[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6815105B2 - Electric field sensor - Google Patents

Electric field sensor Download PDF

Info

Publication number
JP6815105B2
JP6815105B2 JP2016127787A JP2016127787A JP6815105B2 JP 6815105 B2 JP6815105 B2 JP 6815105B2 JP 2016127787 A JP2016127787 A JP 2016127787A JP 2016127787 A JP2016127787 A JP 2016127787A JP 6815105 B2 JP6815105 B2 JP 6815105B2
Authority
JP
Japan
Prior art keywords
electric field
electrode
field sensor
receiving
ground electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016127787A
Other languages
Japanese (ja)
Other versions
JP2018006036A (en
Inventor
荒井 肇
肇 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiren Co Ltd
Original Assignee
Seiren Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiren Co Ltd filed Critical Seiren Co Ltd
Priority to JP2016127787A priority Critical patent/JP6815105B2/en
Publication of JP2018006036A publication Critical patent/JP2018006036A/en
Application granted granted Critical
Publication of JP6815105B2 publication Critical patent/JP6815105B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Switches That Are Operated By Magnetic Or Electric Fields (AREA)

Description

本発明は、空間内の電界の歪みから物体の三次元的な動作を検出する電界センサに関し、特に、人の手の平や指先などの動きをリアルタイムで検出可能な電界センサに関する。 The present invention relates to an electric field sensor that detects a three-dimensional movement of an object from the distortion of an electric field in space, and more particularly to an electric field sensor that can detect the movement of a person's palm or fingertip in real time.

従来より、物体の三次元的な変位を捉える手段として、空間内に形成された電界(静電容量)の変化を検出する電界測定方式のセンサ(電界センサ)が知られている。このような電界センサは、誘電体である人間の手の動きを非接触にて検出できることから、一般家電製品や自動車の内装電装品などの操作パネルへの応用が検討されている。例えば、パネルに手をかざすだけで操作が可能なエアコンやカーナビゲーションなど、従来、ボタンやタッチパネルにて操作を行っていた製品への適用が想定されている。特に、電界センサを用いた非接触パネルは、現行のタッチパネルにおける指紋汚れの問題が解消されるため、モバイル製品のヒューマンインターフェースなどにも好適である。 Conventionally, as a means for capturing a three-dimensional displacement of an object, an electric field measurement type sensor (electric field sensor) for detecting a change in an electric field (capacitance) formed in space has been known. Since such an electric field sensor can detect the movement of a human hand, which is a dielectric, in a non-contact manner, its application to operation panels such as general home appliances and interior electrical components of automobiles is being studied. For example, it is expected to be applied to products that have conventionally been operated with buttons or touch panels, such as air conditioners and car navigation systems that can be operated by simply holding a hand over the panel. In particular, a non-contact panel using an electric field sensor is suitable for a human interface of a mobile product because it solves the problem of fingerprint stains on the current touch panel.

特許文献1には、このような電界センサの電極構造が示されている。そこでは、伝送電極と受信電極が絶縁層を挟んで層状に配置されており、伝送電極によって形成された電界(検出空間)内に人の手などが入ると、電界が歪みその重心が変位する。そして、この電界の歪みを受信電極にて検知し、それを検出回路にて捉えることにより、検出空間内における手の位置追跡やジェスチャ認識を行っている。 Patent Document 1 shows an electrode structure of such an electric field sensor. There, the transmission electrode and the reception electrode are arranged in layers with an insulating layer in between, and when a human hand or the like enters the electric field (detection space) formed by the transmission electrode, the electric field is distorted and its center of gravity is displaced. .. Then, by detecting the distortion of the electric field with the receiving electrode and capturing it with the detection circuit, the position of the hand and the gesture recognition in the detection space are performed.

特表2016−506010号公報Special Table 2016-506010

しかしながら、特許文献1のような電界センサは、電極が層状に配置されており、電極層(導電パターン層)と絶縁層の多層構成となる。このため、汎用樹脂フィルムやファブリックなどに応用しようとするとセンサの内部構造が複雑となり、その分、製造工程が多く、生産コストや歩留まりの点で問題があった。また、電界センサと検出回路との間の接続についても、センサの内部構造が複雑なため、接続配線が取り出しにくいという問題もあった。 However, in the electric field sensor as in Patent Document 1, the electrodes are arranged in layers, and the electric field sensor has a multi-layer structure of an electrode layer (conductive pattern layer) and an insulating layer. Therefore, when it is applied to a general-purpose resin film or fabric, the internal structure of the sensor becomes complicated, and the number of manufacturing processes is increased accordingly, which causes problems in terms of production cost and yield. Further, regarding the connection between the electric field sensor and the detection circuit, there is also a problem that it is difficult to take out the connection wiring because the internal structure of the sensor is complicated.

本発明の目的は、製造が容易であり、検出回路との接続も容易な電界センサを提供することにある。 An object of the present invention is to provide an electric field sensor that is easy to manufacture and easy to connect to a detection circuit.

本発明の電界センサは、電界中の物体による電界の強度変化に基づいて、物体の三次元的な動作を該物体と非接触にて検出する電界センサであって、電界出力電極と、該電界出力電極との間に電界を形成する接地電極と、前記電界の強度変化を検出する少なくとも3個の受信電極と、を備える電極部と、前記電界出力電極、前記受信電極、前記接地電極のそれぞれと個々に接続される接点部と、該接点部と前記電界出力電極、前記受信電極、前記接地電極との間をそれぞれ接続する配線部と、を有し、前記電極部及び前記配線部を、絶縁基材上に平面的に分布させ一層に配置したことを特徴とする。
The electric field sensor of the present invention is an electric field sensor that detects a three-dimensional operation of an object in a non-contact manner based on a change in the strength of the electric field due to the object in the electric field, and is an electric field output electrode and the electric field. An electrode portion including a ground electrode that forms an electric field between the output electrode and at least three receiving electrodes that detect a change in the strength of the electric field, and each of the electric field output electrode, the receiving electrode, and the ground electrode. The electrode portion and the wiring portion are provided with a contact portion individually connected to the contact portion and a wiring portion connecting the contact portion with the electric field output electrode, the receiving electrode, and the ground electrode, respectively. It is characterized in that it is distributed in a plane on an insulating base material and arranged in one layer.

本発明の電界センサにあっては、電極部と配線部が平面的な分布で一層に配置されているため、1回のパターン印刷工程にて電極部と配線部を形成できる。このため、多層構造のセンサに比して、製造工程を大幅に減らすことができ、生産コストの低減や歩留まりの改善が図られる。また、電界センサと検出回路との間の接続についても、センサ構造が簡単なため、接点部の取り出しや検出回路との接続が容易となる。 In the electric field sensor of the present invention, since the electrode portion and the wiring portion are arranged in one layer in a planar distribution, the electrode portion and the wiring portion can be formed in one pattern printing step. Therefore, the manufacturing process can be significantly reduced as compared with the sensor having a multi-layer structure, and the production cost can be reduced and the yield can be improved. Further, regarding the connection between the electric field sensor and the detection circuit, since the sensor structure is simple, it is easy to take out the contact portion and connect to the detection circuit.

前記電界センサにおいて、前記受信電極により、前記電界出力電極と前記接地電極との間に形成される前記電界に前記物体が進入したことによって生じる前記電界の変化を検出し、前記電界の変化を、当該電界センサに接続された検出回路にて三次元変位検出データに変換し、前記物体の三次元的動作を把握するようにしても良い。また、前記電界出力電極と前記受信電極を複数個設け、これらの複数の前記電界出力電極と複数の前記受信電極をそれぞれ対称に配置しても良い。さらに、前記受信電極を、前記電界出力電極と前記接地電極との間に配置しても良い。また、前記接地電極を、前記電界出力電極及び前記受信電極のそれぞれ一部と隣接して配置し、前記電界出力電極と前記接地電極の間、及び、前記受信電極と前記接地電極との間に間隙を形成し、前記間隙の寸法を調整することにより、前記絶縁基材上に形成された前記電界出力電極、前記受信電極、前記接地電極の各パターンのインピーダンスをコントロールして当該電界センサの感度を調整可能としても良い。さらに、前記電界出力電極と前記受信電極を複数個設け、前記接地電極を、複数の前記電界出力電極及び前記受信電極を取り囲むように配置し、前記接地電極の内側の前記電界出力電極と前記受信電極が形成されていない領域に、何れの電極とも接続されていない浮きパターンを形成するようにしても良い。 In the electric field sensor, the receiving electrode detects a change in the electric field caused by the object entering the electric field formed between the electric field output electrode and the ground electrode, and changes in the electric field are detected. The detection circuit connected to the electric field sensor may convert the data into three-dimensional displacement detection data so as to grasp the three-dimensional operation of the object. Further, a plurality of the electric field output electrodes and the receiving electrodes may be provided, and the plurality of the electric field output electrodes and the plurality of receiving electrodes may be arranged symmetrically. Further, the receiving electrode may be arranged between the electric field output electrode and the ground electrode . Further, the ground electrode is arranged adjacent to each part of the electric field output electrode and the receiving electrode , and is placed between the electric field output electrode and the ground electrode, and between the receiving electrode and the ground electrode. By forming a gap and adjusting the size of the gap, the impedance of each pattern of the electric field output electrode, the receiving electrode, and the ground electrode formed on the insulating base material is controlled, and the sensitivity of the electric field sensor is controlled. May be adjustable. Further, a plurality of the electric field output electrode and the receiving electrode are provided, and the ground electrode is arranged so as to surround the plurality of the electric field output electrode and the receiving electrode, and the electric field output electrode and the receiving electrode inside the ground electrode are arranged. A floating pattern that is not connected to any of the electrodes may be formed in the region where the electrodes are not formed .

加えて、前記電極部及び前記配線部を絶縁基材上にそれぞれ複数設ける共に、前記接地電極の外形を正方形に形成し、前記電界出力電極及び前記受信電極を、前記接地電極の四辺に沿って該接地電極の内側にそれぞれ配置するようにしても良い。 In addition, a plurality of the electrode portion and the wiring portion are provided on the insulating base material, the outer shape of the ground electrode is formed into a square shape, and the electric field output electrode and the receiving electrode are provided along the four sides of the ground electrode. It may be arranged inside the ground electrode.

本発明の電界センサによれば、電界出力電極、接地電極、受信電極を備える電極部と、接点部と各電極との間をそれぞれ接続する配線部と、を平面的な分布で一層に配置したので、多層構造のセンサに比して少ない工程にてセンサを形成することが可能となる。また、センサ構造が簡素化されるため、検出回路と接続される接点部の取り出しも容易となる。 According to the electric field sensor of the present invention, an electrode portion including an electric field output electrode, a ground electrode, and a receiving electrode, and a wiring portion connecting the contact portion and each electrode are arranged in a single layer in a planar distribution. Therefore, it is possible to form the sensor in a smaller number of steps than the sensor having a multi-layer structure. Further, since the sensor structure is simplified, it becomes easy to take out the contact portion connected to the detection circuit.

本発明の実施形態1である電界センサの構成を示す説明図である。It is explanatory drawing which shows the structure of the electric field sensor which is Embodiment 1 of this invention. 図1の電界センサを用いたセンシング動作の説明図であり、(a)は検出対象がない状態、(b)は検出空間内に人の手が入っている状態をそれぞれ示している。It is explanatory drawing of the sensing operation using the electric field sensor of FIG. 1, (a) shows the state which there is no detection object, (b) shows the state which a human hand is in the detection space, respectively. 本発明の実施形態2である電界センサの構成を示す説明図である。It is explanatory drawing which shows the structure of the electric field sensor which is Embodiment 2 of this invention. 本発明の電界センサの変形例を示す説明図である。It is explanatory drawing which shows the modification of the electric field sensor of this invention. 本発明の電界センサの変形例を示す説明図である。It is explanatory drawing which shows the modification of the electric field sensor of this invention. 本発明の電界センサの変形例を示す説明図である。It is explanatory drawing which shows the modification of the electric field sensor of this invention. 本発明の電界センサの変形例を示す説明図である。It is explanatory drawing which shows the modification of the electric field sensor of this invention.

(実施の形態1)
以下、本発明の実施形態を図面に基づいて詳細に説明する。図1は、本発明の実施形態1である電界センサ1の構成を示す説明図である。図1に示すように、電界センサ1は、絶縁基材2上に、電極部3、接点部4、配線部5の各部を、平面的な分布にて同一層に配した構成となっている。電界センサ1では、物体のX,Y方向の二次元的変位に加え、例えば手の位置や動きのようなZ方向の変位も検出可能となっており、一般家電製品や自動車の内装電装品などのスイッチや操作パネルに使用される。
(Embodiment 1)
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is an explanatory diagram showing a configuration of an electric field sensor 1 according to the first embodiment of the present invention. As shown in FIG. 1, the electric field sensor 1 has a configuration in which the electrode portion 3, the contact portion 4, and the wiring portion 5 are arranged in the same layer in a planar distribution on the insulating base material 2. .. In addition to the two-dimensional displacement of an object in the X and Y directions, the electric field sensor 1 can also detect displacement in the Z direction such as the position and movement of a hand, such as general household appliances and interior electrical components of automobiles. Used for switches and operation panels.

絶縁基材2は、絶縁材料にて形成されたシート状の部材にて形成されている。絶縁基材2としては、板状やブロック状、球状のものを用いることも可能であり、電極11〜13を形成する基材は、絶縁部材であればその形状は任意である。この場合、電界センサ1をフィルム状やファブリック状に形成することにより、センサを目立たない形で配置することが可能となる。 The insulating base material 2 is formed of a sheet-like member formed of an insulating material. As the insulating base material 2, a plate-shaped, block-shaped, or spherical one can be used, and the base material forming the electrodes 11 to 13 has any shape as long as it is an insulating member. In this case, by forming the electric field sensor 1 in the form of a film or fabric, the sensors can be arranged in an inconspicuous manner.

電極部3は、電界出力電極11と、受信電極12、グランド電極(接地電極)13を備えており、グランド電極13は正方形に形成されており、電界出力電極11と受信電極12を取り囲むように配置されている。グランド電極13の内側には、一組の電界出力電極11と受信電極12が、グランド電極13の四辺に沿って配置されている。電極部3は、手の平や指の動きを認識しやすいように、絶縁基材2上に300mm四方程度に形成されている。 The electrode portion 3 includes an electric field output electrode 11, a receiving electrode 12, and a ground electrode (ground electrode) 13, and the ground electrode 13 is formed in a square shape so as to surround the electric field output electrode 11 and the receiving electrode 12. Have been placed. Inside the ground electrode 13, a set of electric field output electrodes 11 and a receiving electrode 12 are arranged along the four sides of the ground electrode 13. The electrode portion 3 is formed on the insulating base material 2 in a square shape of about 300 mm so that the movements of the palm and fingers can be easily recognized.

各電極11〜13と接点部4との間は、配線部5によって接続されている。各電極11〜13と配線部5により、TXパターン14、RXパターン15、GNDパターン16がそれぞれ形成される。各パターン14〜16は、絶縁基材2上に、平面的な分布にて一層に配置されている。電極部3の内側の各パターン14〜16以外の部分は、電極の形成されていない領域である。この領域に、各パターン14〜16の何れの電極とも接続されていない浮きパターン17を形成しても良い(図4参照)。浮きパターン17は検出対象との距離に対する利得特性を向上させる作用を有する。 The electrodes 11 to 13 and the contact portion 4 are connected by a wiring portion 5. The TX pattern 14, the RX pattern 15, and the GND pattern 16 are formed by the electrodes 11 to 13 and the wiring portion 5, respectively. Each pattern 14 to 16 is arranged in a single layer on the insulating base material 2 in a planar distribution. The portion other than the patterns 14 to 16 inside the electrode portion 3 is a region where the electrode is not formed. A floating pattern 17 that is not connected to any of the electrodes of the patterns 14 to 16 may be formed in this region (see FIG. 4). The floating pattern 17 has an effect of improving the gain characteristic with respect to the distance from the detection target.

各パターン14〜17は、絶縁基材2上に導電性材料を含有するインクを用いて印刷形成される。各パターン14〜17の形成方法としては、金属箔を所定形状に切り出して接着する方法や、絶縁基材表面にメッキ触媒を印刷した後、特定の金属メッキを行う方法、絶縁基材表面の全面に金属膜を形成し、必要な部分を残してエッチングする方法など、一般的な導電パターン形成方法を広く採用可能である。 Each pattern 14 to 17 is printed and formed on the insulating base material 2 using an ink containing a conductive material. As a method of forming each pattern 14 to 17, a method of cutting out a metal foil into a predetermined shape and adhering it, a method of printing a plating catalyst on the surface of an insulating base material and then performing a specific metal plating, and a method of performing specific metal plating on the entire surface of the insulating base material. A general conductive pattern forming method such as a method of forming a metal film on the surface and etching while leaving a necessary portion can be widely adopted.

図1の電界センサ1では、電極の形状や面積が上下左右対称となるように、各電極11〜13は四方に等分に配置されている。接点部4は、上下左右に配置された各電極11〜13から等距離となるよう、電極部3の中央に配置されている。接点部4には、各電極11〜13と接続された回路接続用ランド18〜20(TX用ランド18,RX用ランド19,GND用ランド20)が設けられている。各ランド18〜20は、電界センサ1とは別途設けられた検出回路21と接続される。ここでは、電界センサ1の裏面側に図示しない回路接続部を介して、検出回路21と接続される。検出回路21には、例えば、マイクロチップ社製コントローラMGC3130等が使用される。 In the electric field sensor 1 of FIG. 1, the electrodes 11 to 13 are equally divided in all directions so that the shapes and areas of the electrodes are symmetrical in the vertical and horizontal directions. The contact portion 4 is arranged in the center of the electrode portion 3 so as to be equidistant from the electrodes 11 to 13 arranged vertically and horizontally. The contact portion 4 is provided with circuit connection lands 18 to 20 (TX lands 18, RX lands 19, and GND lands 20) connected to the electrodes 11 to 13. Each land 18 to 20 is connected to a detection circuit 21 provided separately from the electric field sensor 1. Here, the electric field sensor 1 is connected to the detection circuit 21 via a circuit connection portion (not shown) on the back surface side. For the detection circuit 21, for example, a controller MGC3130 manufactured by Microchip Technology is used.

電界センサ1では、電界出力電極11と接地電極13との間に電界Eが生じ、その電界強度を受信電極12によって検出する。受信電極12は、電界強度の検出が容易なように、電界出力電極11と接地電極13との間に配置される。電界出力電極11と受信電極12の面積は、検出回路のインピーダンスや外来ノイズの混入レベルを大きくしないため、必要以上には大きくしないことが望ましい。接地電極13は、電界出力電極11と受信電極12のそれぞれ一部と隣接するように配置する(図1のP部)。P部における間隙22の寸法、すなわち、電界出力電極11と接地電極13の間、及び、受信電極12と接地電極13との間の距離を適宜調整することにより、センサパターンのインピーダンスをコントロールする。この場合、インピーダンスが高いとノイズを拾い易くなる一方、低いとセンサ感度が落ちるため、両者のバランスを考慮して間隙22の寸法を設定する。 In the electric field sensor 1, an electric field E is generated between the electric field output electrode 11 and the ground electrode 13, and the electric field strength thereof is detected by the receiving electrode 12. The receiving electrode 12 is arranged between the electric field output electrode 11 and the ground electrode 13 so that the electric field strength can be easily detected. It is desirable that the areas of the electric field output electrode 11 and the receiving electrode 12 are not increased more than necessary because the impedance of the detection circuit and the mixing level of external noise are not increased. The ground electrode 13 is arranged so as to be adjacent to a part of each of the electric field output electrode 11 and the receiving electrode 12 (P part in FIG. 1). The impedance of the sensor pattern is controlled by appropriately adjusting the size of the gap 22 in the P portion, that is, the distance between the electric field output electrode 11 and the ground electrode 13, and the distance between the receiving electrode 12 and the ground electrode 13. In this case, if the impedance is high, noise is easily picked up, but if it is low, the sensor sensitivity is lowered. Therefore, the dimension of the gap 22 is set in consideration of the balance between the two.

図2は、電界センサ1を用いたセンシング動作の説明図であり、(a)は検出対象がない状態、(b)は検出空間D内に人の手が入っている状態をそれぞれ示している。図2(a)に示すように、電界センサ1では、電界出力電極11と接地電極13との間の検出空間Dに電界Eが生じている。電界Eの大きさ(電界強度)は受信電極12によって検出され、検出回路21では、電界センサ1から得られた信号を三次元変位検出データに変換し、その変化を常時モニタしている。このような電界Eの中に、誘電体である人の手が検出空間D内に進入すると、図2(b)のように電界Eが変化する(歪む)。この変化は受信電極12を介して検出回路21によって把握され、人の手の位置が認識される。また、人の手が動くと、それに連れて電界Eの状態も変化し、手の位置追跡(トラッキング)やジェスチャ認識(ジェスチャセンシング)を行うことが可能となる。 2A and 2B are explanatory views of a sensing operation using the electric field sensor 1. FIG. 2A shows a state in which there is no detection target, and FIG. 2B shows a state in which a human hand is in the detection space D. .. As shown in FIG. 2A, in the electric field sensor 1, an electric field E is generated in the detection space D between the electric field output electrode 11 and the ground electrode 13. The magnitude (electric field strength) of the electric field E is detected by the receiving electrode 12, and the detection circuit 21 converts the signal obtained from the electric field sensor 1 into three-dimensional displacement detection data and constantly monitors the change. When a human hand, which is a dielectric material, enters the detection space D in such an electric field E, the electric field E changes (distorts) as shown in FIG. 2 (b). This change is grasped by the detection circuit 21 via the receiving electrode 12, and the position of the human hand is recognized. In addition, when a person's hand moves, the state of the electric field E changes accordingly, and it becomes possible to perform hand position tracking (tracking) and gesture recognition (gesture sensing).

このように、本発明による電界センサ1は、従来のセンサと同様にトラッキングやジェスチャセンシングが可能でありながら、各パターン14〜16,(17)が、絶縁基材2上に、平面的な分布で一層に配置されているため、センサ自体を1回のパターン印刷工程にて形成することができる。このため、多層構造のセンサに比して、製造工程を大幅に減らすことができ、生産コストの低減や歩留まりの改善を図ることが可能となる。また、電界センサ1と検出回路21との間の接続についても、センサ構造が簡単なため、センサ中央部に接点部4を容易に集約することができ、接続配線の取り出しや検出回路21との接続を容易に行うことが可能となる。 As described above, the electric field sensor 1 according to the present invention is capable of tracking and gesture sensing as in the conventional sensor, but the patterns 14 to 16 and (17) are distributed in a plane on the insulating base material 2. Since it is arranged in one layer, the sensor itself can be formed in one pattern printing step. Therefore, as compared with the sensor having a multi-layer structure, the manufacturing process can be significantly reduced, and the production cost can be reduced and the yield can be improved. Further, regarding the connection between the electric field sensor 1 and the detection circuit 21, since the sensor structure is simple, the contact portion 4 can be easily integrated in the central portion of the sensor, and the connection wiring can be taken out and the detection circuit 21 can be connected. The connection can be easily made.

(実施の形態2)
次に、本発明の実施の形態2である電界センサ31について説明する。図3は、本発明の実施形態2である電界センサ31の構成を示す説明図である。なお、以下の実施の形態では、実施の形態1と同様の部分、部材等については同一の符号を付し、その説明は省略する。実施の形態2の電界センサ31は、先の電界センサ1が接点部4を中央に配しているのに対し、接点部4は電極部3の外側に配置されており、接点部4が絶縁基材2の端部に集約されている。配線部5は、電極部3の一辺3a側にて、電極部3の外側に引き出されており、配線部5の先端に接点部4が配置されている。接点部4には、電界センサ1と同様に、TXランド18、RXランド19、GNDランド20が設けられている。
(Embodiment 2)
Next, the electric field sensor 31 according to the second embodiment of the present invention will be described. FIG. 3 is an explanatory diagram showing the configuration of the electric field sensor 31 according to the second embodiment of the present invention. In the following embodiments, the same parts, members, and the like as in the first embodiment are designated by the same reference numerals, and the description thereof will be omitted. In the electric field sensor 31 of the second embodiment, the electric field sensor 1 mentioned above has the contact portion 4 arranged in the center, whereas the contact portion 4 is arranged outside the electrode portion 3, and the contact portion 4 is insulated. It is concentrated at the end of the base material 2. The wiring portion 5 is pulled out to the outside of the electrode portion 3 on the side 3a side of the electrode portion 3, and the contact portion 4 is arranged at the tip of the wiring portion 5. Similar to the electric field sensor 1, the contact portion 4 is provided with a TX land 18, an RX land 19, and a GND land 20.

電界センサ31の場合、配線部5を引き出すため、図3において一辺3a側に配された受信電極12a(第1受信電極)は上下に分割される。また、電界出力電極11の配線パターンも、4つのエリアから配線部5まで個別に引き出される。このため、接点部4では、TXランド18が4つ、RXランド19が5つ形成されるが、これらのランドは、図3の右側に記載(破線囲み部)したような形で、接続される回路側で集約することができる。すなわち、4つのTXランド18は集約されてTX接点32に、5つのRXランド19は、上下に分割された受信電極12aのランドが集約されて4つのRX接点33とされ、検出回路21側に接続される。 In the case of the electric field sensor 31, the receiving electrode 12a (first receiving electrode) arranged on the side 3a side in FIG. 3 is divided into upper and lower parts in order to pull out the wiring portion 5. Further, the wiring pattern of the electric field output electrode 11 is also individually drawn from the four areas to the wiring portion 5. Therefore, in the contact portion 4, four TX lands 18 and five RX lands 19 are formed, and these lands are connected in the form shown on the right side of FIG. 3 (enclosed by the broken line). Can be aggregated on the circuit side. That is, the four TX lands 18 are aggregated into the TX contact 32, and the five RX lands 19 are formed into the four RX contacts 33 by aggregating the lands of the vertically divided receiving electrodes 12a, and are on the detection circuit 21 side. Be connected.

前述のように、電界センサ31では、一辺3a側に配された受信電極12aは上下に分割されるが、電界Eの状態検知のためには、受信電極12の面積は4つエリアにて均等であることが好ましい。そこで、電界センサ31では、上下に分断された受信電極12aの合計面積が、他の各受信電極12b〜12d(第2〜第4受信電極)と同じ面積となるように形成されている。すなわち、受信電極12aは、その幅Waが他の受信電極12b〜12dの幅Wb〜Wd(全て等しい)よりも広くなっており、受信電極12の面積の均等化が図られている。 As described above, in the electric field sensor 31, the receiving electrode 12a arranged on the side 3a side is divided into upper and lower parts, but the area of the receiving electrode 12 is equal in four areas for detecting the state of the electric field E. Is preferable. Therefore, the electric field sensor 31 is formed so that the total area of the vertically divided receiving electrodes 12a is the same as the other receiving electrodes 12b to 12d (second to fourth receiving electrodes). That is, the width Wa of the receiving electrode 12a is wider than the widths Wb to Wd (all equal) of the other receiving electrodes 12b to 12d, and the area of the receiving electrode 12 is equalized.

また、一辺3a側の電界出力電極11a(第1電界出力電極)も、配線部5を引き出す関係で、図中上下方向の長さが他の電界出力電極11b〜11d(第2〜第4電界出力電極)よりも短くなる。受信電極12と同様に、電界出力電極11もその面積が4つエリアで均等となることが好ましい。このため、電界センサ31では、電界出力電極11aのQ部の幅Wqが、他の電界出力電極11b〜11dの同様部分の幅Wrよりも若干広くなっており、各エリアにおける電界出力電極11の面積の均等化が図られている。 Further, the electric field output electrodes 11a (first electric field output electrode) on the side 3a side also have other electric field output electrodes 11b to 11d (second to fourth electric fields) having lengths in the vertical direction in the drawing because the wiring portion 5 is pulled out. It is shorter than the output electrode). Like the receiving electrode 12, the electric field output electrode 11 preferably has an even area of four areas. Therefore, in the electric field sensor 31, the width Wq of the Q portion of the electric field output electrode 11a is slightly wider than the width Wr of the similar portion of the other electric field output electrodes 11b to 11d, and the electric field output electrode 11 in each area has a width Wr. The area is equalized.

このように、電界センサ31においては、電界出力電極11や受信電極12の機能を損なうことなく、接点部4をセンサの一端側に集約して引き出している。このため、電極11等と同じ平面上で検出回路21側と接続することが可能となる。また、検出回路21側との接続部も平面的な配置が可能となり、検出回路21側との接続が容易となる。なお、電界センサ31においても、各パターン14〜16,(17)を絶縁基材2上に平面的な分布で一層に配置しているため、センサ自体を1回のパターン印刷工程にて形成することができ、製造工程を大幅に減らすことが可能である。 As described above, in the electric field sensor 31, the contact portion 4 is gathered and pulled out to one end side of the sensor without impairing the functions of the electric field output electrode 11 and the receiving electrode 12. Therefore, it is possible to connect to the detection circuit 21 side on the same plane as the electrode 11 and the like. Further, the connection portion with the detection circuit 21 side can also be arranged in a plane, and the connection with the detection circuit 21 side becomes easy. In the electric field sensor 31, since the patterns 14 to 16 and (17) are arranged in one layer on the insulating base material 2 in a planar distribution, the sensor itself is formed in one pattern printing step. It is possible to significantly reduce the manufacturing process.

(実施の形態3)
さらに、実施の形態3として、電極11〜13のパターン構成の変形例を示す。図4〜7は、各変形例の構成を示す説明図である。なお、図4〜7では、電極部3の構成のみを示し、絶縁基材2は省いて記載する。図4〜7の電界センサ41〜44においても、各パターン14〜16は、絶縁基材2上に平面的な分布で一層に配置されている。従って、前述同様、製造工程を大幅に減らすことができ、生産コストの低減や歩留まりの改善を図ることが可能となる。
(Embodiment 3)
Further, as the third embodiment, a modified example of the pattern configuration of the electrodes 11 to 13 is shown. 4 to 7 are explanatory views showing the configuration of each modification. Note that, in FIGS. 4 to 7, only the configuration of the electrode portion 3 is shown, and the insulating base material 2 is omitted. Also in the electric field sensors 41 to 44 of FIGS. 4 to 7, the patterns 14 to 16 are arranged one layer on the insulating base material 2 in a planar distribution. Therefore, as described above, the manufacturing process can be significantly reduced, and the production cost can be reduced and the yield can be improved.

ここで、図4の電界センサ41は、全体が長方形となっており、短辺側に配された電界出力電極11と受信電極12の形状が図1,3のものとは異なっている。図5の電界センサ42は、図3における配線部5の引き出し位置が正方形の角部となっている。図6の電界センサ43は、全体が円形となっており、配線部5が一端側に引き出されている。図7の電界センサ44は、三次元変位検出においては受信電極が最低3個あれば足りることから、全体を三角形とし、配線部5をその一辺側から引き出している。 Here, the electric field sensor 41 of FIG. 4 has a rectangular shape as a whole, and the shapes of the electric field output electrode 11 and the receiving electrode 12 arranged on the short side are different from those of FIGS. 1 and 3. In the electric field sensor 42 of FIG. 5, the lead-out position of the wiring portion 5 in FIG. 3 is a square corner portion. The electric field sensor 43 of FIG. 6 has a circular shape as a whole, and the wiring portion 5 is pulled out to one end side. Since it is sufficient for the electric field sensor 44 of FIG. 7 to have at least three receiving electrodes for three-dimensional displacement detection, the entire area is triangular and the wiring portion 5 is pulled out from one side thereof.

図4〜7の何れの電界センサ41〜44も、電極パターンは対称形状となるよう構成されており、電界出力電極11と受信電極12の面積も、実施の形態2の電界センサ31と同様に、分散配置されたが各部位にて均等となるように構成されている。また、センサ全体も対称形状が好ましいため、電界センサ41〜44では全体形状も対称になっている。この場合、センサ全体の形状は必ずしも対称である必要はないが、センサ性能上、対称性を有することが望ましいことから、電極パターン形状と共にセンサ全体の形状も対称であることが好ましい。 The electrode patterns of the electric field sensors 41 to 44 of FIGS. 4 to 7 are configured to have a symmetrical shape, and the areas of the electric field output electrode 11 and the receiving electrode 12 are the same as those of the electric field sensor 31 of the second embodiment. , Although they are distributed, they are configured to be even at each part. Further, since the entire sensor is also preferably symmetrical, the overall shape of the electric field sensors 41 to 44 is also symmetrical. In this case, the shape of the entire sensor does not necessarily have to be symmetric, but since it is desirable to have symmetry in terms of sensor performance, it is preferable that the shape of the entire sensor is also symmetric as well as the electrode pattern shape.

本発明は前記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。
例えば、前述の実施形態に記載した数値や形状はあくまでも一例であり、本発明は前記の形態には限定されず、例えば、全体を5角形以上の多角形に形成することも可能である。また、配線部5の引き出し位置も前述の例には限られず、例えば、図4〜7の電界センサ41〜44においても、図1の電界センサ1のように中央に接点部4を配することも可能である。さらに、電界センサ1等の検出対象は人の手には限られず、例えば、人が持った導電性の物体やアースされている物体などの検出にも用いることができる。なお、本発明による電界センサにおいては、細長い棒状の導体(指も含む)がセンサに対し垂直となるように操作する場合が最も検出精度が良い。
It goes without saying that the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the gist thereof.
For example, the numerical values and shapes described in the above-described embodiments are merely examples, and the present invention is not limited to the above-described embodiments, and for example, the entire shape can be formed into a polygon of pentagon or more. Further, the pull-out position of the wiring portion 5 is not limited to the above-mentioned example. For example, in the electric field sensors 41 to 44 of FIGS. 4 to 7, the contact portion 4 is arranged in the center as in the electric field sensor 1 of FIG. Is also possible. Further, the detection target of the electric field sensor 1 or the like is not limited to the human hand, and can be used for detecting, for example, a conductive object held by a person or an object grounded. In the electric field sensor according to the present invention, the detection accuracy is best when the elongated rod-shaped conductor (including the finger) is operated so as to be perpendicular to the sensor.

本発明の電界センサは、家電製品や自動車の内装電装品などのスイッチや操作パネルに使用可能である。当該電界センサを用いた操作パネルは、例えば自動車内装品では、ステアリングやダッシュボード、シートの肘掛けなどに配置され、これにより、直接手を触れることなく操作可能なカーナビゲーションやエアコンなどが実現できる。また、本発明の電界センサは、冷蔵庫やテレビ、照明などの一般家電や、パーソナルコンピュータ、スマートフォン等の操作パネルやスイッチ類にも広く適用可能である。なお、当該電界センサを操作パネルに使用する場合、それ自体を外部に露出した状態で配置することも可能であるが、導光板等を介して操作パネルの内部に配置することも可能である。 The electric field sensor of the present invention can be used for switches and operation panels of home electric appliances and interior electrical components of automobiles. An operation panel using the electric field sensor is arranged on a steering wheel, a dashboard, an armrest of a seat, or the like in an automobile interior, for example, so that a car navigation system or an air conditioner that can be operated without directly touching the vehicle can be realized. Further, the electric field sensor of the present invention can be widely applied to general household appliances such as refrigerators, televisions and lights, and operation panels and switches such as personal computers and smartphones. When the electric field sensor is used for the operation panel, it can be arranged in a state where it is exposed to the outside, but it can also be arranged inside the operation panel via a light guide plate or the like.

1 電界センサ
2 絶縁基材
3 電極部
3a 一辺
4 接点部
5 配線部
11 電界出力電極
11a〜11d 電界出力電極
12 受信電極
12a〜12d 受信電極
13 グランド電極(接地電極)
14 TXパターン
15 RXパターン
16 GNDパターン
17 浮きパターン
18 回路接続用ランド(TX用ランド)
19 回路接続用ランド(RX用ランド)
20 回路接続用ランド(GND用ランド)
21 検出回路
22 間隙(P部)
31 電界センサ
32 TX接点
33 RX接点
41 電界センサ
42 電界センサ
43 電界センサ
44 電界センサ
Wa〜Wd 受信電極幅
Wq 電界出力電極幅(電界出力電極11aのQ部)
Wr 電界出力電極幅(電界出力電極11b〜11dの幅)
1 Electric field sensor 2 Insulated base material 3 Electrode part 3a One side 4 Contact part 5 Wiring part 11 Electric field output electrode 11a to 11d Electric field output electrode 12 Receiving electrode 12a to 12d Receiving electrode 13 Ground electrode (ground electrode)
14 TX pattern 15 RX pattern 16 GND pattern 17 Floating pattern 18 Circuit connection land (TX land)
19 Circuit connection land (RX land)
20 Land for circuit connection (land for GND)
21 Detection circuit 22 Gap (P part)
31 Electric field sensor 32 TX contact 33 RX contact 41 Electric field sensor 42 Electric field sensor 43 Electric field sensor 44 Electric field sensors Wa to Wd Receive electrode width Wq Electric field output electrode width (Q part of electric field output electrode 11a)
Wr electric field output electrode width (width of electric field output electrodes 11b to 11d)

Claims (7)

電界中の物体による電界の強度変化に基づいて、物体の三次元的な動作を該物体と非接触にて検出する電界センサであって、
電界出力電極と、該電界出力電極との間に電界を形成する接地電極と、前記電界の強度変化を検出する少なくとも3個の受信電極と、を備える電極部と、
前記電界出力電極、前記受信電極、前記接地電極のそれぞれと個々に接続される接点部と、
該接点部と前記電界出力電極、前記受信電極、前記接地電極との間をそれぞれ接続する配線部と、を有し、
前記電極部及び前記配線部を、絶縁基材上に平面的に分布させ一層に配置したことを特徴とする電界センサ。
An electric field sensor that detects the three-dimensional movement of an object in a non-contact manner based on the change in the strength of the electric field caused by the object in the electric field.
An electrode portion including a ground electrode that forms an electric field between the electric field output electrode and the electric field output electrode, and at least three receiving electrodes that detect a change in the strength of the electric field.
A contact portion individually connected to each of the electric field output electrode, the receiving electrode, and the ground electrode, and
It has a wiring portion for connecting the contact portion, the electric field output electrode, the receiving electrode, and the ground electrode, respectively.
An electric field sensor characterized in that the electrode portion and the wiring portion are distributed in a plane on an insulating base material and arranged in one layer.
請求項1記載の電界センサにおいて、
前記受信電極は、前記電界出力電極と前記接地電極との間に形成される前記電界に前記物体が進入したことによって生じる前記電界の変化を検出し、
前記電界の変化は、当該電界センサに接続された検出回路にて三次元変位検出データに変換され、前記物体の三次元的動作が検出されることを特徴とする電界センサ。
In the electric field sensor according to claim 1,
The receiving electrode detects a change in the electric field caused by the object entering the electric field formed between the electric field output electrode and the ground electrode.
An electric field sensor characterized in that a change in an electric field is converted into three-dimensional displacement detection data by a detection circuit connected to the electric field sensor, and a three-dimensional motion of the object is detected.
請求項1又は2記載の電界センサにおいて、
前記電界出力電極と前記受信電極は複数個設けられ、
複数の前記電界出力電極と複数の前記受信電極はそれぞれ対称に配置されることを特徴とする電界センサ。
In the electric field sensor according to claim 1 or 2.
A plurality of the electric field output electrode and the receiving electrode are provided.
An electric field sensor characterized in that the plurality of electric field output electrodes and the plurality of receiving electrodes are arranged symmetrically.
請求項1〜3の何れか1項に記載の電界センサにおいて、
前記受信電極は、前記電界出力電極と前記接地電極との間に配置されることを特徴とする電界センサ。
In the electric field sensor according to any one of claims 1 to 3.
The electric field sensor is characterized in that the receiving electrode is arranged between the electric field output electrode and the ground electrode.
請求項1〜4の何れか1項に記載の電界センサにおいて、
前記接地電極は、前記電界出力電極及び前記受信電極のそれぞれ一部と隣接して配置され
前記電界出力電極と前記接地電極の間、及び、前記受信電極と前記接地電極との間には間隙が形成され、
前記間隙の寸法を調整することにより、前記絶縁基材上に形成された前記電界出力電極、前記受信電極、前記接地電極の各パターンのインピーダンスをコントロールし、当該電界センサの感度を調整可能としたことを特徴とする電界センサ。
In the electric field sensor according to any one of claims 1 to 4.
The ground electrode is arranged adjacent to each part of the electric field output electrode and the receiving electrode .
A gap is formed between the electric field output electrode and the ground electrode, and between the receiving electrode and the ground electrode.
By adjusting the size of the gap, the impedance of each pattern of the electric field output electrode, the receiving electrode, and the ground electrode formed on the insulating base material can be controlled, and the sensitivity of the electric field sensor can be adjusted. An electric field sensor characterized by this.
請求項1〜5の何れか1項に記載の電界センサにおいて、
前記電界出力電極と前記受信電極は複数個設けられ、
前記接地電極は、複数の前記電界出力電極及び前記受信電極を取り囲むように配置され、
前記接地電極の内側の前記電界出力電極と前記受信電極が形成されていない領域に、何れの電極とも接続されていない浮きパターンを形成したことを特徴とする電界センサ。
In the electric field sensor according to any one of claims 1 to 5.
A plurality of the electric field output electrode and the receiving electrode are provided.
The ground electrode is arranged so as to surround the plurality of electric field output electrodes and the receiving electrode.
An electric field sensor characterized in that a floating pattern not connected to any of the electrodes is formed in a region where the electric field output electrode and the receiving electrode are not formed inside the ground electrode .
請求項1〜6の何れか1項に記載の電界センサにおいて、
前記電極部及び前記配線部は、絶縁基材上にそれぞれ複数設けられ、
前記接地電極は、外形が正方形に形成され、
前記電界出力電極及び前記受信電極は、前記接地電極の四辺に沿って該接地電極の内側にそれぞれ配置されることを特徴とする電界センサ。
In the electric field sensor according to any one of claims 1 to 6.
A plurality of the electrode portion and the wiring portion are provided on the insulating base material, respectively.
The ground electrode has a square outer shape.
An electric field sensor characterized in that the electric field output electrode and the receiving electrode are respectively arranged inside the ground electrode along the four sides of the ground electrode.
JP2016127787A 2016-06-28 2016-06-28 Electric field sensor Active JP6815105B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016127787A JP6815105B2 (en) 2016-06-28 2016-06-28 Electric field sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016127787A JP6815105B2 (en) 2016-06-28 2016-06-28 Electric field sensor

Publications (2)

Publication Number Publication Date
JP2018006036A JP2018006036A (en) 2018-01-11
JP6815105B2 true JP6815105B2 (en) 2021-01-20

Family

ID=60946464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016127787A Active JP6815105B2 (en) 2016-06-28 2016-06-28 Electric field sensor

Country Status (1)

Country Link
JP (1) JP6815105B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7024908B1 (en) * 2021-05-06 2022-02-24 三菱電機株式会社 Capacitance button
DE112021007609T5 (en) * 2021-05-06 2024-02-29 Mitsubishi Electric Corporation Capacitive button

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060007171A1 (en) * 2004-06-24 2006-01-12 Burdi Roger D EMI resistant balanced touch sensor and method
US9459296B2 (en) * 2012-10-19 2016-10-04 Microchip Technology Germany Gmbh Ii & Co. Kg Electrode design for electric field measurement system

Also Published As

Publication number Publication date
JP2018006036A (en) 2018-01-11

Similar Documents

Publication Publication Date Title
US11354003B2 (en) Arrangement for spatially resolving projected-capacitive touch detection with improved locally deformed electrode structure
US9946397B2 (en) Sensor design for enhanced touch and gesture decoding
JP6074408B2 (en) Touch sensitive screen
JP2013015976A (en) Multifunction sensor
US9430108B2 (en) Touch-sensitive display device
US20140362040A1 (en) Capacitive touch panel
CN102150109A (en) Touch panel device of digital capacitive coupling type with high sensitivity
TW201738717A (en) Sensor design for enhanced touch and gesture decoding
JP5487240B2 (en) Conductive pattern structure of capacitive touch panel and method for configuring the same
US11599232B2 (en) Touch sensor panel and touch input device
JP6815105B2 (en) Electric field sensor
US11537248B2 (en) Touch sensor panel and touch input device with reduced magnitude of low ground mass interference signal
CN105224152A (en) capacitive touch panel with proximity sensing function and scanning method thereof
KR20190037099A (en) Touch input device
CN102830885A (en) Component of capacitive touch screen sensor
CN210006022U (en) capacitance induction type gesture detection device and capacitance induction type touch array thereof
CN108052230B (en) Touch module, preparation method thereof, touch screen and touch display device
CN112099677A (en) Electrical appliance and capacitance induction type input detection device thereof
TW202101178A (en) Touch system and method having dual mode of capacitive and electromagnetic sensing mechanism
CN102830884A (en) Capacitive touch screen sensor
JP7265878B2 (en) input device
WO2020215299A1 (en) Touch identification unit, touch apparatus, and touch apparatus control method
US20200293147A1 (en) Methods and apparatus for a capacitive touch sensor
WO2024041967A1 (en) Touch-sensitive system and method
KR20200138138A (en) Touch sensor panel and touch input apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201222

R150 Certificate of patent or registration of utility model

Ref document number: 6815105

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250