[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6809021B2 - Cooling water circulation system - Google Patents

Cooling water circulation system Download PDF

Info

Publication number
JP6809021B2
JP6809021B2 JP2016148949A JP2016148949A JP6809021B2 JP 6809021 B2 JP6809021 B2 JP 6809021B2 JP 2016148949 A JP2016148949 A JP 2016148949A JP 2016148949 A JP2016148949 A JP 2016148949A JP 6809021 B2 JP6809021 B2 JP 6809021B2
Authority
JP
Japan
Prior art keywords
cooling water
circulation path
side circulation
cooling
connecting pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016148949A
Other languages
Japanese (ja)
Other versions
JP2018017471A (en
Inventor
正輔 永田
正輔 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Boshoku Corp
Original Assignee
Toyota Boshoku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Boshoku Corp filed Critical Toyota Boshoku Corp
Priority to JP2016148949A priority Critical patent/JP6809021B2/en
Priority to CN201780031508.XA priority patent/CN109154483B/en
Priority to PCT/JP2017/026724 priority patent/WO2018021255A1/en
Priority to US16/317,426 priority patent/US20190301819A1/en
Publication of JP2018017471A publication Critical patent/JP2018017471A/en
Application granted granted Critical
Publication of JP6809021B2 publication Critical patent/JP6809021B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/01Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using means for separating solid materials from heat-exchange fluids, e.g. filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/08Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by varying the cross-section of the flow channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/24Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas with means, e.g. a container, for supplying liquid or other fluent material to a discharge device
    • B05B7/26Apparatus in which liquids or other fluent materials from different sources are brought together before entering the discharge device
    • B05B7/28Apparatus in which liquids or other fluent materials from different sources are brought together before entering the discharge device in which one liquid or other fluent material is fed or drawn through an orifice into a stream of a carrying fluid
    • B05B7/30Apparatus in which liquids or other fluent materials from different sources are brought together before entering the discharge device in which one liquid or other fluent material is fed or drawn through an orifice into a stream of a carrying fluid the first liquid or other fluent material being fed by gravity, or sucked into the carrying fluid
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28CHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA COME INTO DIRECT CONTACT WITHOUT CHEMICAL INTERACTION
    • F28C3/00Other direct-contact heat-exchange apparatus
    • F28C3/04Other direct-contact heat-exchange apparatus the heat-exchange media both being liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F17/00Removing ice or water from heat-exchange apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • F28F27/003Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus specially adapted for cooling towers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28GCLEANING OF INTERNAL OR EXTERNAL SURFACES OF HEAT-EXCHANGE OR HEAT-TRANSFER CONDUITS, e.g. WATER TUBES OR BOILERS
    • F28G13/00Appliances or processes not covered by groups F28G1/00 - F28G11/00; Combinations of appliances or processes covered by groups F28G1/00 - F28G11/00
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • C02F1/004Processes for the treatment of water whereby the filtration technique is of importance using large scale industrial sized filters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/48Treatment of water, waste water, or sewage with magnetic or electric fields
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/68Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/74Treatment of water, waste water, or sewage by oxidation with air
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/02Non-contaminated water, e.g. for industrial water supply
    • C02F2103/023Water in cooling circuits
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/08Corrosion inhibition
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/22Eliminating or preventing deposits, scale removal, scale prevention
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28CHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA COME INTO DIRECT CONTACT WITHOUT CHEMICAL INTERACTION
    • F28C1/00Direct-contact trickle coolers, e.g. cooling towers
    • F28C2001/006Systems comprising cooling towers, e.g. for recooling a cooling medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2265/00Safety or protection arrangements; Arrangements for preventing malfunction
    • F28F2265/20Safety or protection arrangements; Arrangements for preventing malfunction for preventing development of microorganisms

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Combustion & Propulsion (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Description

本発明は、冷却水循環システムに関し、更に詳しくは、冷却塔側循環経路とチラー機側循環経路とを備える冷却水循環システムに関する。 The present invention relates to a cooling water circulation system, and more particularly to a cooling water circulation system including a cooling tower side circulation path and a chiller machine side circulation path.

従来の冷却水循環システムとして、冷却塔とチラー機との間で冷却水を循環させる冷却塔側循環経路(「一次循環経路」とも称する。)と、チラー機と冷却対象部との間で冷却水を循環させるチラー機側循環経路(「二次循環経路」とも称する。)と、を備えるものが一般に知られている(例えば、特許文献1参照)。 As a conventional cooling water circulation system, a cooling tower side circulation path (also referred to as a "primary circulation path") for circulating cooling water between the cooling tower and the chiller machine and cooling water between the chiller machine and the cooling target portion are used. It is generally known that the chiller machine side circulation path (also referred to as “secondary circulation path”) is provided (see, for example, Patent Document 1).

上記従来の冷却水循環システムでは、冷却塔側循環経路とチラー機側循環経路とは独立しており、各循環経路を冷却水が別々に循環している。そして、業者による防腐剤、殺菌剤等の投与は、通常、冷却塔側循環経路を主に管理メンテナンスが行われており、チラー機のタンクに接続される温度調整器、金型冷却孔、その他の冷却装置等では殆ど行われていない。そのため、製品に直結している冷却配管などの腐食(錆)、シリカ混じりの硬質スケール等が配管内部に付着して、冷却不足が発生して製品品質のばらつき、生産性低下、設備コスト増大など、様々な障害を引き起こしてしまう。 In the conventional cooling water circulation system, the cooling tower side circulation path and the chiller machine side circulation path are independent, and the cooling water circulates separately in each circulation path. And, the administration of preservatives, bactericides, etc. by the contractor is usually performed mainly by managing and maintaining the cooling tower side circulation path, and the temperature controller connected to the tank of the chiller machine, the mold cooling hole, etc. It is rarely done in the cooling system of. As a result, corrosion (rust) of the cooling piping directly connected to the product, hard scale mixed with silica, etc. adhere to the inside of the piping, causing insufficient cooling, resulting in variations in product quality, reduced productivity, increased equipment costs, etc. , Causes various obstacles.

そこで、例えば、図8に示されるように、チラー機106のタンク106a内の冷却水を入れ換える冷却水入換装置100が提案されている。この冷却水入換装置100では、チラー機106の近傍に排水タンク104を設置し、チラー機106のタンク106aと排水タンク104とを排水バルブ105aを備える配管105で接続するとともに、排水タンク104内に、送水ポンプ107aを備える排水配管107の一端側を接続している。そして、冷却水の排水を行うタイミングで、排水バルブ105aを手動で開けて排水した後、排水バルブ105aを手動で閉める構成となっている。 Therefore, for example, as shown in FIG. 8, a cooling water replacement device 100 that replaces the cooling water in the tank 106a of the chiller machine 106 has been proposed. In this cooling water exchange device 100, a drainage tank 104 is installed in the vicinity of the chiller machine 106, and the tank 106a of the chiller machine 106 and the drainage tank 104 are connected by a pipe 105 provided with a drainage valve 105a, and inside the drainage tank 104. Is connected to one end of the drainage pipe 107 provided with the water supply pump 107a. Then, at the timing of draining the cooling water, the drain valve 105a is manually opened to drain the water, and then the drain valve 105a is manually closed.

特開2005−21979号公報Japanese Unexamined Patent Publication No. 2005-21979

しかし、上記従来の冷却水入換装置100では、チラー機106のタンク106a内の冷却水を手動で排水しているので、いつのまにか排水作業が忘れ去られてしまう。また、排水を行うタイミングが長いため、チラー機のタンク内の冷却水の水質が悪化して、タンク内が錆泥状態になってしまう。そのため、排水を行ったときに、フロートバルブの作動部に固形物の錆、スケールなどが付着したり、噛み込み等したりして詰まり傷害が発生して、作動不良となってタンク内から冷却水が溢れてしまうといった問題が懸念される。さらに、チラー機の近傍に排水タンク等の排水設備を設置する必要があり、複雑な構造となってしまう。 However, in the conventional cooling water shunting device 100, the cooling water in the tank 106a of the chiller machine 106 is manually drained, so that the draining work is forgotten. In addition, since the timing of draining is long, the quality of the cooling water in the tank of the chiller machine deteriorates, and the inside of the tank becomes rusty mud. Therefore, when draining water, solid rust, scale, etc. adhere to the operating part of the float valve, or it gets caught and causes clogging injury, resulting in malfunction and cooling from inside the tank. There are concerns about problems such as water overflowing. Further, it is necessary to install a drainage facility such as a drainage tank in the vicinity of the chiller machine, resulting in a complicated structure.

本発明は、上記現状に鑑みてなされたものであり、チラー機側循環経路の冷却水を容易に排水することができる簡易な構造の冷却水循環システムを提供することを目的とする。 The present invention has been made in view of the above situation, and an object of the present invention is to provide a cooling water circulation system having a simple structure capable of easily draining cooling water in a circulation path on the chiller machine side.

上記問題を解決するために、請求項1に記載の発明は、冷却塔とチラー機との間で冷却水を循環させる冷却塔側循環経路と、前記チラー機と冷却対象部との間で冷却水を循環させるチラー機側循環経路と、を備える冷却水循環システムであって、前記冷却塔側循環経路と前記チラー機側循環経路とは、前記チラー機側循環経路を循環する冷却水を前記冷却塔側循環経路に導入するための第1接続管で接続されていることを要旨とする。
請求項2に記載の発明は、請求項1に記載の発明において、前記第1接続管の一端側には、前記冷却塔側循環経路を構成する配管内に配置される差圧噴射器が設けられており、前記差圧噴射器は、前記配管内を流れる冷却水に対して、該冷却水よりも低圧で前記第1接続管を流れる冷却水を導入可能であることを要旨とする。
請求項3に記載の発明は、請求項2に記載の発明において、前記差圧噴射器は、前記第1接続管の一端側に連結され且つ軸心が前記配管内の冷却水の流れ方向に沿うように配置される小径ノズルと、軸心が前記小径ノズルの軸心と一致し且つ吐出口が前記小径ノズルの吐出口よりも前記配管内の冷却水の流れ方向の下流側に位置するように配置される大径ノズルと、前記配管内を流れる冷却水を前記大径ノズル内に取り入れて前記小径ノズルの吐出口の前方に負圧を生じさせる取入口と、を備えることを要旨とする。
請求項4に記載の発明は、請求項3に記載の発明において、前記大径ノズルは、前記小径ノズルの外周面を覆うように配置されており、前記取入口は、前記大径ノズルの前記小径ノズルの外周面を覆う部分に形成されていることを要旨とする。
請求項5に記載の発明は、請求項4に記載の発明において、前記取入口は、前記大径ノズルの軸心回りの円周方向に沿って複数形成されているとともに、前記大径ノズルの軸心回りの円周方向に沿って短軸となる楕円形に形成されていることを要旨とする。
請求項6に記載の発明は、請求項1乃至5のいずれか一項に記載の発明において、前記チラー機側循環経路の送り経路には、循環する冷却水に含まれる不純物を除去する水中不純物分離装置が設けられており、前記水中不純物分離装置には、分離された不純物とともに冷却水を排水する排水口が設けられており、前記第1接続管は、前記排水口と前記冷却塔側循環経路の返し経路とを接続していることを要旨とする。
請求項7に記載の発明は、請求項1乃至6のいずれか一項に記載の発明において、前記第1接続管には、制御部の開閉制御により前記第1接続管を開閉する電動バルブが備えられていることを要旨とする。
請求項8に記載の発明は、請求項1乃至7のいずれか一項に記載の発明において、前記第1接続管には、ワッシャーラバー式の定流量弁が備えられていることを要旨とする。
請求項9に記載の発明は、請求項1乃至8のいずれか一項に記載の発明において、前記冷却塔側循環経路と前記チラー機側循環経路とは、前記冷却塔側循環経路を循環する冷却水を前記チラー機側循環経路に導入するための第2接続管で接続されていることを要旨とする。
請求項10に記載の発明は、請求項9に記載の発明において、前記第2接続管は、前記冷却塔側循環経路の送り経路と前記チラー機に設けられたタンクとを接続していることを要旨とする。
請求項11に記載の発明は、請求項10に記載の発明において、前記第2接続管の一端側には、前記タンクの水面の上下変動に伴って前記第2接続管を開閉するフロート弁が設けられていることを要旨とする。
In order to solve the above problem, the invention according to claim 1 is a cooling tower side circulation path for circulating cooling water between the cooling tower and the chiller machine, and cooling between the chiller machine and the cooling target portion. A cooling water circulation system including a chiller machine side circulation path for circulating water, wherein the cooling tower side circulation path and the chiller machine side circulation path cool the cooling water circulating in the chiller machine side circulation path. The gist is that they are connected by the first connecting pipe for introduction into the tower side circulation path.
The invention according to claim 2 is the invention according to claim 1, wherein a differential pressure injector arranged in a pipe constituting the cooling tower side circulation path is provided on one end side of the first connecting pipe. The gist is that the differential pressure injector can introduce the cooling water flowing through the first connecting pipe to the cooling water flowing through the pipe at a lower pressure than the cooling water.
The invention according to claim 3 is the invention according to claim 2, wherein the differential pressure injector is connected to one end side of the first connecting pipe, and the axis is in the flow direction of the cooling water in the pipe. The small diameter nozzle arranged along the axis and the axis coincide with the axis of the small diameter nozzle, and the discharge port is located downstream of the discharge port of the small diameter nozzle in the flow direction of the cooling water in the pipe. It is a gist to include a large-diameter nozzle arranged in the above, and an intake that takes in cooling water flowing in the pipe into the large-diameter nozzle and generates a negative pressure in front of the discharge port of the small-diameter nozzle. ..
The invention according to claim 4 is the invention according to claim 3, wherein the large-diameter nozzle is arranged so as to cover the outer peripheral surface of the small-diameter nozzle, and the intake is the said of the large-diameter nozzle. The gist is that it is formed on the portion that covers the outer peripheral surface of the small-diameter nozzle.
The invention according to claim 5 is the invention according to claim 4, wherein a plurality of intake ports are formed along the circumferential direction around the axis of the large-diameter nozzle, and the large-diameter nozzle is formed. The gist is that it is formed in an elliptical shape with a short axis along the circumferential direction around the axis.
The invention according to claim 6 is the invention according to any one of claims 1 to 5, wherein the feed path of the chiller machine side circulation path is an underwater impurity that removes impurities contained in the circulating cooling water. A separation device is provided, and the underwater impurity separation device is provided with a drain port for draining cooling water together with the separated impurities, and the first connection pipe is circulated between the drain port and the cooling tower side. The gist is that it is connected to the return route of the route.
The invention according to claim 7 is the invention according to any one of claims 1 to 6, wherein the first connecting pipe has an electric valve that opens and closes the first connecting pipe by controlling the opening and closing of a control unit. The gist is that it is prepared.
The invention according to claim 8 is the invention according to any one of claims 1 to 7, wherein the first connecting pipe is provided with a washer rubber type constant flow valve. ..
The invention according to claim 9 is the invention according to any one of claims 1 to 8, wherein the cooling tower side circulation path and the chiller machine side circulation path circulate in the cooling tower side circulation path. The gist is that the cooling water is connected by a second connecting pipe for introducing the cooling water into the circulation path on the chiller machine side.
The invention according to claim 10 is the invention according to claim 9, wherein the second connecting pipe connects the feeding path of the cooling tower side circulation path and the tank provided in the chiller machine. Is the gist.
The invention according to claim 11 is the invention according to claim 10, wherein a float valve for opening and closing the second connecting pipe is provided on one end side of the second connecting pipe as the water surface of the tank fluctuates up and down. The gist is that it is provided.

本発明の冷却水循環システムによると、冷却塔側循環経路とチラー機側循環経路とは、チラー機側循環経路を循環する冷却水を冷却塔側循環経路に導入するための第1接続管で接続されている。これにより、第1接続管を介してチラー機側循環経路を循環する冷却水が冷却塔側循環経路に導入される。そして、業者による防腐剤、殺菌剤等の投与は、通常、冷却塔側循環経路を主に管理メンテナンスが行われているので、冷却塔側循環経路に導入された冷却水は水質改善されることとなる。さらに、従来のようにチラー機の近傍に排水タンク等の排水設備を設置する必要がなく、簡易な構造とすることができる。
また、前記第1接続管の一端側に、差圧噴射器が設けられており、前記差圧噴射器が、前記配管内を流れる冷却水に対して、該冷却水よりも低圧で前記第1接続管を流れる冷却水を導入可能である場合は、チラー機側循環経路を流れる冷却水が冷却塔側循環経路を流れる冷却水よりも低圧であっても、差圧噴射器によりチラー機側循環経路を流れる冷却水が冷却塔側循環経路に導入される。
また、前記差圧噴射器が、小径ノズルと、大径ノズルと、取入口と、を備える場合は、配管内を流れる冷却水を取入口から大径ノズル内に取り入れることで、小径ノズルの吐出口の前方に負圧が生じる。この負圧による吸引力によって、第1接続管を流れる冷却水よりも速い流速で小径ノズルの吐出口から冷却水が引き出され、取入口から取入れられた冷却水と小径ノズルの吐出口から引き出された冷却水とが合わせされて大径ノズルの吐出口から配管内に噴射される。よって、簡易な構造の差圧噴射器によりチラー機側循環経路を流れる冷却水が冷却塔側循環経路に導入される。
また、前記大径ノズルが、前記小径ノズルの外周面を覆うように配置されており、前記取入口が、前記大径ノズルの前記小径ノズルの外周面を覆う部分に形成されている場合は、取入口から冷却水が大径ノズル内に効果的に取り入れられて小径ノズルの吐出口の前方により大きな負圧が生じる。よって、差圧噴射器の噴射力がより高められる。
また、前記取入口が、前記大径ノズルの軸心回りの円周方向に沿って複数形成されているとともに、前記大径ノズルの軸心回りの円周方向に沿って短軸となる楕円形に形成されている場合は、取入口から冷却水が大径ノズル内により効果的に取り入れられる。よって、差圧噴射器の噴射力がより高められる。
また、前記チラー機側循環経路の送り経路に、水中不純物分離装置が設けられており、前記水中不純物分離装置に、排水口が設けられており、前記第1接続管が、前記排水口と前記冷却塔側循環経路の返し経路とを接続している場合は、第1接続管を介して、水中不純物分離装置で分離された不純物とともに冷却水が冷却塔側循環経路の返し経路に導入される。
また、前記第1接続管に、制御部の開閉制御により前記第1接続管を開閉する電動バルブが備えられている場合は、制御部のタイマ機能等によりチラー機側循環経路を流れる冷却水の排水を自動化できる。
また、前記第1接続管に、ワッシャーラバー式の定流量弁が備えられている場合は、冷却水の排水時に固形不純物が定流量弁を通過しても目詰りが防止される。
また、前記冷却塔側循環経路と前記チラー機側循環経路とが、第2接続管で接続されている場合は、第2接続管を介して冷却塔側循環経路を循環する冷却水がチラー機側循環経路に導入される。よって、チラー機側循環経路で汚染された冷却水と冷却塔側循環経路で水質改善された冷却水とを容易に入れ換えることができる。その結果、冷却水の入れ換えを実施しない場合に比べて、製品に直結している冷却配管などの腐食(錆)やシリカ混じりの硬質スケール等が配管内部に付着することが抑制されるため、冷却効率の低下が防止され、品質安定につながる。
また、前記第2接続管が、前記冷却塔側循環経路の送り経路と前記チラー機に設けられたタンクとを接続している場合は、第2接続管を介して、冷却塔側循環経路を循環する冷却水がチラー機のタンクに導入される。
さらに、前記第2接続管の一端側に、フロート弁が設けられている場合は、フロート弁によりタンクの水面の上下変動に伴って第2接続管が自動的に開閉される。
According to the cooling water circulation system of the present invention, the cooling tower side circulation path and the chiller machine side circulation path are connected by a first connecting pipe for introducing the cooling water circulating in the chiller machine side circulation path into the cooling tower side circulation path. Has been done. As a result, the cooling water that circulates in the chiller machine side circulation path via the first connecting pipe is introduced into the cooling tower side circulation path. And, since the administration of preservatives, bactericides, etc. by the contractor is usually performed mainly by managing and maintaining the cooling tower side circulation path, the water quality of the cooling water introduced into the cooling tower side circulation path should be improved. It becomes. Further, it is not necessary to install a drainage facility such as a drainage tank near the chiller machine as in the conventional case, and the structure can be simplified.
Further, a differential pressure injector is provided on one end side of the first connecting pipe, and the differential pressure injector has a lower pressure than the cooling water with respect to the cooling water flowing in the pipe. When the cooling water flowing through the connecting pipe can be introduced, even if the cooling water flowing through the chiller machine side circulation path is lower than the cooling water flowing through the cooling tower side circulation path, the chiller machine side circulation is performed by the differential pressure injector. The cooling water flowing through the path is introduced into the cooling tower side circulation path.
When the differential pressure injector includes a small diameter nozzle, a large diameter nozzle, and an intake port, the cooling water flowing in the pipe is taken into the large diameter nozzle from the inlet to discharge the small diameter nozzle. Negative pressure is generated in front of the outlet. Due to the suction force due to this negative pressure, the cooling water is drawn out from the discharge port of the small diameter nozzle at a flow rate faster than that of the cooling water flowing through the first connecting pipe, and is drawn out from the cooling water taken in from the intake and the discharge port of the small diameter nozzle. The cooling water is combined and injected into the pipe from the discharge port of the large-diameter nozzle. Therefore, the cooling water flowing through the chiller machine side circulation path is introduced into the cooling tower side circulation path by the differential pressure injector having a simple structure.
When the large-diameter nozzle is arranged so as to cover the outer peripheral surface of the small-diameter nozzle and the intake is formed in a portion of the large-diameter nozzle that covers the outer peripheral surface of the small-diameter nozzle. Cooling water is effectively taken into the large-diameter nozzle from the intake port, and a larger negative pressure is generated in front of the discharge port of the small-diameter nozzle. Therefore, the injection force of the differential pressure injector is further increased.
Further, a plurality of the intakes are formed along the circumferential direction around the axis of the large-diameter nozzle, and an elliptical shape having a short axis along the circumferential direction of the axis of the large-diameter nozzle. When formed in, cooling water is more effectively taken into the large diameter nozzle from the intake. Therefore, the injection force of the differential pressure injector is further increased.
Further, an underwater impurity separation device is provided in the feed path of the circulation path on the chiller machine side, a drainage port is provided in the underwater impurity separation device, and the first connection pipe is the drainage port and the said. When connected to the return path of the cooling tower side circulation path, the cooling water is introduced into the return path of the cooling tower side circulation path together with the impurities separated by the underwater impurity separator via the first connecting pipe. ..
Further, when the first connecting pipe is provided with an electric valve that opens and closes the first connecting pipe by controlling the opening and closing of the control unit, the cooling water flowing through the chiller machine side circulation path is provided by the timer function of the control unit or the like. Drainage can be automated.
Further, when the first connecting pipe is provided with a washer rubber type constant flow valve, clogging is prevented even if solid impurities pass through the constant flow valve when the cooling water is drained.
When the cooling tower side circulation path and the chiller machine side circulation path are connected by a second connecting pipe, the cooling water circulating in the cooling tower side circulation path via the second connecting pipe is the chiller machine. Introduced into the lateral circulation pathway. Therefore, the cooling water contaminated in the chiller machine side circulation path and the cooling water whose water quality is improved in the cooling tower side circulation path can be easily replaced. As a result, corrosion (rust) of the cooling pipe directly connected to the product and hard scale mixed with silica are suppressed from adhering to the inside of the pipe, as compared with the case where the cooling water is not replaced. The decrease in efficiency is prevented, leading to stable quality.
When the second connecting pipe connects the feed path of the cooling tower side circulation path and the tank provided in the chiller machine, the cooling tower side circulation path is provided via the second connecting pipe. The circulating cooling water is introduced into the tank of the chiller machine.
Further, when a float valve is provided on one end side of the second connecting pipe, the float valve automatically opens and closes the second connecting pipe as the water surface of the tank fluctuates up and down.

本発明について、本発明による典型的な実施形態の非限定的な例を挙げ、言及された複数の図面を参照しつつ以下の詳細な記述にて更に説明するが、同様の参照符号は図面のいくつかの図を通して同様の部品を示す。
実施例に係る冷却水循環システムの全体概略図である。 図1の要部拡大図である。 実施例に係る第1接続管を説明するための説明図である。 実施例に係る差圧噴射器を説明するための説明図である。 上記差圧噴射器の縦断面図である。 実施例に係る水中不純物分離装置の一部を断面とした側面図である。 他の形態に係る冷却水循環システムを説明するための説明図である。 従来の冷却水入換装置を説明するための説明図である。
The present invention will be further described in the following detailed description with reference to the plurality of references mentioned with reference to non-limiting examples of typical embodiments according to the invention, but similar reference numerals are in the drawings. Similar parts are shown through several figures.
It is an overall schematic diagram of the cooling water circulation system which concerns on Example. It is an enlarged view of the main part of FIG. It is explanatory drawing for demonstrating the 1st connection pipe which concerns on Example. It is explanatory drawing for demonstrating the differential pressure injector which concerns on Example. It is a vertical sectional view of the said differential pressure injector. It is a side view which made a part of the underwater impurity separation apparatus which concerns on Example a cross section. It is explanatory drawing for demonstrating the cooling water circulation system which concerns on other form. It is explanatory drawing for demonstrating the conventional cooling water shunting apparatus.

ここで示される事項は例示的なものおよび本発明の実施形態を例示的に説明するためのものであり、本発明の原理と概念的な特徴とを最も有効に且つ難なく理解できる説明であると思われるものを提供する目的で述べたものである。この点で、本発明の根本的な理解のために必要である程度以上に本発明の構造的な詳細を示すことを意図してはおらず、図面と合わせた説明によって本発明の幾つかの形態が実際にどのように具現化されるかを当業者に明らかにするものである。 The matters shown here are for exemplifying and exemplifying embodiments of the present invention, and are considered to be the most effective and effortless explanations for understanding the principles and conceptual features of the present invention. It is stated for the purpose of providing what seems to be. In this regard, it is not intended to show structural details of the invention beyond a certain degree necessary for a fundamental understanding of the invention, and some embodiments of the invention are provided by description in conjunction with the drawings. It is intended to clarify to those skilled in the art how it is actually realized.

<冷却水循環システム>
本実施形態に係る冷却水循環システムは、冷却塔(5)とチラー機(6)との間で冷却水を循環させる冷却塔側循環経路(2)と、チラー機(6)と冷却対象部(7)との間で冷却水を循環させるチラー機側循環経路(3)と、を備える冷却水循環システム(1)であって、冷却塔側循環経路(2)とチラー機側循環経路(3)とは、チラー機側循環経路を循環する冷却水を冷却塔側循環経路に導入するための第1接続管(31)で接続されている(例えば、図1及び図2等参照)。
<Cooling water circulation system>
In the cooling water circulation system according to the present embodiment, the cooling tower side circulation path (2) for circulating cooling water between the cooling tower (5) and the chiller machine (6), the chiller machine (6), and the cooling target portion ( A cooling water circulation system (1) including a chiller machine side circulation path (3) for circulating cooling water between the cooling water and the cooling tower side circulation path (2) and a chiller machine side circulation path (3). Is connected by a first connecting pipe (31) for introducing the cooling water circulating in the chiller machine side circulation path into the cooling tower side circulation path (see, for example, FIGS. 1 and 2).

なお、上記第1接続管(31)による冷却水の導入量、導入時期等は特に問わない。チラー機で設定してある循環水温度に影響を与えないとの観点から、上記冷却水の導入量としては、チラー機側循環経路(3)を循環する冷却水の循環水量の0.1〜5%(好ましくは0.1〜3%、特に0.1〜2%)であることが好ましい。 The amount of cooling water introduced by the first connecting pipe (31), the time of introduction, and the like are not particularly limited. From the viewpoint of not affecting the circulating water temperature set in the chiller machine, the amount of cooling water introduced is 0.1 to 0.1 of the circulating water amount of the cooling water circulating in the chiller machine side circulation path (3). It is preferably 5% (preferably 0.1 to 3%, particularly 0.1 to 2%).

本実施形態に係る冷却水循環システムとしては、例えば、上記第1接続管(31)の一端側には、冷却塔側循環経路(2)を構成する配管(60)内に配置される差圧噴射器(36)が設けられており、差圧噴射器は、配管(60)内を流れる冷却水に対して、該冷却水よりも低圧で第1接続管(31)を流れる冷却水を導入可能である形態(例えば、図4等参照)を挙げることができる。この場合、例えば、上記差圧噴射器(36)は、配管(60)内を流れる冷却水に対して、該冷却水よりも小流量で第1接続管(31)を流れる冷却水を導入可能であることができる。 As a cooling water circulation system according to the present embodiment, for example, a differential pressure injection arranged in a pipe (60) constituting a cooling tower side circulation path (2) on one end side of the first connection pipe (31). A vessel (36) is provided, and the differential pressure injector can introduce cooling water flowing through the first connecting pipe (31) at a lower pressure than the cooling water to the cooling water flowing in the pipe (60). (For example, see FIG. 4 and the like). In this case, for example, the differential pressure injector (36) can introduce the cooling water flowing through the first connecting pipe (31) to the cooling water flowing in the pipe (60) at a flow rate smaller than that of the cooling water. Can be.

上述の形態の場合、例えば、上記差圧噴射器(36)は、第1接続管(31)の一端側に連結され且つ軸心が配管(60)内の冷却水の流れ方向に沿うように配置される小径ノズル(52)と、軸心が小径ノズルの軸心と一致し且つ吐出口が小径ノズルの吐出口よりも配管(60)内の冷却水の流れ方向の下流側に位置するように配置される大径ノズル(53)と、配管(60)内を流れる冷却水を大径ノズル(53)内に取り入れて小径ノズル(52)の吐出口の前方に負圧を生じさせる取入口(54)と、を備えることができる(例えば、図4及び図5等参照)。 In the case of the above-described embodiment, for example, the differential pressure injector (36) is connected to one end side of the first connecting pipe (31) and its axis is along the flow direction of the cooling water in the pipe (60). The axis of the small diameter nozzle (52) to be arranged coincides with the axis of the small diameter nozzle, and the discharge port is located downstream of the discharge port of the small diameter nozzle in the flow direction of the cooling water in the pipe (60). Large-diameter nozzle (53) arranged in the (54) and can be provided (see, for example, FIGS. 4 and 5).

上述の形態の場合、例えば、上記大径ノズル(53)は、小径ノズル(52)の外周面を覆うように配置されており、取入口(54)は、大径ノズルの小径ノズルの外周面を覆う部分に形成されていることができる(例えば、図4及び図5等参照)。さらに、例えば、上記取入口(54)は、大径ノズル(53)の軸心回りの円周方向に沿って複数形成されているとともに、大径ノズルの軸心回りの円周方向に沿って短軸となる楕円形に形成されていることができる。 In the case of the above-described embodiment, for example, the large-diameter nozzle (53) is arranged so as to cover the outer peripheral surface of the small-diameter nozzle (52), and the intake (54) is the outer peripheral surface of the small-diameter nozzle of the large-diameter nozzle. It can be formed in a portion covering the (see, for example, FIGS. 4 and 5). Further, for example, a plurality of the intakes (54) are formed along the circumferential direction around the axis of the large-diameter nozzle (53), and along the circumferential direction around the axis of the large-diameter nozzle. It can be formed in an elliptical shape with a short axis.

本実施形態に係る冷却水循環システムとしては、例えば、上記チラー機側循環経路(3)の送り経路(3a)には、循環する冷却水に含まれる不純物を除去する水中不純物分離装置(17)が設けられており、水中不純物分離装置(17)には、分離された不純物とともに冷却水を排水する排水口(17a)が設けられており、第1接続管(31)は、排水口(17a)と冷却塔側循環経路(2)の返し経路(2b)とを接続している形態(例えば、図2等参照)を挙げることができる。 As the cooling water circulation system according to the present embodiment, for example, in the feed path (3a) of the chiller machine side circulation path (3), an underwater impurity separation device (17) for removing impurities contained in the circulating cooling water is provided. The underwater impurity separator (17) is provided with a drain port (17a) for draining cooling water together with the separated impurities, and the first connection pipe (31) is provided with a drain port (17a). And the return path (2b) of the cooling tower side circulation path (2) can be connected (see, for example, FIG. 2).

本実施形態に係る冷却水循環システムとしては、例えば、上記第1接続管(31)には、制御部(32)の開閉制御により第1接続管を開閉する電動バルブ(33)が備えられている形態(例えば、図3等参照)を挙げることができる。さらに、例えば、上記第1接続管(31)には、ワッシャーラバー式の定流量弁(34)が備えられている形態(例えば、図3等参照)を挙げることができる。 As the cooling water circulation system according to the present embodiment, for example, the first connecting pipe (31) is provided with an electric valve (33) that opens and closes the first connecting pipe by controlling the opening and closing of the control unit (32). The form (see, for example, FIG. 3 and the like) can be mentioned. Further, for example, the first connecting pipe (31) may be provided with a washer rubber type constant flow valve (34) (see, for example, FIG. 3).

本実施形態に係る冷却水循環システムとしては、例えば、上記冷却塔側循環経路(2)とチラー機側循環経路(3)とは、冷却塔側循環経路を循環する冷却水をチラー機側循環経路に導入するための第2接続管(38)で接続されている形態(例えば、図2等参照)を挙げることができる。 As the cooling water circulation system according to the present embodiment, for example, the cooling tower side circulation path (2) and the chiller machine side circulation path (3) are chiller machine side circulation paths for cooling water circulating in the cooling tower side circulation path. (For example, see FIG. 2 and the like), which is connected by a second connecting pipe (38) for introduction into the system.

上述の形態の場合、例えば、上記第2接続管(38)は、冷却塔側循環経路(2)の送り経路(2a)とチラー機(6)に設けられたタンク(6a)とを接続していることができる(例えば、図2等参照)。この場合、例えば、上記第2接続管(38)の一端側には、タンク(6a)の水面の上下変動に伴って第2接続管を開閉するフロート弁(39)が設けられていることができる。 In the case of the above-described embodiment, for example, the second connecting pipe (38) connects the feeding path (2a) of the cooling tower side circulation path (2) and the tank (6a) provided in the chiller machine (6). (See, for example, FIG. 2 etc.). In this case, for example, a float valve (39) that opens and closes the second connecting pipe as the water surface of the tank (6a) fluctuates up and down is provided on one end side of the second connecting pipe (38). it can.

なお、上記実施形態で記載した各構成の括弧内の符号は、後述する実施例に記載の具体的構成との対応関係を示すものである。 The reference numerals in parentheses of each configuration described in the above-described embodiment indicate the correspondence with the specific configurations described in the examples described later.

以下、図面を用いて実施例により本発明を具体的に説明する。 Hereinafter, the present invention will be specifically described with reference to the drawings.

(1)冷却水循環システムの構成
本実施例に係る冷却水循環システム1は、図1に示すように、冷却塔5とチラー機6との間で冷却水を循環させる冷却塔側循環経路2(「一次循環経路」とも称する。)と、チラー機6と冷却対象部7との間で冷却水を循環させるチラー機側循環経路3(「二次循環経路」とも称する。)と、を備えている。なお、上記冷却対象部7としては、例えば、射出成形装置、プレス加工装置、溶接装置、加熱装置、トリム装置などを挙げることができる。
(1) Configuration of Cooling Water Circulation System As shown in FIG. 1, the cooling water circulation system 1 according to the present embodiment has a cooling tower side circulation path 2 (““ Cooling tower side circulation path 2 ”” for circulating cooling water between the cooling tower 5 and the chiller machine 6. It is also referred to as a "primary circulation path") and a chiller machine side circulation path 3 (also referred to as a "secondary circulation path") for circulating cooling water between the chiller machine 6 and the cooling target portion 7. .. Examples of the cooling target portion 7 include an injection molding device, a press working device, a welding device, a heating device, a trim device, and the like.

上記冷却塔5は、チラー機6から送られる温度上昇した冷却水を溜めて散水する散水槽5aと、散水槽5aから散水された冷却水を空気により冷却する充填材5bと、外気を吸気口から取り込んで充填材5bの内部を通過させる送風機5cと、充填材5bで冷却されて落下してきた冷却水を溜める水槽5dと、を備えている。この水槽5d内には、水槽5d内の冷却水中にマイクロバブルを発生させるマイクロバブル発生装置40Bを構成する多孔質セラミック製の直管41Bと、水槽5dの底部に沈殿するスライム等の沈殿物を除去するための噴射器9と、が備えられている。さらに、冷却塔5の吸気口及び散水槽5aを覆うように多機能ネット10が張設されている。この多機能ネット10により、冷却塔5では、藻、スライム、レジオネラ菌等の発生が防止されるとともに、冷却効率が向上される。 The cooling tower 5 includes a sprinkler tank 5a that collects and sprinkles cooling water that has risen in temperature sent from the chiller machine 6, a filler 5b that cools the cooling water sprinkled from the sprinkler tank 5a with air, and an intake port for outside air. It is provided with a blower 5c that is taken in from the inside and passed through the inside of the filler 5b, and a water tank 5d that stores the cooling water that has been cooled by the filler 5b and has fallen. In the water tank 5d, a straight pipe 41B made of porous ceramics constituting a microbubble generator 40B for generating microbubbles in the cooling water in the water tank 5d, and a precipitate such as slime settled at the bottom of the water tank 5d are placed. An injector 9 for removing is provided. Further, a multifunction net 10 is stretched so as to cover the intake port of the cooling tower 5 and the sprinkler tank 5a. The multifunctional net 10 prevents the generation of algae, slime, Legionella and the like in the cooling tower 5, and improves the cooling efficiency.

上記チラー機6は、冷却対象部7から送られる温度上昇した冷却水を溜めるタンク6aと、タンク6a内の冷却水を冷却するための熱交換器6bと、を備えている。このタンク6a内には、タンク6a内の冷却水中にマイクロバブルを発生させるマイクロバブル発生装置40Cを構成する多孔質セラミック製の直管41Cが備えられている。 The chiller machine 6 includes a tank 6a for storing cooling water whose temperature has risen sent from the cooling target unit 7, and a heat exchanger 6b for cooling the cooling water in the tank 6a. Inside the tank 6a, a straight pipe 41C made of porous ceramics constituting the microbubble generator 40C for generating microbubbles in the cooling water in the tank 6a is provided.

上記冷却塔側循環経路2は、一端側が冷却塔5の水槽5dに接続され且つ他端側がチラー機6の熱交換器6bに接続される送り経路2aと、一端側がチラー機6の熱交換器6bに接続され且つ他端側が冷却塔5の散水槽5aに接続される返し経路2bと、を備えている。この送り経路2aには、冷却塔5の水槽5d内の冷却水をチラー機6の熱交換器6bに向かって圧送する圧送ポンプ12が備えられている。また、送り経路2aの圧送ポンプ12の上流側には、一端側が噴射器9に接続された導入管13の他端側が接続されている。この導入管13には、冷却塔5の水槽5d内の冷却水を噴射器9に向かって圧送する圧送ポンプ14が備えられている。そして、圧送ポンプ14で圧送された冷却水が噴射器9から噴射されることで、水槽5d内の底部に沈殿する沈殿物が除去される。 The cooling tower side circulation path 2 has a feed path 2a whose one end is connected to the water tank 5d of the cooling tower 5 and whose other end is connected to the heat exchanger 6b of the chiller machine 6, and one end is the heat exchanger of the chiller machine 6. It is provided with a return path 2b which is connected to 6b and whose other end is connected to the sprinkler tank 5a of the cooling tower 5. The feed path 2a is provided with a pressure feed pump 12 that pumps the cooling water in the water tank 5d of the cooling tower 5 toward the heat exchanger 6b of the chiller machine 6. Further, the other end side of the introduction pipe 13 whose one end side is connected to the injector 9 is connected to the upstream side of the pressure feed pump 12 of the feed path 2a. The introduction pipe 13 is provided with a pressure feed pump 14 that pumps the cooling water in the water tank 5d of the cooling tower 5 toward the injector 9. Then, the cooling water pumped by the pressure pump 14 is injected from the injector 9, so that the sediment that settles at the bottom of the water tank 5d is removed.

上記導入管13には、無機物等からなる水処理剤を収容したバスケットフィルタ16と、冷却水中に含まれる不純物を除去する水中不純物分離装置17と、冷却水をトルマリン粒状物に接触させてトルマリン処理水とするトルマリン処理装置18と、が備えられている。この水中不純物分離装置17の排水口17aには、開閉弁22で開閉されるドレン用配管21が接続されている。この開閉弁22は、冷却水の電気伝導率を検出するセンサ23からの検出値に応じて制御部24により開閉制御される。そして、ドレン用配管21が開放されることで、水中不純物分離装置17の排水口17aから不純物とともに冷却水が排水される。また、導入管13には、バイパス経路25が設けられており、バイパス経路25には、冷却水を磁気で処理する磁気式水処理装置19が備えられている。 In the introduction pipe 13, a basket filter 16 containing a water treatment agent made of an inorganic substance or the like, an underwater impurity separation device 17 for removing impurities contained in the cooling water, and a tourmaline treatment by bringing the cooling water into contact with the tourmaline granules. A tourmaline treatment device 18 for water is provided. A drain pipe 21 opened and closed by the on-off valve 22 is connected to the drain port 17a of the underwater impurity separating device 17. The on-off valve 22 is controlled to open and close by the control unit 24 according to a value detected from the sensor 23 that detects the electric conductivity of the cooling water. Then, when the drain pipe 21 is opened, the cooling water is drained together with the impurities from the drain port 17a of the underwater impurity separating device 17. Further, the introduction pipe 13 is provided with a bypass path 25, and the bypass path 25 is provided with a magnetic water treatment device 19 that magnetically treats the cooling water.

なお、本実施例では、導入管13に備えられる水中不純物分離装置17を例示したが、これに限定されず、例えば、図1中に仮想線で示すように、導入管13に代えて又は加えて、冷却塔循環経路2の返し経路2b(又は送り経路2a)に備えられる水中不純物分離装置17としてもよい。さらに、本実施例では、導入管13に備えられるトルマリン処理装置18を例示したが、これに限定されず、例えば、図1中に仮想線で示すように、導入管13に代えて又は加えて、冷却塔側循環経路2の送り経路2a(又は返し経路2b)に備えられるトルマリン処理装置18としてもよい。さらに、チラー機側循環経路3の後述する返し経路3b(又は送り経路3a)に備えられるトルマリン処理装置18としてもよい。 In this embodiment, the underwater impurity separating device 17 provided in the introduction pipe 13 has been illustrated, but the present invention is not limited to this, and for example, as shown by a virtual line in FIG. 1, the introduction pipe 13 is replaced or added. Therefore, the underwater impurity separating device 17 provided in the return path 2b (or the feed path 2a) of the cooling tower circulation path 2 may be used. Further, in this embodiment, the tourmaline processing device 18 provided in the introduction pipe 13 has been illustrated, but the present invention is not limited to this, and for example, as shown by a virtual line in FIG. 1, in place of or in addition to the introduction pipe 13. , The tourmaline processing device 18 provided in the feed path 2a (or return path 2b) of the cooling tower side circulation path 2 may be used. Further, the tourmaline processing device 18 provided in the return path 3b (or the feed path 3a) described later in the chiller machine side circulation path 3 may be used.

上記チラー機側循環経路3は、一端側がチラー機6のタンク6aに接続され且つ他端側が冷却対象部7に接続される送り経路3aと、一端側が冷却対象部7に接続され且つ他端側がチラー機6のタンク6aに接続される返し経路3bと、を備えている。この送り経路3aには、チラー機6のタンク6a内の冷却水を冷却対象部7に向かって圧送する圧送ポンプ26が備えられている。また、送り経路3aの圧送ポンプ26の下流側には、バイパス経路27が設けられている。このバイパス経路27には、冷却水中に含まれる不純物を除去する水中不純物分離装置17と、冷却水中にマイクロバブルを発生させるマイクロバブル発生装置40Aと、が備えられている。このマイクロバブル発生装置40Aは、多孔質セラミック製の直管41Aと、トルマリン粒状物を収容した収容体53と、を備えている。よって、マイクロバブル発生装置40Aは、冷却水中にマイクロバブルを発生させる機能の他に、冷却水をトルマリン粒状物に接触させてトルマリン処理水とする機能も有している。 The chiller machine side circulation path 3 has a feed path 3a having one end connected to the tank 6a of the chiller machine 6 and the other end connected to the cooling target portion 7, and one end side connected to the cooling target portion 7 and the other end side. It includes a return path 3b connected to the tank 6a of the chiller machine 6. The feed path 3a is provided with a pressure feed pump 26 that pumps the cooling water in the tank 6a of the chiller machine 6 toward the cooling target portion 7. A bypass path 27 is provided on the downstream side of the pump 26 of the feed path 3a. The bypass path 27 is provided with an underwater impurity separating device 17 that removes impurities contained in the cooling water, and a microbubble generator 40A that generates microbubbles in the cooling water. The micro-bubble generator 40A includes a straight tube 41A made of porous ceramics and an accommodating body 53 accommodating tourmaline granules. Therefore, in addition to the function of generating microbubbles in the cooling water, the microbubble generator 40A also has a function of bringing the cooling water into contact with the tourmaline granules to make tourmaline treated water.

上記水中不純物分離装置17は、図6に示すように、流入口70a及び流出口70bを有するハウジング70を備えている。このハウジング70内には、内部空間を上部濾過室S1と下部沈殿室S2とに上下に仕切るように邪魔板71が設けられている。この上部濾過室S1内には、複数の濾材72が収容されている。また、ハウジング70の底部には下部沈殿室S2に連なる排水口17aが設けられている。 As shown in FIG. 6, the underwater impurity separating device 17 includes a housing 70 having an inflow port 70a and an outflow port 70b. In the housing 70, a baffle plate 71 is provided so as to vertically partition the internal space into the upper filtration chamber S1 and the lower sedimentation chamber S2. A plurality of filter media 72 are housed in the upper filtration chamber S1. Further, a drain port 17a connected to the lower sedimentation chamber S2 is provided at the bottom of the housing 70.

上記冷却塔側循環経路2とチラー機側循環経路3とは、図2に示すように、チラー機側循環経路3を循環する冷却水を冷却塔側循環経路2に導入するための第1接続管31で接続されている。この第1接続管31は、水中不純物分離装置17の排水口17aと冷却塔側循環経路2の返し経路2bとを接続している。 As shown in FIG. 2, the cooling tower side circulation path 2 and the chiller machine side circulation path 3 are first connected to introduce the cooling water circulating in the chiller machine side circulation path 3 into the cooling tower side circulation path 2. It is connected by a pipe 31. The first connection pipe 31 connects the drain port 17a of the underwater impurity separation device 17 and the return path 2b of the cooling tower side circulation path 2.

上記第1接続管31には、制御部32の開閉制御により第1接続管31を開閉する電動バルブ33が備えられている。この制御部32は、タイマ機能を備え、このタイマ機能により、冷却水の水質状態や温度設定状態等に応じて、排水時間帯や入換え排水量を任意に設定することができる。また、第1接続管31には、ワッシャーラバー式の定流量弁34が備えられている。さらに、第1接続管31には、図3に示すように、ボールバルブ43、塩ビY形ストレーナ44、フィルタ45、サイトグラス46、チューブフィッティング47、透明テフロン(登録商標)チューブ48、チャッキバルブ49、及びボールバルブ50が備えられている。 The first connecting pipe 31 is provided with an electric valve 33 that opens and closes the first connecting pipe 31 by controlling the opening and closing of the control unit 32. The control unit 32 has a timer function, which allows the drainage time zone and the replacement drainage amount to be arbitrarily set according to the water quality state of the cooling water, the temperature setting state, and the like. Further, the first connecting pipe 31 is provided with a washer rubber type constant flow valve 34. Further, as shown in FIG. 3, the first connecting pipe 31 includes a ball valve 43, a PVC Y-shaped strainer 44, a filter 45, a sight glass 46, a tube fitting 47, a transparent Teflon (registered trademark) tube 48, and a check valve 49. , And a ball valve 50 is provided.

なお、上記ボールバルブ43は、取水側のサイズは大きくした方が取水量が確保できるので口径25Aを採用した。また、塩ビY形ストレーナ44は、固形物が進入したときの機器破損防止用に設けられており、目詰まり状態を目視確認できるような透明材料より形成されている。また、フィルタ45は、通常品としてのメッシュ40で目詰まりを起こし易いので、排水機器へ影響のでない20メッシュを採用した。また、電動バルブ33は、ダイヤフラムタイプで噛み込み等のトラブルがあるので、ボールバルブタイプを採用した。さらに、サイトグラス46は、排水が行われているか、透明ガラスと水車を目視確認が容易であるとともに、流量確認が容易である。また、ワッシャー式定流量弁34は、固形不純物が進入した場合を想定して、目詰まりが起こり難い。また、チューブフィッティング47は、メンテナンス性を良くするために採用した。また、透明テフロン(登録商標)チューブ48は、温水に強く、耐候性、水質の汚れ状態を目視確認できる。また、チャッキバルブ49は、装置停止中に逆流作用が発生するため、逆流防止精度が高いリフト式を採用した。また、ボールバルブ50は、排水口径が小さいほど排水が円滑であるので15Aサイズを採用した。 The ball valve 43 has a diameter of 25 A because the amount of water intake can be secured by increasing the size of the water intake side. Further, the PVC Y-shaped strainer 44 is provided for preventing equipment damage when a solid substance enters, and is made of a transparent material so that a clogging state can be visually confirmed. Further, as the filter 45, the mesh 40 as a normal product is likely to cause clogging, so 20 mesh that does not affect the drainage equipment is adopted. Further, since the electric valve 33 is a diaphragm type and has troubles such as biting, a ball valve type is adopted. Further, in the sight glass 46, it is easy to visually check the transparent glass and the water turbine to see if the water is drained, and it is easy to check the flow rate. Further, the washer-type constant flow valve 34 is less likely to be clogged, assuming that solid impurities have entered. Further, the tube fitting 47 is adopted in order to improve maintainability. In addition, the transparent Teflon (registered trademark) tube 48 is resistant to hot water, and can visually confirm the weather resistance and the state of water pollution. Further, since the check valve 49 causes a backflow action while the device is stopped, a lift type having high backflow prevention accuracy is adopted. Further, the ball valve 50 adopts a size of 15A because the smaller the drainage diameter, the smoother the drainage.

上記第1接続管31の一端側には、図4に示すように、冷却塔側循環経路2を構成する配管60(例えば、内径;70.3mm、縦断面積;3879.5mm2)内に配置される差圧噴射器36が設けられている。この差圧噴射器36は、配管60内を流れる冷却水に対して、該冷却水よりも低圧且つ小流量で第1接続管31を流れる冷却水を導入可能とされている。 As shown in FIG. 4, one end side of the first connecting pipe 31 is arranged in a pipe 60 (for example, inner diameter; 70.3 mm, vertical cross-sectional area; 3879.5 mm2) constituting the cooling tower side circulation path 2. A differential pressure injector 36 is provided. The differential pressure injector 36 is capable of introducing the cooling water flowing through the first connecting pipe 31 to the cooling water flowing through the pipe 60 at a lower pressure and a smaller flow rate than the cooling water.

上記差圧噴射器36は、第1接続管31の一端側に連結され且つ軸心が配管60内の冷却水の流れ方向に沿うように配置される小径ノズル52と、軸心が小径ノズル52の軸心と一致し且つ吐出口53aが小径ノズル52の吐出口52aよりも配管60内の冷却水の流れ方向の下流側に位置するように配置される大径ノズル54と、配管60内を流れる冷却水を大径ノズル53内に取り入れて小径ノズル52の吐出口52aの前方に負圧を生じさせる取入口54と、を備えている(図5参照)。この小径ノズル52は、ノズル孔が吐出口52a(例えば、内径;5mm)に向かって縮径している。また、大径ノズル53は、ノズル孔が吐出口53aに向かって拡径している。さらに、大径ノズル53の吐出口53aの開口面積は、小径ノズル52の吐出口52aの開口面積よりも大きい。 The differential pressure injector 36 has a small-diameter nozzle 52 that is connected to one end side of the first connecting pipe 31 and whose axis is arranged along the flow direction of the cooling water in the pipe 60, and a small-diameter nozzle 52 whose axis is the small-diameter nozzle 52. The large-diameter nozzle 54, which is arranged so as to coincide with the axis of the nozzle and the discharge port 53a is located downstream of the discharge port 52a of the small-diameter nozzle 52 in the flow direction of the cooling water in the pipe 60, and the inside of the pipe 60. It is provided with an intake port 54 that takes in the flowing cooling water into the large-diameter nozzle 53 and generates a negative pressure in front of the discharge port 52a of the small-diameter nozzle 52 (see FIG. 5). In this small diameter nozzle 52, the nozzle hole is reduced in diameter toward the discharge port 52a (for example, inner diameter; 5 mm). Further, in the large-diameter nozzle 53, the nozzle hole has an enlarged diameter toward the discharge port 53a. Further, the opening area of the discharge port 53a of the large-diameter nozzle 53 is larger than the opening area of the discharge port 52a of the small-diameter nozzle 52.

上記大径ノズル53は、小径ノズル52の外周面を覆うように配置されている。また、取入口54は、大径ノズル53の小径ノズル52の外周面を覆う部分(具体的に、大径ノズル53において吐出口53aと軸方向に反対側の後端部)に形成されている。また、取入口54は、大径ノズル53の軸心回りの円周方向に沿って複数(例えば、6個)形成されている。さらに、各取入口54は、大径ノズル53の軸心回りの円周方向に沿って短軸となる楕円形(例えば、楕円面積;75.39mm2)に形成されている。 The large-diameter nozzle 53 is arranged so as to cover the outer peripheral surface of the small-diameter nozzle 52. Further, the intake port 54 is formed at a portion of the large-diameter nozzle 53 that covers the outer peripheral surface of the small-diameter nozzle 52 (specifically, a rear end portion of the large-diameter nozzle 53 that is axially opposite to the discharge port 53a). .. Further, a plurality (for example, 6) intake ports 54 are formed along the circumferential direction around the axis of the large diameter nozzle 53. Further, each intake port 54 is formed in an elliptical shape (for example, an elliptical area; 75.39 mm2) having a short axis along the circumferential direction around the axis of the large diameter nozzle 53.

上記冷却塔側循環経路2とチラー機側循環経路3とは、図2に示すように、冷却塔側循環経路2を循環する冷却水をチラー機側循環経路3に導入するための第2接続管38で接続されている。この第2接続管38は、冷却塔側循環経路2の送り経路2aとチラー機6のタンク6aとを接続している。また、第2接続管38の一端側には、タンク6aの水面の上下変動に伴って第2接続管を開閉するフロート弁39が設けられている。 As shown in FIG. 2, the cooling tower side circulation path 2 and the chiller machine side circulation path 3 are connected to a second connection for introducing the cooling water circulating in the cooling tower side circulation path 2 into the chiller machine side circulation path 3. It is connected by a tube 38. The second connecting pipe 38 connects the feeding path 2a of the cooling tower side circulation path 2 and the tank 6a of the chiller machine 6. Further, on one end side of the second connecting pipe 38, a float valve 39 that opens and closes the second connecting pipe as the water surface of the tank 6a fluctuates up and down is provided.

(2)冷却水循環システムの作用
次に、上記構成の冷却水循環システム1の作用について説明する。冷却塔側循環経路2を循環する冷却水は、図1に示すように、導入管13を流れる際に、バスケットフィルタ16、水中不純物分離装置17、トルマリン処理装置18、及び磁気式水処理装置19の作用により水質改善されるとともに、冷却塔5の水槽5d内に貯留される際に、マイクロバブル発生装置40Bの作用により水質改善されて、防錆及び防スケールに優れるとともに洗浄機能を有する冷却水とされる。一方、チラー機側循環経路3を循環する冷却水は、水中不純物分離器17及びトルマリン処理機能付きマイクロバブル発生装置40Aの作用により水質改善されるとともに、チラー機6のタンク6a内に貯留される際に、マイクロバブル発生装置40Cの作用により水質改善されて、防錆及び防スケールに優れるとともに洗浄機能を有する冷却水とされる。
(2) Operation of the cooling water circulation system Next, the operation of the cooling water circulation system 1 having the above configuration will be described. As shown in FIG. 1, the cooling water circulating in the cooling tower side circulation path 2 flows through the introduction pipe 13, the basket filter 16, the underwater impurity separation device 17, the tourmaline treatment device 18, and the magnetic water treatment device 19. The water quality is improved by the action of, and when stored in the water tank 5d of the cooling tower 5, the water quality is improved by the action of the micro bubble generator 40B, and the cooling water is excellent in rust prevention and scale prevention and has a cleaning function. It is said that. On the other hand, the cooling water circulating in the circulation path 3 on the chiller machine side is improved in water quality by the action of the underwater impurity separator 17 and the microbubble generator 40A with a tourmaline treatment function, and is stored in the tank 6a of the chiller machine 6. At that time, the water quality is improved by the action of the micro bubble generator 40C, and the cooling water is excellent in rust prevention and scale prevention and has a cleaning function.

そして、水質改善された冷却水が各循環経路2、3を循環することで、冷却水の水質低下に起因する、金型冷却孔、冷却配管、熱交換器等でのスケールの付着・堆積・流路閉塞/腐食・錆・水漏れ/スライム・藻の発生等が抑制される。その結果、成形品の品質安定化(金型を一定の温度に維持できる;冷却不足でのシルバー不良が発生し難い)、節電、省エネ(熱交換器の熱交換率の向上により消費電力を大幅に削減;節電、節水によるCO2排出量削減;熱交換器の高圧異常トラブルの低減)、設備管理コストの大幅削減(設備にかかる電気料金を削減;薬品洗浄費用を削減;清掃メンテナンス費用の削減)等の様々なメリットが得られる。 Then, the cooling water with improved water quality circulates in each of the circulation paths 2 and 3, and the scale adheres / accumulates in the mold cooling hole, the cooling pipe, the heat exchanger, etc. due to the deterioration of the water quality of the cooling water. Channel blockage / corrosion / rust / water leakage / slime / algae generation are suppressed. As a result, the quality of molded products is stabilized (the mold can be maintained at a constant temperature; silver defects are unlikely to occur due to insufficient cooling), power saving, and energy saving (improvement of the heat exchange rate of the heat exchanger greatly increases power consumption). Reduction of CO2 emissions by power saving and water saving; Reduction of high pressure abnormality troubles of heat exchangers), Significant reduction of equipment management costs (Reduction of electricity charges for equipment; Reduction of chemical cleaning costs; Reduction of cleaning maintenance costs) Various merits such as can be obtained.

さらに、上記冷却水循環システム1では、制御部32のタイマ機能により電動バルブ33が開放されると、第1接続管31を介して水中不純物分離装置17の排水口17aから不純物とともに冷却水が冷却塔側循環経路2の返し経路2bに導入される。このとき、差圧噴射器36により、冷却塔側循環経路2を構成する配管60内を流れる冷却水(例えば、水圧:0.4MPa、流量:120L/min)に対して、該冷却水よりも低圧且つ小流量で第1接続管31を流れる冷却水(例えば、水圧:0.3MPa、流量:1.8L/min)が導入される。一方、チラー機6のタンク6aの水面の下降に伴ってフロート弁39が作動されると、第2接続管38を介して冷却塔側循環経路2の送り経路2aを流れる冷却水がタンク6aに導入される。すなわち、チラー機側循環経路3で汚染された冷却水と冷却塔側循環経路2で水質改善された冷却水とが入れ換えられる。 Further, in the cooling water circulation system 1, when the electric valve 33 is opened by the timer function of the control unit 32, the cooling water is discharged together with the impurities from the drain port 17a of the underwater impurity separation device 17 via the first connecting pipe 31. It is introduced into the return path 2b of the side circulation path 2. At this time, the differential pressure injector 36 is more than the cooling water for the cooling water (for example, water pressure: 0.4 MPa, flow rate: 120 L / min) flowing in the pipe 60 constituting the cooling tower side circulation path 2. Cooling water (for example, water pressure: 0.3 MPa, flow rate: 1.8 L / min) flowing through the first connecting pipe 31 at a low pressure and a small flow rate is introduced. On the other hand, when the float valve 39 is operated as the water surface of the tank 6a of the chiller machine 6 descends, the cooling water flowing through the feed path 2a of the cooling tower side circulation path 2 via the second connecting pipe 38 enters the tank 6a. be introduced. That is, the cooling water contaminated in the chiller machine side circulation path 3 and the cooling water whose water quality is improved in the cooling tower side circulation path 2 are replaced.

なお、上記水中不純物分離装置17から排出される排水量は、チラー機側循環経路3のチラー機6の冷却効率に支障がないように、チラー機側循環水量の2%以内で定流量弁34からチャッキバルブ49を通過して、冷却塔側循環経路2の返し経路2bに導入されることが好ましい。ただし、チラー機6の使用によって熱交換器6b内の循環水量は異なるので、仕様にあった排水流量を換算して定流量弁34を選定する必要がある。 The amount of drainage discharged from the underwater impurity separator 17 is within 2% of the amount of circulating water on the chiller machine side from the constant flow valve 34 so as not to interfere with the cooling efficiency of the chiller machine 6 in the chiller machine side circulation path 3. It is preferably introduced into the return path 2b of the cooling tower side circulation path 2 through the check valve 49. However, since the amount of circulating water in the heat exchanger 6b differs depending on the use of the chiller machine 6, it is necessary to convert the drainage flow rate according to the specifications and select the constant flow valve 34.

ここで、上記差圧噴射器36の作用について説明する。図4に示すように、第1接続管31において、定流量弁34で制御された水量1.8L/minの排水は、チューブ56(内径;5mm)内で水量1.8L/minのまま流速2.5m/secに加速され、小径ノズル52内で水量1.8L/minのまま流速2.5m/secを維持する。一方、配管60内を流れる総量120L/minの冷却水のうちの一部(水量;10L/min)が取入口54から大径ノズル53内に取り入れられることで、小径ノズル52の吐出口52aの前方に負圧が発生する。この負圧の吸引力(取入口54がない場合に比べて5倍の吸引力)によって、小径ノズル52内を流れる排水は、水量1.8L/minのまま流速2.5m/secを維持して吐出口52aから引き出される。この引き出された水量1.8L/minの排水が取入口54から取り入れられた水量10L/minの冷却水と合流し、総量11.8L/minとなって大径ノズル53内で流速2.5m/secと加速され、大径ノズル53の吐出口53aから配管60内へ放出(噴射)される。この大径ノズル53aから配管60内に放出された総量11.8L/minの冷却水は、差圧噴射器36の外側を流れる水量110L/minの冷却水と合流し、総量121.8L/minで且つ流速0.522m/secとなって冷却塔5の上部散水槽5aへ送られる(図1参照)。 Here, the operation of the differential pressure injector 36 will be described. As shown in FIG. 4, in the first connecting pipe 31, the drainage of 1.8 L / min of water controlled by the constant flow valve 34 has a flow rate of 1.8 L / min of water in the tube 56 (inner diameter; 5 mm). It is accelerated to 2.5 m / sec and maintains a flow rate of 2.5 m / sec with a water volume of 1.8 L / min in the small diameter nozzle 52. On the other hand, a part (water amount; 10 L / min) of the total amount of 120 L / min of cooling water flowing in the pipe 60 is taken into the large diameter nozzle 53 from the intake port 54, so that the discharge port 52a of the small diameter nozzle 52 Negative pressure is generated forward. Due to this negative pressure suction force (suction force 5 times that when there is no intake 54), the drainage flowing in the small diameter nozzle 52 maintains a flow velocity of 2.5 m / sec while maintaining a water volume of 1.8 L / min. It is pulled out from the discharge port 52a. The drainage of 1.8 L / min of water drawn out merges with the cooling water of 10 L / min of water taken in from the intake 54, and the total amount becomes 11.8 L / min, and the flow velocity is 2.5 m in the large diameter nozzle 53. It is accelerated to / sec and discharged (injected) into the pipe 60 from the discharge port 53a of the large-diameter nozzle 53. The total amount of 11.8 L / min of cooling water discharged from the large-diameter nozzle 53a into the pipe 60 merges with the 110 L / min of water flowing outside the differential pressure injector 36, and the total amount of cooling water is 121.8 L / min. The flow velocity is 0.522 m / sec and the water is sent to the upper sprinkler tank 5a of the cooling tower 5 (see FIG. 1).

(3)実施例の効果
本実施例の冷却水循環システム1によると、冷却塔側循環経路2とチラー機側循環経路3とは、チラー機側循環経路3を循環する冷却水を冷却塔側循環経路2に導入するための第1接続管31で接続されている。これにより、第1接続管31を介してチラー機側循環経路3を循環する冷却水が冷却塔側循環経路2に導入される。そして、業者による防腐剤、殺菌剤等の投与は、通常、冷却塔側循環経路2を主に管理メンテナンスが行われているので、冷却塔側循環経路2に導入された冷却水は水質改善されることとなる。さらに、従来のようにチラー機6の近傍に排水タンク等の排水設備を設置する必要がなく、簡易な構造とすることができる。
(3) Effect of Example According to the cooling water circulation system 1 of this embodiment, the cooling tower side circulation path 2 and the chiller machine side circulation path 3 circulate the cooling water circulating in the chiller machine side circulation path 3 on the cooling tower side. It is connected by a first connecting pipe 31 for introduction into the route 2. As a result, the cooling water that circulates in the chiller machine side circulation path 3 via the first connecting pipe 31 is introduced into the cooling tower side circulation path 2. In the administration of preservatives, bactericides, etc. by a trader, the cooling tower side circulation path 2 is usually mainly managed and maintained, so that the cooling water introduced into the cooling tower side circulation path 2 is improved in water quality. The Rukoto. Further, it is not necessary to install a drainage facility such as a drainage tank in the vicinity of the chiller machine 6 as in the conventional case, and the structure can be simplified.

また、本実施例では、第1接続管31の一端側には、差圧噴射器36が設けられており、差圧噴射器36は、配管60内を流れる冷却水に対して、該冷却水よりも低圧で第1接続管31を流れる冷却水を導入可能である。これにより、チラー機側循環経路3を流れる冷却水が冷却塔側循環経路2を流れる冷却水よりも低圧であっても、差圧噴射器36によりチラー機側循環経路3を流れる冷却水が冷却塔側循環経路2に導入される。 Further, in the present embodiment, a differential pressure injector 36 is provided on one end side of the first connecting pipe 31, and the differential pressure injector 36 with respect to the cooling water flowing in the pipe 60. It is possible to introduce cooling water flowing through the first connecting pipe 31 at a lower pressure than that. As a result, even if the cooling water flowing through the chiller machine side circulation path 3 has a lower pressure than the cooling water flowing through the cooling tower side circulation path 2, the differential pressure injector 36 cools the cooling water flowing through the chiller machine side circulation path 3. It is introduced into the tower side circulation path 2.

また、本実施例では、差圧噴射器36は、小径ノズル52と、大径ノズル53と、取入口54と、を備える。これにより、配管60内を流れる冷却水を取入口54から大径ノズル53内に取り入れることで、小径ノズル52の吐出口52aの前方に負圧が生じる。この負圧による吸引力によって、第1接続管31を流れる冷却水よりも速い流速(例えば、第1接続管31を流れる冷却水の流速の約4倍の流速)で小径ノズル52の吐出口52aから冷却水が引き出され、取入口54から取入れられた冷却水と小径ノズル52の吐出口52aから引き出された冷却水とが合わせされて大径ノズル63の吐出口53aから配管60内に噴射される。よって、簡易な構造の差圧噴射器36によりチラー機側循環経路3を流れる冷却水が冷却塔側循環経路2に導入される。 Further, in this embodiment, the differential pressure injector 36 includes a small diameter nozzle 52, a large diameter nozzle 53, and an intake port 54. As a result, by taking in the cooling water flowing in the pipe 60 from the inlet 54 into the large-diameter nozzle 53, a negative pressure is generated in front of the discharge port 52a of the small-diameter nozzle 52. Due to the suction force due to this negative pressure, the discharge port 52a of the small-diameter nozzle 52 has a flow rate faster than that of the cooling water flowing through the first connecting pipe 31 (for example, about four times the flow rate of the cooling water flowing through the first connecting pipe 31). The cooling water is drawn out from the inlet 54, and the cooling water taken in from the intake port 54 and the cooling water drawn out from the discharge port 52a of the small diameter nozzle 52 are combined and injected into the pipe 60 from the discharge port 53a of the large diameter nozzle 63. To. Therefore, the cooling water flowing through the chiller machine side circulation path 3 is introduced into the cooling tower side circulation path 2 by the differential pressure injector 36 having a simple structure.

また、本実施例では、大径ノズル53は、小径ノズル52の外周面を覆うように配置されており、取入口54は、大径ノズル53の小径ノズル52の外周面を覆う部分に形成されている。これにより、取入口54から冷却水が大径ノズル53内に効果的に取り入れられて小径ノズル52の吐出口の前方により大きな負圧が生じる。よって、差圧噴射器36の噴射力がより高められる。 Further, in the present embodiment, the large-diameter nozzle 53 is arranged so as to cover the outer peripheral surface of the small-diameter nozzle 52, and the intake 54 is formed in a portion of the large-diameter nozzle 53 that covers the outer peripheral surface of the small-diameter nozzle 52. ing. As a result, the cooling water is effectively taken into the large-diameter nozzle 53 from the intake port 54, and a larger negative pressure is generated in front of the discharge port of the small-diameter nozzle 52. Therefore, the injection force of the differential pressure injector 36 is further increased.

また、本実施例では、取入口54は、大径ノズル53の軸心回りの円周方向に沿って複数形成されているとともに、大径ノズル53の軸心回りの円周方向に沿って短軸となる楕円形に形成されている。これにより、取入口54から冷却水が大径ノズル53内により効果的に取り入れられる。よって、差圧噴射器36の噴射力がより高められる。 Further, in the present embodiment, a plurality of intake ports 54 are formed along the circumferential direction of the large-diameter nozzle 53 around the axis, and are short along the circumferential direction of the large-diameter nozzle 53. It is formed in an elliptical shape as an axis. As a result, the cooling water is more effectively taken into the large-diameter nozzle 53 from the intake port 54. Therefore, the injection force of the differential pressure injector 36 is further increased.

また、本実施例では、チラー機側循環経路3の送り経路3aには、水中不純物分離装置17が設けられており、水中不純物分離装置17には、排水口17aが設けられており、第1接続管31は、排水口17aと冷却塔側循環経路2の返し経路2bとを接続している。これにより、第1接続管31を介して、水中不純物分離装置17で分離された不純物とともに冷却水が冷却塔側循環経路2の返し経路2bに導入される。 Further, in this embodiment, the feed path 3a of the chiller machine side circulation path 3 is provided with the underwater impurity separating device 17, and the underwater impurity separating device 17 is provided with the drain port 17a. The connection pipe 31 connects the drain port 17a and the return path 2b of the cooling tower side circulation path 2. As a result, the cooling water is introduced into the return path 2b of the cooling tower side circulation path 2 together with the impurities separated by the underwater impurity separating device 17 via the first connecting pipe 31.

また、本実施例では、第1接続管31には、制御部32の開閉制御により第1接続管31を開閉する電動バルブ33が備えられている。これにより、制御部32のタイマ機能等によりチラー機側循環経路3を流れる冷却水の排水を自動化できる。 Further, in the present embodiment, the first connecting pipe 31 is provided with an electric valve 33 that opens and closes the first connecting pipe 31 by controlling the opening and closing of the control unit 32. As a result, the drainage of the cooling water flowing through the chiller machine side circulation path 3 can be automated by the timer function of the control unit 32 or the like.

また、本実施例では、第1接続管31には、ワッシャーラバー式の定流量弁34が備えられている。これにより、冷却水の排水時に固形不純物が定流量弁34を通過しても目詰りが防止される。 Further, in the present embodiment, the first connecting pipe 31 is provided with a washer rubber type constant flow valve 34. As a result, clogging is prevented even if solid impurities pass through the constant flow valve 34 when the cooling water is drained.

また、本実施例では、冷却塔側循環経路2とチラー機側循環経路3とは、第2接続管38で接続されている。これにより、第2接続管38を介して冷却塔側循環経路2を循環する冷却水がチラー機側循環経路3に導入される。よって、チラー機側循環経路3で汚染された冷却水と冷却塔側循環経路2で水質改善された冷却水とを容易に入れ換えることができる。その結果、冷却水の入れ換えを実施しない場合に比べて、製品に直結している冷却配管などの腐食(錆)やシリカ混じりの硬質スケール等が配管内部に付着することが抑制されるため、冷却効率の低下が防止され、品質安定につながる。 Further, in this embodiment, the cooling tower side circulation path 2 and the chiller machine side circulation path 3 are connected by a second connecting pipe 38. As a result, the cooling water that circulates in the cooling tower side circulation path 2 via the second connecting pipe 38 is introduced into the chiller machine side circulation path 3. Therefore, the cooling water contaminated in the chiller machine side circulation path 3 and the cooling water whose water quality is improved in the cooling tower side circulation path 2 can be easily replaced. As a result, corrosion (rust) of the cooling pipe directly connected to the product and hard scale mixed with silica are suppressed from adhering to the inside of the pipe, as compared with the case where the cooling water is not replaced. The decrease in efficiency is prevented, leading to stable quality.

また、本実施例では、第2接続管38は、冷却塔側循環経路2の送り経路2aとチラー機6に設けられたタンク6aとを接続している。これにより、第2接続管38を介して、冷却塔側循環経路2を循環する冷却水がチラー機6のタンク6aに導入される。 Further, in this embodiment, the second connecting pipe 38 connects the feeding path 2a of the cooling tower side circulation path 2 and the tank 6a provided in the chiller machine 6. As a result, the cooling water circulating in the cooling tower side circulation path 2 is introduced into the tank 6a of the chiller machine 6 via the second connecting pipe 38.

さらに、本実施例では、第2接続管38の一端側には、フロート弁39が設けられている。これにより、フロート弁39によりタンク6aの水面の上下変動に伴って第2接続管38が自動的に開閉される。 Further, in this embodiment, a float valve 39 is provided on one end side of the second connecting pipe 38. As a result, the float valve 39 automatically opens and closes the second connecting pipe 38 as the water surface of the tank 6a fluctuates up and down.

尚、本発明においては、上記実施例に限られず、目的、用途に応じて本発明の範囲内で種々変更した実施例とすることができる。すなわち、上記実施例では、第1接続管31の一端側に、配管60内に配置される差圧噴射器36を設ける形態を例示したが、これに限定されず、冷却塔側循環経路2の循環圧に対してチラー機側循環経路3の循環圧が高い又は同等である場合には、例えば、図7に示すように、第1接続管31の一端側に差圧噴射器36を設けることなく、第1接続管36の一端側を配管60の外周側に直接的に接続するようにしてもよい。 It should be noted that the present invention is not limited to the above-mentioned examples, and various modifications can be made within the scope of the present invention according to the purpose and application. That is, in the above embodiment, the embodiment in which the differential pressure injector 36 arranged in the pipe 60 is provided on one end side of the first connecting pipe 31 is illustrated, but the present invention is not limited to this, and the cooling tower side circulation path 2 When the circulation pressure of the chiller machine side circulation path 3 is higher or equivalent to the circulation pressure, for example, as shown in FIG. 7, a differential pressure injector 36 is provided on one end side of the first connecting pipe 31. Instead, one end side of the first connecting pipe 36 may be directly connected to the outer peripheral side of the pipe 60.

また、上記実施例では、チラー機側循環経路3で汚染された冷却水と冷却塔側循環経路2で水質改善された冷却水とを入れ換える冷却水循環システム1を例示したが、これに限定されず、例えば、チラー機側循環経路3で汚染された冷却水を冷却塔側循環経路2に導入する一方、チラー機側循環経路3には、冷却塔側循環経路2の冷却水とは別に用意された冷却水を導入する冷却水循環システムとしてもよい。 Further, in the above embodiment, the cooling water circulation system 1 in which the cooling water contaminated in the chiller machine side circulation path 3 and the cooling water whose water quality is improved in the cooling tower side circulation path 2 is replaced is illustrated, but the present invention is not limited thereto. For example, the cooling water contaminated in the chiller machine side circulation path 3 is introduced into the cooling tower side circulation path 2, while the chiller machine side circulation path 3 is prepared separately from the cooling water in the cooling tower side circulation path 2. It may be a cooling water circulation system that introduces cooling water.

また、上記実施例では、水中不純物分離装置17の排水口17aと冷却塔側循環経路2とを接続する第1接続管31を例示したが、これに限定されず、例えば、チラー機側循環経路3(送り経路3a又は返し経路3b)と冷却塔側循環経路2(送り経路2a又は返し経路2b)とを直接的に接続する第1接続管としてもよい。 Further, in the above embodiment, the first connection pipe 31 that connects the drain port 17a of the underwater impurity separation device 17 and the cooling tower side circulation path 2 is illustrated, but the present invention is not limited to this, and for example, the chiller machine side circulation path. It may be a first connecting pipe which directly connects 3 (feed path 3a or return path 3b) and cooling tower side circulation path 2 (feed path 2a or return path 2b).

さらに、上記実施例では、冷却塔側循環経路2とチラー機6のタンク6aとを接続する第2接続管38を例示したが、これに限定されず、例えば、冷却塔側循環経路2(送り経路2a又は返し経路2b)とチラー機側循環経路3(送り経路3a又は返し経路3b)とを直接的に接続する第2接続管としてもよい。 Further, in the above embodiment, the second connection pipe 38 connecting the cooling tower side circulation path 2 and the tank 6a of the chiller machine 6 is illustrated, but the present invention is not limited to this, and for example, the cooling tower side circulation path 2 (feed). It may be a second connecting pipe that directly connects the path 2a or the return path 2b) and the chiller machine side circulation path 3 (feed path 3a or return path 3b).

前述の例は単に説明を目的とするものでしかなく、本発明を限定するものと解釈されるものではない。本発明を典型的な実施形態の例を挙げて説明したが、本発明の記述および図示において使用された文言は、限定的な文言ではなく説明的および例示的なものであると理解される。ここで詳述したように、その形態において本発明の範囲または精神から逸脱することなく、添付の特許請求の範囲内で変更が可能である。ここでは、本発明の詳述に特定の構造、材料および実施例を参照したが、本発明をここにおける開示事項に限定することを意図するものではなく、むしろ、本発明は添付の特許請求の範囲内における、機能的に同等の構造、方法、使用の全てに及ぶものとする。 The above examples are for illustration purposes only and are not to be construed as limiting the invention. Although the present invention has been described with reference to typical embodiments, the wording used in the description and illustration of the present invention is understood to be descriptive and exemplary rather than limiting wording. As detailed herein, modifications can be made within the scope of the appended claims without departing from the scope or spirit of the invention in that form. Although specific structures, materials and examples have been referred to herein in detail of the invention, it is not intended to limit the invention to the disclosures herein, but rather the invention is claimed in the accompanying claims. It shall cover all functionally equivalent structures, methods and uses within the scope.

本発明は上記で詳述した実施形態に限定されず、本発明の請求項に示した範囲で様々な変形または変更が可能である。 The present invention is not limited to the embodiments detailed above, and various modifications or modifications can be made within the scope of the claims of the present invention.

本発明は、チラー機側循環経路を循環する冷却水を排水する技術として広く利用される。特に、チラー機側循環経路の汚染された冷却水と冷却塔側循環経路の水質改善された冷却水とを入れ換える技術として好適に利用される。 The present invention is widely used as a technique for draining cooling water circulating in a circulation path on the chiller machine side. In particular, it is suitably used as a technique for replacing the contaminated cooling water in the chiller machine side circulation path with the cooling water having improved water quality in the cooling tower side circulation path.

1;冷却水循環システム、2;冷却塔側循環経路、3;チラー機側循環経路、5;冷却塔、6;チラー機、6a;タンク、7;冷却対象部、17;水中不純物分離装置、17a;排水口、31;第1接続管、32;制御部、33;電動バルブ、34;定流量弁、36;差圧噴射器、38;第2接続管、39;フロート弁、52;小径ノズル、53;大径ノズル、54;取入口、60;配管。 1; Cooling water circulation system, 2; Cooling tower side circulation path, 3; Chiller machine side circulation path, 5; Cooling tower, 6; Chiller machine, 6a; Tank, 7; Cooling target part, 17; Underwater impurity separator, 17a Drain port, 31; 1st connection pipe, 32; Control unit, 33; Electric valve, 34; Constant flow valve, 36; Differential pressure injector, 38; 2nd connection pipe, 39; Float valve, 52; Small diameter nozzle , 53; large diameter nozzle, 54; intake, 60; piping.

Claims (11)

冷却塔とチラー機との間で冷却水を循環させる冷却塔側循環経路と、前記チラー機と冷却対象部との間で冷却水を循環させるチラー機側循環経路と、を備える冷却水循環システムであって、
前記冷却塔側循環経路と前記チラー機側循環経路とは、前記チラー機側循環経路を循環する冷却水を前記冷却塔側循環経路に導入するための第1接続管で接続されており、
前記第1接続管の一端側には、前記冷却塔側循環経路を構成する配管内に配置される差圧噴射器が設けられており、
前記差圧噴射器は、前記配管内を流れる冷却水に対して、該冷却水よりも低圧で前記第1接続管を流れる冷却水を導入可能であることを特徴とする冷却水循環システム。
A cooling water circulation system including a cooling tower side circulation path for circulating cooling water between the cooling tower and the chiller machine, and a chiller machine side circulation path for circulating cooling water between the chiller machine and the cooling target portion. There,
The cooling tower side circulation path and the chiller machine side circulation path are connected by a first connecting pipe for introducing cooling water circulating in the chiller machine side circulation path into the cooling tower side circulation path .
On one end side of the first connecting pipe, a differential pressure injector arranged in the pipe constituting the cooling tower side circulation path is provided.
The cooling water circulation system is characterized in that the differential pressure injector can introduce cooling water flowing through the first connecting pipe at a lower pressure than the cooling water to the cooling water flowing through the pipe .
前記差圧噴射器は、前記第1接続管の一端側に連結され且つ軸心が前記配管内の冷却水の流れ方向に沿うように配置される小径ノズルと、軸心が前記小径ノズルの軸心と一致し且つ吐出口が前記小径ノズルの吐出口よりも前記配管内の冷却水の流れ方向の下流側に位置するように配置される大径ノズルと、前記配管内を流れる冷却水を前記大径ノズル内に取り入れて前記小径ノズルの吐出口の前方に負圧を生じさせる取入口と、を備える請求項記載の冷却水循環システム。 The differential pressure injector has a small-diameter nozzle that is connected to one end side of the first connecting pipe and whose axis is arranged along the flow direction of cooling water in the pipe, and a shaft whose axis is the shaft of the small-diameter nozzle. The large-diameter nozzle, which coincides with the center and is arranged so that the discharge port is located downstream of the discharge port of the small-diameter nozzle in the flow direction of the cooling water in the pipe, and the cooling water flowing in the pipe are described. cooling water circulation system according to claim 1, further comprising a, and intake giving incorporated into the large-diameter nozzle produce negative pressure in front of the discharge opening of the small diameter nozzle. 前記大径ノズルは、前記小径ノズルの外周面を覆うように配置されており、
前記取入口は、前記大径ノズルの前記小径ノズルの外周面を覆う部分に形成されている請求項記載の冷却水循環システム。
The large-diameter nozzle is arranged so as to cover the outer peripheral surface of the small-diameter nozzle.
The cooling water circulation system according to claim 2 , wherein the intake is formed in a portion of the large-diameter nozzle that covers the outer peripheral surface of the small-diameter nozzle.
前記取入口は、前記大径ノズルの軸心回りの円周方向に沿って複数形成されているとともに、前記大径ノズルの軸心回りの円周方向に沿って短軸となる楕円形に形成されている請求項記載の冷却水循環システム。 A plurality of intake ports are formed along the circumferential direction around the axis of the large-diameter nozzle, and are formed in an elliptical shape having a short axis along the circumferential direction around the axis of the large-diameter nozzle. The cooling water circulation system according to claim 3 . 前記チラー機側循環経路の送り経路には、循環する冷却水に含まれる不純物を除去する水中不純物分離装置が設けられており、
前記水中不純物分離装置には、分離された不純物とともに冷却水を排水する排水口が設けられており、
前記第1接続管は、前記排水口と前記冷却塔側循環経路の返し経路とを接続している請求項1乃至のいずれか一項に記載の冷却水循環システム。
An underwater impurity separator for removing impurities contained in the circulating cooling water is provided in the feed path of the chiller machine side circulation path.
The underwater impurity separating device is provided with a drain port for draining cooling water together with the separated impurities.
The cooling water circulation system according to any one of claims 1 to 4 , wherein the first connecting pipe connects the drain port and the return path of the cooling tower side circulation path.
冷却塔とチラー機との間で冷却水を循環させる冷却塔側循環経路と、前記チラー機と冷却対象部との間で冷却水を循環させるチラー機側循環経路と、を備える冷却水循環システムであって、A cooling water circulation system including a cooling tower side circulation path for circulating cooling water between the cooling tower and the chiller machine, and a chiller machine side circulation path for circulating cooling water between the chiller machine and the cooling target portion. There,
前記冷却塔側循環経路と前記チラー機側循環経路とは、前記チラー機側循環経路を循環する冷却水を前記冷却塔側循環経路に導入するための第1接続管で接続されており、The cooling tower side circulation path and the chiller machine side circulation path are connected by a first connecting pipe for introducing cooling water circulating in the chiller machine side circulation path into the cooling tower side circulation path.
前記チラー機側循環経路の送り経路には、循環する冷却水に含まれる不純物を除去する水中不純物分離装置が設けられており、An underwater impurity separator for removing impurities contained in the circulating cooling water is provided in the feed path of the chiller machine side circulation path.
前記水中不純物分離装置には、分離された不純物とともに冷却水を排水する排水口が設けられており、The underwater impurity separating device is provided with a drain port for draining cooling water together with the separated impurities.
前記第1接続管は、前記排水口と前記冷却塔側循環経路の返し経路とを接続していることを特徴とする冷却水循環システム。The first connecting pipe is a cooling water circulation system characterized in that the drainage port and the return path of the cooling tower side circulation path are connected.
前記第1接続管には、制御部の開閉制御により前記第1接続管を開閉する電動バルブが備えられている請求項1乃至6のいずれか一項に記載の冷却水循環システム。 The cooling water circulation system according to any one of claims 1 to 6, wherein the first connecting pipe is provided with an electric valve that opens and closes the first connecting pipe by controlling the opening and closing of a control unit. 前記第1接続管には、ワッシャーラバー式の定流量弁が備えられている請求項1乃至7のいずれか一項に記載の冷却水循環システム。 The cooling water circulation system according to any one of claims 1 to 7, wherein the first connecting pipe is provided with a washer rubber type constant flow valve. 前記冷却塔側循環経路と前記チラー機側循環経路とは、前記冷却塔側循環経路を循環する冷却水を前記チラー機側循環経路に導入するための第2接続管で接続されている請求項1乃至8のいずれか一項に記載の冷却水循環システム。 The claim that the cooling tower side circulation path and the chiller machine side circulation path are connected by a second connecting pipe for introducing cooling water circulating in the cooling tower side circulation path into the chiller machine side circulation path. The cooling water circulation system according to any one of 1 to 8. 前記第2接続管は、前記冷却塔側循環経路の送り経路と前記チラー機に設けられたタンクとを接続している請求項9記載の冷却水循環システム。 The cooling water circulation system according to claim 9, wherein the second connecting pipe connects a feeding path of the cooling tower side circulation path and a tank provided in the chiller machine. 前記第2接続管の一端側には、前記タンクの水面の上下変動に伴って前記第2接続管を開閉するフロート弁が設けられている請求項10記載の冷却水循環システム。 The cooling water circulation system according to claim 10, wherein a float valve for opening and closing the second connecting pipe is provided on one end side of the second connecting pipe as the water surface of the tank fluctuates up and down.
JP2016148949A 2016-07-28 2016-07-28 Cooling water circulation system Expired - Fee Related JP6809021B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016148949A JP6809021B2 (en) 2016-07-28 2016-07-28 Cooling water circulation system
CN201780031508.XA CN109154483B (en) 2016-07-28 2017-07-24 Cooling water circulation system
PCT/JP2017/026724 WO2018021255A1 (en) 2016-07-28 2017-07-24 Cooling-water circulation system
US16/317,426 US20190301819A1 (en) 2016-07-28 2017-07-24 Cooling-water circulation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016148949A JP6809021B2 (en) 2016-07-28 2016-07-28 Cooling water circulation system

Publications (2)

Publication Number Publication Date
JP2018017471A JP2018017471A (en) 2018-02-01
JP6809021B2 true JP6809021B2 (en) 2021-01-06

Family

ID=61017578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016148949A Expired - Fee Related JP6809021B2 (en) 2016-07-28 2016-07-28 Cooling water circulation system

Country Status (4)

Country Link
US (1) US20190301819A1 (en)
JP (1) JP6809021B2 (en)
CN (1) CN109154483B (en)
WO (1) WO2018021255A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018187570A1 (en) * 2017-04-07 2018-10-11 Carrier Corporation Modular waterside economizer for air-cooled chillers
CN109664480B (en) * 2019-01-15 2021-04-20 宁夏神州轮胎有限公司 Tire semi-finished product low-temperature cooling circulation system
CN112368528B (en) * 2019-06-07 2022-11-01 开利公司 Modular water side economizer integrated with air cooling chiller
KR102059959B1 (en) * 2019-09-09 2019-12-27 주식회사 한하산업 Sludge drying apparatus with a circulating heat exchange structure

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03271675A (en) * 1990-03-20 1991-12-03 Kuken Kogyo Kk Cold water manufacturing device
WO2008009296A1 (en) * 2006-07-16 2008-01-24 Montaser Mohamed Zamzam Free cooling scheme for process cooling and air conditioning applications
JP5666790B2 (en) * 2009-07-27 2015-02-12 ホーチキ株式会社 Flowing water detection device
JP5604129B2 (en) * 2010-02-09 2014-10-08 アクアス株式会社 Cooling tower chemical injection device
JP5777111B2 (en) * 2012-11-28 2015-09-09 有限会社アクアテック Auxiliary cooling device for condenser
JP6286691B2 (en) * 2014-04-04 2018-03-07 オリオン機械株式会社 Coolant supply device
CN105004198A (en) * 2015-07-16 2015-10-28 西安石油大学 Water type circulating water-air cooling system and method
CN204918180U (en) * 2015-07-31 2015-12-30 芜湖真空科技有限公司 Recirculating cooling water system
JP6753192B2 (en) * 2016-07-28 2020-09-09 トヨタ紡織株式会社 Sediment removal device and cooling water circulation system equipped with it

Also Published As

Publication number Publication date
CN109154483B (en) 2020-04-21
WO2018021255A1 (en) 2018-02-01
CN109154483A (en) 2019-01-04
JP2018017471A (en) 2018-02-01
US20190301819A1 (en) 2019-10-03

Similar Documents

Publication Publication Date Title
JP6809021B2 (en) Cooling water circulation system
JP6759811B2 (en) Micro bubble generator and cooling water circulation system equipped with it
JP6753192B2 (en) Sediment removal device and cooling water circulation system equipped with it
CN101669455B (en) Multifunctional circulating water treatment device
CN105165705A (en) Efficient oxygen increasing tank
CN109186317A (en) A kind of condenser cleaning equipment
CN110606625A (en) Circulating water comprehensive treatment system
CN201713404U (en) Recirculated cooling water treatment device
CN206676854U (en) A kind of device for cleaning mould and casting machine
CN207091161U (en) A kind of wall-mounted integrated swimming pool filtering apparatus
TWM516840U (en) Desmopressin oxygen-enhanced device and application thereof
CN205516777U (en) Can abluent multistage contaminated water filtration apparatus
CN104154612B (en) Evaporative cooling air handling unit with water quality purification device
CN207158820U (en) Chemical Manufacture reactant mixture decontaminates purifying box
JP6881014B2 (en) Water activator and cooling water circulation system equipped with it
CN206359383U (en) A kind of landscape water body biochemical filtering device
CN109879461A (en) A kind of water for irrigation processing system
CN205228211U (en) Take coolant tank of overflow launder
CN216106422U (en) High-salinity wastewater treatment system for improving sodium chloride recycling rate
CN212119109U (en) Degassing tank for degassing beverage and degassing system
CN208448960U (en) A kind of spray column for exhaust-gas treatment
CN216745708U (en) Online cleaning device of chilled water system
CN218794766U (en) Ventilation device for forging furnace
CN214060091U (en) Environment-friendly circulating water filter-pressing pollution treatment facility
CN112841259B (en) Water circulation type cooling pool for slaughtering line

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170913

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201123

R151 Written notification of patent or utility model registration

Ref document number: 6809021

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees