[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6804682B1 - How to evaluate the squeaking noise of resin molded products - Google Patents

How to evaluate the squeaking noise of resin molded products Download PDF

Info

Publication number
JP6804682B1
JP6804682B1 JP2020099646A JP2020099646A JP6804682B1 JP 6804682 B1 JP6804682 B1 JP 6804682B1 JP 2020099646 A JP2020099646 A JP 2020099646A JP 2020099646 A JP2020099646 A JP 2020099646A JP 6804682 B1 JP6804682 B1 JP 6804682B1
Authority
JP
Japan
Prior art keywords
resin
free energy
surface free
resin molded
squeaking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2020099646A
Other languages
Japanese (ja)
Other versions
JP2021193360A (en
Inventor
浩司 石川
浩司 石川
博紀 北口
博紀 北口
篤史 渡邉
篤史 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Techno UMG Co Ltd
Original Assignee
Techno UMG Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Techno UMG Co Ltd filed Critical Techno UMG Co Ltd
Priority to JP2020099646A priority Critical patent/JP6804682B1/en
Application granted granted Critical
Publication of JP6804682B1 publication Critical patent/JP6804682B1/en
Publication of JP2021193360A publication Critical patent/JP2021193360A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

【課題】樹脂成形品どうしが動的に接触した際に発生する軋み音の程度を評価する方法を提供する。
【解決手段】Owens and Wendt法により、樹脂成形品10、20の表面における表面自由エネルギーと、表面自由エネルギーの極性成分及び分散成分とを求め、その後、極性パラメーター及び表面自由エネルギーの各値により軋み音を評価する。
【選択図】なし
PROBLEM TO BE SOLVED: To provide a method for evaluating the degree of squeaking noise generated when resin molded products are dynamically contacted with each other.
SOLUTION: The surface free energy on the surface of the resin molded products 10 and 20 and the polar component and the dispersion component of the surface free energy are obtained by the Owns and Wend method, and then squeaks by each value of the polar parameter and the surface free energy. Evaluate the sound.
[Selection diagram] None

Description

本発明は、樹脂成形品どうしが動的に接触した際に発生する軋み音の程度を評価する方法に関する。 The present invention relates to a method for evaluating the degree of squeaking noise generated when resin molded products are dynamically contacted with each other.

従来、樹脂組成物からなる成形品は、種々の特性を生かして、車両、OA(オフィスオートメーション)機器、精密機器、家庭電化機器、家具、日用品、玩具等の分野において、広く利用されている。これらの分野で用いられる構成部材等においては、例えば、樹脂組成物Xからなる樹脂成形品と、樹脂組成物Xと同一の若しくは異なる材料からなる樹脂成形品とが、接触している、あるいは、所定の間隔をもって配置された構造を有することがある。特に、樹脂成形品どうしが接触している場合、振動、回転、ねじれ、摺動、衝撃等により、一方若しくは両方が移動又は変形して動的に接触し、不快な軋み音(擦れ音)が発生することが知られている。例えば、自動車内に配設されたエアコン又はオーディオの筐体部品と、その周縁に配置されている嵌合部品とが、振動等により強く擦れ合って、不快な音を発するというものである。この軋み音は、二つの物体が擦れ合った際に発生するスティックスリップ現象に起因する音であり、物体どうしの摺動性とは異なるものといわれている。 Conventionally, molded products made of resin compositions have been widely used in the fields of vehicles, OA (office automation) equipment, precision equipment, household electrical equipment, furniture, daily necessities, toys, etc. by taking advantage of various characteristics. In the constituent members and the like used in these fields, for example, the resin molded product made of the resin composition X and the resin molded product made of the same or different material as the resin composition X are in contact with each other or are in contact with each other. It may have structures arranged at predetermined intervals. In particular, when resin molded products are in contact with each other, one or both of them move or deform due to vibration, rotation, twisting, sliding, impact, etc. and dynamically contact each other, resulting in an unpleasant squeaking noise (rubbing noise). It is known to occur. For example, an air conditioner or audio housing component arranged in an automobile and a fitting component arranged on the periphery thereof strongly rub against each other due to vibration or the like to generate an unpleasant sound. This squeaking sound is a sound caused by the stick-slip phenomenon that occurs when two objects rub against each other, and is said to be different from the slidability between the objects.

近年、軋み音対策が施された樹脂部品(自動車内装部品、事務用機器、住宅内装用部品等)が広く知られており、例えば、特許文献1には、融点が0℃以上のエチレン・α−オレフィン系ゴム質重合体の存在下にビニル系単量体を重合して得られたゴム強化ビニル系樹脂、及び、ポリカーボネート樹脂を含有する熱可塑性樹脂組成物からなり、エチレン・α−オレフィン系ゴム質重合体の含有量が、熱可塑性樹脂組成物100質量%に対して、5〜30質量%である接触用部品が開示されている。 In recent years, resin parts (automobile interior parts, office equipment, housing interior parts, etc.) with measures against squeaking noise are widely known. For example, Patent Document 1 describes ethylene / α having a melting point of 0 ° C. or higher. It is composed of a rubber-reinforced vinyl resin obtained by polymerizing a vinyl monomer in the presence of an olefin rubber polymer and a thermoplastic resin composition containing a polycarbonate resin, and is an ethylene / α-olefin resin. A contact component in which the content of the rubbery polymer is 5 to 30% by mass with respect to 100% by mass of the thermoplastic resin composition is disclosed.

特開2012−46669号公報Japanese Unexamined Patent Publication No. 2012-46669

例えば、複数の樹脂成形品どうしが接触する構造を有する複合体が振動、回転、ねじれ、摺動、衝撃等を受ける場合、あるいは、互いに非接触状態にあるものの、振動、回転、ねじれ、摺動、衝撃等により一方の樹脂成形品若しくは両方の樹脂成形品が移動又は変形して動的に接触するおそれがある場合に、樹脂成形品どうしが動的に接触した際に発生する軋み音の程度を予想できれば、軋み音を抑制したい用途に好適な成形材料を容易に選択することができる。本発明の目的は、樹脂成形品どうしが動的に接触した際に発生する軋み音の程度を評価する方法を提供することである。 For example, when a composite having a structure in which a plurality of resin molded products are in contact with each other receives vibration, rotation, twisting, sliding, impact, etc., or when they are in a non-contact state with each other, vibration, rotation, twisting, sliding. The degree of squeaking noise generated when one resin molded product or both resin molded products move or deform due to impact, etc. and dynamically contact each other. If it can be predicted, it is possible to easily select a molding material suitable for the application for which squeaking noise is desired to be suppressed. An object of the present invention is to provide a method for evaluating the degree of squeaking noise generated when resin molded products are dynamically contacted with each other.

本発明者らは、樹脂成形品の表面における表面自由エネルギーγと、該表面自由エネルギーγの極性成分γ及び分散成分γと、これらより得られる極性パラメーターSとから、樹脂成形品どうしが動的に接触した際に発生する軋み音の程度を評価することが可能であることを見い出した。
本発明は、以下に示される。
1.樹脂成形品どうしが動的に接触した際に発生する軋み音の程度を評価する方法であって、
Owens and Wendt法により、上記樹脂成形品の表面における表面自由エネルギーγと、該表面自由エネルギーγの極性成分γ及び分散成分γとを求め、その後、下記式により算出される極性パラメーターS及び上記表面自由エネルギーγの各値により上記軋み音を評価することを特徴とする、軋み音評価方法。
S=γ/γ=γ/(γ+γ
2.上記表面自由エネルギーγが50mJ/m以下であり、上記極性パラメーターSが0.2以下である場合に軋み音が発生しにくいと判定される上記項1に記載の軋み音評価方法。
3.上記項1又は2に記載の軋み音評価方法で評価された樹脂成形品であって、表面自由エネルギーγが50mJ/m以下であり、極性パラメーターSが0.2以下であることを特徴とする、軋み音が発生しにくい樹脂成形品。
The present inventors have made resin molded products from each other from the surface free energy γ on the surface of the resin molded product, the polar component γ p and the dispersion component γ d of the surface free energy γ, and the polar parameter S obtained from these. We have found that it is possible to evaluate the degree of squeaking that occurs when contact is made dynamically.
The present invention is shown below.
1. 1. It is a method to evaluate the degree of squeaking noise generated when resin molded products dynamically contact each other.
The surface free energy γ on the surface of the resin molded product, the polar component γ p and the dispersion component γ d of the surface free energy γ are obtained by the Owns and Wend method, and then the polar parameters S and the polar parameters S calculated by the following formula are obtained. A squeaking sound evaluation method, characterized in that the squeaking sound is evaluated by each value of the surface free energy γ.
S = γ p / γ = γ p / (γ p + γ d )
2. 2. The squeaking sound evaluation method according to Item 1, wherein it is determined that squeaking noise is unlikely to occur when the surface free energy γ is 50 mJ / m 2 or less and the polarity parameter S is 0.2 or less.
3. 3. A resin molded product evaluated by the squeaking sound evaluation method according to the above item 1 or 2, characterized in that the surface free energy γ is 50 mJ / m 2 or less and the polarity parameter S is 0.2 or less. A resin molded product that does not easily squeak.

本発明の軋み音評価方法によれば、樹脂成形品どうしが動的に接触した際に発生する軋み音の程度を把握することができる。例えば、複数の樹脂成形品どうしが接触する構造を有する複合体が振動、回転、ねじれ、摺動、衝撃等を受ける場合、あるいは、互いに非接触状態にあるものの、振動、回転、ねじれ、摺動、衝撃等により一方の樹脂成形品若しくは両方の樹脂成形品が移動又は変形して動的に接触するおそれがある場合に、樹脂成形品どうしが動的に接触した際に発生する軋み音の程度を予想することができるので、用途に応じて樹脂成形品の成形材料を的確に選択することができる。上記表面自由エネルギーγが50mJ/m以下であり、上記極性パラメーターSが0.2以下である場合の樹脂成形品を複数用いると、軋み音が発生しにくく、このような樹脂成形品は、車両、船舶、航空、OA機器、家庭電化機器、電機・電子機器、建材、日用雑貨、スポーツ、文具等の用途に好適である。 According to the squeaking noise evaluation method of the present invention, it is possible to grasp the degree of squeaking noise generated when the resin molded products dynamically contact each other. For example, when a composite having a structure in which a plurality of resin molded products are in contact with each other receives vibration, rotation, twisting, sliding, impact, etc., or when they are in a non-contact state with each other, vibration, rotation, twisting, sliding. The degree of squeaking noise generated when one resin molded product or both resin molded products move or deform due to impact, etc. and dynamically contact each other. Can be predicted, so that the molding material of the resin molded product can be accurately selected according to the application. When a plurality of resin molded products in the case where the surface free energy γ is 50 mJ / m 2 or less and the polarity parameter S is 0.2 or less are used, squeaking noise is unlikely to occur. It is suitable for applications such as vehicles, ships, aviation, OA equipment, household electrical equipment, electric / electronic equipment, building materials, daily miscellaneous goods, sports, and stationery.

動的に接触した際に軋み音が発生することが考えられる2つの樹脂成形品の構成例を示す断面図である。It is sectional drawing which shows the structural example of two resin molded articles which may generate a squeaking noise at the time of dynamic contact.

以下、本発明を詳細に説明する。尚、本明細書において、「(共)重合体」は、単独重合体及び共重合体を意味する。 Hereinafter, the present invention will be described in detail. In addition, in this specification, "(co) polymer" means a homopolymer and a copolymer.

本発明の評価方法は、例えば、図1に示すように、2つの樹脂成形品10,20を組み合わせた複合体において、振動、ねじれ、衝撃等により一方若しくは両方が移動又は変形して動的に接触(面接触、線接触又は点接触)した場合に発生する軋み音の程度を判定する方法である。
図1の(1)は、1の部材10と、他の部材20とが隣接している態様である。(2)及び(3)は、1の部材10が、他の部材20に形成された凹部に嵌挿されている態様である。(4)は、他の部材20が、1の部材10に形成された凹部に嵌挿されている態様である。(5)は、1の筒状部材10の内壁面に密着するように他の部材20が配設されている態様である。また、(6)は、1の部材10と、他の部材20とが、所定の空隙をもって配置されている態様である。
In the evaluation method of the present invention, for example, as shown in FIG. 1, in a composite body in which two resin molded products 10 and 20 are combined, one or both of them move or deform dynamically due to vibration, twist, impact, etc. This is a method for determining the degree of squeaking noise generated when contact (surface contact, line contact, or point contact) occurs.
FIG. 1 (1) shows a mode in which the member 10 of 1 and the other member 20 are adjacent to each other. In (2) and (3), the member 10 of 1 is fitted into a recess formed in the other member 20. (4) is a mode in which the other member 20 is fitted into the recess formed in the member 10. (5) is an embodiment in which another member 20 is arranged so as to be in close contact with the inner wall surface of the tubular member 10. Further, (6) is an embodiment in which one member 10 and another member 20 are arranged with a predetermined gap.

本発明の評価方法では、はじめに、Owens and Wendt法により、樹脂成形品の表面における表面自由エネルギーγと、この表面自由エネルギーγの極性成分γ及び分散成分γとを求める。
ここで、表面自由エネルギーとは、固体又は液体表面の分子が物質内部の分子と比べて余分に持つエネルギーのことである。本発明において、樹脂成形品の表面自由エネルギーγは23℃±3℃における表面自由エネルギーを指す。表面自由エネルギーγは公知の方法により求めることができるが、本発明においては、Owens and Wendt法により求める。表面自由エネルギーγの極性成分γ及び分散成分γも同法により求める。
In the evaluation method of the present invention, first, the surface free energy γ on the surface of the resin molded product and the polar component γ p and the dispersion component γ d of the surface free energy γ are obtained by the Owns and Wendt method.
Here, the surface free energy is the energy that a molecule on a solid or liquid surface has extra energy as compared with a molecule inside a substance. In the present invention, the surface free energy γ of the resin molded product refers to the surface free energy at 23 ° C. ± 3 ° C. The surface free energy γ can be obtained by a known method, but in the present invention, it is obtained by the Owns and Wendt method. The polar component γ p and the dispersion component γ d of the surface free energy γ are also obtained by the same method.

Owens and Wendt法は、文献(J. Appl. Polym. Sci., 13, 1741−1747(1969))に記載されており、樹脂成形品の表面に、表面自由エネルギーが既知の液体(試験液体)を滴下し、接触角θを測定して、下記式(I)、(II)及び(III)より、表面自由エネルギーγと、その極性成分γ及び分散成分γを算出する。尚、θは、試験液体での接触角、γは、樹脂成形品表面の表面自由エネルギーγの非極性成分、γ は、試験液体の表面自由エネルギーの非極性成分、γは、樹脂成形品表面の表面自由エネルギーγの極性成分、γ は、試験液体の表面自由エネルギーの極性成分である。
(1 + cosθ)・γ/2 = [(γ・γ )]1/2 + [(γ・γ )]1/2 (I)
γ = γ + γ (II)
γ = γ + γ (III)
The Owns and Wend method is described in the literature (J. Appl. Polymer. Sci., 13, 1741-1747 (1969)), and a liquid having a known surface free energy (test liquid) on the surface of a resin molded product. Is dropped, the contact angle θ is measured, and the surface free energy γ and its polar component γ p and dispersion component γ d are calculated from the following formulas (I), (II) and (III). In addition, θ is the contact angle in the test liquid, γ d is the non-polar component of the surface free energy γ of the surface of the resin molded product, γ L d is the non-polar component of the surface free energy of the test liquid, and γ p is. polar component of the surface free energy gamma of the resin molded article surface, gamma L p is the polar component of the surface free energy of the test fluid.
(1 + cos θ) ・ γ L / 2 = [(γ d・ γ L d )] 1/2 + [(γ p・ γ L p )] 1/2 (I)
γ = γ d + γ p (II)
γ L = γ L d + γ L p (III)

本発明においては、試験液体として、水及びジヨードメタン(ヨウ化メチレン)を使用することが好ましい。水の表面自由エネルギーγの極性成分γ 及び分散成分γ は、それぞれ、51.0mJ/m及び21.8mJ/mであり、ジヨードメタンの表面自由エネルギーγの極性成分γ 及び分散成分γ は、それぞれ、1.3mJ/m及び49.5mJ/mである。これらの数値と、各試験液体を用いた接触角θの数値とを上記式(I)〜(III)に導入することにより、樹脂成形品表面の表面自由エネルギーγと、その極性成分γ及び分散成分γを算出することができる。 In the present invention, it is preferable to use water and diiodomethane (methylene iodide) as the test liquid. Polar component gamma L p and variance component gamma L d of the surface free energy gamma of water, respectively, was 51.0mJ / m 2 and 21.8mJ / m 2, the polar component of the surface free energy gamma diiodomethane gamma L p And the dispersion component γ L d is 1.3 mJ / m 2 and 49.5 mJ / m 2 , respectively. By introducing these values and the values of the contact angle θ using each test liquid into the above formulas (I) to (III), the surface free energy γ of the surface of the resin molded product, its polar component γ p, and its polar component γ p and The dispersion component γ d can be calculated.

上記のようにして、樹脂成形品の表面における表面自由エネルギーγと、この表面自由エネルギーγの極性成分γ及び分散成分γとを得た後、下記式(IV)により極性パラメーターSを求める。
S=γ/γ=γ/(γ+γ) (IV)
After obtaining the surface free energy γ on the surface of the resin molded product and the polar component γ p and the dispersion component γ d of the surface free energy γ as described above, the polar parameter S is obtained by the following formula (IV). ..
S = γ p / γ = γ p / (γ p + γ d ) (IV)

本発明は、極性パラメーターS及び表面自由エネルギーγの各値により軋み音を評価するものである。軋み音は、(1)表面自由エネルギーγの上限が50mJ/m且つ極性パラメーターSの上限が0.2、(2)表面自由エネルギーγの上限が48mJ/m且つ極性パラメーターSの上限が0.15、(3)表面自由エネルギーγの上限が46mJ/m且つ極性パラメーターSの上限が0.1、(4)表面自由エネルギーγの上限が44mJ/m且つ極性パラメーターSの上限が0.06、の順に発生しにくくなる。このように評価できることは、従来、公知のスティックスリップ試験による異音リスク値による評価結果と相関がとれており、軋み音の評価方法として有用である。 The present invention evaluates the squeaking sound by each value of the polarity parameter S and the surface free energy γ. The squeaking noise has (1) the upper limit of the surface free energy γ is 50 mJ / m 2 and the upper limit of the polar parameter S is 0.2, and (2) the upper limit of the surface free energy γ is 48 mJ / m 2 and the upper limit of the polar parameter S is. 0.15, (3) The upper limit of the surface free energy γ is 46 mJ / m 2 and the upper limit of the polar parameter S is 0.1, (4) The upper limit of the surface free energy γ is 44 mJ / m 2 and the upper limit of the polar parameter S is It becomes less likely to occur in the order of 0.06. The ability to be evaluated in this way is useful as a method for evaluating squeaking noise because it has a correlation with the evaluation result based on the abnormal noise risk value by a known stick slip test.

本発明に係る樹脂成形品は、熱可塑性樹脂組成物及び硬化樹脂組成物のいずれからなるものでもよいが、熱可塑性樹脂組成物からなることが好ましい。
熱可塑性樹脂組成物に含まれる熱可塑性樹脂としては、ABS樹脂、AES樹脂、ASA樹脂、アクリル樹脂、ポリカーボネート樹脂、ポリアミド樹脂、ポリオレフィン樹脂、ポリエステル樹脂、ポリアリレート樹脂、ビニル系(共)重合体(芳香族ビニル系(共)重合体、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、フッ素樹脂等)、ポリエチレングリコール樹脂、エチレン系共重合体を主鎖として、芳香族ビニル系(共)重合体を側鎖とするグラフト樹脂、ポリオレフィンを主鎖として、芳香族ビニル系(共)重合体を側鎖とするグラフト樹脂等が挙げられる。これらの熱可塑性樹脂は、単独で用いてよいし、2種以上を組み合わせて用いてもよい。
上記熱可塑性樹脂組成物は、添加剤を含有してもよい。この添加剤としては、充填剤、可塑剤、酸化防止剤、紫外線吸収剤、老化防止剤、難燃剤、安定剤、耐候剤、光安定剤、熱安定剤、帯電防止剤、撥水剤、撥油剤、抗菌剤、防腐剤、着色剤(顔料、染料等)等が挙げられる。
The resin molded product according to the present invention may consist of either a thermoplastic resin composition or a cured resin composition, but is preferably composed of a thermoplastic resin composition.
Examples of the thermoplastic resin contained in the thermoplastic resin composition include ABS resin, AES resin, ASA resin, acrylic resin, polycarbonate resin, polyamide resin, polyolefin resin, polyester resin, polyarylate resin, and vinyl-based (co) polymer (co) polymer. Aromatic vinyl (co) polymer, polyvinyl chloride resin, polyvinylidene chloride resin, fluororesin, etc.), polyethylene glycol resin, ethylene copolymer as the main chain, and aromatic vinyl (co) polymer side Examples thereof include a graft resin having a chain as a main chain and a graft resin having an aromatic vinyl-based (co) polymer as a side chain with polyolefin as the main chain. These thermoplastic resins may be used alone or in combination of two or more.
The thermoplastic resin composition may contain an additive. These additives include fillers, plasticizers, antioxidants, UV absorbers, antioxidants, flame retardants, stabilizers, weathering agents, light stabilizers, heat stabilizers, antistatic agents, water repellents, and repellents. Examples include oil agents, antibacterial agents, preservatives, colorants (pigments, dyes, etc.).

本発明に係る樹脂成形品が熱可塑性樹脂組成物からなる場合、いずれの成形方法により得られたものであってもよい。成形方法としては、射出成形、押出成形、異形押出成形、中空成形、圧縮成形、真空成形、発泡成形、ブロー成形、射出圧縮成形、ガスアシスト成形、ウォーターアシスト成形等が挙げられる。また、上記以外の材料からなる基部の表面に、上記熱可塑性樹脂を含むフィルムを貼り合わせてなる複合体においても、該フィルムの表面において、軋み音の評価方法を適用することができる。 When the resin molded product according to the present invention is made of a thermoplastic resin composition, it may be obtained by any molding method. Examples of the molding method include injection molding, extrusion molding, deformed extrusion molding, hollow molding, compression molding, vacuum molding, foam molding, blow molding, injection compression molding, gas assist molding, water assist molding and the like. Further, even in a composite in which a film containing the thermoplastic resin is bonded to the surface of a base made of a material other than the above, the method for evaluating squeaking noise can be applied to the surface of the film.

次に、熱可塑性樹脂組成物を用いた実験例により、本発明を更に詳細に説明する。尚、下記において、部及び%は、特に断らない限り、質量基準である。 Next, the present invention will be described in more detail with reference to experimental examples using the thermoplastic resin composition. In the following, parts and% are based on mass unless otherwise specified.

1.原料成分
下記の実験例で用いた樹脂は、以下の通りである。
(1)PMMA樹脂:クラレ社製「パラペットG」(商品名)
(2)ABS樹脂:テクノUMG社製「ABS150」(商品名)
(3)ポリアミド樹脂:ユニチカ社製「A1030BRL」(商品名)
(4)EGMA−ASグラフト樹脂:日油社製「モディパーA4400」(商品名)
(5)PC樹脂:三菱エンジニアリングプラスチックス社製「ノバレックス7022R」(商品名)
(6)PEG樹脂:三洋化成工業社製「PEG−20000」(商品名)
(7)PP樹脂:日本ポリプロ社製「ノバテックPP BC03C」(商品名)
(8)PP−ASグラフト樹脂:日油社製「モディパーA3400」(商品名)
(9)PE樹脂:日本ポリエチレン社製「ノバテックLD LJ802」(商品名)
(10)PE−ASグラフト樹脂:日油社製「モディパーA1401」(商品名)
(11)酸化防止剤:アデカ社製「アデカスタブPEP−36」(商品名)
1. 1. Raw material components The resins used in the following experimental examples are as follows.
(1) PMMA resin: "Parapet G" manufactured by Kuraray (trade name)
(2) ABS resin: "ABS150" manufactured by Techno-UMG (trade name)
(3) Polyamide resin: "A1030BRL" manufactured by Unitika Ltd. (trade name)
(4) EGMA-AS graft resin: "Modiper A4400" manufactured by NOF CORPORATION (trade name)
(5) PC resin: "Novalex 7022R" manufactured by Mitsubishi Engineering Plastics (trade name)
(6) PEG resin: "PEG-20000" manufactured by Sanyo Chemical Industries, Ltd. (trade name)
(7) PP resin: "Novatec PP BC03C" manufactured by Japan Polypropylene Corporation (trade name)
(8) PP-AS graft resin: "Modiper A3400" manufactured by NOF CORPORATION (trade name)
(9) PE resin: "Novatec LD LJ802" manufactured by Japan Polyethylene Corporation (trade name)
(10) PE-AS graft resin: "Modiper A1401" manufactured by NOF CORPORATION (trade name)
(11) Antioxidant: "ADEKA STAB PEP-36" manufactured by ADEKA (trade name)

2.熱可塑性樹脂試験片の作製及び軋み音の評価
上記の原料を用いて、試験片を作製し、試験片の表面に水又はジヨードメタンの液滴を滴下して接触角を測定した。そして、上記のOwens and Wendt法により表面自由エネルギーγ及び極性パラメーターSを求めた。また、別途、作製した試験片をスティックスリップ試験に供し、異音リスク値を得た。
2. 2. Preparation of thermoplastic resin test piece and evaluation of squeaking noise A test piece was prepared using the above raw materials, and a droplet of water or diiodomethane was dropped on the surface of the test piece to measure the contact angle. Then, the surface free energy γ and the polarity parameter S were obtained by the above-mentioned Owns and Wendt method. In addition, the prepared test piece was separately subjected to a stick slip test to obtain an abnormal noise risk value.

実験例1
熱可塑性樹脂成分として、PMMA樹脂及びABS樹脂からなるペレットを、東芝機械社製射出成形機「IS−170FA」(型式名)を用いて、シリンダ温度250℃、射出圧力50MPa、金型温度60℃にて射出成形し、縦150mm、横100mm、厚さ4mmの成形体を得た。この成形体をディスクソーで切削加工し、番手#100のサンドペーパーで端部を面取りした後、細かなバリをカッターナイフで除去して、接触角測定用試験片(縦50mm、横30mm、厚さ4mm)と、スティックスリップ試験用試験片X(縦60mm、横100mm、厚さ4mm)及びY(縦50mm、横25mm、厚さ4mm)とを得た。その後、以下の測定を行い、その結果を表1に示した。
Experimental Example 1
Pellets made of PMMA resin and ABS resin as thermoplastic resin components are used in an injection molding machine "IS-170FA" (model name) manufactured by Toshiba Machine Co., Ltd., and have a cylinder temperature of 250 ° C., an injection pressure of 50 MPa, and a mold temperature of 60 ° C. A molded product having a length of 150 mm, a width of 100 mm, and a thickness of 4 mm was obtained by injection molding. This molded body is cut with a disc saw, the edges are chamfered with sandpaper with a count of # 100, and fine burrs are removed with a cutter knife to measure the contact angle (length 50 mm, width 30 mm, thickness). 4 mm), and test pieces X (length 60 mm, width 100 mm, thickness 4 mm) and Y (length 50 mm, width 25 mm, thickness 4 mm) for stick slip test were obtained. After that, the following measurements were performed and the results are shown in Table 1.

(1)接触角の測定
接触角測定用試験片を、温度23℃及び湿度50%RHの条件下、48時間状態調整した後、協和界面科学社製接触角計「ドロップマスターDMo501」(商品名)を用い、液滴法により、水及びジヨードメタンでの接触角を測定した。液滴法の測定条件は、液滴量が2μL、着滴後1秒後測定、環境温度23℃±3℃、環境湿度50%±10%であった。水の接触角は74度であり、ジヨードメタンの接触角は48度であった。これらの結果から、Owens and Wendt法に基づいて、表面自由エネルギーγ=39.1mJ/m及び極性パラメーターS=0.21を得た。
(1) Measurement of contact angle After adjusting the state of the contact angle measurement test piece under the conditions of temperature 23 ° C. and humidity 50% RH for 48 hours, Kyowa Interface Science Co., Ltd. contact angle meter "Dropmaster DMo501" (trade name). ) Was used to measure the contact angle with water and diiodomethane by the sessile drop method. The measurement conditions of the sessile drop method were a droplet volume of 2 μL, measurement 1 second after landing, an environmental temperature of 23 ° C. ± 3 ° C., and an environmental humidity of 50% ± 10%. The contact angle of water was 74 degrees and the contact angle of diiodomethane was 48 degrees. From these results, the surface free energy γ = 39.1 mJ / m 2 and the polarity parameter S = 0.21 were obtained based on the Owns and Wendt method.

(2)スティックスリップ試験
スティックスリップ試験用試験片X及びYを、温度23℃及び湿度50%RHの条件下、48時間状態調整した後、ジグラー(ZIEGLER)社製スティックスリップ試験機「SSP−02」(型式名)に固定し、これらの試験片を、温度23℃、湿度50%RH、荷重40N、速度1mm/秒、振幅20mmで3回擦り合わせたときの異音リスク値が最も大きい条件の数値を抽出したところ、10であった。これを、本例の異音リスク値とした。異音リスク値が高いほど軋み音の発生リスクは高くなる。
(2) Stick-slip test After adjusting the state of the stick-slip test test pieces X and Y under the conditions of temperature 23 ° C. and humidity 50% RH for 48 hours, the stick-slip tester “SSP-02” manufactured by ZIEGLER Co., Ltd. (Model name), and the conditions with the highest risk of abnormal noise when these test pieces are rubbed three times at a temperature of 23 ° C, humidity of 50% RH, load of 40 N, speed of 1 mm / sec, and amplitude of 20 mm. When the numerical value of was extracted, it was 10. This was used as the abnormal noise risk value in this example. The higher the abnormal noise risk value, the higher the risk of squeaking.

実験例2〜4
PMMA樹脂及びABS樹脂の使用量を変えて水及びジヨードメタンに対する接触角を異なるようにした以外は、実験例1と同様の操作及び評価を行った。その結果を表1に示す。
Experimental Examples 2-4
The same operation and evaluation as in Experimental Example 1 were carried out except that the amounts of PMMA resin and ABS resin used were changed so that the contact angles with water and diiodomethane were different. The results are shown in Table 1.

実験例5
熱可塑性樹脂成分として、ポリアミド樹脂及びABS樹脂を用いた以外は、実験例1と同様の操作及び評価を行った。その結果を表1に示す。
Experimental Example 5
The same operations and evaluations as in Experimental Example 1 were performed except that a polyamide resin and an ABS resin were used as the thermoplastic resin components. The results are shown in Table 1.

実験例6
熱可塑性樹脂成分として、ポリアミド樹脂、EGMA−ASグラフト樹脂及びABS樹脂を用いた以外は、実験例1と同様の操作及び評価を行った。その結果を表1に示す。
Experimental Example 6
The same operations and evaluations as in Experimental Example 1 were performed except that the polyamide resin, EGMA-AS graft resin, and ABS resin were used as the thermoplastic resin components. The results are shown in Table 1.

実験例7及び8
ポリアミド樹脂、EGMA−ASグラフト樹脂及びABS樹脂の使用量を変えて水及びジヨードメタンに対する接触角を異なるようにした以外は、実験例6と同様の操作及び評価を行った。その結果を表1に示す。
Experimental Examples 7 and 8
The same operations and evaluations as in Experimental Example 6 were carried out except that the amounts of the polyamide resin, EGMA-AS graft resin and ABS resin used were changed so that the contact angles with respect to water and diiodomethane were different. The results are shown in Table 1.

実験例9
熱可塑性樹脂成分として、PC樹脂、PEG樹脂、PP樹脂及びPP−ASグラフト樹脂を用いた以外は、実験例1と同様の操作及び評価を行った。その結果を表1に示す。
Experimental Example 9
The same operations and evaluations as in Experimental Example 1 were performed except that a PC resin, a PEG resin, a PP resin, and a PP-AS graft resin were used as the thermoplastic resin components. The results are shown in Table 1.

実験例10及び11
PC樹脂、PEG樹脂、PP樹脂及びPP−ASグラフト樹脂の使用量を変えて水及びジヨードメタンに対する接触角を異なるようにした以外は、実験例9と同様の操作及び評価を行った。その結果を表1に示す。
Experimental Examples 10 and 11
The same operation and evaluation as in Experimental Example 9 were carried out except that the amounts of the PC resin, PEG resin, PP resin and PP-AS graft resin used were changed to make the contact angles with water and diiodomethane different. The results are shown in Table 1.

実験例12
熱可塑性樹脂成分として、PC樹脂、PP樹脂及びPP−ASグラフト樹脂を用いた以外は、実験例1と同様の操作及び評価を行った。その結果を表1に示す。
Experimental Example 12
The same operations and evaluations as in Experimental Example 1 were performed except that a PC resin, a PP resin, and a PP-AS graft resin were used as the thermoplastic resin components. The results are shown in Table 1.

実験例13
熱可塑性樹脂成分として、PC樹脂及びABS樹脂を用いた以外は、実験例1と同様の操作及び評価を行った。その結果を表1に示す。
Experimental Example 13
The same operations and evaluations as in Experimental Example 1 were performed except that PC resin and ABS resin were used as the thermoplastic resin components. The results are shown in Table 1.

実験例14
熱可塑性樹脂成分として、PC樹脂、ABS樹脂、PE樹脂及びPE−ASグラフト樹脂を用いた以外は、実験例1と同様の操作及び評価を行った。その結果を表1に示す。
Experimental Example 14
The same operations and evaluations as in Experimental Example 1 were performed except that a PC resin, an ABS resin, a PE resin, and a PE-AS graft resin were used as the thermoplastic resin components. The results are shown in Table 1.

実験例15
PC樹脂、ABS樹脂、PE樹脂及びPE−ASグラフト樹脂の使用量を変えて水及びジヨードメタンに対する接触角を異なるようにした以外は、実験例14と同様の操作及び評価を行った。その結果を表1に示す。
Experimental Example 15
The same operations and evaluations as in Experimental Example 14 were carried out except that the amounts of the PC resin, ABS resin, PE resin and PE-AS graft resin used were changed to make the contact angles with water and diiodomethane different. The results are shown in Table 1.

Figure 0006804682
Figure 0006804682

表1より、表面自由エネルギーγが50mJ/m以下であり、極性パラメーターSが0.2以下であると、軋み音が発生しにくく、特に、表面自由エネルギーγが46mJ/m以下であり、極性パラメーターSが0.1以下であると、軋み音の発生リスクが更に低くなったことが分かる。従って、樹脂成形品の表面における表面自由エネルギーγを求めることで、軋み音が発生しやすいか否かを容易に判定することができた。 From Table 1, when the surface free energy γ is 50 mJ / m 2 or less and the polarity parameter S is 0.2 or less, squeaking noise is unlikely to occur, and in particular, the surface free energy γ is 46 mJ / m 2 or less. It can be seen that when the polarity parameter S is 0.1 or less, the risk of squeaking noise is further reduced. Therefore, by obtaining the surface free energy γ on the surface of the resin molded product, it was possible to easily determine whether or not a squeaking noise is likely to occur.

本発明の軋み音評価方法によれば、複数の樹脂成形品が、接触又は所定の間隔をもって配設され、振動、回転、ねじれ、摺動、衝撃等を受けるような用途で用いられる場合に、該樹脂成形品が軋み音を発生するか否かを効率よく判定することができる。本発明の樹脂成形品は、車両、OA機器、家庭電化機器、電機・電子機器又は建材を構成する部材、船舶、日用雑貨、スポーツ用品、文具等を構成する部材等として好適である。 According to the squeaking sound evaluation method of the present invention, when a plurality of resin molded products are arranged in contact with each other or at predetermined intervals and used in applications such as vibration, rotation, twisting, sliding, impact, etc. It is possible to efficiently determine whether or not the resin molded product generates a squeaking noise. The resin molded product of the present invention is suitable as a member constituting a vehicle, an OA device, a household electric device, an electric / electronic device or a building material, a ship, daily necessities, a sporting goods, a stationery or the like.

10:樹脂成形品、20:樹脂成形品 10: Resin molded product, 20: Resin molded product

Claims (2)

樹脂成形品どうしが動的に接触した際に発生する軋み音の程度を評価する方法であって、
Owens and Wendt法により、前記樹脂成形品の表面における表面自由エネルギーγと、該表面自由エネルギーγの極性成分γ及び分散成分γとを求め、その後、下記式(1)により算出される極性パラメーターS及び前記表面自由エネルギーγの各値により前記軋み音を評価することを特徴とする、軋み音評価方法。
S=γ/γ=γ/(γ+γ) (1)
It is a method to evaluate the degree of squeaking noise generated when resin molded products dynamically contact each other.
The surface free energy γ on the surface of the resin molded product, the polar component γ p and the dispersion component γ d of the surface free energy γ are obtained by the Owns and Wend method, and then the polarity calculated by the following formula (1). A squeaking sound evaluation method, characterized in that the squeaking sound is evaluated by each value of the parameter S and the surface free energy γ.
S = γ p / γ = γ p / (γ p + γ d ) (1)
前記表面自由エネルギーγが50mJ/m以下であり、前記極性パラメーターSが0.2以下である場合に、軋み音が発生しにくいと判定される請求項1に記載の軋み音評価方法。 The squeaking sound evaluation method according to claim 1, wherein when the surface free energy γ is 50 mJ / m 2 or less and the polarity parameter S is 0.2 or less, it is determined that squeaking noise is unlikely to occur.
JP2020099646A 2020-06-08 2020-06-08 How to evaluate the squeaking noise of resin molded products Expired - Fee Related JP6804682B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020099646A JP6804682B1 (en) 2020-06-08 2020-06-08 How to evaluate the squeaking noise of resin molded products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020099646A JP6804682B1 (en) 2020-06-08 2020-06-08 How to evaluate the squeaking noise of resin molded products

Publications (2)

Publication Number Publication Date
JP6804682B1 true JP6804682B1 (en) 2020-12-23
JP2021193360A JP2021193360A (en) 2021-12-23

Family

ID=73836148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020099646A Expired - Fee Related JP6804682B1 (en) 2020-06-08 2020-06-08 How to evaluate the squeaking noise of resin molded products

Country Status (1)

Country Link
JP (1) JP6804682B1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5262644B2 (en) * 2007-12-04 2013-08-14 日立化成株式会社 Method for evaluating releasability of molded body and method for manufacturing molded body
JP6146890B2 (en) * 2010-08-27 2017-06-14 テクノポリマー株式会社 Contact parts made of thermoplastic resin composition with reduced squeaking noise
JP2012078190A (en) * 2010-09-30 2012-04-19 Mitsubishi Materials Corp Method of predicting surface free energy of liquid, and contact angle, boundary free energy and adherence work between solid and liquid

Also Published As

Publication number Publication date
JP2021193360A (en) 2021-12-23

Similar Documents

Publication Publication Date Title
McKeen Film properties of plastics and elastomers
Tripathi Practical guide to polypropylene
JP2013531115A (en) Thermoplastic composition, method for producing the same, and article produced therefrom
EP1928950A2 (en) Soft polymer compositions having improved high temperature properties
US12084568B2 (en) Thermoplastic elastomer composition for overmolding polyamides
CN1486246A (en) Compound for a composite body
CN107646045A (en) Adjusted by the hardness of combined thermoplastic plastics and the composition for thermoplastic elastomer of thermoplastic elastomer (TPE)
EP3638734A1 (en) Thermoplastic elastomer compounds having high biorenewable content for overmolding on non-elastomeric polymer substrates
JP6804682B1 (en) How to evaluate the squeaking noise of resin molded products
EP2507315B1 (en) Thermoformable sound-deadening filled thermoplastic polyolefin composition
US7267865B2 (en) Draw resonant resistant multilayer films
US11453766B2 (en) Eva-containing compositions with improved mechanical properties and articles and methods thereof
BR112021009216A2 (en) compositions containing eva with improved mechanical properties and articles and methods thereof
WO2021038974A1 (en) Thermoplastic elastomer composition, bonding member and method for producing same
JP7119869B2 (en) THERMOPLASTIC ELASTOMER COMPOSITION AND JOINTING MEMBER
JP2019131722A (en) Thermoplastic elastomer composition and joining member
US20210221973A1 (en) Foamed Thermoplastic Vulcanizate and Methods Related Thereto
US20250074037A1 (en) Polyamide and polyolefin containing oriented films
Seong-Ryoel et al. Experimental study for mechanical properties of Thermoplastic Vulcanizates
JP5713730B2 (en) Resin composition, molding method and molded article
US6166139A (en) Paintable, surface-damage resistant compounded grade thermoplastic olefin (TPO)
JPWO2015137221A1 (en) Thermoplastic polymer composition and composite molded body
Jafari et al. Comparative study on tensile properties and microstructure development in elastomer‐modified cyclic olefin copolymer
US7297391B2 (en) Draw resonance resistant multilayer films
KR101428935B1 (en) Blend of wood plastic composite and windows made from thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200611

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200611

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201202

R150 Certificate of patent or registration of utility model

Ref document number: 6804682

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees