JP6807494B1 - Input / output structure of assembled battery pack and its manufacturing method - Google Patents
Input / output structure of assembled battery pack and its manufacturing method Download PDFInfo
- Publication number
- JP6807494B1 JP6807494B1 JP2019571074A JP2019571074A JP6807494B1 JP 6807494 B1 JP6807494 B1 JP 6807494B1 JP 2019571074 A JP2019571074 A JP 2019571074A JP 2019571074 A JP2019571074 A JP 2019571074A JP 6807494 B1 JP6807494 B1 JP 6807494B1
- Authority
- JP
- Japan
- Prior art keywords
- input
- plate
- output
- current collector
- nickel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 57
- 229910052759 nickel Inorganic materials 0.000 claims description 28
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 21
- 229910052802 copper Inorganic materials 0.000 claims description 21
- 239000010949 copper Substances 0.000 claims description 21
- 238000002844 melting Methods 0.000 claims description 11
- 230000008018 melting Effects 0.000 claims description 11
- 238000000034 method Methods 0.000 claims description 8
- 230000020169 heat generation Effects 0.000 abstract description 2
- 238000003466 welding Methods 0.000 description 14
- 238000005304 joining Methods 0.000 description 8
- 239000000463 material Substances 0.000 description 7
- 238000005245 sintering Methods 0.000 description 4
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/543—Terminals
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Connection Of Batteries Or Terminals (AREA)
- Battery Mounting, Suspending (AREA)
Abstract
導電率向上と大電流通電が可能な組電池パックの入出力構造を提供する。本発明の組電池パック1の入出力構造は、複数の充電池Bを収納したケース2内に設けられる、複数の充電池Bの各々の正極又は負極の端子に電気的に接続する集電部位3aを形成した集電板3と、この集電板3における充電池Bに臨む側と反対面に設けた入出力板4と、を面接合してなる。こうすることで、集電板3と入出力板4との突合面積のほぼ全域が通電経路となるため、抵抗値が極めて低く、発熱によるロスが生じない。Provided is an input / output structure of an assembled battery pack capable of improving conductivity and energizing a large current. The input / output structure of the assembled battery pack 1 of the present invention is a current collecting portion electrically connected to the positive electrode or negative electrode terminal of each of the plurality of rechargeable batteries B provided in the case 2 containing the plurality of rechargeable batteries B. The current collector plate 3 formed with 3a and the input / output plate 4 provided on the opposite surface of the current collector plate 3 to face the rechargeable battery B are surface-bonded. By doing so, since almost the entire contact area between the current collector plate 3 and the input / output plate 4 becomes the energization path, the resistance value is extremely low and no loss due to heat generation occurs.
Description
本発明は、導電率が向上し、かつ大電流通電が可能な組電池パックの入出力構造に関する。 The present invention relates to an input / output structure of an assembled battery pack capable of improving conductivity and energizing a large current.
従来、大容量の電力を要する場合、もちろんその電力を出力する電池を製作すればよいが、製作コストなどの観点で、例えば既存のサイズ及び出力の電池(繰り返し使う場合は充電池)を多数筐体に収納したいわゆる組電池パックが用いられる。 Conventionally, when a large amount of electric power is required, of course, a battery that outputs the electric power may be manufactured. However, from the viewpoint of manufacturing cost, for example, a large number of batteries of existing size and output (rechargeable battery in the case of repeated use) are used. A so-called assembled battery pack stored in the body is used.
組電池パックは、単セル又は複数セルの単電池を薄板の連絡端子板にて、並列又は直列に電池出力端子に抵抗溶接等で接続を行い、希望の容量を出力することができるようにしたものである。 In the assembled battery pack, a single cell or a multi-cell single battery is connected to the battery output terminal in parallel or in series by resistance welding or the like with a thin connecting terminal plate so that the desired capacity can be output. It is a thing.
具体的には、例えば特許文献1の図4を参照した従来例に示されるように、樹脂スプリングの性能を保有する構造を、充電器ケースと一体に樹脂成型し、その樹脂スプリングに金属端子(以下、接点という)を埋め込み、電池の正極及び負極をそれぞれ接続すると共に、樹脂スプリングの圧力によって、電池を充電器ケース内に保持した構成である。 Specifically, for example, as shown in a conventional example with reference to FIG. 4 of Patent Document 1, a structure having the performance of a resin spring is resin-molded integrally with a charger case, and a metal terminal (metal terminal) is formed on the resin spring. (Hereinafter referred to as a contact) is embedded, the positive electrode and the negative electrode of the battery are connected to each other, and the battery is held in the charger case by the pressure of the resin spring.
近年、いわゆる電気自動車、産業機器、家電、様々な機器の動力源として充電型の組電池パックが用いられるようになってきている。その理由はクリーンなエネルギーで省スペース、充電により繰り返しの使用が可能で取り扱い簡単かつ安全性が高いためである。 In recent years, rechargeable battery packs have come to be used as a power source for so-called electric vehicles, industrial equipment, home appliances, and various other equipment. The reason is that it is clean energy, saves space, can be used repeatedly by charging, is easy to handle, and is highly safe.
充電池を用いた組電池パック(以下、充電型組電池パックという)を動力源とすれば、電力が低下すれば充電して繰り返し使え、それまでの燃料型の動力源に対し、内燃機関を別途設ける必要がないので機器の小型化に貢献でき、燃料の保管や取扱の危険度が低という利点がある。 If a rechargeable battery pack (hereinafter referred to as a rechargeable battery pack) is used as the power source, it can be charged and used repeatedly when the power drops, and the internal combustion engine can be used as opposed to the fuel type power source up to that point. Since it does not need to be installed separately, it can contribute to the miniaturization of equipment, and has the advantage of low risk of fuel storage and handling.
充電型組電池パックが電池取替型の組電池パックと異なる点は、電池自体が充電可不可で異なることはもちろんであるが、充電池を採用することに伴って該充電池を複数収納したケースを電池交換のために開閉することがないということである。 The difference between the rechargeable battery pack and the replaceable battery pack is that the batteries themselves are rechargeable and different, of course, but with the adoption of rechargeable batteries, multiple rechargeable batteries are stored. This means that the case will not be opened or closed to replace the battery.
それゆえ、充電型電池パックの電力の入出力構造は、上記特許文献1のように導電性の高い銅の薄板でなる端子と単に接触する構成とは異なり、一枚のそして薄い例えば純ニッケル板に充電池配置位置に対応したタブ状の接点片を形成し、このタブを電池の端子と溶接する構成となっている。 Therefore, the power input / output structure of the rechargeable battery pack is different from the configuration in which the terminal is made of a thin copper plate having high conductivity as in Patent Document 1 above, and the power input / output structure is a single and thin plate such as a pure nickel plate. A tab-shaped contact piece corresponding to the position of the rechargeable battery is formed, and this tab is welded to the terminal of the battery.
純ニッケル板を使う理由は腐食に強いと共に導電率も高く、充電池の端子材料との溶接が材料の相性において良好であること、また、一枚で薄くしている理由は純ニッケル板の材料単価が高いこと、であるが、一枚の薄い純ニッケル板だけで構成すると、撓みが発生するといくら溶接していたとしても充電池の端子との溶接が剥離する可能性あると共に、大電流の取り出し時にニッケル板の固有抵抗でニッケル板自体が発熱し、自己発熱により一層固有抵抗が高くなるという悪循環が生じるためである。 The reason for using a pure nickel plate is that it is resistant to corrosion and has high conductivity, welding with the terminal material of the rechargeable battery is good in terms of material compatibility, and the reason for thinning it with one sheet is the material of the pure nickel plate. The unit price is high, but if it is composed of only one thin pure nickel plate, the welding with the terminal of the rechargeable battery may peel off even if it is welded no matter how much it is welded when bending occurs, and a large current This is because the nickel plate itself generates heat due to the intrinsic resistance of the nickel plate at the time of taking out, and a vicious cycle occurs in which the intrinsic resistance becomes higher due to self-heating.
上記不具合解消のために、純ニッケル板において充電池に面する側の反対側の面に、剛性を確保することと電気的な入出力回路を形成することを目的としたニッケルよりも固有抵抗の低い一定厚みの銅板を設けている。 In order to solve the above problems, the surface of the pure nickel plate on the side opposite to the side facing the rechargeable battery has more inherent resistance than nickel for the purpose of ensuring rigidity and forming an electrical input / output circuit. A low constant thickness copper plate is provided.
銅板と純ニッケル板とは積層されて、つまり接触させているが、従来、この銅板と純ニッケル板とは、各接点片の近傍をレーザー溶接することで一体(レーザー照射箇所の溶融状態)とされ、レーザー溶接部分において純ニッケル板と銅板とを電気的に接続した回路を構成していた。 The copper plate and the pure nickel plate are laminated, that is, in contact with each other, but conventionally, the copper plate and the pure nickel plate are integrated by laser welding in the vicinity of each contact piece (the molten state of the laser irradiation part). In the laser welded part, a circuit was formed in which a pure nickel plate and a copper plate were electrically connected.
上記、従来において、純ニッケル板と銅板とを部分的にレーザー溶接により一体としていた理由は、銅は固有抵抗が低く生産コストの安い抵抗溶接での接合が不安定で困難なためである。 The reason why the pure nickel plate and the copper plate are partially integrated by laser welding in the above-mentioned conventional case is that copper has low intrinsic resistance and it is difficult to join by resistance welding with low production cost.
しかしながら、従来の純ニッケル板と銅板とを部分的にレーザー溶接により一体とする手法であると、レーザー溶接された部分は、純ニッケル板と銅板とが溶融して確実に接触して導電状態となるが、それ以外の部分は導電性が極めて低い状態で接触しているだけなので、純ニッケル板から銅板に至る回路としては前記のとおりレーザー溶接された部分だけとなる。 However, in the conventional method of partially integrating the pure nickel plate and the copper plate by laser welding, the laser-welded portion is in a conductive state when the pure nickel plate and the copper plate are melted and surely contact each other. However, since the other parts are only in contact with each other in a state of extremely low conductivity, the circuit from the pure nickel plate to the copper plate is only the laser-welded part as described above.
そして、純ニッケル板から銅板に至る回路がレーザー溶接された部分のみと言うことは、通電経路の抵抗値が高い回路が形成されていることであり、よって、従来の入出力構造は、レーザー溶接部分が発熱して、放電時には出力ロスが生じて理論値より低い電流しか出力できないこととなると共に充電時には同じく入力ロスが生じて時間がかかるという問題があった。 The fact that the circuit from the pure nickel plate to the copper plate is only laser-welded means that a circuit with a high resistance value of the current-carrying path is formed. Therefore, the conventional input / output structure is laser-welded. There is a problem that the portion generates heat, an output loss occurs during discharging, and only a current lower than the theoretical value can be output, and an input loss also occurs during charging, which takes time.
本発明が解決しようとする問題は、従来の組電池パックの入出力構造おいて純ニッケル板と銅版とをレーザー溶接にて部分的に接合したことに起因して、この接続部分が抵抗となって発熱し、放電時には出力ロスが生じて理論値より低い電流しか出力できないこととなる一方で、充電時には入力ロスが生じて時間がかかるという点、である。 The problem to be solved by the present invention is that the pure nickel plate and the copper plate are partially joined by laser welding in the input / output structure of the conventional assembled battery pack, and this connection portion becomes a resistance. This causes heat generation, and output loss occurs during discharge, so that only a current lower than the theoretical value can be output. On the other hand, input loss occurs during charging, which takes time.
本発明の組電池パックの入出力構造の製造方法は、ニッケルからなる集電板に複数の電池の各々の正極又は負極の端子に接続する集電部位を形成し、前記集電板の電池が配置される側とは反対側の面に、その両面にニッケルメッキ層が形成された銅からなる入出力板を積層し、前記集電板と前記入出力板とを積層した状態で該入出力板の融点の9割の温度で、前記集電板と積層されて突き合された前記入出力板のニッケルメッキ層とが一体となった層が現れるまで保持して面接合して、前記集電板と前記入出力板との突合面積に対する接合面積を通電可能面積にすることを主要な特徴としている。
Manufacturing method of the input and output structure of the assembled battery pack of the present invention is connected to each of the positive or negative electrode terminals of the plurality of battery current collector plate made of nickel to form a collecting portion, the battery of the collector plate An input / output plate made of copper having nickel-plated layers formed on both sides thereof is laminated on a surface opposite to the side on which the current collector is arranged, and the current collector plate and the input / output plate are laminated. in 90% of the temperature of the melting point of the output plate, and the collector plate and the nickel plating layer of the laminate has been butted the said output plate engages interview held until a layer is integral, the is mainly characterized in that to conductively area bonding surfaces products for abutting area between the current collector plate said input plate.
本発明では、集電板と入出力板とが面接合されて導電面積が増加することで、導電率が向上し、かつ大電流通電が可能となる。 In the present invention, the current collector plate and the input / output plate are surface-bonded to increase the conductive area, so that the conductivity is improved and a large current can be energized.
本発明の目的は、組電池パックにおいて少なくとも出力のロスを抑制することにある。そして、この目的は、組電池パックの入出力構造を、ニッケルからなる集電板に複数の電池の各々の正極又は負極の端子に接続する集電部位を形成し、前記集電板の電池が配置される側とは反対側の面に、その両面にニッケルメッキ層が形成された銅からなる入出力板を積層し、前記集電板と前記入出力板とを積層した状態で該入出力板の融点の9割の温度で、前記集電板と積層されて突き合された前記入出力板のニッケルメッキ層とが一体となった層が現れるまで保持して面接合する、手順で製造することで達成した。
An object of the present invention is to suppress at least output loss in an assembled battery pack. Then, for this purpose, the input / output structure of the assembled battery pack is formed on a current collector plate made of nickel to form a current collection portion for connecting to the positive electrode or negative electrode terminals of each of the plurality of batteries, and the battery of the current collector plate is used. An input / output plate made of copper having nickel-plated layers formed on both sides thereof is laminated on a surface opposite to the side on which the current collector is arranged, and the input / output plate is laminated with the current collector plate and the input / output plate. Manufactured by a procedure of holding and surface-bonding at a temperature of 90% of the melting point of the plate until a layer in which the nickel-plated layer of the input / output plate is laminated and abutted with the current collector plate appears. It was achieved by.
なお、本発明において、集電板にはニッケル基において広範囲な腐食環境に対して優れた耐食性を有し、かつ導電性の高い合金であるいわゆる純ニッケルを採用することが望ましい。なお、コスト面を考慮するとニッケル板や他の導電金属を採用しても構わない。 In the present invention, it is desirable to use so-called pure nickel, which is an alloy having excellent corrosion resistance in a wide range of corrosive environments and having high conductivity in the nickel group, for the current collector plate. In consideration of cost, a nickel plate or other conductive metal may be used.
また、集電板の厚みは、0.1〜0.2mmとすることが望ましい。0.2mmより厚くなると、抵抗溶接の長所である接合面での溶融が困難となり、溶融電流値を大きく設定する必要があり、大電流によって電池端子にダメージを与え、液漏れ等重大な不具合を起こす要因となる可能性がある。一方、0.1mmより薄くすると、集電効率が悪くなる他、電池として充電池を採用した場合、該充電池の端子への溶接が困難となる。 The thickness of the current collector plate is preferably 0.1 to 0.2 mm. If it is thicker than 0.2 mm, it becomes difficult to melt at the joint surface, which is an advantage of resistance welding, and it is necessary to set a large melting current value, and a large current damages the battery terminals, causing serious problems such as liquid leakage. It can be a factor to cause it. On the other hand, if it is thinner than 0.1 mm, the current collecting efficiency deteriorates, and when a rechargeable battery is used as the battery, it becomes difficult to weld the rechargeable battery to the terminal.
一方、入出力板は、銅を採用することが望ましい。入出力板として銅を採用するとした場合、厚みが0.5〜2.0mmとすることが望ましい。0.5mmより薄くなると剛性を確保できない可能性がある。また、2.0mmより厚くなると不必要に厚くなって無駄となると共に、組電池パックが重くなり、コストアップとなるばかりか、この増加重量に起因して組電池パックのパフォーマンスも低下する(高負荷となる)可能性がある。 On the other hand, it is desirable to use copper for the input / output plate. When copper is used as the input / output plate, it is desirable that the thickness is 0.5 to 2.0 mm. If it is thinner than 0.5 mm, rigidity may not be ensured. In addition, if it is thicker than 2.0 mm, it becomes unnecessarily thick and wasteful, and the assembled battery pack becomes heavy, which not only increases the cost but also deteriorates the performance of the assembled battery pack due to this increased weight (high). It can be a load).
上記の組電池パックの入出力構造は、本発明の方法、すなわち、ニッケルからなる集電板に複数の電池の各々の正極又は負極の端子に接続する集電部位を形成し、前記集電板の電池が配置される側とは反対側の面に、その両面にニッケルメッキ層が形成された銅からなる入出力板を積層し、前記集電板と前記入出力板とを積層した状態で該入出力板の融点の9割の温度で、前記集電板と積層されて突き合された前記入出力板のニッケルメッキ層とが一体となった層が現れるまで保持して面接合し、前記集電板と前記入出力板との突合面積に対する接合面積を通電可能面積にするように製造する。
The input / output structure of the assembled battery pack is the method of the present invention, that is, a current collector plate made of nickel is formed with a current collector portion connected to the positive or negative terminal of each of a plurality of batteries. On the surface opposite to the side on which the batteries are arranged, an input / output plate made of copper having nickel-plated layers formed on both sides thereof is laminated, and the current collector plate and the input / output plate are laminated. At a temperature of 90% of the melting point of the input / output plate, the current collector plate is held and surface-bonded until a layer in which the nickel-plated layer of the input / output plate is laminated and abutted appears . prepared as to conductively area bonding surfaces products for abutting area between the input plate and the collector plate.
上記において、集電板と入出力板との面接合は、集電板を純ニッケル、入出力板をその両面にニッケルメッキ層が形成された銅、として各々の板厚が上記範囲のとき、焼結炉にて、該入出力板の材料の融点の9割の温度で、前記集電板と積層されて突き合された前記入出力板のニッケルメッキ層とが一体となった層が現れるまで保持し、後に急冷する、といった手法で行われる。
In the above, the surface bonding between the current collector plate and the input / output plate is performed when the current collector plate is pure nickel and the input / output plate is copper with nickel plating layers formed on both sides thereof , and the respective plate thicknesses are in the above range. In a sintering furnace, at a temperature of 90% of the melting point of the material of the input / output plate, a layer in which the nickel-plated layer of the input / output plate is laminated and abutted with the current collector appears. It is done by holding it up to and then quenching it later.
このように、集電板と入出力板とを該入出力板の融点の9割の温度で、前記集電板と積層されて突き合された前記入出力板のニッケルメッキ層とが一体となった層が現れるまで保持して一体とすることで、溶接と異なり、物理的にも電気的にも面的に接合されることとなり、よって、導電面積が増加して通電経路が低抵抗となり、電池として充電池を採用した場合には入出力のロスを抑制することができるようになる。
In this way, the current collector plate and the input / output plate are integrated with the nickel-plated layer of the input / output plate which is laminated and abutted with the current collector plate at a temperature of 90% of the melting point of the input / output plate. By holding and integrating the formed layers until they appear , unlike welding, they are physically and electrically joined in a plane, which increases the conductive area and makes the energization path low resistance. When a rechargeable battery is used as the battery, input / output loss can be suppressed.
以下、本発明の一実施例について図1及び図2を用いて説明する。本例では、電池として例えば充放電自在な充電池Bを用いた構成で説明する。組電池パックの入出力構造(以下、入出力構造という)は、組電池パック1内の複数の充電池Bを収納するケース2における各々の充電池Bの正極と負極の内面に設けられた次の構造を意味する。 Hereinafter, an embodiment of the present invention will be described with reference to FIGS. 1 and 2. In this example, a configuration using, for example, a rechargeable battery B that can be charged and discharged as the battery will be described. The input / output structure of the assembled battery pack (hereinafter referred to as the input / output structure) is the following provided on the inner surfaces of the positive electrode and the negative electrode of each rechargeable battery B in the
すなわち、入出力構造は、各々の充電池Bの正極と負極のそれぞれの端子に電気的に接続する集電部位3aを形成した純ニッケルでなる厚み0.15mmの集電板3と、この集電板3における充電池Bに臨む側と反対面に設けた銅でなる厚み1.0mmの入出力板4と、を面接合してなる。
That is, the input / output structure includes a current collector plate 3 having a thickness of 0.15 mm made of pure nickel having a
集電板3における集電部位3aは、図示するように、例えば打ち抜き加工により該集電板3から集電部位3aが一体的に残るように形成すればよく、集電部位3aの形状は、充電池Bとの溶接が容易かつ確実となるような形状とすればよい。 As shown in the figure, the
なお、集電部位3aは、焼結炉に入れる前に、該入出力板4側と反対側へ若干折り返しておく。こうすることで集電部位3aが入出力板4と一体化せず、充電池B側に自由に折り曲げ調整可能となる。
The
入出力板4は、集電板3に積層される側と、この反対側と、の両面に各々ニッケルメッキ層4a,4bが形成されている。この理由は、入出力板4の酸化防止となるためである。なお、入出力板4における集電板3に積層される側のニッケルメッキ層4aは、該集電板3と該入出力板4の融点の9割の温度で、該集電板3と積層されて突き合された入出力板4のニッケルメッキ層4aとが一体となった層5が現れるまで保持する際に集電板3と入出力板4の材料において一体化される。
The input / output plate 4 has nickel-plated layers 4a and 4b formed on both sides of the side laminated on the current collector plate 3 and the opposite side thereof, respectively. The reason for this is that the input / output plate 4 is prevented from being oxidized. Incidentally, the nickel-plated layer 4a on the side to be laminated to the current collector plate 3 in the input-output board 4, in 90% of the temperature of the melting point of the current collector plate 3 and said input output board 4, with the collector plate 3 laminated The current collector plate 3 and the material of the input / output plate 4 are integrated when the layer 5 in which the nickel-plated layer 4a of the input / output plate 4 is abutted is held until it appears .
上記構成の入出力構造は、次のようにして製造される。図2(a)に示すように、集電板3に複数の充電池Bの各々の正極又は負極の端子に接続する集電部位3aを形成し、例えば本例の場合は集電部位3aを入出力板4が積層される側と反対側へ若干だけ折り返し、集電板3の充電池Bが配置される側とは反対側の面に上記のとおりニッケルメッキ層4a,4bが施された入出力板4を積層し、このとき、集電板3と入出力板4とを積層した状態で以下の条件により突き合せた積層面を面的に接合する。
Input and output structure of the above construction is manufactured as follows. As shown in FIG. 2A, a
接合条件は、集電板3がニッケル、入出力板4が銅の場合、それぞれの板厚が上記範囲のとき、焼結炉にて、入出力板4の材料の融点の9割の温度で、集電板3と積層されて突き合された入出力板4のニッケルメッキ層4aとが一体となった層5が現れるまで保持し、後に急冷する、といった条件で行えばよい。これにより、図2(b)に示すように、集電板3と積層されて突き合された入出力板4のニッケルメッキ層4aとが一体となった層5が現れ、この層5が集電板3と入出力板4との導電面となる。
The joining conditions are that when the current collector plate 3 is nickel and the input / output plate 4 is copper, when the respective plate thicknesses are in the above range, the temperature is 90% of the melting point of the material of the input / output plate 4 in the sintering furnace. The condition may be such that the layer 5 in which the nickel-plated layer 4a of the input / output plate 4 laminated and abutted with the current collector plate 3 is integrated is held until it appears, and then rapidly cooled. As a result, as shown in FIG. 2B, a layer 5 in which the current collector plate 3 is laminated and the nickel-plated layer 4a of the input / output plate 4 is laminated and abutted appears, and the layer 5 is collected. It is a conductive surface between the electric plate 3 and the input / output plate 4.
上記の後、入出力構造は、本例では、集電部位3a各々と複数の充電池Bのそれぞれの接続端子を、必要に応じて例えば溶接により電気的かつ物理的に接続し、ケース2へ納める。こうして組電池パック1が完成することとなる。
After the above input output structure, in this embodiment, the respective connection terminals of the
続いて、本発明の効果、すなわち導電効率について行った試験結果を説明する。以下の導電効率では、充電池B、集電板3及び入出力板4の材料、寸法を同じ条件とした入出力構造において、集電板3と入出力板4の接合条件だけを異ならせて、つまり通電可能面積を異ならせて、この通電可能面積を通電経路の理論上の最大値として各々を評価した。
Subsequently, effects of the present invention, i.e., the test results performed on the conductive efficiency will be described. In the following conductivity efficiencies, in the input / output structure in which the materials and dimensions of the rechargeable battery B, the current collector plate 3 and the input / output plate 4 are the same, only the joining conditions of the current collector plate 3 and the input / output plate 4 are different. That is, the energizable areas were different, and each was evaluated with this energable area as the theoretical maximum value of the energization path.
(従来例)接合手法:レーザー溶接
・集電板3の「総面積」:11900mm2
・集電板3と入出力板4との「突合面積」:8284mm2
・「接合面積」:φ1mm×15点を30カ所 接合面積450mm2
・突合面積に対する接合面積の割合:約5.4%(総面積に対しては約3.8%)(Conventional example) Joining method: Laser welding / "total area" of current collector plate 3: 11900 mm 2
-"Matching area" between the current collector plate 3 and the input / output plate 4: 8284 mm 2
・ "Joining area": φ1mm x 15 points at 30 places Joining area 450mm 2
-Ratio of joint area to butt area: Approximately 5.4% (Approximately 3.8% of total area)
(本発明)接合手法:入出力板4の融点の9割の温度で層5が現れるまで保持
・集電板3の「総面積」:11900mm2
・集電板3と入出力板4との「突合面積」:8284mm2
・「接合面積」:約8200mm2
・突合面積に対する接合面積の割合:約99.0%
(総面積に対しては約69.0%)
(Invention) Joining method: Holds until layer 5 appears at a temperature of 90% of the melting point of the input / output plate 4. ・ "Total area" of current collector plate 3: 11900 mm 2
-"Matching area" between the current collector plate 3 and the input / output plate 4: 8284 mm 2
・ "Joint area": Approximately 8200 mm 2
-Ratio of joint area to butt area: Approximately 99.0%
(Approximately 69.0% of the total area)
以上の結果から、従来例では、そもそも突合面積が8284mm2 存在するにも拘わらず、レーザー溶接により450mm2 しか接合していないので、通電可能面積(通電経路)は理論上5.4%しかなく、通電経路が限られているので、その分が抵抗となり、熱としてロスが生じ、通電経路の抵抗が上昇することとなった(集電板3と入出力板4との溶接部が発熱した)。These results, in the conventional example, the first place the butting area despite the presence 8284Mm 2, since no 450 mm 2 only joined by laser welding, energizable area (current path) is only theoretically 5.4% Since the energization path is limited, that amount becomes resistance, loss occurs as heat, and the resistance of the energization path increases (the welded part between the current collector plate 3 and the input / output plate 4 generates heat. ).
一方、本発明は、突合面積の8284mm2 に対して上記接合手法により約8200mm2 が面接合しているので、通電可能面積(通電経路)は理論上99.0%となり、充電池Bからほぼ最大限の電流値が取り出せ、通電経路の抵抗上昇にはつながらなかったことから、熱としてロスが生じることがなかった(集電板3と入出力板4の突合面での発熱は生じなかった)。
On the other hand, the present invention, since about 8200Mm 2 by the joining method to 8284Mm 2 of butting area in surface bonding, energizable area (current path) is next theory 99.0%, substantially from the rechargeable battery B Since the maximum current value could be taken out and it did not lead to an increase in the resistance of the energization path, no loss occurred as heat (no heat was generated at the abutting surface of the current collector plate 3 and the input / output plate 4). ).
以上のことから、本発明は、導電率が向上し、かつ大電流通電が可能であることが判明した。また、本発明であれば、焼結炉にて上記接合手法を行うので、高品質で多量の入出力構造を製作できるという利点もある。さらに、本発明は、入出力板4の融点の9割の温度で、集電板3と積層されて突き合された入出力板4のニッケルメッキ層4aとが一体となった層5が現れるまで保持することにより集電板3と入出力板4とを強固に一体化しているので、従来のように(レーザー)溶接不良、あるいは振動等によるレーザー溶接部位の剥がれ等のトラブルが発生することはない。 From the above, it was found that the present invention has improved conductivity and can be energized with a large current. Further, according to the present invention, since the joining method is performed in a sintering furnace, there is an advantage that a large amount of high quality input / output structures can be manufactured. Further, in the present invention, at a temperature of 90% of the melting point of the input / output plate 4, a layer 5 in which the nickel-plated layer 4a of the input / output plate 4 is laminated and abutted with the current collector plate 3 appears. Since the current collector plate 3 and the input / output plate 4 are firmly integrated by holding up to, troubles such as (laser) welding failure or peeling of the laser welded part due to vibration or the like occur as in the past. There is no.
なお、本発明は、上記では充電池Bを採用した例を示したが、放電のみの通常の電池を採用しても構わないほか、上記では入出力板4に一枚板としているが、集電部位3aに対応する部位は面接合しないので、入出力板4において該集電部位3aを包囲される孔を形成した構成であってもよい。
In the present invention, an example in which the rechargeable battery B is adopted is shown above, but a normal battery that only discharges may be adopted, and in the above, the input / output plate 4 is a single plate. Since the portion corresponding to the
こうすれば、集電板3と入出力板4とを積層する際に、上記では集電部位3aを該入出力板の積層側と反対側へ折り返すようにしたが、この手間を省くことができ、重量削減と処理時間の短縮化を図ることができると共に、集電部位3aと充電池Bの接続端子との溶接が、該孔を介して行えるので作業性が向上することとなる。
In this way, when the current collector plate 3 and the input / output plate 4 are laminated, the
1 組電池パック
2 ケース
3 集電板
3a 集電部位
4 入出力板
4a,4b ニッケルメッキ層
5 層
B 充電池
1 set
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/033502 WO2021038717A1 (en) | 2019-08-27 | 2019-08-27 | Input/output structure of assembled battery pack and manufacturing method therefor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP6807494B1 true JP6807494B1 (en) | 2021-01-06 |
JPWO2021038717A1 JPWO2021038717A1 (en) | 2021-09-27 |
Family
ID=73992808
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019571074A Active JP6807494B1 (en) | 2019-08-27 | 2019-08-27 | Input / output structure of assembled battery pack and its manufacturing method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6807494B1 (en) |
WO (1) | WO2021038717A1 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004265610A (en) * | 2003-01-23 | 2004-09-24 | Sony Corp | Lead terminal and power supply device |
JP2004311165A (en) * | 2003-04-04 | 2004-11-04 | Sony Corp | Battery pack |
JP2006139987A (en) * | 2004-11-11 | 2006-06-01 | Hitachi Cable Ltd | Plate-shaped wiring material for battery pack, and the battery pack |
WO2011152478A1 (en) * | 2010-06-02 | 2011-12-08 | 住友金属工業株式会社 | Clad metals |
JP2013109934A (en) * | 2011-11-21 | 2013-06-06 | Sanyo Electric Co Ltd | Battery pack |
JP2013535784A (en) * | 2010-09-07 | 2013-09-12 | エルジー・ケム・リミテッド | High power and large capacity battery pack |
-
2019
- 2019-08-27 WO PCT/JP2019/033502 patent/WO2021038717A1/en active Application Filing
- 2019-08-27 JP JP2019571074A patent/JP6807494B1/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004265610A (en) * | 2003-01-23 | 2004-09-24 | Sony Corp | Lead terminal and power supply device |
JP2004311165A (en) * | 2003-04-04 | 2004-11-04 | Sony Corp | Battery pack |
JP2006139987A (en) * | 2004-11-11 | 2006-06-01 | Hitachi Cable Ltd | Plate-shaped wiring material for battery pack, and the battery pack |
WO2011152478A1 (en) * | 2010-06-02 | 2011-12-08 | 住友金属工業株式会社 | Clad metals |
JP2013535784A (en) * | 2010-09-07 | 2013-09-12 | エルジー・ケム・リミテッド | High power and large capacity battery pack |
JP2013109934A (en) * | 2011-11-21 | 2013-06-06 | Sanyo Electric Co Ltd | Battery pack |
Non-Patent Citations (2)
Title |
---|
金属の百科事典, JPN6020005662, 30 September 1999 (1999-09-30), pages 365 - 367, ISSN: 0004213326 * |
金属材料の事典, JPN6020005663, 25 January 1990 (1990-01-25), pages 175 - 176, ISSN: 0004213327 * |
Also Published As
Publication number | Publication date |
---|---|
JPWO2021038717A1 (en) | 2021-09-27 |
WO2021038717A1 (en) | 2021-03-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI453978B (en) | High-output, large-capacity battery pack | |
JP6014837B2 (en) | Negative electrode terminal and lid member for lithium ion battery, and lithium ion battery | |
JP3826895B2 (en) | battery pack | |
JP5252871B2 (en) | Stacked battery | |
JP5112429B2 (en) | Battery cell electrode plate and method of manufacturing the same | |
KR20170106933A (en) | Battery package with improved durability | |
JP6531216B2 (en) | Lithium secondary battery with improved safety using bimetal tab | |
WO2007004335A1 (en) | Inter-battery connection device | |
JP5606426B2 (en) | Secondary battery including a cap assembly to which components are bonded | |
US20110274964A1 (en) | Battery Tabs and Method of Making the Same | |
WO2013179811A1 (en) | Joint structure, joining method, secondary battery, and method for manufacturing secondary battery | |
JP5044108B2 (en) | Battery connection device | |
JP7562740B2 (en) | Terminal for secondary battery and secondary battery having said terminal | |
KR101520168B1 (en) | pauch type lithium secondary battery | |
JP5558878B2 (en) | Assembled battery, resistance welding method, and assembled battery manufacturing method | |
JP2021125452A (en) | Pouch type battery cell and manufacturing method thereof | |
JP2004127554A (en) | Connection lead plate and battery with connection lead plate | |
JP6807494B1 (en) | Input / output structure of assembled battery pack and its manufacturing method | |
KR20180101034A (en) | Pouch Type Secondary Battery for Preventing Disconnection Between Foil and Lead by sheet and Method thereof | |
KR101124964B1 (en) | Method for connecting between cathod lead or anode lead of secondary battery and external element | |
KR100994954B1 (en) | Secondary battery which protective circuit board is connected | |
JP5286628B2 (en) | battery | |
CN216648390U (en) | Battery structure | |
JP7566058B2 (en) | Battery pack | |
CN220272702U (en) | Battery cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20191220 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20200116 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20200207 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200218 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200317 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20200317 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200623 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200821 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200908 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200930 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6807494 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |