JP6813813B2 - Glass plate - Google Patents
Glass plate Download PDFInfo
- Publication number
- JP6813813B2 JP6813813B2 JP2019212820A JP2019212820A JP6813813B2 JP 6813813 B2 JP6813813 B2 JP 6813813B2 JP 2019212820 A JP2019212820 A JP 2019212820A JP 2019212820 A JP2019212820 A JP 2019212820A JP 6813813 B2 JP6813813 B2 JP 6813813B2
- Authority
- JP
- Japan
- Prior art keywords
- glass plate
- processed substrate
- glass
- less
- present
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
- Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
Description
本発明は、ガラス板及びその製造方法に関し、具体的には、半導体パッケージの製造工程で加工基板の支持に用いるガラス板及びその製造方法に関する。 The present invention relates to a glass plate and a method for manufacturing the same, and more specifically, to a glass plate used for supporting a processed substrate in a manufacturing process of a semiconductor package and a method for manufacturing the same.
携帯電話、ノート型パーソナルコンピュータ、PDA(Personal Data Assistance)等の携帯型電子機器には、小型化及び軽量化が要求されている。これに伴い、これらの電子機器に用いられる半導体チップの実装スペースも厳しく制限されており、半導体チップの高密度な実装が課題になっている。そこで、近年では、三次元実装技術、すなわち半導体チップ同士を積層し、各半導体チップ間を配線接続することに
より、半導体パッケージの高密度実装を図っている。
Portable electronic devices such as mobile phones, notebook personal computers, and PDAs (Personal Data Assistance) are required to be smaller and lighter. Along with this, the mounting space for semiconductor chips used in these electronic devices is also severely limited, and high-density mounting of semiconductor chips has become an issue. Therefore, in recent years, a three-dimensional mounting technology, that is, a high-density mounting of a semiconductor package has been achieved by laminating semiconductor chips and connecting each semiconductor chip with wiring.
また、従来のウエハレベルパッケージ(WLP)は、バンプをウエハの状態で形成した後、ダイシングで個片化することにより作製されている。しかし、従来のWLPは、ピン数を増加させ難いことに加えて、半導体チップの裏面が露出した状態で実装されるため、半導体チップの欠け等が発生し易いという問題があった。 Further, a conventional wafer level package (WLP) is manufactured by forming bumps in a wafer state and then individualizing them by dicing. However, the conventional WLP has a problem that it is difficult to increase the number of pins and the semiconductor chip is easily chipped because the back surface of the semiconductor chip is exposed.
そこで、新たなWLPとして、fan out型のWLPが提案されている。fan out型のWLPは、ピン数を増加させることが可能であり、また半導体チップの端部を保護することにより、半導体チップの欠け等を防止することができる。 Therefore, as a new WLP, a fan-out type WLP has been proposed. The fan-out type WLP can increase the number of pins, and by protecting the end portion of the semiconductor chip, it is possible to prevent the semiconductor chip from being chipped or the like.
fan out型のWLPでは、複数の半導体チップを樹脂の封止材でモールドして、加工基板を形成した後に、加工基板の一方の表面に配線する工程、半田バンプを形成する工程等を有する。 The fan-out type WLP includes a step of molding a plurality of semiconductor chips with a resin encapsulant to form a processed substrate, and then wiring to one surface of the processed substrate, a step of forming solder bumps, and the like.
これらの工程は、約200〜300℃の熱処理を伴うため、封止材が変形して、加工基板が寸法変化する虞がある。加工基板が寸法変化すると、加工基板の一方の表面に対して、高密度に配線することが困難になり、また半田バンプを正確に形成することも困難になる。 Since these steps involve a heat treatment at about 200 to 300 ° C., the sealing material may be deformed and the size of the processed substrate may change. When the size of the processed substrate changes, it becomes difficult to wire the processed substrate at a high density to one surface of the processed substrate, and it becomes difficult to accurately form solder bumps.
加工基板の寸法変化を抑制するために、支持板としてガラス板を用いることが有効である。ガラス板は、表面を平滑化し易く、且つ剛性を有する。よって、ガラス板を用いると、加工基板を強固、且つ正確に支持することが可能になる。またガラス板は、紫外光等の光を透過し易い。よって、ガラス板を用いると、接着層等を設けることにより加工基板とガラス板を容易に固定することができる。また剥離層等を設けることにより加工基板とガラス板を容易に分離することもできる。 It is effective to use a glass plate as a support plate in order to suppress a change in the dimensions of the processed substrate. The glass plate has a surface that is easy to smooth and has rigidity. Therefore, if a glass plate is used, the processed substrate can be firmly and accurately supported. Further, the glass plate easily transmits light such as ultraviolet light. Therefore, when a glass plate is used, the processed substrate and the glass plate can be easily fixed by providing an adhesive layer or the like. Further, the processed substrate and the glass plate can be easily separated by providing a release layer or the like.
しかし、ガラス板を用いた場合であっても、加工基板の一方の表面に対して、高密度に配線することが困難になる場合があった。 However, even when a glass plate is used, it may be difficult to wire at a high density to one surface of the processed substrate.
また、加工基板を支持するためのガラス板には、投入/搬出時、搬送時又は加工時に破損し難いことが要求される。ガラス板の機械的強度は、端面のチッピング、マイクロクラック等の割合に依存し、この割合によっては、ガラス板の機械的強度が大幅に低下する。研磨によりガラス板の端面に面取り部を形成すると、チッピング等を低減することができるが、マイクロクラックを完全に取り除くことは困難である。結果として、ガラス板の端面強度を十分に高めることができず、ガラス板が投入/搬出時、搬送時又は加工時に破損し易くなる。 Further, the glass plate for supporting the processed substrate is required to be hard to be damaged at the time of loading / unloading, transporting or processing. The mechanical strength of the glass plate depends on the ratio of chipping, microcracks, etc. on the end face, and depending on this ratio, the mechanical strength of the glass plate is significantly reduced. If a chamfered portion is formed on the end face of the glass plate by polishing, chipping and the like can be reduced, but it is difficult to completely remove the microcracks. As a result, the end face strength of the glass plate cannot be sufficiently increased, and the glass plate is easily damaged during loading / unloading, transportation, or processing.
本発明は、上記事情に鑑みなされたものであり、その技術的課題は、高密度配線に供される加工基板の支持に好適であり、且つ端面強度が高いガラス板及びその製造方法を創案することにより、半導体パッケージの高密度化に寄与することである。 The present invention has been made in view of the above circumstances, and its technical problem is to create a glass plate suitable for supporting a processed substrate used for high-density wiring and having high end face strength, and a method for manufacturing the same. This contributes to increasing the density of the semiconductor package.
本発明者等は、種々の実験を繰り返した結果、全体板厚偏差を低減し、更にガラス板の端面を溶融固化面とすることにより、上記技術的課題を解決し得ることを見出し、本発明として、提案するものである。すなわち、本発明のガラス板は、全体板厚偏差が2.0μm未満であり、且つ端面の全部又は一部が溶融固化面であることを特徴とする。ここで、「全体板厚偏差」は、ガラス板全体の最大板厚と最小板厚の差であり、例えばコベルコ科
研社製のSBW−331ML/dにより測定可能である。
As a result of repeating various experiments, the present inventors have found that the above technical problems can be solved by reducing the overall plate thickness deviation and further using the end face of the glass plate as a melt-solidified surface. As a proposal. That is, the glass plate of the present invention is characterized in that the total plate thickness deviation is less than 2.0 μm, and all or part of the end face is a melt-solidified surface. Here, the "overall plate thickness deviation" is the difference between the maximum plate thickness and the minimum plate thickness of the entire glass plate, and can be measured by, for example, SBW-331ML / d manufactured by Kobelco Kaken Co., Ltd.
本発明のガラス板は、全体板厚偏差が2.0μm未満である。全体板厚偏差を2.0μm未満まで小さくすると、加工処理の精度を高め易くなる。特に配線精度を高めることができるため、高密度の配線が可能になる。またガラス板の面内強度が向上して、ガラス板及び積層体が破損し難くなる。更にガラス板の再利用回数(耐用数)を増やすことができる。 The glass plate of the present invention has an overall plate thickness deviation of less than 2.0 μm. When the overall plate thickness deviation is reduced to less than 2.0 μm, it becomes easy to improve the accuracy of the processing. In particular, since the wiring accuracy can be improved, high-density wiring becomes possible. In addition, the in-plane strength of the glass plate is improved, and the glass plate and the laminate are less likely to be damaged. Furthermore, the number of times the glass plate can be reused (useful number) can be increased.
本発明のガラス板は、端面の全部又は一部が溶融固化面である。これにより、端面に存在するマイクロクラックが溶けて消失し、滑らかな状態になるため、ガラス板の端面強度を大幅に高めることができる。 In the glass plate of the present invention, all or part of the end face is a melt-solidified surface. As a result, the microcracks existing on the end face are melted and disappear to be in a smooth state, so that the end face strength of the glass plate can be significantly increased.
図1は、ガラス板の端面をレーザー照射により溶融固化した状態を示す断面写真である。図1から分かるように、ガラス板の端面は、滑らかな鏡面になっており、また球状の液溜りの状態、つまり球状に膨出した状態になっている。図2は、図1に示すガラス板の膨出部を研磨により除去し、全体板厚偏差を2.0μm未満まで低下させた状態を示す断面写真である。 FIG. 1 is a cross-sectional photograph showing a state in which an end face of a glass plate is melted and solidified by laser irradiation. As can be seen from FIG. 1, the end surface of the glass plate has a smooth mirror surface, and is in a state of a spherical liquid pool, that is, a state of bulging in a spherical shape. FIG. 2 is a cross-sectional photograph showing a state in which the bulging portion of the glass plate shown in FIG. 1 is removed by polishing to reduce the overall plate thickness deviation to less than 2.0 μm.
第二に、本発明のガラス板は、全体板厚偏差が1.0μm未満であることが好ましい。 Secondly, the glass plate of the present invention preferably has an overall plate thickness deviation of less than 1.0 μm.
第三に、本発明のガラス板は、溶融固化面がレーザー照射により形成されてなることが好ましい。こにより、端面の溶融固化の領域を調節し易くなる。また溶融固化面の膨出状態を調節し易くなる。 Third, in the glass plate of the present invention, it is preferable that the melt-solidified surface is formed by laser irradiation. This makes it easier to adjust the area of melt solidification of the end face. Further, it becomes easy to adjust the bulging state of the melt-solidified surface.
第四に、本発明のガラス板は、反り量が60μm以下であることが好ましい。ここで、「反り量」は、ガラス板全体における最高位点と最小二乗焦点面との間の最大距離の絶対値と最低位点と最小二乗焦点面との絶対値との合計を指し、例えばコベルコ科研社製のSBW−331ML/dにより測定可能である。 Fourth, the glass plate of the present invention preferably has a warp amount of 60 μm or less. Here, the "warp amount" refers to the sum of the absolute value of the maximum distance between the highest point and the least squares focal plane and the absolute value of the lowest point and the least squares focal plane in the entire glass plate, for example. It can be measured by SBW-331ML / d manufactured by Kobelco Research Institute.
第五に、本発明のガラス板は、表面の全部又は一部が研磨面であることが好ましい。 Fifth, the glass plate of the present invention preferably has a polished surface in whole or in part.
第六に、本発明のガラス板は、オーバーフローダウンドロー法により成形されてなることが好ましい。 Sixth, the glass plate of the present invention is preferably formed by an overflow down draw method.
第七に、本発明のガラス板は、ヤング率が65GPa以上であることが好ましい。ここで、「ヤング率」は、曲げ共振法により測定した値を指す。なお、1GPaは、約101.9Kgf/mm2に相当する。 Seventh, the glass plate of the present invention preferably has a Young's modulus of 65 GPa or more. Here, "Young's modulus" refers to a value measured by the bending resonance method. In addition, 1 GPa corresponds to about 101.9 Kgf / mm 2 .
第八に、本発明のガラス板は、外形がウエハ形状であることが好ましい。 Eighth, the glass plate of the present invention preferably has a wafer shape in outer shape.
第九に、本発明のガラス板は、半導体パッケージの製造工程で加工基板の支持に用いることが好ましい。 Ninth, the glass plate of the present invention is preferably used for supporting a processed substrate in the manufacturing process of a semiconductor package.
第十に、本発明の積層体は、少なくとも加工基板と加工基板を支持するためのガラス板とを備える積層体であって、ガラス板が上記のガラス板であることが好ましい。 Tenth, the laminate of the present invention is a laminate including at least a processed substrate and a glass plate for supporting the processed substrate, and the glass plate is preferably the above-mentioned glass plate.
第十一に、本発明のガラス板の製造方法は、(1)ガラス原板を切断して、ガラス板を得る工程と、(2)レーザー照射により、ガラス板の端面の一部又は全部を溶融した後、固化する工程と、(3)ガラス板の全体板厚偏差が2.0μm未満になるように、ガラス板の表面を研磨する工程と、を有することを特徴とする。 Eleventh, the method for producing a glass plate of the present invention is (1) a step of cutting a glass original plate to obtain a glass plate, and (2) melting a part or all of the end face of the glass plate by laser irradiation. It is characterized by having a step of solidifying after the glass plate, and (3) a step of polishing the surface of the glass plate so that the total thickness deviation of the glass plate is less than 2.0 μm.
第十二に、本発明のガラス板の製造方法は、オーバーフローダウンドロー法によりガラス原板を成形することが好ましい。 Twelfth, in the method for producing a glass plate of the present invention, it is preferable to form a glass original plate by an overflow down draw method.
本発明のガラス板において、全体板厚偏差は、好ましくは2μm未満、1.5μm以下、1μm以下、1μm未満、0.8μm以下、0.1〜0.9μm、特に0.2〜0.7μmである。全体板厚偏差が小さい程、加工処理の精度を高め易くなる。特に配線精度を高めることができるため、高密度の配線が可能になる。またガラス板の強度が向上して、ガラス板及び積層体が破損し難くなる。更にガラス板の再利用回数(耐用数)を増やすことができる。 In the glass plate of the present invention, the overall plate thickness deviation is preferably less than 2 μm, 1.5 μm or less, 1 μm or less, less than 1 μm, 0.8 μm or less, 0.1 to 0.9 μm, and particularly 0.2 to 0.7 μm. Is. The smaller the deviation in the overall plate thickness, the easier it is to improve the accuracy of the processing. In particular, since the wiring accuracy can be improved, high-density wiring becomes possible. In addition, the strength of the glass plate is improved, and the glass plate and the laminate are less likely to be damaged. Furthermore, the number of times the glass plate can be reused (useful number) can be increased.
本発明のガラス板は、端面の全部又は一部が溶融固化面であり、面積比で端面の70%以上が溶融固化面であることが好ましく、端面の90%以上が溶融固化面であることがより好ましく、端面の全部が溶融固化面であることが更に好ましい。端面において溶融固化面の割合が高い程、ガラス板の端面強度を高めることができる。 In the glass plate of the present invention, all or part of the end face is a melt-solidified surface, and in terms of area ratio, 70% or more of the end face is preferably a melt-solidified surface, and 90% or more of the end face is a melt-solidified surface. Is more preferable, and it is further preferable that the entire end face is a melt-solidified surface. The higher the ratio of the melt-solidified surface in the end face, the higher the end face strength of the glass plate can be.
端面に溶融固化面を形成する方法として、種々の方法を採択することができる。例えば、バーナーで直接加熱する方法、レーザー照射により局所加熱する方法等が挙げられるが、後者の方法は、照射条件の調節により、溶融固化する領域を調節し易く、溶融固化面の膨出状態を調節し易いため好ましい。またガラス板をレーザー照射により溶断すれば、ガラス板の端面に溶融固化面を形成することもできる。レーザーとして種々のレーザーが使用可能である。例えば、CO2レーザー、YAGレーザー等が使用可能であり、特に10.6μmの波長を有するCO2レーザーを使用することが好ましい。このようにすれば、レーザーの光をガラス板に的確に吸収させることが可能になる。 Various methods can be adopted as a method for forming a melt-solidified surface on the end face. For example, a method of directly heating with a burner, a method of locally heating by laser irradiation, and the like can be mentioned. In the latter method, the region to be melted and solidified can be easily adjusted by adjusting the irradiation conditions, and the bulging state of the melted and solidified surface can be adjusted. It is preferable because it is easy to adjust. Further, if the glass plate is melted by laser irradiation, a melt-solidified surface can be formed on the end surface of the glass plate. Various lasers can be used as the laser. For example, a CO 2 laser, a YAG laser, or the like can be used, and it is particularly preferable to use a CO 2 laser having a wavelength of 10.6 μm. In this way, the laser light can be accurately absorbed by the glass plate.
端面は、端面強度を高める観点から、R状(半球状)であることが好ましい。なお、このような端面形状は、例えば、レーザー照射により、端面に球状の膨出部を形成した後に、表面から盛り上がった膨出部を研磨処理により除去することで形成することができる。 The end face is preferably R-shaped (hemispherical) from the viewpoint of increasing the end face strength. It should be noted that such an end face shape can be formed by, for example, forming a spherical bulge on the end face by laser irradiation and then removing the bulge raised from the surface by a polishing treatment.
反り量は、好ましくは60μm以下、55μm以下、50μm以下、1〜45μm、特に5〜40μmである。反り量が小さい程、加工処理の精度を高め易くなる。特に配線精度を高めることができるため、高密度の配線が可能になる。更にガラス板の再利用回数(耐用数)を増やすことができる。 The amount of warpage is preferably 60 μm or less, 55 μm or less, 50 μm or less, 1 to 45 μm, and particularly 5 to 40 μm. The smaller the amount of warpage, the easier it is to improve the accuracy of the processing. In particular, since the wiring accuracy can be improved, high-density wiring becomes possible. Furthermore, the number of times the glass plate can be reused (useful number) can be increased.
表面の算術平均粗さRaは、好ましくは10nm以下、5nm以下、2nm以下、1nm以下、特に0.5nm以下である。表面の算術平均粗さRaが小さい程、加工処理の精度を高め易くなる。特に配線精度を高めることができるため、高密度の配線が可能になる。またガラス板の強度が向上して、ガラス板及び積層体が破損し難くなる。更にガラス板の再利用回数(支持回数)を増やすことができる。なお、「算術平均粗さRa」は、原子間力顕微鏡(AFM)により測定可能である。 The arithmetic mean roughness Ra of the surface is preferably 10 nm or less, 5 nm or less, 2 nm or less, 1 nm or less, and particularly 0.5 nm or less. The smaller the arithmetic mean roughness Ra of the surface, the easier it is to improve the accuracy of the processing. In particular, since the wiring accuracy can be improved, high-density wiring becomes possible. In addition, the strength of the glass plate is improved, and the glass plate and the laminate are less likely to be damaged. Furthermore, the number of times the glass plate can be reused (the number of times it is supported) can be increased. The "arithmetic mean roughness Ra" can be measured by an atomic force microscope (AFM).
本発明のガラス板は、表面の全部又は一部が研磨面であることが好ましく、面積比で表
面の50%以上が研磨面であることがより好ましく、表面の70%以上が研磨面であることが更に好ましく、表面の90%以上が研磨面であることが特に好ましい。このようにすれば、全体板厚偏差を低減し易くなり、また反り量も低減し易くなる。
In the glass plate of the present invention, it is preferable that all or part of the surface is a polished surface, more preferably 50% or more of the surface is a polished surface in terms of area ratio, and 70% or more of the surface is a polished surface. More preferably, 90% or more of the surface is a polished surface. By doing so, it becomes easy to reduce the deviation of the total plate thickness, and it becomes easy to reduce the amount of warpage.
研磨処理の方法としては、種々の方法を採用することができるが、ガラス板の両面を一対の研磨パッドで挟み込み、ガラス板と一対の研磨パッドを共に回転させながら、ガラス板を研磨処理する方法が好ましい。更に一対の研磨パッドは外径が異なることが好ましく、研磨の際に間欠的にガラス板の一部が研磨パッドから食み出すように研磨処理することが好ましい。これにより、全体板厚偏差を低減し易くなり、また反り量も低減し易くなる。なお、研磨処理において、研磨深さは特に限定されないが、研磨深さは、好ましくは50μm以下、30μm以下、20μm以下、特に10μm以下である。研磨深さが小さい程、ガラス板の生産性が向上する。 Various methods can be adopted as the polishing treatment method, but a method in which both sides of the glass plate are sandwiched between a pair of polishing pads and the glass plate is polished while rotating the glass plate and the pair of polishing pads together. Is preferable. Further, it is preferable that the pair of polishing pads have different outer diameters, and it is preferable to perform polishing treatment so that a part of the glass plate intermittently protrudes from the polishing pads during polishing. This makes it easier to reduce the overall plate thickness deviation and also makes it easier to reduce the amount of warpage. In the polishing treatment, the polishing depth is not particularly limited, but the polishing depth is preferably 50 μm or less, 30 μm or less, 20 μm or less, and particularly 10 μm or less. The smaller the polishing depth, the higher the productivity of the glass plate.
本発明のガラス板は、ウエハ状(略真円状)が好ましく、その直径は100mm以上500mm以下、特に150mm以上450mm以下が好ましい。このようにすれば、半導体パッケージの製造工程に適用し易くなる。必要に応じて、それ以外の形状、例えば矩形等の形状に加工してもよい。 The glass plate of the present invention is preferably in the form of a wafer (substantially a perfect circle), and its diameter is preferably 100 mm or more and 500 mm or less, particularly 150 mm or more and 450 mm or less. In this way, it becomes easy to apply to the manufacturing process of the semiconductor package. If necessary, it may be processed into another shape, for example, a shape such as a rectangle.
本発明のガラス板において、板厚は、好ましくは2.0mm未満、1.5mm以下、1.2mm以下、1.1mm以下、1.0mm以下、特に0.9mm以下である。板厚が薄くなる程、積層体の質量が軽くなるため、ハンドリング性が向上する。一方、板厚が薄過ぎると、ガラス板自体の強度が低下して、支持板としての機能を果たし難くなる。よって、板厚は、好ましくは0.1mm以上、0.2mm以上、0.3mm以上、0.4mm以上、0.5mm以上、0.6mm以上、特に0.7mm超である。 In the glass plate of the present invention, the plate thickness is preferably less than 2.0 mm, 1.5 mm or less, 1.2 mm or less, 1.1 mm or less, 1.0 mm or less, and particularly 0.9 mm or less. As the plate thickness becomes thinner, the mass of the laminated body becomes lighter, so that the handleability is improved. On the other hand, if the plate thickness is too thin, the strength of the glass plate itself decreases, and it becomes difficult to fulfill the function as a support plate. Therefore, the plate thickness is preferably 0.1 mm or more, 0.2 mm or more, 0.3 mm or more, 0.4 mm or more, 0.5 mm or more, 0.6 mm or more, and particularly 0.7 mm or more.
本発明のガラス板は、以下の特性を有することが好ましい。 The glass plate of the present invention preferably has the following characteristics.
本発明のガラス板において、30〜380℃の温度範囲における平均熱膨張係数は0×10−7/℃以上、且つ165×10−7/℃以下が好ましい。これにより、加工基板とガラス板の熱膨張係数を整合させ易くなる。そして、両者の熱膨張係数が整合すると、加工処理時に加工基板の寸法変化(特に、反り変形)を抑制し易くなる。結果として、加工基板の一方の表面に対して、高密度に配線することが可能になり、また半田バンプを正確に形成することも可能になる。なお、「30〜380℃の温度範囲における平均熱膨張係数」は、ディラトメーターで測定可能である。 In the glass plate of the present invention, the average coefficient of thermal expansion in the temperature range of 30 to 380 ° C. is preferably 0 × 10 -7 / ° C. or higher and 165 × 10 -7 / ° C. or lower. This makes it easier to match the coefficients of thermal expansion of the processed substrate and the glass plate. When the coefficients of thermal expansion of both are matched, it becomes easy to suppress a dimensional change (particularly, warpage deformation) of the processed substrate during the processing. As a result, high-density wiring can be performed on one surface of the processed substrate, and solder bumps can be accurately formed. The "average coefficient of thermal expansion in the temperature range of 30 to 380 ° C." can be measured with a dilatometer.
30〜380℃の温度範囲における平均熱膨張係数は、加工基板内で半導体チップの割合が少なく、封止材の割合が多い場合は、上昇させることが好ましく、逆に、加工基板内で半導体チップの割合が多く、封止材の割合が少ない場合は、低下させることが好ましい。 The average coefficient of thermal expansion in the temperature range of 30 to 380 ° C. is preferably increased when the proportion of semiconductor chips in the processed substrate is small and the proportion of encapsulant is large, and conversely, the semiconductor chips in the processed substrate. When the proportion of the encapsulant is large and the proportion of the encapsulant is small, it is preferable to reduce the ratio.
30〜380℃の温度範囲における平均熱膨張係数を0×10−7/℃以上、且つ50×10−7/℃未満とする場合、ガラス板は、ガラス組成として、質量%で、SiO2 55〜75%、Al2O3 15〜30%、Li2O 0.1〜6%、Na2O+K2O 0〜8%、MgO+CaO+SrO+BaO 0〜10%を含有することが好ましく、或いはSiO2 55〜75%、Al2O3 10〜30%、Li2O+Na2O+K2O 0〜0.3%、MgO+CaO+SrO+BaO 5〜20%を含有することも好ましい。30〜380℃の温度範囲における平均熱膨張係数を50×10−7/℃以上、且つ75×10−7/℃未満とする場合、ガラス板は、ガラス組成として、質量%で、SiO2 55〜70%、Al2O3 3〜15%、B2O3 5〜20%、MgO 0〜5%、CaO 0〜10%、SrO 0〜5%、BaO 0〜5%、ZnO 0〜5%、Na2O 5〜15%、K2O 0〜10%を含有することが好ましい。30〜380℃の温度範囲における平均熱膨張係数を75×10−7/℃以上、且つ85×10−7/℃以下とする場合、ガラス板は、ガラス組成として、質量%で、SiO2 60〜75%、Al2O3 5〜15%、B2O3 5〜20%、MgO 0〜5%、CaO 0〜10%、SrO 0〜5%、BaO 0〜5%、ZnO 0〜5%、Na2O 7〜16%、K2O 0〜8%を含有することが好ましい。30〜380℃の温度範囲における平均熱膨張係数を85×10−7/℃超、且つ120×10−7/℃以下とする場合、ガラス板は、ガラス組成として、質量%で、SiO2 55〜70%、Al2O3 3〜13%、B2O3 2〜8%、MgO 0〜5%、CaO 0〜10%、SrO 0〜5%、BaO 0〜5%、ZnO 0〜5%、Na2O 10〜21%、K2O 0〜5%を含有することが好ましい。30〜380℃の温度範囲における平均熱膨張係数を120×10−7/℃超、且つ165×10−7/℃以下とする場合、ガラス板は、ガラス組成として、質量%で、SiO2 53〜65%、Al2O3 3〜13%、B2O3 0〜5%、MgO 0.1〜6%、CaO 0〜10%、SrO 0〜5%、BaO 0〜5%、ZnO 0〜5%、Na2O+K2O 20〜40%、Na2O 12〜21%、K2O 7〜21%を含有することが好ましい。このようにすれば、熱膨張係数を所望の範囲に規制し易くなると共に、耐失透性が向上するため、全体板厚偏差が小さいガラス板を成形し易くなる。 When the average coefficient of thermal expansion in the temperature range of 30 to 380 ° C. is 0 × 10-7 / ° C. or higher and less than 50 × 10-7 / ° C., the glass plate has a glass composition of SiO 2 55 in mass%. It is preferable to contain ~ 75%, Al 2 O 3 15 to 30%, Li 2 O 0.1 to 6%, Na 2 O + K 2 O 0 to 8%, MgO + CaO + SrO + BaO 0 to 10%, or SiO 2 55 to 5 It is also preferable to contain 75%, Al 2 O 3 10 to 30%, Li 2 O + Na 2 O + K 2 O 0 to 0.3%, and MgO + CaO + SrO + BaO 5 to 20%. When the average coefficient of thermal expansion in the temperature range of 30 to 380 ° C. is 50 × 10-7 / ° C. or higher and less than 75 × 10-7 / ° C., the glass plate has a glass composition of SiO 2 55 in mass%. ~ 70%, Al 2 O 3 3 to 15%, B 2 O 3 5 to 20%, MgO 0 to 5%, CaO 0 to 10%, SrO 0 to 5%, BaO 0 to 5%, ZnO 0 to 5 %, Na 2 O 5 to 15%, and K 2 O 0 to 10% are preferably contained. The average thermal expansion coefficient in a temperature range of 30~380 ℃ 75 × 10 -7 / ℃ or higher, and if the 85 × 10 -7 / ℃ less, a glass plate, as a glass composition, in mass%, SiO 2 60 ~ 75%, Al 2 O 3 5-15%, B 2 O 3 5-20%, MgO 0-5%, CaO 0-10%, SrO 0-5%, BaO 0-5%, ZnO 0-5 %, Na 2 O 7 to 16%, and K 2 O 0 to 8% are preferably contained. When the average coefficient of thermal expansion in the temperature range of 30 to 380 ° C. is more than 85 × 10-7 / ° C. and 120 × 10-7 / ° C. or less, the glass plate has a glass composition of SiO 2 55 in mass%. ~ 70%, Al 2 O 3 3 ~ 13%, B 2 O 3 2-8%, MgO 0-5%, CaO 0-10%, SrO 0-5%, BaO 0-5%, ZnO 0-5 %, Na 2 O 10 to 21%, and K 2 O 0 to 5% are preferably contained. When the average coefficient of thermal expansion in the temperature range of 30 to 380 ° C. is more than 120 × 10-7 / ° C. and 165 × 10-7 / ° C. or less, the glass plate has a glass composition of SiO 2 53 in mass%. ~ 65%, Al 2 O 3 3 ~ 13%, B 2 O 30 ~ 5%, MgO 0.1-6%, CaO 0 ~ 10%, SrO 0 ~ 5%, BaO 0 ~ 5%, ZnO 0 It preferably contains ~ 5%, Na 2 O + K 2 O 20-40%, Na 2 O 12-21%, and K 2 O 7-21%. By doing so, it becomes easy to regulate the coefficient of thermal expansion within a desired range, and the devitrification resistance is improved, so that it becomes easy to form a glass plate having a small deviation in overall plate thickness.
ヤング率は、好ましくは65GPa以上、67GPa以上、68GPa以上、69GPa以上、70GPa以上、71GPa以上、72GPa以上、特に73GPa以上である。ヤング率が低過ぎると、積層体の剛性を維持し難くなり、加工基板の変形、反り、破損が発生し易くなる。 The Young's modulus is preferably 65 GPa or more, 67 GPa or more, 68 GPa or more, 69 GPa or more, 70 GPa or more, 71 GPa or more, 72 GPa or more, and particularly 73 GPa or more. If the Young's modulus is too low, it becomes difficult to maintain the rigidity of the laminated body, and the processed substrate is likely to be deformed, warped, or damaged.
液相温度は、好ましくは1150℃未満、1120℃以下、1100℃以下、1080℃以下、1050℃以下、1010℃以下、980℃以下、960℃以下、950℃以下、特に940℃以下である。このようにすれば、ダウンドロー法、特にオーバーフローダウンドロー法でガラス板を成形し易くなるため、板厚が小さいガラス板を作製し易くなると共に、成形後の板厚偏差を低減することができる。更に、ガラス板の製造工程時に、失透結晶が発生して、ガラス板の生産性が低下する事態を防止し易くなる。ここで、「液相温度」は、標準篩30メッシュ(500μm)を通過し、50メッシュ(300μm)に残るガラス粉末を白金ボートに入れた後、温度勾配炉中に24時間保持して、結晶が析出する温度を測定することにより算出可能である。 The liquidus temperature is preferably less than 1150 ° C., 1120 ° C. or lower, 1100 ° C. or lower, 1080 ° C. or lower, 1050 ° C. or lower, 1010 ° C. or lower, 980 ° C. or lower, 960 ° C. or lower, 950 ° C. or lower, particularly 940 ° C. or lower. By doing so, it becomes easy to form the glass plate by the down draw method, particularly the overflow down draw method, so that it becomes easy to produce a glass plate having a small plate thickness, and it is possible to reduce the plate thickness deviation after molding. .. Further, it becomes easy to prevent a situation in which devitrified crystals are generated during the manufacturing process of the glass plate and the productivity of the glass plate is lowered. Here, the "liquid phase temperature" is determined by passing the standard sieve 30 mesh (500 μm), putting the glass powder remaining in 50 mesh (300 μm) into a platinum boat, and then holding the glass powder in a temperature gradient furnace for 24 hours to crystallize. It can be calculated by measuring the temperature at which the glass precipitates.
液相温度における粘度は、好ましくは104.6dPa・s以上、105.0dPa・s以上、105.2dPa・s以上、105.4dPa・s以上、105.6dPa・s以上、特に105.8dPa・s以上である。このようにすれば、ダウンドロー法、特にオーバーフローダウンドロー法でガラス板を成形し易くなるため、板厚が小さいガラス板を作製し易くなると共に、成形後の板厚偏差を低減することができる。更に、ガラス板の製造工程時に、失透結晶が発生して、ガラス板の生産性が低下する事態を防止し易くなる。ここで、「液相温度における粘度」は、白金球引き上げ法で測定可能である。なお、液相温度における粘度は、成形性の指標であり、液相温度における粘度が高い程、成形性が向上する。 The viscosity at the liquidus temperature is preferably 10 4.6 dPa · s or higher, 10 5.0 dPa · s or higher, 10 5.2 dPa · s or higher, 10 5.4 dPa · s or higher, and 10 5.6 dPa. -S or more, especially 10 5.8 dPa · s or more. By doing so, it becomes easy to form the glass plate by the down draw method, particularly the overflow down draw method, so that it becomes easy to produce a glass plate having a small plate thickness, and it is possible to reduce the plate thickness deviation after molding. .. Further, it becomes easy to prevent a situation in which devitrified crystals are generated during the manufacturing process of the glass plate and the productivity of the glass plate is lowered. Here, the "viscosity at the liquidus temperature" can be measured by the platinum ball pulling method. The viscosity at the liquidus temperature is an index of moldability, and the higher the viscosity at the liquidus temperature, the better the moldability.
102.5dPa・sにおける温度は、好ましくは1580℃以下、1500℃以下、1450℃以下、1400℃以下、1350℃以下、特に1200〜1300℃である。102.5dPa・sにおける温度が高くなると、溶融性が低下して、ガラス板の製造コストが高騰する。ここで、「102.5dPa・sにおける温度」は、白金球引き上げ法で測定可能である。なお、102.5dPa・sにおける温度は、溶融温度に相当し、この温度が低い程、溶融性が向上する。 The temperature at 10 2.5 dPa · s is preferably 1580 ° C. or lower, 1500 ° C. or lower, 1450 ° C. or lower, 1400 ° C. or lower, 1350 ° C. or lower, particularly 1200 to 1300 ° C. When the temperature at 10 2.5 dPa · s becomes high, the meltability decreases and the manufacturing cost of the glass plate rises. Here, the "temperature at 10 2.5 dPa · s" can be measured by the platinum ball pulling method. The temperature at 10 2.5 dPa · s corresponds to the melting temperature, and the lower the temperature, the better the meltability.
本発明のガラス板において、板厚方向、波長300nmにおける紫外線透過率は、好ましくは40%以上、50%以上、60%以上、70%以上、特に80%以上である。紫外線透過率が低過ぎると、紫外光の照射により、接着層により加工基板とガラス板を接着し難くなることに加えて、剥離層により加工基板からガラス板を剥離し難くなる。なお、「板厚方向、波長300nmにおける紫外線透過率」は、例えば、ダブルビーム型分光光度計を用いて、波長300nmの分光透過率を測定することで評価可能である。 In the glass plate of the present invention, the ultraviolet transmittance in the plate thickness direction at a wavelength of 300 nm is preferably 40% or more, 50% or more, 60% or more, 70% or more, and particularly 80% or more. If the ultraviolet transmittance is too low, it becomes difficult for the adhesive layer to bond the processed substrate and the glass plate due to irradiation with ultraviolet light, and in addition, the peeling layer makes it difficult to peel the glass plate from the processed substrate. The "ultraviolet transmittance in the plate thickness direction at a wavelength of 300 nm" can be evaluated by measuring the spectral transmittance at a wavelength of 300 nm using, for example, a double beam spectrophotometer.
本発明のガラス板は、ダウンドロー法、特にオーバーフローダウンドロー法で成形されてなることが好ましい。オーバーフローダウンドロー法は、耐熱性の樋状構造物の両側から溶融ガラスを溢れさせて、溢れた溶融ガラスを樋状構造物の下頂端で合流させながら、下方に延伸成形してガラス原板を成形する方法である。オーバーフローダウンドロー法では、ガラス板の表面となるべき面は樋状耐火物に接触せず、自由表面の状態で成形される。このため、板厚が小さいガラス板を作製し易くなると共に、全体板厚偏差を低減することができ、結果として、ガラス板の製造コストを低廉化することができる。 The glass plate of the present invention is preferably formed by a downdraw method, particularly an overflow downdraw method. In the overflow down draw method, molten glass is overflowed from both sides of a heat-resistant gutter-shaped structure, and the overflowed molten glass is merged at the lower apex of the gutter-shaped structure and stretched downward to form a glass original plate. How to do it. In the overflow down draw method, the surface of the glass plate, which should be the surface, does not come into contact with the gutter-shaped refractory and is formed in a free surface state. Therefore, it becomes easy to manufacture a glass plate having a small plate thickness, and the deviation of the total plate thickness can be reduced, and as a result, the manufacturing cost of the glass plate can be reduced.
ガラス原板の成形方法として、オーバーフローダウンドロー法以外にも、例えば、スロットダウン法、リドロー法、フロート法、ロールアウト法等を採択することもできる。 In addition to the overflow down draw method, for example, a slot down method, a redraw method, a float method, a rollout method, and the like can be adopted as a method for forming the glass original plate.
本発明のガラス板は、表面に研磨面を有し、オーバーフローダウンドロー法で成形されてなることが好ましい。このようにすれば、研磨処理前の全体板厚偏差が小さくなるため、研磨処理により全体板厚偏差を可及的に低減することが可能になる。例えば、全体板厚偏差を1.0μm以下に低減することが可能になる。 The glass plate of the present invention preferably has a polished surface on its surface and is formed by an overflow down draw method. By doing so, the total plate thickness deviation before the polishing treatment becomes small, so that the total plate thickness deviation can be reduced as much as possible by the polishing treatment. For example, the overall plate thickness deviation can be reduced to 1.0 μm or less.
本発明のガラス板は、反り量を低減する観点から、化学強化処理がなされていないことが好ましい。一方、機械的強度の観点から、化学強化処理がなされていることが好ましい。つまり反り量を低減する観点から、表面に圧縮応力層を有しないことが好ましく、機械的強度の観点から、表面に圧縮応力層を有することが好ましい。 From the viewpoint of reducing the amount of warpage, the glass plate of the present invention is preferably not chemically strengthened. On the other hand, from the viewpoint of mechanical strength, it is preferable that the chemical strengthening treatment is performed. That is, from the viewpoint of reducing the amount of warpage, it is preferable not to have a compressive stress layer on the surface, and from the viewpoint of mechanical strength, it is preferable to have a compressive stress layer on the surface.
本発明のガラス板の製造方法は、(1)ガラス原板を切断して、ガラス板を得る工程と、(2)レーザー照射により、ガラス板の端面の一部又は全部を溶融した後、固化する工程と、(3)ガラス板の全体板厚偏差が2.0μm未満になるように、ガラス板の表面を研磨する工程と、を有することを特徴とする。ここで、本発明のガラス板の製造方法の技術的特徴(好適な構成、効果)は、本発明のガラス板の技術的特徴と重複する。よって、本明細書では、その重複部分について、詳細な記載を省略する。 The method for producing a glass plate of the present invention is (1) a step of cutting a glass original plate to obtain a glass plate, and (2) a part or all of the end face of the glass plate is melted and then solidified by laser irradiation. It is characterized by having a step and (3) a step of polishing the surface of the glass plate so that the total thickness deviation of the glass plate is less than 2.0 μm. Here, the technical features (suitable configuration, effect) of the method for producing a glass plate of the present invention overlap with the technical features of the glass plate of the present invention. Therefore, in the present specification, detailed description of the overlapping portion will be omitted.
本発明のガラス板の製造方法は、ガラス原板を切断して、ガラス板を得る工程を有する。ガラス原板を切断する方法として、種々の方法を採択することができる。例えば、レーザー照射時のサーマルショックにより切断する方法、スクライブした後に折り割りを行う方法が利用可能である。 The method for producing a glass plate of the present invention includes a step of cutting a glass original plate to obtain a glass plate. Various methods can be adopted as a method for cutting the glass original plate. For example, a method of cutting by a thermal shock at the time of laser irradiation and a method of folding after scribing can be used.
本発明のガラス板の製造方法は、レーザー照射により、ガラス板の端面の一部又は全部を溶融した後、固化する工程を有するが、この工程の好適な態様は上記の通りである。 The method for producing a glass plate of the present invention includes a step of melting a part or all of the end face of the glass plate by laser irradiation and then solidifying the glass plate, and a preferred embodiment of this step is as described above.
本発明のガラス板の製造方法は、ガラス板の端面に溶融固化面を形成した後に、ガラス板をアニールする工程を有することが好ましい。端面の残留応力とガラス板の反り量を低減する観点から、アニール温度は、ガラス板の軟化点以上とすることが好ましく、アニール温度における保持時間は、30分間以上とすることが好ましい。なお、アニールは、電気炉等の熱処理炉で行うことができる。 The method for producing a glass plate of the present invention preferably includes a step of annealing the glass plate after forming a melt-solidified surface on the end surface of the glass plate. From the viewpoint of reducing the residual stress of the end face and the amount of warpage of the glass plate, the annealing temperature is preferably set to be equal to or higher than the softening point of the glass plate, and the holding time at the annealing temperature is preferably set to 30 minutes or longer. Annealing can be performed in a heat treatment furnace such as an electric furnace.
本発明のガラス板の製造方法は、本発明のガラス板の製造方法は、ガラス板の全体板厚偏差が2.0μm未満になるように、ガラス板の表面を研磨する工程を有するが、この工程の好適な態様は上記の通りである。 The method for producing a glass plate of the present invention includes a step of polishing the surface of the glass plate so that the total thickness deviation of the glass plate is less than 2.0 μm. A preferred embodiment of the process is as described above.
本発明の積層体は、少なくとも加工基板と加工基板を支持するためのガラス板とを備える積層体であって、ガラス板が上記のガラス板であることを特徴とする。ここで、本発明の積層体の技術的特徴(好適な構成、効果)は、本発明のガラス板の技術的特徴と重複する。よって、本明細書では、その重複部分について、詳細な記載を省略する。 The laminate of the present invention is a laminate including at least a processed substrate and a glass plate for supporting the processed substrate, and the glass plate is the above-mentioned glass plate. Here, the technical features (suitable configuration, effect) of the laminate of the present invention overlap with the technical features of the glass plate of the present invention. Therefore, in the present specification, detailed description of the overlapping portion will be omitted.
本発明の積層体は、加工基板とガラス板の間に、接着層を有することが好ましい。接着層は、樹脂であることが好ましく、例えば、熱硬化性樹脂、光硬化性樹脂(特に紫外線硬化樹脂)等が好ましい。また半導体パッケージの製造工程における熱処理に耐える耐熱性を有するものが好ましい。これにより、半導体パッケージの製造工程で接着層が融解し難くなり、加工処理の精度を高めることができる。 The laminate of the present invention preferably has an adhesive layer between the processed substrate and the glass plate. The adhesive layer is preferably a resin, for example, a thermosetting resin, a photocurable resin (particularly an ultraviolet curable resin), or the like. Further, those having heat resistance to withstand heat treatment in the manufacturing process of the semiconductor package are preferable. As a result, the adhesive layer is less likely to melt in the manufacturing process of the semiconductor package, and the accuracy of the processing process can be improved.
本発明の積層体は、更に加工基板とガラス板の間に、より具体的には加工基板と接着層の間に、剥離層を有すること、或いはガラス板と接着層の間に、剥離層を有することが好ましい。このようにすれば、加工基板に対して、所定の加工処理を行った後に、加工基板をガラス板から剥離し易くなる。加工基板の剥離は、生産性の観点から、レーザー照射等により行うことが好ましい。 The laminate of the present invention further has a release layer between the processed substrate and the glass plate, more specifically between the processed substrate and the adhesive layer, or has a release layer between the glass plate and the adhesive layer. Is preferable. By doing so, it becomes easy to peel off the processed substrate from the glass plate after performing a predetermined processing treatment on the processed substrate. From the viewpoint of productivity, it is preferable to peel off the processed substrate by laser irradiation or the like.
剥離層は、レーザー照射等により「層内剥離」又は「界面剥離」が生じる材料で構成される。つまり一定の強度の光を照射すると、原子又は分子における原子間又は分子間の結合力が消失又は減少して、アブレーション(ablation)等を生じ、剥離を生じさせる材料で構成される。なお、照射光の照射により、剥離層に含まれる成分が気体となって放出されて分離に至る場合と、剥離層が光を吸収して気体になり、その蒸気が放出されて分離に至る場合とがある。 The peeling layer is made of a material that causes "intra-layer peeling" or "interfacial peeling" by laser irradiation or the like. That is, when irradiated with light of a certain intensity, the intermolecular or intermolecular bonding force in the atom or molecule disappears or decreases, causing ablation or the like, and the material is composed of a material that causes peeling. In addition, there are cases where the components contained in the peeling layer are released as a gas and lead to separation by irradiation with irradiation light, and cases where the peeling layer absorbs light and becomes a gas and the vapor is released and leads to separation. There is.
本発明の積層体において、ガラス板は、加工基板よりも大きいことが好ましい。これにより、加工基板とガラス板を支持する際に、両者の中心位置が僅かに離間した場合でも、ガラス板から加工基板の縁部が食み出し難くなる。 In the laminate of the present invention, the glass plate is preferably larger than the processed substrate. As a result, when supporting the processed substrate and the glass plate, even if the center positions of the two are slightly separated from each other, the edge portion of the processed substrate is less likely to protrude from the glass plate.
本発明に係る半導体パッケージの製造方法は、少なくとも加工基板と加工基板を支持するためのガラス板とを備える積層体を用意する工程と、加工基板に対して、加工処理を行う工程と、を有すると共に、ガラス板が上記のガラス板であることを特徴とする。ここで、本発明に係る半導体パッケージの製造方法の技術的特徴(好適な構成、効果)は、本発明のガラス板及び積層体の技術的特徴と重複する。よって、本明細書では、その重複部分について、詳細な記載を省略する。 The method for manufacturing a semiconductor package according to the present invention includes a step of preparing a laminate including at least a processed substrate and a glass plate for supporting the processed substrate, and a step of performing a processing process on the processed substrate. At the same time, the glass plate is the above-mentioned glass plate. Here, the technical features (suitable configuration, effect) of the method for manufacturing a semiconductor package according to the present invention overlap with the technical features of the glass plate and the laminate of the present invention. Therefore, in the present specification, detailed description of the overlapping portion will be omitted.
本発明に係る半導体パッケージの製造方法は、少なくとも加工基板と加工基板を支持するためのガラス板とを備える積層体を用意する工程を有する。少なくとも加工基板と加工基板を支持するためのガラス板とを備える積層体は、上記の材料構成を有している。 The method for manufacturing a semiconductor package according to the present invention includes a step of preparing a laminate including at least a processed substrate and a glass plate for supporting the processed substrate. The laminate including at least the processed substrate and the glass plate for supporting the processed substrate has the above-mentioned material composition.
本発明に係る半導体パッケージの製造方法は、更に積層体を搬送する工程を有することが好ましい。これにより、加工処理の処理効率を高めることができる。なお、「積層体を搬送する工程」と「加工基板に対して、加工処理を行う工程」とは、別途に行う必要はなく、同時であってもよい。 The method for manufacturing a semiconductor package according to the present invention preferably further includes a step of transporting the laminate. Thereby, the processing efficiency of the processing process can be improved. It should be noted that the "step of transporting the laminated body" and the "step of performing the processing process on the processed substrate" do not have to be performed separately and may be performed at the same time.
本発明に係る半導体パッケージの製造方法において、加工処理は、加工基板の一方の表面に配線する処理、或いは加工基板の一方の表面に半田バンプを形成する処理が好ましい。本発明に係る半導体パッケージの製造方法では、これらの処理時に加工基板が寸法変化し難いため、これらの工程を適正に行うことができる。 In the method for manufacturing a semiconductor package according to the present invention, the processing is preferably a process of wiring on one surface of the processed substrate or a process of forming solder bumps on one surface of the processed substrate. In the method for manufacturing a semiconductor package according to the present invention, since the size of the processed substrate is unlikely to change during these processes, these steps can be appropriately performed.
加工処理として、上記以外にも、加工基板の一方の表面(通常、ガラス板とは反対側の表面)を機械的に研磨する処理、加工基板の一方の表面(通常、ガラス板とは反対側の表面)をドライエッチングする処理、加工基板の一方の表面(通常、ガラス板とは反対側の表面)をウェットエッチングする処理の何れかであってもよい。なお、本発明の半導体パッケージの製造方法では、加工基板に反りが発生し難いと共に、積層体の剛性を維持することができる。結果として、上記加工処理を適正に行うことができる。 In addition to the above, the processing includes processing to mechanically polish one surface of the processed substrate (usually the surface opposite to the glass plate) and one surface of the processed substrate (usually the side opposite to the glass plate). The surface) may be dry-etched, or one surface of the processed substrate (usually the surface opposite to the glass plate) may be wet-etched. In the method for manufacturing a semiconductor package of the present invention, the processed substrate is less likely to warp and the rigidity of the laminated body can be maintained. As a result, the above processing can be performed properly.
本発明に係る半導体パッケージは、上記の半導体パッケージの製造方法により作製されたことを特徴とする。ここで、本発明の半導体パッケージの技術的特徴(好適な構成、効果)は、本発明のガラス板、積層体及び半導体パッケージの製造方法の技術的特徴と重複する。よって、本明細書では、その重複部分について、詳細な記載を省略する。 The semiconductor package according to the present invention is characterized in that it is manufactured by the above-mentioned method for manufacturing a semiconductor package. Here, the technical features (suitable configuration, effect) of the semiconductor package of the present invention overlap with the technical features of the method for manufacturing the glass plate, laminate and semiconductor package of the present invention. Therefore, in the present specification, detailed description of the overlapping portion will be omitted.
本発明に係る電子機器は、半導体パッケージを備える電子機器であって、半導体パッケージが、上記の半導体パッケージであることを特徴とする。ここで、本発明の電子機器の技術的特徴(好適な構成、効果)は、本発明のガラス板、積層体、半導体パッケージの製造方法、半導体パッケージの技術的特徴と重複する。よって、本明細書では、その重複部分について、詳細な記載を省略する。 The electronic device according to the present invention is an electronic device including a semiconductor package, and the semiconductor package is the above-mentioned semiconductor package. Here, the technical features (suitable configuration, effect) of the electronic device of the present invention overlap with the glass plate, laminate, manufacturing method of the semiconductor package, and the technical features of the semiconductor package of the present invention. Therefore, in the present specification, detailed description of the overlapping portion will be omitted.
図面を参酌しながら、本発明を更に説明する。 The present invention will be further described with reference to the drawings.
図3は、本発明の積層体1の一例を示す概念斜視図である。図3では、積層体1は、ガラス板10と加工基板11とを備えている。ガラス板10は、加工基板11の寸法変化を防止するために、加工基板11に貼着されている。ガラス板10と加工基板11との間には、剥離層12と接着層13が配置されている。剥離層12は、ガラス板10と接触しており、接着層13は、加工基板11と接触している。 FIG. 3 is a conceptual perspective view showing an example of the laminated body 1 of the present invention. In FIG. 3, the laminated body 1 includes a glass plate 10 and a processed substrate 11. The glass plate 10 is attached to the processed substrate 11 in order to prevent the dimensional change of the processed substrate 11. A release layer 12 and an adhesive layer 13 are arranged between the glass plate 10 and the processed substrate 11. The release layer 12 is in contact with the glass plate 10, and the adhesive layer 13 is in contact with the processed substrate 11.
図3から分かるように、積層体1は、ガラス板10、剥離層12、接着層13、加工基板11の順に積層配置されている。ガラス板10の形状は、加工基板11に応じて決定されるが、図3では、ガラス板10及び加工基板11の形状は、何れも略円板形状である。剥離層12は、非晶質シリコン(a−Si)以外にも、酸化ケイ素、ケイ酸化合物、窒化ケイ素、窒化アルミ、窒化チタン等が用いられる。剥離層12は、プラズマCVD、ゾル−ゲル法によるスピンコート等により形成される。接着層13は、樹脂で構成されており、例えば、各種印刷法、インクジェット法、スピンコート法、ロールコート法等により塗布形成される。接着層13は、剥離層12により加工基板11からガラス板10が剥離された後、溶剤等により溶解除去される。 As can be seen from FIG. 3, the laminated body 1 is laminated in the order of the glass plate 10, the release layer 12, the adhesive layer 13, and the processed substrate 11. The shape of the glass plate 10 is determined according to the processed substrate 11, but in FIG. 3, the shapes of the glass plate 10 and the processed substrate 11 are both substantially disk shapes. In addition to amorphous silicon (a-Si), silicon oxide, silicic acid compound, silicon nitride, aluminum nitride, titanium nitride and the like are used for the release layer 12. The release layer 12 is formed by plasma CVD, spin coating by a sol-gel method, or the like. The adhesive layer 13 is made of resin and is formed by coating, for example, by various printing methods, an inkjet method, a spin coating method, a roll coating method, or the like. The adhesive layer 13 is dissolved and removed by a solvent or the like after the glass plate 10 is peeled from the processed substrate 11 by the peeling layer 12.
図4は、fan out型のWLPの製造工程を示す概念断面図である。図4(a)は、支持部材20の一方の表面上に接着層21を形成した状態を示している。必要に応じて、支持部材20と接着層21の間に剥離層を形成してもよい。次に、図4(b)に示すように、接着層21の上に複数の半導体チップ22を貼付する。その際、半導体チップ22のアクティブ側の面を接着層21に接触させる。次に、図4(c)に示すように、半導体チップ22を樹脂の封止材23でモールドする。封止材23は、圧縮成形後の寸法変化、配線を成形する際の寸法変化が少ない材料が使用される。続いて、図4(d)、(e)に示すように、支持部材20から半導体チップ22がモールドされた加工基板24を分離した後、接着層25を介して、ガラス板26と接着固定させる。その際、加工基板24の表面の内、半導体チップ22が埋め込まれた側の表面とは反対側の表面がガラス板26側に配置される。このようにして、積層体27を得ることができる。なお、必要に応じて、接着層25とガラス板26の間に剥離層を形成してもよい。更に、得られた積層体27を搬送した後に、図4(f)に示すように、加工基板24の半導体チップ22が埋め込まれた側の表面に配線28を形成した後、複数の半田バンプ29を形成する。最後に、ガラス板26から加工基板24を分離した後に、加工基板24を半導体チップ22毎に切断し、後のパッケージング工程に供される。 FIG. 4 is a conceptual cross-sectional view showing a manufacturing process of a fan-out type WLP. FIG. 4A shows a state in which the adhesive layer 21 is formed on one surface of the support member 20. If necessary, a release layer may be formed between the support member 20 and the adhesive layer 21. Next, as shown in FIG. 4B, a plurality of semiconductor chips 22 are attached onto the adhesive layer 21. At that time, the active side surface of the semiconductor chip 22 is brought into contact with the adhesive layer 21. Next, as shown in FIG. 4C, the semiconductor chip 22 is molded with the resin encapsulant 23. As the sealing material 23, a material having little dimensional change after compression molding and dimensional change when molding wiring is used. Subsequently, as shown in FIGS. 4 (d) and 4 (e), the processed substrate 24 on which the semiconductor chip 22 is molded is separated from the support member 20, and then bonded and fixed to the glass plate 26 via the adhesive layer 25. .. At that time, among the surfaces of the processed substrate 24, the surface opposite to the surface on the side where the semiconductor chip 22 is embedded is arranged on the glass plate 26 side. In this way, the laminated body 27 can be obtained. If necessary, a release layer may be formed between the adhesive layer 25 and the glass plate 26. Further, after transporting the obtained laminate 27, as shown in FIG. 4 (f), after forming the wiring 28 on the surface of the processed substrate 24 on the side where the semiconductor chip 22 is embedded, a plurality of solder bumps 29 To form. Finally, after separating the processed substrate 24 from the glass plate 26, the processed substrate 24 is cut for each semiconductor chip 22 and used for a subsequent packaging step.
以下、本発明を実施例に基づいて説明する。なお、以下の実施例は単なる例示である。本発明は、以下の実施例に何ら限定されない。 Hereinafter, the present invention will be described based on examples. The following examples are merely examples. The present invention is not limited to the following examples.
ガラス組成として、質量%で、SiO2 65.2%、Al2O3 8%、B2O3 10.5%、Na2O 11.5%、CaO 3.4%、ZnO 1%、SnO2 0.3%、Sb2O3 0.1%になるように、ガラス原料を調合した後、ガラス溶融炉に投入して1500〜1600℃で溶融し、次いで溶融ガラスをオーバーフローダウンドロー成形装置に供給し、板厚が0.7mmになるように成形した。 As a glass composition, in mass%, SiO 2 65.2%, Al 2 O 3 8%, B 2 O 3 10.5%, Na 2 O 11.5%, CaO 3.4%, ZnO 1%, SnO 2 0.3%, so that the Sb 2 O 3 0.1% after formulating the glass raw material, was charged into a glass melting furnace and melted at 1,500 to 1,600 ° C., then overflow down draw forming apparatus molten glass And molded so that the plate thickness was 0.7 mm.
次に、得られたガラス原板をウエハ形状にくり抜いて、ガラス板を得ると共に、このガラス板の端面の全部に対して、CO2レーザーを連続して照射することにより、ガラス板の端面全体を溶融し、球状の膨出部を形成した後、冷却固化した。更に(ガラス板の軟化点+50℃)の温度で90分間の条件で、ガラス板をアニールすることにより、膨出部の残留応力を除去した。なお、CO2レーザーの波長は10.6μmであり、レーザー出力を9〜18Wに調整した。 Next, the obtained glass original plate is hollowed out into a wafer shape to obtain a glass plate, and the entire end face of the glass plate is continuously irradiated with a CO 2 laser on the entire end face of the glass plate. After melting to form a spherical bulge, it was cooled and solidified. Further, the residual stress of the bulging portion was removed by annealing the glass plate under the condition of 90 minutes at the temperature (softening point of the glass plate + 50 ° C.). The wavelength of the CO 2 laser was 10.6 μm, and the laser output was adjusted to 9 to 18 W.
続いて、ガラス板の表面を研磨装置で研磨処理することにより、ガラス板の膨出部を除去すると共に、ガラス板の全体板厚偏差を低減した。具体的には、ガラス板の両表面を外径が相違する一対の研磨パットで挟み込み、ガラス板と一対の研磨パッドを共に回転させながらガラス板の両表面を研磨処理した。研磨処理の際、時折、ガラス板の一部が研磨パッドから食み出すように制御した。なお、研磨パッドはウレタン製、研磨処理の際に使用した研磨スラリーの平均粒径は2.5μm、研磨速度は15m/分であった。得られた研磨処理前後のガラス板(各5サンプル)について、コベルコ科研社製のSBW−331ML/dにより最大板厚(Maximum Thickness)、最小板厚(Minimum Thickness)、平均板厚(Average Thickness)及び全体板厚偏差(TTV)を測定した。研磨処理前のガラス板の測定結果(但し、膨出部を除く領域で測定)を表1に示し、研磨処理後のガラス板の測定結果を表2に示す。 Subsequently, by polishing the surface of the glass plate with a polishing device, the bulging portion of the glass plate was removed and the deviation in the overall thickness of the glass plate was reduced. Specifically, both surfaces of the glass plate were sandwiched between a pair of polishing pads having different outer diameters, and both surfaces of the glass plate were polished while rotating the glass plate and the pair of polishing pads together. During the polishing process, it was occasionally controlled so that a part of the glass plate protruded from the polishing pad. The polishing pad was made of urethane, the average particle size of the polishing slurry used in the polishing treatment was 2.5 μm, and the polishing rate was 15 m / min. For the obtained glass plates (5 samples each) before and after the polishing treatment, the maximum plate thickness (Maximum Tickness), the minimum plate thickness (Minimum Tickness), and the average plate thickness (Average Tickness) were obtained by SBW-331ML / d manufactured by Kobelco Kaken Co., Ltd. And the total plate thickness deviation (TTV) was measured. Table 1 shows the measurement results of the glass plate before the polishing treatment (however, the measurement is performed in the region excluding the bulging portion), and Table 2 shows the measurement results of the glass plate after the polishing treatment.
表1、2から分かるように、ガラス板の全体板厚偏差は0.8μm以下まで低減されていた。 As can be seen from Tables 1 and 2, the deviation in the overall thickness of the glass plate was reduced to 0.8 μm or less.
更に、上記研磨処理済みガラス板(10サンプル)と上記CO2レーザー照射前のガラス板(10サンプル)について、島津製作所社製精密万能試験機オートグラフAG−ISを用いて、四点曲げ試験を行った。その結果を表3に示す。なお、四点曲げ試験の条件は、加圧冶具幅25mm、支持冶具幅50mm、クロスヘッド下降速度5mm/minとした。 Furthermore, a four-point bending test was performed on the polished glass plate (10 samples) and the glass plate (10 samples) before CO 2 laser irradiation using the Shimadzu precision universal testing machine Autograph AG-IS. went. The results are shown in Table 3. The conditions for the four-point bending test were a pressure jig width of 25 mm, a support jig width of 50 mm, and a crosshead descent speed of 5 mm / min.
表3から明らかなように、ガラス板の端面を溶融固化面とすることにより、端面強度を大幅に高めることができた。 As is clear from Table 3, by using the end face of the glass plate as the melt-solidified surface, the end face strength could be significantly increased.
まず、表4に記載の試料No.1〜7のガラス組成になるように、ガラス原料を調合した後、ガラス溶融炉に投入して1500〜1600℃で溶融し、次いで溶融ガラスをオーバーフローダウンドロー成形装置に供給し、板厚が0.8mmになるようにそれぞれ成形した。その後、[実施例1]と同様の条件にて、ガラス原板をウエハ形状にくり抜いて、得られたガラス板の端面全体を溶融固化面とし、更にアニール処理を行った。得られた各ガラス板について、30〜380℃の温度範囲における平均熱膨張係数α30〜380、密度ρ、歪点Ps、アニール点Ta、軟化点Ts、高温粘度104.0dPa・sにおける温度、高温粘度103.0dPa・sにおける温度、高温粘度102.5dPa・sにおける温度、高温粘度102.0dPa・sにおける温度、液相温度TL及びヤング率Eを評価した。なお、切断後、溶融固化前の各ガラス板について、コベルコ科研社製のSBW−331ML/dにより全体板厚偏差と反り量を測定したところ、全体板厚偏差がそれぞれ3μmであり、反り量がそれぞれ70μmであった。 First, the sample Nos. After the glass raw materials are mixed so as to have a glass composition of 1 to 7, they are put into a glass melting furnace and melted at 1500 to 1600 ° C., and then the molten glass is supplied to an overflow down draw molding apparatus, and the plate thickness is 0. Each was molded to be 0.8 mm. Then, under the same conditions as in [Example 1], the glass original plate was hollowed out into a wafer shape, the entire end face of the obtained glass plate was used as a melt-solidified surface, and further annealing treatment was performed. For each of the obtained glass plate, an average thermal expansion coefficient alpha 30 to 380 in the temperature range of 30 to 380 ° C., at a density [rho, strain point Ps, the annealing point Ta, the softening point Ts, high temperature viscosity 10 4.0 dPa · s The temperature, the temperature at a high temperature viscosity of 10 3.0 dPa · s, the temperature at a high temperature viscosity of 10 2.5 dPa · s, the temperature at a high temperature viscosity of 10 2.0 dPa · s, the liquidus temperature TL and the Young rate E were evaluated. When the total plate thickness deviation and the amount of warpage were measured for each glass plate after cutting and before melting and solidifying with SBW-331ML / d manufactured by Kobelco Kaken Co., Ltd., the total plate thickness deviation was 3 μm, and the amount of warpage was Each was 70 μm.
30〜380℃の温度範囲における平均熱膨張係数α30〜380は、ディラトメーターで測定した値である。 The average coefficient of thermal expansion α 30 to 380 in the temperature range of 30 to 380 ° C. is a value measured by a dilatometer.
密度ρは、周知のアルキメデス法によって測定した値である。 The density ρ is a value measured by the well-known Archimedes method.
歪点Ps、アニール点Ta、軟化点Tsは、ASTM C336の方法に基づいて測定した値である。 The strain point Ps, the annealing point Ta, and the softening point Ts are values measured based on the method of ASTM C336.
高温粘度104.0dPa・s、103.0dPa・s、102.5dPa・sにおける温度は、白金球引き上げ法で測定した値である。 The temperature at a high temperature viscosity of 10 4.0 dPa · s, 10 3.0 dPa · s, and 10 2.5 dPa · s is a value measured by the platinum ball pulling method.
液相温度TLは、標準篩30メッシュ(500μm)を通過し、50メッシュ(300μm)に残るガラス粉末を白金ボートに入れて、温度勾配炉中に24時間保持した後、結晶が析出する温度を顕微鏡観察にて測定した値である。 The liquidus temperature TL is the temperature at which crystals precipitate after passing through a standard sieve of 30 mesh (500 μm) and placing the glass powder remaining in 50 mesh (300 μm) in a platinum boat and holding it in a temperature gradient furnace for 24 hours. It is a value measured by microscopic observation.
ヤング率Eは、共振法により測定した値を指す。 Young's modulus E refers to a value measured by the resonance method.
続いて、ガラス板の表面を研磨装置により研磨処理した。具体的には、ガラス板の両表面を外径が相違する一対の研磨パットで挟み込み、ガラス板と一対の研磨パッドを共に回転させながらガラス板の両表面を研磨処理した。研磨処理の際、時折、ガラス板の一部が研磨パッドから食み出すように制御した。なお、研磨パッドはウレタン製、研磨処理の際に使用した研磨スラリーの平均粒径は2.5μm、研磨速度は15m/分であった。得られた各研磨処理済みガラス板について、コベルコ科研社製のSBW−331ML/dにより全体板厚偏差と反り量を測定した。その結果、全体板厚偏差がそれぞれ0.45μmであり、反り量がそれぞれ35μmであった。 Subsequently, the surface of the glass plate was polished by a polishing device. Specifically, both surfaces of the glass plate were sandwiched between a pair of polishing pads having different outer diameters, and both surfaces of the glass plate were polished while rotating the glass plate and the pair of polishing pads together. During the polishing process, it was occasionally controlled so that a part of the glass plate protruded from the polishing pad. The polishing pad was made of urethane, the average particle size of the polishing slurry used in the polishing treatment was 2.5 μm, and the polishing rate was 15 m / min. For each of the obtained polished glass plates, the total plate thickness deviation and the amount of warpage were measured by SBW-331ML / d manufactured by Kobelco Kaken Co., Ltd. As a result, the total plate thickness deviation was 0.45 μm, and the warpage amount was 35 μm, respectively.
10、27 積層体
11、26 ガラス板
12、24 加工基板
13 剥離層
14、21、25 接着層
20 支持部材
22 半導体チップ
23 封止材
28 配線
29 半田バンプ
10, 27 Laminates 11, 26 Glass plates 12, 24 Processed substrates 13 Release layers 14, 21, 25 Adhesive layers 20 Support members 22 Semiconductor chips 23 Encapsulants 28 Wiring 29 Solder bumps
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019212820A JP6813813B2 (en) | 2019-11-26 | 2019-11-26 | Glass plate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019212820A JP6813813B2 (en) | 2019-11-26 | 2019-11-26 | Glass plate |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015000276A Division JP6631935B2 (en) | 2015-01-05 | 2015-01-05 | Manufacturing method of glass plate |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020045281A JP2020045281A (en) | 2020-03-26 |
JP6813813B2 true JP6813813B2 (en) | 2021-01-13 |
Family
ID=69900664
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019212820A Active JP6813813B2 (en) | 2019-11-26 | 2019-11-26 | Glass plate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6813813B2 (en) |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3516233B2 (en) * | 2000-11-06 | 2004-04-05 | 日本板硝子株式会社 | Manufacturing method of glass substrate for information recording medium |
JP5983422B2 (en) * | 2013-01-21 | 2016-08-31 | 旭硝子株式会社 | Glass substrate polishing method and manufacturing method |
-
2019
- 2019-11-26 JP JP2019212820A patent/JP6813813B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2020045281A (en) | 2020-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6963219B2 (en) | Support glass substrate and laminate using this | |
JP6611079B2 (en) | Glass plate | |
JP7268718B2 (en) | Manufacturing method of supporting glass substrate | |
JP6519221B2 (en) | Glass substrate and laminate using the same | |
JP6802966B2 (en) | Support glass substrate and laminate using this | |
KR102270441B1 (en) | Supporting glass substrate and laminate using same | |
WO2016111152A1 (en) | Supporting glass substrate and manufacturing method therefor | |
JP6593676B2 (en) | Laminated body and semiconductor package manufacturing method | |
US10737965B2 (en) | Method of manufacturing glass sheet | |
JP7538483B2 (en) | Support glass substrate and laminated substrate using same | |
JP2016155736A (en) | Support glass substrate and laminate using the same | |
JP2016169141A (en) | Support glass substrate and laminate using the same | |
JP6955320B2 (en) | Manufacturing method of laminate and semiconductor package | |
JP6813813B2 (en) | Glass plate | |
JP7011215B2 (en) | Support glass substrate and laminate using it | |
JP7051053B2 (en) | Support glass substrate and laminate using it | |
JP2022161964A (en) | Method for manufacturing support glass substrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20191126 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20191126 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200924 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20201029 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201102 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20201118 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20201201 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6813813 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |