) at about 161.5 ° C.
Furthermore, the morpholine derivative tartrate crystal form B shows the DVS plot of FIG.10. This DVS plot shows that the weight of the morpholine derivative malate changes by about 7% at 20% -80% humidity and is hygroscopic and hydrated.
The morpholine derivative tartrate crystal form B is added to a mixed solvent of acetone and water, the mixture is stirred at room temperature for 2 days and then filtered to give a morpholine derivative tartrate dihydrate. The volume ratio of acetone to water is preferably 30: 1.
該モルホリン誘導体酒石酸塩二水和物は、粉末X線回折パターンにおいて特性ピーク2θ:9.851°±0.2°、14.410°±0.2°、14.774°±0.2°、15.052°±0.2°、16.254°±0.2°、20.847°±0.2°、23.225°±0.2°を有する結晶形である。
好ましくは、該モルホリン誘導体酒石酸塩二水和物は、粉末X線回折パターンにおいて特性ピーク2θ:
9.851°±0.2°、13.434°±0.2°、14.410°±0.2°、14.774°±0.2°、15.052°±0.2°、15.415°±0.2°、15.701°±0.2°、16.254°±0.2°、16.755°±0.2°、17.283°±0.2°、18.079°±0.2°、18.576°±0.2°、20.077°±0.2°、20.847°±0.2°、21.960°±0.2°、23.225°±0.2°、24.351°±0.2°、27.046°±0.2°、27.865°±0.2°、38.458°±0.2°
を有する。
The morpholine derivative tartrate dihydrate has characteristic peaks 2θ: 9.851 ° ± 0.2 °, 14.410 ° ± 0.2 °, 14.774 ° ± 0.2 °, 15.052 ° ± 0.2 °, 16.254 ° ± 0.2 ° in the powder X-ray diffraction pattern. , 20.847 ° ± 0.2 °, 23.225 ° ± 0.2 °.
Preferably, the morpholine derivative tartrate dihydrate has a characteristic peak of 2θ: in the powder X-ray diffraction pattern.
9.851 ° ± 0.2 °, 13.434 ° ± 0.2 °, 14.410 ° ± 0.2 °, 14.774 ° ± 0.2 °, 15.052 ° ± 0.2 °, 15.415 ° ± 0.2 °, 15.701 ° ± 0.2 °, 16.254 ° ± 0.2 °, 16.755 ° ± 0.2 °, 17.283 ° ± 0.2 °, 18.079 ° ± 0.2 °, 18.576 ° ± 0.2 °, 20.077 ° ± 0.2 °, 20.847 ° ± 0.2 °, 21.960 ° ± 0.2 °, 23.225 ° ± 0.2 °, 24.351 ° ± 0.2 °, 27.046 ° ± 0.2 °, 27.865 ° ± 0.2 °, 38.458 ° ± 0.2 °
Have.
さらには、該モルホリン誘導体酒石酸塩二水和物はFIG.11のXRPDパターンを示す。
さらには、該モルホリン誘導体酒石酸塩二水和物はFIG.12のPLM像を示す。
さらには、該モルホリン誘導体酒石酸塩二水和物はFIG.13のTGAプロットを示す。このTGAプロットは該モルホリン誘導体酒石酸塩二水和物が約189.6℃で分解し、重量の6.5%が分解前に徐々に失われることを示している。
さらには、該モルホリン誘導体酒石酸塩結晶形BはFIG.14のDSCプロットを示す。このDSCプロットは約29.5℃で吸熱ピーク(112 J/g)、約99℃で発熱ピーク(27 J/g)、そして約154℃で吸熱ピーク(19 J/g)を示す。
さらには、該モルホリン誘導体酒石酸塩二水和物はFIG.15のDVSプロットを示す。このDVSプロットは該モルホリン誘導体酒石酸塩の重量が湿度0%-80%で約11.06%変化し、比較的、吸湿性である。
Furthermore, the morpholine derivative tartrate dihydrate shows the XRPD pattern of FIG.11.
Furthermore, the morpholine derivative tartrate dihydrate shows the PLM image of FIG.12.
Furthermore, the morpholine derivative tartrate dihydrate shows the TGA plot of FIG. 13. This TGA plot shows that the morpholine derivative tartrate dihydrate decomposes at about 189.6 ° C. and 6.5% of its weight is gradually lost before decomposition.
Furthermore, the morpholine derivative tartrate crystal form B shows the DSC plot of FIG.14. This DSC plot shows an endothermic peak (112 J / g) at about 29.5 ° C, an exothermic peak (27 J / g) at about 99 ° C, and an endothermic peak (19 J / g) at about 154 ° C.
Furthermore, the morpholine derivative tartrate dihydrate shows the DVS plot of FIG.15. This DVS plot is relatively hygroscopic, with the weight of the morpholine derivative tartrate varying about 11.06% at 0% -80% humidity.
本出願はさらに、モルホリン誘導体酒石酸塩の四水和物を開示する。当該四水和物を結晶形Aと呼び、粉末X線回折パターンにおいて特性ピーク2θ:9.882°±0.2°、14.426°±0.2°、14.802°±0.2°、16.275°±0.2°、20.085°±0.2°、20.872°±0.2°、21.978°±0.2°、23.236°±0.2°を有する。
好ましくは、該モルホリン誘導体酒石酸塩四水和物は、粉末X線回折パターンにおいて特性ピーク2θ:9.882°±0.2°、11.964°±0.2°、13.558°±0.2°、14.426°±0.2°、14.802°±0.2°、15.076°±0.2°、15.450°±0.2°、16.046°±0.2°、16.275°±0.2°、16.754°±0.2°、17.320°±0.2°、18.450°±0.2°、18.790°±0.2°、19.728°±0.2°、20.085°±0.2°、20.577°±0.2°、20.872°±0.2°、21.978°±0.2°、22.426°±0.2°、23.236°±0.2°、23.704°±0.2°、24.399°±0.2°、25.346°±0.2°、25.913°±0.2°、26.991°±0.2°、28.199°±0.2°、28.445°±0.2°、29.030°±0.2°、30.209°±0.2°、30.480°±0.2°、32.791°±0.2°、34.796°±0.2°、36.226°±0.2°、38.472°±0.2°を有する。
The application further discloses tetrahydrates of morpholine derivative tartrate. The tetrahydrate is called crystalline form A, and has characteristic peaks 2θ: 9.882 ° ± 0.2 °, 14.426 ° ± 0.2 °, 14.802 ° ± 0.2 °, 16.275 ° ± 0.2 °, 20.085 ° ± 0.2 in the powder X-ray diffraction pattern. It has °, 20.872 ° ± 0.2 °, 21.978 ° ± 0.2 °, and 23.236 ° ± 0.2 °.
Preferably, the morpholine derivative tartrate tetrahydrate has characteristic peaks 2θ: 9.882 ° ± 0.2 °, 11.964 ° ± 0.2 °, 13.558 ° ± 0.2 °, 14.426 ° ± 0.2 °, 14.802 ° in the powder X-ray diffraction pattern. ± 0.2 °, 15.076 ° ± 0.2 °, 15.450 ° ± 0.2 °, 16.046 ° ± 0.2 °, 16.275 ° ± 0.2 °, 16.754 ° ± 0.2 °, 17.320 ° ± 0.2 °, 18.450 ° ± 0.2 °, 18.790 ° ± 0.2 °, 19.728 ° ± 0.2 °, 20.085 ° ± 0.2 °, 20.577 ° ± 0.2 °, 20.872 ° ± 0.2 °, 21.978 ° ± 0.2 °, 22.426 ° ± 0.2 °, 23.236 ° ± 0.2 °, 23.704 ° ± 0.2 °, 24.399 ° ± 0.2 °, 25.346 ° ± 0.2 °, 25.913 ° ± 0.2 °, 26.991 ° ± 0.2 °, 28.199 ° ± 0.2 °, 28.445 ° ± 0.2 °, 29.030 ° ± 0.2 °, 30.209 ° ± 0.2 °, 30.480 ° It has ± 0.2 °, 32.791 ° ± 0.2 °, 34.796 ° ± 0.2 °, 36.226 ° ± 0.2 °, and 38.472 ° ± 0.2 °.
該モルホリン誘導体酒石酸塩結晶形AはFIG.16のXRPDパターンを示す。
該モルホリン誘導体酒石酸塩結晶形AはFIG.17のPLM像を示す。
該モルホリン誘導体酒石酸塩結晶形AはFIG.18のTGAプロットを示す。
該モルホリン誘導体酒石酸塩結晶形AはFIG.19のDSCプロットを示す。
該モルホリン誘導体酒石酸塩結晶形AはFIG.20のDSCプロットを示す。
The morpholine derivative tartrate crystal form A shows the XRPD pattern of FIG.16.
The morpholine derivative tartrate crystal form A shows the PLM image of FIG.17.
The morpholine derivative tartrate crystal form A shows the TGA plot of FIG.18.
The morpholine derivative tartrate crystal form A shows the DSC plot of FIG.19.
The morpholine derivative tartrate crystal form A shows the DSC plot of FIG.20.
本願はさらに該モルホリン誘導体酒石酸塩結晶形Aの製造方法を開示する。該方法には以下の工程が含まれる:
即ち、該モルホリン誘導体遊離塩をアセトン、クロロホルム、アセトニトリル、酢酸エチル、メタノールまたはテトラヒドロフラン(好ましくはアセトン)に溶解し、該モルホリン誘導体遊離塩のアセトン、クロロホルム、アセトニトリル、酢酸エチル、メタノールまたはテトラヒドロフラン溶液を得る。一方、L−酒石酸を水に溶解し、該モルホリン誘導体遊離塩のアセトン、クロロホルム、アセトニトリル、酢酸エチル、メタノールまたはテトラヒドロフラン溶液中にこの酒石酸の水溶液を滴下して、48時間以上終夜撹拌することにより白色固体を析出させ、これを濾取する。好ましくは、該モルホリン誘導体遊離塩と酒石酸のモル比は1:2.2であり、アセトンと水の体積比は20:1である。
先行技術と比較して、該モルホリン誘導体酒石酸塩は一つまたはそれ以上の改良された性質を有し、例えば、結晶形Aも結晶形Bも結晶性が良好であり、結晶形Aは殆ど吸湿性がないが、結晶形Bは相対湿度20%-80%で比較的に吸湿性である。水溶性は改良され(50-300mg/mL)、結晶形Bは酸化条件下で結晶形Aよりも安定であり、いずれの結晶形も光条件下では等しく安定である。
The present application further discloses a method for producing the morpholine derivative tartrate crystal form A. The method includes the following steps:
That is, the morpholin derivative free salt is dissolved in acetone, chloroform, acetonitrile, ethyl acetate, methanol or tetrahydrofuran (preferably acetone) to obtain an acetone, chloroform, acetonitrile, ethyl acetate, methanol or tetrahydrofuran solution of the morpholin derivative free salt. .. On the other hand, L-tartaric acid is dissolved in water, and an aqueous solution of this tartaric acid is added dropwise to a solution of the free salt of the morpholine derivative in acetone, chloroform, acetonitrile, ethyl acetate, methanol or tetrahydrofuran, and the mixture is stirred overnight for 48 hours or more to obtain white color. A solid is precipitated and collected by filtration. Preferably, the molar ratio of the morpholine derivative free salt to tartaric acid is 1: 2.2 and the volume ratio of acetone to water is 20: 1.
Compared with the prior art, the morpholin derivative tartrate has one or more improved properties, for example, both crystalline form A and crystalline form B have good crystallinity, and crystalline form A absorbs almost all moisture. Although it has no properties, crystalline form B is relatively hygroscopic at a relative humidity of 20% -80%. The water solubility was improved (50-300 mg / mL), crystal form B was more stable than crystal form A under oxidizing conditions, and both crystal forms were equally stable under light conditions.
本発明の三つ目の側面では、モルホリン誘導体塩酸塩およびその製造法を提供する。
該モルホリン誘導体塩酸塩はモルホリン誘導体と塩酸がモル比1:2で形成され、次の構造式:
The morpholine derivative hydrochloride is formed by forming a morpholine derivative and hydrochloric acid in a molar ratio of 1: 2, and has the following structural formula:
当該モルホリン誘導体塩酸塩は、粉末X線回折パターンにおいて特性ピーク2θ:3.981°±0.2°、7.784°±0.2°、8.667°±0.2°、13.634°±0.2°、18.238°±0.2°、19.620°±0.2°、24.624°±0.2°、24.987°±0.2°、28.072°±0.2°、31.815°±0.2°を有する結晶形である。
好ましくは、該モルホリン誘導体塩酸塩結晶形は、粉末X線回折パターンにおいて特性ピーク2θ:3.981°±0.2°、7.784°±0.2°、8.667°±0.2°、10.914°±0.2°、11.557°±0.2°、12.211°±0.2°、13.634°±0.2°、14.675°±0.2°、15.419°±0.2°、15.817°±0.2°、17.158°±0.2°、18.238°±0.2°、19.116°±0.2°、19.620°±0.2°、20.618°±0.2°、21.261°±0.2°、21.901°±0.2°、22.428°±0.2°、22.548°±0.2°、23.342°±0.2°、24.624°±0.2°、24.987°±0.2°、25.902°±0.2°、26.267°±0.2°、26.730°±0.2°、26.946°±0.2°、28.072°±0.2°、29.994°±0.2°、31.154°±0.2°、31.815°±0.2°、33.220°±0.2°、34.670°±0.2°、35.201°±0.2°を有する。
The morpholine derivative hydrochloride has characteristic peaks 2θ: 3.981 ° ± 0.2 °, 7.784 ° ± 0.2 °, 8.667 ° ± 0.2 °, 13.634 ° ± 0.2 °, 18.238 ° ± 0.2 °, 19.620 ° ± in the powder X-ray diffraction pattern. It is a crystalline form having 0.2 °, 24.624 ° ± 0.2 °, 24.987 ° ± 0.2 °, 28.072 ° ± 0.2 °, and 31.815 ° ± 0.2 °.
Preferably, the morpholine derivative hydrochloride crystal form has characteristic peaks 2θ: 3.981 ° ± 0.2 °, 7.784 ° ± 0.2 °, 8.667 ° ± 0.2 °, 10.914 ° ± 0.2 °, 11.557 ° ± 0.2 in the powder X-ray diffraction pattern. °, 12.211 ° ± 0.2 °, 13.634 ° ± 0.2 °, 14.675 ° ± 0.2 °, 15.419 ° ± 0.2 °, 15.817 ° ± 0.2 °, 17.158 ° ± 0.2 °, 18.238 ° ± 0.2 °, 19.116 ° ± 0.2 °, 19.620 ° ± 0.2 °, 20.618 ° ± 0.2 °, 21.261 ° ± 0.2 °, 21.901 ° ± 0.2 °, 22.428 ° ± 0.2 °, 22.548 ° ± 0.2 °, 23.342 ° ± 0.2 °, 24.624 ° ± 0.2 °, 24.987 ° ± 0.2 °, 25.902 ° ± 0.2 °, 26.267 ° ± 0.2 °, 26.730 ° ± 0.2 °, 26.946 ° ± 0.2 °, 28.072 ° ± 0.2 °, 29.994 ° ± 0.2 °, 31.154 ° ± 0.2 °, 31.815 ° ± 0.2 It has °, 33.220 ° ± 0.2 °, 34.670 ° ± 0.2 °, and 35.201 ° ± 0.2 °.
さらには、該モルホリン誘導体塩酸塩はFIG.21の粉末X線回折(XRPD)パターンを示す。
さらには、該モルホリン誘導体塩酸塩はFIG.22の偏光顕微鏡法(PLM)像を示す。
さらには、該モルホリン誘導体塩酸塩はFIG.23の熱重量分析(TGA)プロットを示す。該プロットは加熱過程で重量減少を続け、分解温度は207℃、分解前に二度、重量減少の段階があって、全重量減少は約9.1%である。
さらには、該モルホリン誘導体塩酸塩はFIG.24の示差走査熱量測定(DSC)プロットを示し、25℃と115℃の間で非常に幅広い吸熱ピーク(57.68 J/g)があり、133℃で吸熱ピーク(57.65 J/g)がある。
さらには、該モルホリン誘導体塩酸塩はFIG.25の動的蒸気吸着分析(DSC)プロットを示し、相対湿度0%から60%で15%の水を吸収し、この湿度範囲で潮解性がある。
Furthermore, the morpholine derivative hydrochloride exhibits the powder X-ray diffraction (XRPD) pattern of FIG.21.
Furthermore, the morpholine derivative hydrochloride shows a polarizing microscopy (PLM) image of FIG.22.
Furthermore, the morpholine derivative hydrochloride shows a thermogravimetric analysis (TGA) plot of FIG.23. The plot continues to lose weight during the heating process, the decomposition temperature is 207 ° C, there are two stages of weight loss before decomposition, and the total weight loss is about 9.1%.
Furthermore, the morpholine derivative hydrochloride shows a differential scanning calorimetry (DSC) plot of FIG. 24, with a very wide endothermic peak (57.68 J / g) between 25 ° C and 115 ° C, and endothermic at 133 ° C. There is a peak (57.65 J / g).
Furthermore, the morpholine derivative hydrochloride shows a dynamic vapor adsorption analysis (DSC) plot of FIG. 25, which absorbs 15% water at 0% to 60% relative humidity and is deliquescent in this humidity range.
該モルホリン誘導体塩酸塩の製造方法には以下の工程が含まれる:
即ち、該モルホリン誘導体遊離塩をアセトン、クロロホルム、アセトニトリル、酢酸エチル、メタノールまたはテトラヒドロフラン(好ましくはアセトン)に溶解し、該モルホリン誘導体遊離塩のアセトン、クロロホルム、アセトニトリル、酢酸エチル、メタノールまたはテトラヒドロフラン溶液を得る。一方、塩酸をアセトンに溶解し、該モルホリン誘導体遊離塩のアセトン、クロロホルム、アセトニトリル、酢酸エチル、メタノールまたはテトラヒドロフラン溶液中にこの塩酸のアセトン溶液を滴下して、室温で終夜撹拌することにより白色固体を析出させ、これを濾取する。好ましくは、該モルホリン誘導体遊離塩と塩酸のモル比は1:1.03から1:3.5であり、好ましくは1:3.4である。
先行技術と比較して、該モルホリン誘導体塩酸塩は一つまたはそれ以上の改良された性質を有し、例えば、結晶性が良好であり、水溶性は改良され(>5000mg/mL)、非常に吸湿性であるが、光条件下で熱的安定性は良好である。
The method for producing the morpholine derivative hydrochloride includes the following steps:
That is, the morpholin derivative free salt is dissolved in acetone, chloroform, acetonitrile, ethyl acetate, methanol or tetrahydrofuran (preferably acetone) to obtain an acetone, chloroform, acetonitrile, ethyl acetate, methanol or tetrahydrofuran solution of the morpholin derivative free salt. .. On the other hand, hydrochloric acid is dissolved in acetone, and the acetone solution of hydrochloric acid is added dropwise to a solution of the morpholin derivative free salt in acetone, chloroform, acetonitrile, ethyl acetate, methanol or tetrahydrofuran, and the mixture is stirred overnight at room temperature to form a white solid. Precipitate and collect by filtration. Preferably, the molar ratio of the morpholine derivative free salt to hydrochloric acid is 1: 1.03 to 1: 3.5, preferably 1: 3.4.
Compared to the prior art, the morpholine derivative hydrochloride has one or more improved properties, for example, good crystallinity, improved water solubility (> 5000 mg / mL), and very much. Although it is hygroscopic, it has good thermal stability under light conditions.
本発明の第四の側面では、モルホリン誘導体酢酸塩およびその製造法を提供する。
該モルホリン誘導体酢酸塩はモルホリン誘導体と酢酸がモル比1:1で形成される化合物で、次の構造式:
The morpholine derivative acetate is a compound in which a morpholine derivative and acetic acid are formed in a molar ratio of 1: 1 and has the following structural formula:
当該モルホリン誘導体酢酸塩は、粉末X線回折パターンにおいて特性ピーク2θ:7.784°±0.2°、11.429°±0.2°、14.455°±0.2°、16.874°±0.2°、19.899°±0.2°、21.146°±0.2°、24.887°±0.2°を有する結晶形である。
好ましくは、該モルホリン誘導体酢酸塩結晶形は、粉末X線回折パターンにおいて特性ピーク2θ:6.012°±0.2°、7.457°±0.2°、7.784°±0.2°、10.391°±0.2°、10.768°±0.2°、11.429°±0.2°、13.652°±0.2°、14.089°±0.2°、14.455°±0.2°、14.841°±0.2°、15.516°±0.2°、16.301°±0.2°、16.874°±0.2°、17.592°±0.2°、18.777°±0.2°、19.375°±0.2°、19.899°±0.2°、20.521°±0.2°、21.146°±0.2°、21.541°±0.2°、22.346°±0.2°、22.966°±0.2°、23.347°±0.2°、24.585°±0.2°、24.887°±0.2°、25.546°±0.2°、26.028°±0.2°、26.328°±0.2°、27.484°±0.2°、27.753°±0.2°、29.206°±0.2°、30.611°±0.2°、30.972°±0.2°、31.233°±0.2°、31.801°±0.2°、33.696°±0.2°、34.699°±0.2°、35.313°±0.2°、36.441°±0.2°、37.961°±0.2°,38.179°±0.2°、39.325°±0.2°
を有する。
The morpholine derivative acetate has characteristic peaks 2θ: 7.784 ° ± 0.2 °, 11.429 ° ± 0.2 °, 14.455 ° ± 0.2 °, 16.874 ° ± 0.2 °, 19.899 ° ± 0.2 °, 21.146 ° ± in the powder X-ray diffraction pattern. It is a crystalline form having 0.2 ° and 24.887 ° ± 0.2 °.
Preferably, the morpholine derivative acetate crystal form has characteristic peaks 2θ: 6.012 ° ± 0.2 °, 7.457 ° ± 0.2 °, 7.784 ° ± 0.2 °, 10.391 ° ± 0.2 °, 10.768 ° ± 0.2 in the powder X-ray diffraction pattern. °, 11.429 ° ± 0.2 °, 13.652 ° ± 0.2 °, 14.089 ° ± 0.2 °, 14.455 ° ± 0.2 °, 14.841 ° ± 0.2 °, 15.516 ° ± 0.2 °, 16.301 ° ± 0.2 °, 16.874 ° ± 0.2 °, 17.592 ° ± 0.2 °, 18.777 ° ± 0.2 °, 19.375 ° ± 0.2 °, 19.899 ° ± 0.2 °, 20.521 ° ± 0.2 °, 21.146 ° ± 0.2 °, 21.541 ° ± 0.2 °, 22.346 ° ± 0.2 °, 22.966 ° ± 0.2 °, 23.347 ° ± 0.2 °, 24.585 ° ± 0.2 °, 24.887 ° ± 0.2 °, 25.546 ° ± 0.2 °, 26.028 ° ± 0.2 °, 26.328 ° ± 0.2 °, 27.484 ° ± 0.2 °, 27.753 ° ± 0.2 °, 29.206 ° ± 0.2 °, 30.611 ° ± 0.2 °, 30.972 ° ± 0.2 °, 31.233 ° ± 0.2 °, 31.801 ° ± 0.2 °, 33.696 ° ± 0.2 °, 34.699 ° ± 0.2 °, 35.313 ° ± 0.2 °, 36.441 ° ± 0.2 °, 37.961 ° ± 0.2 °, 38.179 ° ± 0.2 °, 39.325 ° ± 0.2 °
Have.
さらには、該モルホリン誘導体酢酸塩はFIG.26の粉末X線回折(XRPD)パターンを示す。
さらには、該モルホリン誘導体酢酸塩はFIG.27の偏光顕微鏡法(PLM)像を示す。
さらには、該モルホリン誘導体酢酸塩はFIG.28の熱重量分析(TGA)プロットを示す。該プロットは約50℃と75℃でそれぞれ4%と9.5%の段階的な重量減少を示す。
さらには、該モルホリン誘導体酢酸塩はFIG.29の示差走査熱量測定(DSC)プロットを示し、95℃において吸熱ピーク(61 J/g)を示す。
さらには、該モルホリン誘導体酢酸塩はFIG.30の動的蒸気吸着分析(DSC)プロットを示す。該モルホリン誘導体酢酸塩は最初の湿度0%の乾燥段階で約5%の重量減少があり、湿度20%から60%で重量の6.4%の吸湿、湿度90%で重量の40%の吸湿があり、潮解性を示す。
Furthermore, the morpholine derivative acetate exhibits the powder X-ray diffraction (XRPD) pattern of FIG.26.
Furthermore, the morpholine derivative acetate shows a polarizing microscopy (PLM) image of FIG.27.
Furthermore, the morpholine derivative acetate shows a thermogravimetric analysis (TGA) plot of FIG. 28. The plot shows a gradual weight loss of 4% and 9.5% at about 50 ° C and 75 ° C, respectively.
Furthermore, the morpholine derivative acetate shows a differential scanning calorimetry (DSC) plot in FIG. 29, showing an endothermic peak (61 J / g) at 95 ° C.
Furthermore, the morpholine derivative acetate shows a dynamic vapor adsorption analysis (DSC) plot of FIG. 30. The morpholine derivative acetate has a weight loss of about 5% in the initial 0% humidity drying phase, 6.4% by weight at 20% to 60% humidity, and 40% by weight at 90% humidity. , Shows deliquescentness.
該モルホリン誘導体酢酸塩の製造方法には以下の工程が含まれる:
即ち、該モルホリン誘導体遊離塩をアセトン、クロロホルム、アセトニトリル、酢酸エチル、メタノールまたはテトラヒドロフラン(好ましくはアセトン)に溶解し、該モルホリン誘導体遊離塩のアセトン、クロロホルム、アセトニトリル、酢酸エチル、メタノールまたはテトラヒドロフラン溶液を得る。一方、酢酸をアセトンに溶解し、該モルホリン誘導体遊離塩のアセトン、クロロホルム、アセトニトリル、酢酸エチル、メタノールまたはテトラヒドロフラン溶液中にこの酢酸のアセトン溶液を滴下して、室温で終夜撹拌することにより白色固体を析出させ、これを濾取する。好ましくは、該モルホリン誘導体遊離塩と酢酸のモル比は1:1.1から1:3.1であり、好ましくは1:1.4である。
先行技術と比較して、該モルホリン誘導体酢酸塩は一つまたはそれ以上の改良された性質を有し、例えば、結晶性が良好であり、水溶性は改良され(150-300mg/mL)、非常に吸湿性であるが、光条件下で熱的安定性は良好である。
The method for producing the morpholine derivative acetate includes the following steps:
That is, the morpholin derivative free salt is dissolved in acetone, chloroform, acetonitrile, ethyl acetate, methanol or tetrahydrofuran (preferably acetone) to obtain a solution of the morpholin derivative free salt in acetone, chloroform, acetonitrile, ethyl acetate, methanol or tetrahydrofuran. .. On the other hand, acetic acid is dissolved in acetone, and the acetone solution of acetic acid is added dropwise to a solution of the morpholin derivative free salt in acetone, chloroform, acetonitrile, ethyl acetate, methanol or tetrahydrofuran, and the mixture is stirred overnight at room temperature to form a white solid. Precipitate and filter out. Preferably, the molar ratio of the morpholine derivative free salt to acetic acid is 1: 1.1 to 1: 3.1, preferably 1: 1.4.
Compared to the prior art, the morpholine derivative acetate has one or more improved properties, for example, good crystallinity, improved water solubility (150-300 mg / mL) and very high. Although it is hygroscopic, it has good thermal stability under light conditions.
本発明の第五の側面では、モルホリン誘導体ナフタレンジスルホン酸塩およびその製造法を提供する。
該モルホリン誘導体ナフタレンジスルホン酸塩はモルホリン誘導体とナフタレンジスルホン酸がモル比1:1で形成される化合物で、次の構造式:
該モルホリン誘導体ナフタレンジスルホン酸塩は非結晶である。
さらには、該モルホリン誘導体ナフタレンジスルホン酸塩はFIG.31の粉末X線回折(XRPD)パターンを示す。
該モルホリン誘導体ナフタレンジスルホン酸塩の製造方法には以下の工程が含まれる:
即ち、該モルホリン誘導体遊離塩を酢酸エチルに溶解し、一方、ナフタレンジスルホン酸をエタノールに溶解し、該モルホリン誘導体遊離塩酢酸エチル溶液中にこのナフタレンジスルホン酸のエタノール溶液を滴下して、室温で撹拌することにより綿状沈殿を析出させ、これを濾取する。好ましくは、該モルホリン誘導体遊離塩とナフタレンジスルホン酸のモル比は1:1.1から1:3であり、好ましくは1:1.4である。
先行技術と比較して、該モルホリン誘導体ナフタレンジスルホン酸塩は一つまたはそれ以上の改良された性質を有し、例えば、結晶性が良好であり、水溶性は改良され(>500mg/mL)、非常に吸湿性であるが、光条件下で熱的安定性は良好である。
In a fifth aspect of the present invention, there is provided a morpholine derivative naphthalene disulfonic acid salt and its preparation.
The morpholine derivatives naphthalene disulfonic acid salt molar morpholine derivatives and naphthalene disulfonic acid ratio of 1: compound formed by 1, the following structural formula:
The morpholine derivatives naphthalene disulfonic acid salt is amorphous.
Furthermore, the morpholine derivative naphthalene disulfonic acid salt shows a X-ray powder diffraction (XRPD) pattern of Fig.31.
The manufacturing method of the morpholine derivative naphthalene disulfonic acid salt includes the following steps:
That is, the morpholin derivative free salt is dissolved in ethyl acetate, while naphthalenedisulfonic acid is dissolved in ethanol, and the ethanol solution of naphthalenedisulfonic acid is added dropwise to the morpholin derivative free salt ethyl acetate solution and stirred at room temperature. By doing so, a cotton-like precipitate is precipitated, and this is collected by filtration. Preferably, the molar ratio of the free salt of the morpholine derivative to the naphthalene disulfonic acid is 1: 1.1 to 1: 3, preferably 1: 1.4.
Compared to the prior art, the morpholine derivative naphthalene disulfonic acid salt has one or more improved properties, for example, crystallinity is good, water-solubility is improved (> 500mg / mL), It is very hygroscopic, but has good thermal stability under light conditions.
上記の本発明調製方法で「撹拌」は、磁気的撹拌や機械的撹拌のような慣用的技術により達成できる。撹拌速度は50から1800 rpm、好ましくは300 から 900 rpmである。
本発明で「室温」は15から25℃である。
本発明で「終夜」は24時間またはそれ以上である。
さらには、本発明は、本発明のモルホリン誘導体の塩または結晶形のひとつまたはそれ以上の、治療上および/または予防上の有効量を含む医薬組成物を提供する。当該モルホリン誘導体の塩または結晶形は、本発明の方法で調製され、少なくとも一つの医薬上許容される賦形剤が含まれる。ここで、該モルホリン誘導体の塩または結晶形は、リンゴ酸塩、酒石酸塩、酒石酸塩結晶形A、酒石酸塩結晶形B、塩酸塩、酢酸塩、ナフタレン二スルホン酸塩から選択され、加えて、該医薬組成物はまた、該モルホリン誘導体の他の医薬的に許容される塩、結晶形または非結晶を含んでもよい。
In the above-mentioned preparation method of the present invention, "stirring" can be achieved by conventional techniques such as magnetic stirring and mechanical stirring. The stirring speed is 50 to 1800 rpm, preferably 300 to 900 rpm.
In the present invention, the "room temperature" is 15 to 25 ° C.
In the present invention, "all night" is 24 hours or more.
Furthermore, the present invention provides a pharmaceutical composition comprising a therapeutically and / or prophylactically effective amount of one or more salts or crystalline forms of the morpholine derivative of the present invention. The salt or crystalline form of the morpholine derivative is prepared by the method of the invention and comprises at least one pharmaceutically acceptable excipient. Here, the salt or crystalline form of the morpholin derivative is selected from malate, tartrate, tartrate crystal form A, tartrate crystal form B, hydrochloride, acetate, naphthalene disulfonate, and in addition, The pharmaceutical composition may also contain other pharmaceutically acceptable salts, crystalline or non-crystalline forms of the morpholin derivative.
該医薬組成物の賦形剤は、砂糖;セルロースおよびその誘導体;デンプンおよび修飾デンプン;リン酸カルシウム、リン酸二カルシウム、ヒドロキシアパタイト、硫酸カルシウム、炭酸カルシウムのような固体の無機材料;脂質またはパラフィンのような半固体;微結晶性セルロース、エチルセルロース、ヒドロキシメチルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルセルロースのような結合剤;コロイド状シリカ、軽質無水ケイ酸、結晶セルロース、タルク、ステアリン酸マグネシウムのような流動促進剤;デンプングリコール酸ナトリウム、クロスポビドン、クロスカルメロース、カルボキシメチルセルロースナトリウム、乾燥トウモロコシデンプンのような崩壊剤;ステアリン酸、ステアリン酸マグネシウム、ステアリルフマル酸ナトリウム、ポリエチレングリコールのような滑沢剤が含まれる。 Excipients of the pharmaceutical composition are sugar; cellulose and derivatives thereof; starch and modified starch; solid inorganic materials such as calcium phosphate, dicalcium phosphate, hydroxyapatite, calcium sulfate, calcium carbonate; lipids or paraffins. Semi-solid; binders such as microcrystalline cellulose, ethyl cellulose, hydroxymethyl cellulose, hydroxypropyl methyl cellulose, hydroxyethyl cellulose; flow promoters such as colloidal silica, light anhydrous silicic acid, crystalline cellulose, starch, magnesium stearate; Disintegrants such as sodium starch glycolate, crospovidone, croscarmellose, sodium carboxymethyl cellulose, dried corn starch; lubricants such as stearic acid, magnesium stearate, sodium stearyl fumarate, polyethylene glycol are included.
該医薬組成物は固体状態、液体状態のいずれでもよく、錠剤、顆粒剤、粉剤、ピル、カプセル等の固体の経口投与形態;液剤、シロップ、懸濁剤、分散剤、乳剤等の液体の経口投与形態;液剤、分散剤、凍結乾燥剤等を含む注射製剤がある。有効成分の速放性、遅延放出性、調節放出性の製剤がある。従来型の他、分散性、チュアブル、経口溶解性または即時融解性製剤でもよい。投与経路は経口投与、皮下静脈注射、皮下注射投与、経皮投与、直腸投与、鼻腔内投与等がある。
該医薬組成物は当業者に知られた方法により製造される。該医薬組成物を製造する場合には、本発明のモルホリン誘導体塩またはその結晶形を一つ又はそれ以上の医薬的に許容される担体と混合し、任意で該モルホリン誘導体の他の医薬的に許容される塩、結晶形又は非結晶を加え、また任意で一つ又はそれ以上の他の有効成分を混合する。固形製剤は直接混合、造粒等の工程で調製される。
さらには、本発明は前述のモルホリン誘導体の塩またはその結晶形のレニン阻害剤としての用途を提供し、高血圧、心不全、糖尿病性腎症等の予防および/または治療のための医薬の製造におけるそれらの用途を提供する。
The pharmaceutical composition may be in a solid state or a liquid state, and may be in a solid oral administration form such as tablets, granules, powders, pills, capsules; orally in a liquid such as a liquid, syrup, suspension, dispersant or emulsion. Dosage form: There are injection preparations containing liquids, dispersants, lyophils and the like. There are fast-release, delayed-release, and regulated-release formulations of the active ingredient. In addition to the conventional type, it may be a dispersible, chewable, orally soluble or immediately soluble preparation. The route of administration includes oral administration, subcutaneous intravenous injection, subcutaneous injection administration, transdermal administration, rectal administration, intranasal administration and the like.
The pharmaceutical composition is produced by a method known to those skilled in the art. When producing the pharmaceutical composition, the morpholine derivative salt of the present invention or a crystalline form thereof is mixed with one or more pharmaceutically acceptable carriers, and optionally other morpholine derivatives are used. Add acceptable salts, crystalline or non-crystalline, and optionally mix one or more other active ingredients. The solid preparation is prepared by a process such as direct mixing and granulation.
Furthermore, the present invention provides the use as a salt of the above-mentioned morpholine derivative or a crystalline renin inhibitor thereof, and they in the manufacture of a medicament for the prevention and / or treatment of hypertension, heart failure, diabetic nephropathy and the like. Provides applications for.
続く実施例を参照し本発明をさらに記述する、また、実施例において本発明の塩およびその結晶形の製造法および適用をより詳細に記述する。本発明の範囲から逸脱することなく、材料および方法に種々の変更を加え得ることは、当業者にとって明らかなことである。 The present invention will be further described with reference to the following examples, and in the examples, the production method and application of the salt of the present invention and its crystal form will be described in more detail. It will be apparent to those skilled in the art that various changes can be made to the materials and methods without departing from the scope of the present invention.
試験機器および方法
粉末X線回折(XRPD)のための機器はブルカーD8 Advance回折計でθ-2θゴニオメーター、MoモノクロメータおよびLynxeye検出器を備えている。試験は波長1.54nmのK X線を使用し、40 kV および40 mAの条件下Cu標的で実施した。機器は使用前に、機器に備わっている標準試料を用いて、ピーク位置を標準化した。データ収集のソフトはDiffrac Plus XRD Commander、分析用のソフトはMDI Jade 5.0を用いた。試料は室温で試験し、試験試料は有機スライド上に置いた。検出条件の詳細は次の通りである:角度領域は3-4°2θ、ステップ長0.02°2θ、速度は0.2 s/step。特筆しない限り、試験前に試料をすりつぶすことはしなかった。
Test Equipment and Methods Equipment for powder X-ray diffraction (XRPD) is a Bruker D8 Advance diffractometer equipped with a θ-2θ goniometer, a Mo monochromator and a Lynxeye detector. The test was carried out using KX-rays with a wavelength of 1.54 nm on a Cu target under 40 kV and 40 mA conditions. Prior to use, the instrument standardized peak positions using standard samples provided with the instrument. Diffrac Plus XRD Commander was used as the data collection software, and MDI Jade 5.0 was used as the analysis software. The sample was tested at room temperature and the test sample was placed on an organic slide. The details of the detection conditions are as follows: the angle region is 3-4 ° 2θ, the step length is 0.02 ° 2θ, and the velocity is 0.2 s / step. Unless otherwise noted, the sample was not ground prior to the test.
偏光顕微鏡法(PLM)像はXP-500E 偏光顕微鏡(Shanghai Changfang Optical Instrument Co., Ltd.)を用いた。微量の粉末試料をガラススライド上に載せ、鉱物油を少量滴下してカバーグラスで覆い、XP-500E 偏光顕微鏡上に試料を置いた。試料形態を観察し、適切な倍率で写真撮影した。 An XP-500E polarizing microscope (Shanghai Changfang Optical Instrument Co., Ltd.) was used for the polarization microscopy (PLM) image. A small amount of powder sample was placed on a glass slide, a small amount of mineral oil was added dropwise, the sample was covered with a cover glass, and the sample was placed on an XP-500E polarizing microscope. The sample morphology was observed and photographed at an appropriate magnification.
示差走査熱量測定(DSC)データはTA機器Q200 MDSCから取得し、機器制御ソフトはThermal Advantage、分析ソフトはUniversal Analysisを使用した。一般的には、1〜10mgの試料を穴あき蓋のついたアルミニウム製るつぼ中に置き、試料を室温から200℃または300℃まで、乾燥窒素毎分50 mL/で保護しながら、毎分10℃の速度で加熱する一方、TAソフトで加熱工程中の試料温度を記録した。
熱分析(TA)データは、TA機器Q500 TGAを使用し、機器制御ソフトはThermal Advantage、分析ソフトはUniversal Analysisを使用した。一般には、5〜15 mgの試料を白金るつぼ中に置き、室温から300℃まで、乾燥窒素毎分50 mL/で保護しながら、毎分10℃の速度で加熱した。一方、TAソフトで加熱工程中の試料の重量変化を記録した。
動的蒸気吸着分析(DSC)データは、TA機器Q500 TGAを使用しデータはTA機器Q5000 TGAから取得し、機器制御ソフトはThermal Advantage、分析ソフトはUniversal Analysisを使用した。一般的には、1〜10 mgの試料を白金製るつぼ中に置き、TAソフトで相対湿度変化0%〜80%〜0%で変化させ、試料の重量変化を記録した。試料に特有の条件に従って、異なる吸着・脱吸着工程を該試料に適用した。
本発明の出発物質であるモルホリン誘導体遊離塩基は、文献CN 103562191 (WO 2012/124775)に開示された方法に従って調製した。以下の実施例においてはモルホリン誘導体遊離塩基を単に遊離塩基と呼ぶ。
The differential scanning calorimetry (DSC) data was obtained from the TA device Q200 MDSC, and the device control software was Thermal Advantage and the analysis software was Universal Analysis. Generally, a 1-10 mg sample is placed in an aluminum crucible with a perforated lid and the sample is protected from room temperature to 200 ° C or 300 ° C with dry nitrogen at 50 mL / min, at 10 per minute. While heating at a rate of ° C, the sample temperature during the heating process was recorded with TA soft.
For thermal analysis (TA) data, TA equipment Q500 TGA was used, equipment control software was Thermal Advantage, and analysis software was Universal Analysis. Generally, a sample of 5 to 15 mg was placed in a platinum crucible and heated from room temperature to 300 ° C. at a rate of 10 ° C. per minute, protected at 50 mL / min of dry nitrogen. On the other hand, the weight change of the sample during the heating process was recorded with TA software.
The dynamic vapor adsorption analysis (DSC) data was obtained from the TA device Q500 TGA, the data was obtained from the TA device Q5000 TGA, the device control software was Thermal Advantage, and the analysis software was Universal Analysis. In general, a sample of 1 to 10 mg was placed in a platinum crucible and changed with TA software with a relative humidity change of 0% to 80% to 0%, and the weight change of the sample was recorded. Different adsorption / deadsorption steps were applied to the sample according to the conditions specific to the sample.
The morpholine derivative free base, which is the starting material of the present invention, was prepared according to the method disclosed in Document CN 103562191 (WO 2012/124775). In the following examples, the morpholine derivative free base is simply referred to as the free base.
モルホリン誘導体リンゴ酸塩の調製
遊離塩基10.64 mg (0.024 mmol, 1 eq)をアセトン0.6mlに溶解し、L-リンゴ酸3.63 mg (0.027 mmol, 1.1 eq)をエタノール0.04mLに溶解して、該アセトン溶液に該エタノール溶液を滴下した。混合物を室温で終夜撹拌し、析出した白色固体を濾取して測定を行った。
該モルホリン誘導体リンゴ酸塩はFIG 1の粉末X線回折(XRPD)を示す。
該モルホリン誘導体リンゴ酸塩はFIG.2の偏光顕微鏡法(PLM)像を示す。
該モルホリン誘導体リンゴ酸塩はFIG.3の粉末X線回折(XRPD)パターンを示す。
該モルホリン誘導体リンゴ酸塩はFIG.4の示差走査熱量測定(DSC)プロットを示す。このDSCプロットは約121℃で吸熱ピーク(95 J/g)を示す。
該モルホリン誘導体リンゴ酸塩はFIG.5の動的蒸気吸着分析(DVS)プロットを示す。このDVSプロットは該モルホリン誘導体リンゴ酸塩の重量が湿度20%-80%の範囲で約1.2%変化することを示す。
Preparation of morpholine derivative malate 10.64 mg (0.024 mmol, 1 eq) of free base is dissolved in 0.6 ml of acetone, 3.63 mg (0.027 mmol, 1.1 eq) of L-malic acid is dissolved in 0.04 mL of ethanol, and the acetone is prepared. The ethanol solution was added dropwise to the solution. The mixture was stirred at room temperature overnight, and the precipitated white solid was collected by filtration for measurement.
The morpholine derivative malate shows FIG 1 powder X-ray diffraction (XRPD).
The morpholine derivative malate shows a polarizing microscopy (PLM) image of FIG.2.
The morpholine derivative malate exhibits the powder X-ray diffraction (XRPD) pattern of FIG.3.
The morpholine derivative malate shows a differential scanning calorimetry (DSC) plot of FIG. This DSC plot shows an endothermic peak (95 J / g) at about 121 ° C.
The morpholine derivative malate shows the Dynamic Vapor Adsorption Analysis (DVS) plot of FIG. This DVS plot shows that the weight of the morpholine derivative malate varies by about 1.2% in the humidity range of 20% -80%.
モルホリン誘導体酒石酸塩結晶形Bの調製
遊離塩基42.72 mg (0.096 mmol, 1 eq)をアセトン1.0 mlに溶解し、L-酒石酸14.86 mg (0.099 mmol, 1.03 eq)を水0.048 mlに溶解して、該アセトン溶液に該水溶液溶液を滴下した。混合物を室温で終夜撹拌し、析出した白色固体を濾取して測定を行った。
該モルホリン誘導体酒石酸塩結晶形BはFIG 6のXRPDパターンを示す。
該モルホリン誘導体酒石酸塩結晶形BはFIG.7のPLM像を示す。
該モルホリン誘導体酒石酸塩結晶形BはFIG.8のTGAプロットを示す。該TGAプロットは該モルホリン誘導体酒石酸塩結晶形Bが約186.0℃で分解し、分解前に重量の2.5%が徐々に失われることを示す(約150℃から重量損失が開始される)。
該モルホリン誘導体酒石酸塩結晶形BはFIG.9のDSCプロットを示す。該TGAプロットは該モルホリン誘導体酒石酸塩結晶形Bが約161.5℃で吸熱ピーク(38 J/g)を有することを示す。
該モルホリン誘導体酒石酸塩結晶形BはFIG.10のDVSプロットを示す。このDVSプロットは該モルホリン誘導体酒石酸塩結晶形Bの重量が湿度20%-80%の範囲で約7%変化し、相対的に吸湿性であって水和物になることを示す。
Preparation of Morpholine Derivative Tartrate Crystal Form B 42.72 mg (0.096 mmol, 1 eq) of free base was dissolved in 1.0 ml of acetone, and 14.86 mg (0.099 mmol, 1.03 eq) of L-tartrate was dissolved in 0.048 ml of water. The aqueous solution was added dropwise to the acetone solution. The mixture was stirred at room temperature overnight, and the precipitated white solid was collected by filtration for measurement.
The morpholine derivative tartrate crystal form B shows the XRPD pattern of FIG 6.
The morpholine derivative tartrate crystal form B shows a PLM image of FIG. 7.
The morpholine derivative tartrate crystal form B shows the TGA plot of FIG. 8. The TGA plot shows that the morpholine derivative tartrate crystal form B decomposes at about 186.0 ° C and gradually loses 2.5% of its weight prior to decomposition (weight loss begins at about 150 ° C).
The morpholine derivative tartrate crystal form B shows the DSC plot of FIG. The TGA plot shows that the morpholine derivative tartrate crystal form B has an endothermic peak (38 J / g) at about 161.5 ° C.
The morpholine derivative tartrate crystal form B shows the DVS plot of FIG.10. This DVS plot shows that the weight of the morpholine derivative tartrate crystal form B varies by about 7% in the humidity range of 20% -80%, making it relatively hygroscopic and hydrated.
モルホリン誘導体酒石酸塩二水和物の調製
実施例2で調製したモルホリン誘導体酒石酸塩結晶形B10 mgをアセトン−水の混合溶媒(体積比30:1)に加えた。混合物を室温で二日間撹拌し、その後、濾取して測定した。
該モルホリン誘導体酒石酸塩二水和物はFIG.11のXRPDパターンを示す。
該モルホリン誘導体酒石酸塩二水和物はFIG.12のPLM像を示す。
該モルホリン誘導体酒石酸塩二水和物はFIG.13のTGAプロットを示し、該プロットは該モルホリン誘導体酒石酸塩二水和物が約189.6℃で分解し、分解前に重量の6.95%がゆっくりと失われる。
該モルホリン誘導体酒石酸塩二水和物はFIG.14のDSCプロットを示し、該プロットは該モルホリン誘導体酒石酸塩二水和物が約29.5℃で吸熱ピーク(112 J/g)、約154℃で発熱ピーク(19 J/g)を有することを示す。
該モルホリン誘導体酒石酸塩二水和物はFIG.15のDVSプロットを示し、該プロットは該モルホリン誘導体酒石酸塩二水和物の重量が湿度0%-80%の範囲で約11.06%変化し相対的に吸湿性であることを示す。
Preparation of Morpholine Derivative Tartrate Dihydrate 10 mg of the morpholine derivative tartrate crystalline form B prepared in Example 2 was added to a mixed solvent of acetone and water (volume ratio 30: 1). The mixture was stirred at room temperature for 2 days and then filtered and measured.
The morpholine derivative tartrate dihydrate shows the XRPD pattern of FIG.11.
The morpholine derivative tartrate dihydrate shows the PLM image of FIG.12.
The morpholine derivative tartrate dihydrate shows a TGA plot of FIG. 13, which shows that the morpholine derivative tartrate dihydrate decomposes at about 189.6 ° C and slowly loses 6.95% of its weight prior to decomposition. Will be.
The morpholine derivative tartrate dihydrate shows a DSC plot of FIG. 14, which shows that the morpholine derivative tartrate dihydrate has a heat absorption peak (112 J / g) at about 29.5 ° C and a fever at about 154 ° C. It is shown to have a peak (19 J / g).
The morpholine derivative tartrate dihydrate shows a DVS plot of FIG.15, which shows that the weight of the morpholine derivative tartrate dihydrate varies by about 11.06% in the humidity range of 0% -80% and is relative. Shows that it is hygroscopic.
モルホリン誘導体酒石酸塩結晶形A(四水和物)の調製
遊離塩基1.0g(2.25 mmol, 1 eq)をアセトン中に溶解し超音波処理で完全に溶解した。L-酒石酸0.74g(4.93 mmol, 2.2 eq 20:1)を溶解した。遊離塩基の溶液に酒石酸溶液をゆっくりと滴下し、混合物を室温で48時間以上撹拌した。ろ過により酒石酸水和物1.01gが得られた。
該モルホリン誘導体酒石酸塩結晶形AはFIG.16の粉末X線回折(XRPD)を示す。
該モルホリン誘導体酒石酸塩結晶形AはFIG.17の偏光顕微鏡法(PLM)像を示す。
該モルホリン誘導体酒石酸塩結晶形AはFIG.18の熱分析(TGA)プロットを示し、該TGAプロットは該モルホリン誘導体酒石酸塩四水和物が10.0-10.4%の重量を失うことを示す。
該モルホリン誘導体酒石酸塩結晶形AはFIG.19の示差走査熱量測定(DSC)プロットを示す。このDSCプロットは該モルホリン誘導体酒石酸塩結晶形Aが約62.7℃で吸熱ピークを有し、融解吸熱ピークが159.3℃であり、191℃またはそれ以上で分解することを示す。
該モルホリン誘導体酒石酸塩結晶形AはFIG.20の動的蒸気吸着分析(DVS)プロットを示し、該DVSプロットは該モルホリン誘導体酒石酸塩結晶形Aの重量変化が湿度20%-80%の範囲で約1.5%であり、殆ど吸湿性でないことを示す。
Preparation of Morpholine Derivative Tartrate Crystal Form A (Tetrahydrate) 1.0 g (2.25 mmol, 1 eq) of free base was dissolved in acetone and completely dissolved by sonication. 0.74 g (4.93 mmol, 2.2 eq 20: 1) of L-tartaric acid was dissolved. The tartaric acid solution was slowly added dropwise to the free base solution, and the mixture was stirred at room temperature for 48 hours or longer. Filtration gave 1.01 g of tartaric acid hydrate.
The morpholine derivative tartrate crystal form A shows the powder X-ray diffraction (XRPD) of FIG.16.
The morpholine derivative tartrate crystal form A shows a polarizing microscope (PLM) image of FIG.17.
The morpholine derivative tartrate crystal form A shows a thermogravimetric (TGA) plot of FIG.18, and the TGA plot shows that the morpholine derivative tartrate tetrahydrate loses 10.0-10.4% by weight.
The morpholine derivative tartrate crystal form A shows a differential scanning calorimetry (DSC) plot of FIG.19. This DSC plot shows that the morpholine derivative tartrate crystal form A has an endothermic peak at about 62.7 ° C. and a melting endothermic peak at 159.3 ° C. and decomposes at 191 ° C. or higher.
The morpholine derivative tartrate crystal form A shows the dynamic vapor adsorption analysis (DVS) plot of FIG.20, the DVS plot shows the weight change of the morpholine derivative tartrate crystal form A in the humidity range of 20% -80%. It is about 1.5%, indicating that it is hardly hygroscopic.
モルホリン誘導体塩酸塩の調製
遊離塩基1.5g(3.38 mmol, 1 eq)をアセトン50mlに溶解し、超音波処理で完全に溶解した。36.5%の塩酸1.1g(10.8 mmol, 3.3 eq)を取り、遊離塩基溶液にゆっくりと滴下した。混合物を室温で終夜撹拌し、塩酸塩固形物を濾取した。
該モルホリン誘導体塩酸塩はFIG.21の粉末X線回折(XRPD)を示す。
該モルホリン誘導体塩酸塩はFIG.22の偏光顕微鏡法(PLM)像を示す。
該モルホリン誘導体塩酸塩はFIG.23の熱分析(TGA)プロットを示し、該TGAプロットは、該モルホリン誘導体塩酸塩が加熱過程で重量減少が続くこと、分解温度が207℃であり、分解前に二回の重量減少の段階があって全体の重量減少は約9.1%であることを示す。
該モルホリン誘導体塩酸塩はFIG.24の示差走査熱量測定(DSC)プロットを示し、該DSCプロットは25℃と115℃の間にある幅広い吸熱ピーク(57.68 J/g)と、133℃の吸熱ピーク(57.65 J/g)を示す。
該モルホリン誘導体塩酸塩はFIG.25の動的蒸気吸着分析(DVS)プロットを示し、該DVSプロットは該モルホリン誘導体塩酸塩が湿度0%-60%の範囲で15%の水分を吸収し、この湿度範囲で潮解性であることを示す。
Preparation of Morpholine Derivative Hydrochloride 1.5 g (3.38 mmol, 1 eq) of free base was dissolved in 50 ml of acetone and completely dissolved by sonication. 1.1 g (10.8 mmol, 3.3 eq) of 36.5% hydrochloric acid was taken and slowly added dropwise to the free base solution. The mixture was stirred at room temperature overnight and the hydrochloride solids were collected by filtration.
The morpholine derivative hydrochloride shows the powder X-ray diffraction (XRPD) of FIG.21.
The morpholine derivative hydrochloride shows a polarizing microscopy (PLM) image of FIG.22.
The morpholine derivative hydrochloride shows a thermogravimetric (TGA) plot of FIG. 23, which shows that the morpholine derivative hydrochloride continues to lose weight during the heating process, the decomposition temperature is 207 ° C, and before decomposition. It shows that there are two stages of weight loss and the total weight loss is about 9.1%.
The morpholine derivative hydrochloride shows a differential scanning calorimetry (DSC) plot of FIG. 24, which shows a wide endothermic peak (57.68 J / g) between 25 ° C and 115 ° C and a 133 ° C endothermic peak. (57.65 J / g) is shown.
The morpholine derivative hydrochloride shows the Dynamic Vapor Adsorption Analysis (DVS) plot of FIG. 25, which shows that the morpholine derivative hydrochloride absorbs 15% water in the humidity range of 0% -60%. Indicates deliquescent in the humidity range.
モルホリン誘導体酢酸塩の調製
遊離塩基10.64mg (0.024 mmol, 1 eq)をアセトン0.4mlに溶解し、酢酸2.03 mg (0.033 mmol, 1.4 eq)をアセトン0.1mlに溶解してこの酢酸のアセトン溶液を該遊離塩基のアセトン溶液中に滴下した。混合物を室温で終夜撹拌し沈殿した白色固体を濾取して解析した。
該モルホリン誘導体酢酸塩はFIG.26の粉末X線回折(XRPD)を示す。
該モルホリン誘導体酢酸塩はFIG.27の偏光顕微鏡法(PLM)像を示す。
該モルホリン誘導体酢酸塩はFIG.28の熱分析(TGA)プロットを示し、該TGAプロットは、該モルホリン誘導体酢酸塩が約50℃と75℃でそれぞれ4.0%と9.5%の段階的な重量減少があることを示す。
該モルホリン誘導体酢酸塩はFIG.29の示差走査熱量測定(DSC)プロットを示し、該DSCプロットは95℃に吸熱ピーク(61 J/g)を示す。
該モルホリン誘導体塩酸塩はFIG.30の動的蒸気吸着分析(DVS)プロットを示し、該DVSプロットは該モルホリン誘導体酢酸塩が乾燥段階の初期湿度0%で約5%の重量減少があり、その後、湿度20%から60%の範囲で重量の6.4%の湿度を吸収し、湿度90%では重量の40%の量の湿度を吸収し、潮解性であることを示す。
Preparation of morpholin derivative acetic acid salt Free base 10.64 mg (0.024 mmol, 1 eq) is dissolved in 0.4 ml of acetone, acetic acid 2.03 mg (0.033 mmol, 1.4 eq) is dissolved in 0.1 ml of acetone, and the acetone solution of this acetic acid is applied. The free base was added dropwise to an acetone solution. The mixture was stirred at room temperature overnight and the precipitated white solid was collected by filtration and analyzed.
The morpholine derivative acetate shows the powder X-ray diffraction (XRPD) of FIG.26.
The morpholine derivative acetate shows a polarizing microscopy (PLM) image of FIG.27.
The morpholine derivative acetate shows the FIG. 28 thermogravimetric (TGA) plot, which shows that the morpholine derivative acetate has a gradual weight loss of 4.0% and 9.5% at about 50 ° C and 75 ° C, respectively. Indicates that there is.
The morpholine derivative acetate shows a differential scanning calorimetry (DSC) plot of FIG.29, which shows an endothermic peak (61 J / g) at 95 ° C.
The morpholin derivative hydrochloride shows the Dynamic Vapor Adsorption Analysis (DVS) plot of FIG.30, where the DVS plot shows that the morpholin derivative acetate has a weight loss of about 5% at an initial humidity of 0% during the drying phase, followed by a weight loss of about 5%. It absorbs 6.4% of its weight in the range of 20% to 60%, and 90% of its weight absorbs 40% of its weight, indicating that it is deliquescent.
モルホリン誘導体ナフタレンジスルホン酸塩の調製
遊離塩基10.68 mg (0.024 mmol, 1 eq)を酢酸エチル2 mlに溶解し、ナフタレンジスルホン酸12.17 mg (0.034 mmol, 1.4 eq)をエタノール1 mlに溶解して、このナフタレンジスルホン酸のエタノール液を該遊離塩基の酢酸エチル溶液中に滴下した。混合物を撹拌して白色の綿状沈殿を濾取して解析した。
該モルホリン誘導体ナフタレンジスルホン酸塩はFIG.31の粉末X線回折(XRPD)を示し、それは非結晶性塩である。
Preparation of morpholinic derivative naphthalenedisulfonate 10.68 mg (0.024 mmol, 1 eq) of free base was dissolved in 2 ml of ethyl acetate, and 12.17 mg (0.034 mmol, 1.4 eq) of naphthalenedisulfonic acid was dissolved in 1 ml of ethanol. An ethanol solution of naphthalenedisulfonic acid was added dropwise to the ethyl acetate solution of the free base. The mixture was stirred and the white cottony precipitate was collected by filtration and analyzed.
The morpholine derivative naphthalene disulfonate exhibits FIG. 31 powder X-ray diffraction (XRPD), which is a non-crystalline salt.
試験例1 溶解度試験
25℃において、試料が完全に溶解するまで、実施例1−7のモルホリン誘導体の塩および遊離塩基各5 mgに純水を徐々に加えた。各試料の溶解度は、実際の試料の重量と純水の量から計算した。結果を表1に示す。試験実施中に試料の結晶の変化が生じていないことは、並行した試験が示している。
Test Example 1 Solubility test
At 25 ° C., pure water was gradually added to 5 mg each of the salt and free base of the morpholine derivative of Example 1-7 until the sample was completely dissolved. The solubility of each sample was calculated from the actual weight of the sample and the amount of pure water. The results are shown in Table 1. Parallel tests show that there is no change in sample crystals during the test.
試験例2 安定性試験
実施例のモルホリン誘導体の塩各5mgにつき、湿度を20% から 80%にまで増加させた場合の重量変化を測定した。結果を表2に示す。
実施例のモルホリン誘導体遊離塩基および塩各10mgにつき、酸化条件下における安定性試験を実施した。結果を表3に示す。
実施例1−6のモルホリン誘導体遊離塩基および塩につき、光条件下で安定性試験を実施した。結果を表4に示す。
上述した本発明の詳細な態様は説明目的のための提供に過ぎず、本発明の保護範囲は何ら制限されない。当本発明の技術的範囲の開示内における、当業者による創造的労力を伴わない全ての変更または選択肢は、本発明の保護範囲内に包含されるものである。
Stability tests were performed on the morpholine derivative free bases and salts of Examples 1-6 under light conditions. The results are shown in Table 4.
The detailed embodiments of the present invention described above are provided for explanatory purposes only, and the scope of protection of the present invention is not limited in any way. All modifications or options within the disclosure of the technical scope of the present invention without the creative effort of one of ordinary skill in the art are within the scope of protection of the present invention.
Claims (10)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201511016783 | 2015-12-29 | ||
CN201511016783.3 | 2015-12-29 | ||
PCT/CN2016/112966 WO2017114456A1 (en) | 2015-12-29 | 2016-12-29 | Salt of morpholine derivative and crystalline form thereof, as well as preparation method, pharmaceutical composition and use of the same |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2019500385A JP2019500385A (en) | 2019-01-10 |
JP2019500385A5 JP2019500385A5 (en) | 2019-09-12 |
JP6818031B2 true JP6818031B2 (en) | 2021-01-20 |
Family
ID=59224612
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018534034A Active JP6818031B2 (en) | 2015-12-29 | 2016-12-29 | Salts of morpholine derivatives, crystalline forms, methods for producing them, pharmaceutical compositions containing them and their uses |
Country Status (11)
Country | Link |
---|---|
US (1) | US10519150B2 (en) |
EP (1) | EP3398946B1 (en) |
JP (1) | JP6818031B2 (en) |
CN (3) | CN106928218B (en) |
DK (1) | DK3398946T3 (en) |
ES (1) | ES2918674T3 (en) |
HU (1) | HUE059444T2 (en) |
PL (1) | PL3398946T3 (en) |
PT (1) | PT3398946T (en) |
TW (1) | TWI705065B (en) |
WO (1) | WO2017114456A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022047730A1 (en) | 2020-09-04 | 2022-03-10 | Shanghai Pharmaceuticals Holding Co., Ltd. | Methods to treat inflammatory bowel disease |
KR20230058506A (en) * | 2020-09-04 | 2023-05-03 | 상하이 파마슈티컬스 홀딩 컴퍼니 리미티드 | Applications of Nitrogen-containing Saturated Heterocyclic Compounds |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1248869A2 (en) * | 2000-01-07 | 2002-10-16 | Transform Pharmaceuticals, Inc. | High-throughput formation, identification, and analysis of diverse solid-forms |
BR112013023480B1 (en) * | 2011-03-16 | 2019-10-01 | Shanghai Pharmaceuticals Holding Co.,Ltd | SATURATED HYPEROCYCLIC COMPOUND CONTAINING NITROGEN, ITS USE AND PHARMACEUTICAL COMPOSITION |
JP5764628B2 (en) * | 2012-09-14 | 2015-08-19 | 田辺三菱製薬株式会社 | Pharmaceutical composition |
US9556159B2 (en) * | 2012-09-14 | 2017-01-31 | Mitsubishi Tanabe Pharma Corporation | Renin inhibitor |
-
2016
- 2016-12-29 CN CN201611246909.0A patent/CN106928218B/en active Active
- 2016-12-29 JP JP2018534034A patent/JP6818031B2/en active Active
- 2016-12-29 EP EP16881245.1A patent/EP3398946B1/en active Active
- 2016-12-29 WO PCT/CN2016/112966 patent/WO2017114456A1/en active Application Filing
- 2016-12-29 CN CN202110794158.0A patent/CN113816951B/en active Active
- 2016-12-29 HU HUE16881245A patent/HUE059444T2/en unknown
- 2016-12-29 PT PT168812451T patent/PT3398946T/en unknown
- 2016-12-29 PL PL16881245.1T patent/PL3398946T3/en unknown
- 2016-12-29 DK DK16881245.1T patent/DK3398946T3/en active
- 2016-12-29 ES ES16881245T patent/ES2918674T3/en active Active
- 2016-12-29 CN CN202110801274.0A patent/CN113816952A/en active Pending
- 2016-12-29 US US16/066,490 patent/US10519150B2/en active Active
- 2016-12-29 TW TW105143910A patent/TWI705065B/en active
Also Published As
Publication number | Publication date |
---|---|
TW201722950A (en) | 2017-07-01 |
CN106928218A (en) | 2017-07-07 |
HUE059444T2 (en) | 2022-11-28 |
EP3398946A1 (en) | 2018-11-07 |
US10519150B2 (en) | 2019-12-31 |
CN113816952A (en) | 2021-12-21 |
CN113816951B (en) | 2022-09-27 |
TWI705065B (en) | 2020-09-21 |
WO2017114456A1 (en) | 2017-07-06 |
JP2019500385A (en) | 2019-01-10 |
EP3398946A4 (en) | 2019-08-28 |
PT3398946T (en) | 2022-08-09 |
US20190016718A1 (en) | 2019-01-17 |
EP3398946B1 (en) | 2022-05-04 |
DK3398946T3 (en) | 2022-08-08 |
CN106928218B (en) | 2021-08-03 |
ES2918674T3 (en) | 2022-07-19 |
PL3398946T3 (en) | 2022-10-10 |
CN113816951A (en) | 2021-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7407740B2 (en) | Crystal forms of TLR7/TLR8 inhibitors | |
TW202335670A (en) | Solid forms of {[5-(3-chlorophenyl)-3-hydroxypyridine-2-carbonyl]amino}acetic acid, compositions, and uses thereof | |
JP2007169288A (en) | Preparation of levofloxacin and form thereof | |
JP2018501289A (en) | Novel crystal form of neratinib maleate and process for producing the same | |
AU2015330554A1 (en) | Crystal form of bisulfate of JAK inhibitor and preparation method therefor | |
JP6818031B2 (en) | Salts of morpholine derivatives, crystalline forms, methods for producing them, pharmaceutical compositions containing them and their uses | |
MX2007012605A (en) | Novel crystalline forms of armodafinil and preparation thereof. | |
JP2012512145A (en) | Crystalline salt form of flibanserin | |
TW200900392A (en) | Novel crystalline bepotastine metal salt hydrate, method for preparing same, and pharmaceutical composition comprising same | |
WO2010023473A2 (en) | Novel crystalline form and processes for its preparation | |
JP7528060B2 (en) | Novel hydrochloride salt forms of sulfonamide kinase inhibitors | |
JP2019500385A5 (en) | ||
JP5017274B2 (en) | S-omeprazole strontium salt or hydrate thereof, process for producing the same, and pharmaceutical composition containing the same | |
US20200283381A1 (en) | Solid state forms of elafibranor | |
WO2012119653A1 (en) | Process for making crystalline form a of linezolid | |
JP6577938B2 (en) | New crystalline form of cefditoren pivoxil and process for its production | |
JP2013227298A (en) | E-form crystal of (1s)-1,5-anhydro-1-[5-(4-ethoxybenzyl)-2-methoxy-4-methylphenyl]-1-thio-d-glucitol and method for producing the same | |
JP2014518236A (en) | Polymorphs of 6- (piperidin-4-yloxy) -2H-isoquinolin-1-one hydrochloride | |
JP2007514744A (en) | Novel crystalline form of 2,3-dimethyl-8- (2,6-dimethylbenzylamino) -N-hydroxyethyl-imidazo [1,2-a] pyridine-6-carboxamide mesylate salt | |
WO2017035170A1 (en) | Solid state forms of cediranib maleate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20190304 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20190304 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190802 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190802 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200611 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200707 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201006 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20201208 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20201225 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6818031 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |