[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6800702B2 - Semiconductor light emitting device and its manufacturing method - Google Patents

Semiconductor light emitting device and its manufacturing method Download PDF

Info

Publication number
JP6800702B2
JP6800702B2 JP2016218246A JP2016218246A JP6800702B2 JP 6800702 B2 JP6800702 B2 JP 6800702B2 JP 2016218246 A JP2016218246 A JP 2016218246A JP 2016218246 A JP2016218246 A JP 2016218246A JP 6800702 B2 JP6800702 B2 JP 6800702B2
Authority
JP
Japan
Prior art keywords
light emitting
wavelength conversion
light
thin film
conversion layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016218246A
Other languages
Japanese (ja)
Other versions
JP2018078170A (en
Inventor
佳織 立花
佳織 立花
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2016218246A priority Critical patent/JP6800702B2/en
Priority to US15/800,495 priority patent/US10971663B2/en
Publication of JP2018078170A publication Critical patent/JP2018078170A/en
Application granted granted Critical
Publication of JP6800702B2 publication Critical patent/JP6800702B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Led Device Packages (AREA)

Description

本発明は、発光素子からの光を波長変換部材により所望の波長の光に変換して照射する半導体発光装置に関する。 The present invention relates to a semiconductor light emitting device that converts light from a light emitting element into light having a desired wavelength by a wavelength conversion member and irradiates the light.

半導体発光素子から発せられた光を波長変換部材により波長変換して白色光を照射する半導体発光装置が知られている。このような半導体発光装置は、一般照明、街路灯、車両用灯具等の照明器具の光源として利用され、特に、車両用灯具等は、高い正面輝度が要求されることから、様々な半導体発光装置が提案されている。 A semiconductor light emitting device is known that emits white light by converting the wavelength of light emitted from a semiconductor light emitting element by a wavelength conversion member. Such a semiconductor light emitting device is used as a light source for lighting equipment such as general lighting, street lights, and vehicle lighting equipment. In particular, vehicle lighting equipment and the like are required to have high front brightness, and therefore various semiconductor light emitting devices. Has been proposed.

例えば、特許文献1には、発光素子と、外部に露出する発光面と発光面から連続する側面とを有し発光素子からの光を波長変換可能な光透過部材と、光透過部材の側面と発光素子の側面を囲繞するように被覆する光反射性材料を含んだ被覆部材とを備え、実質的に上面の発光面のみを発光装置における光の放出領域とすることで、正面輝度を向上させた発光装置が開示されている。 For example, Patent Document 1 describes a light emitting element, a light transmitting member having a light emitting surface exposed to the outside and a side surface continuous from the light emitting surface and capable of wavelength conversion of light from the light emitting element, and a side surface of the light transmitting member. The front brightness is improved by providing a coating member containing a light-reflecting material that surrounds the side surface of the light emitting element and substantially only the light emitting surface on the upper surface as a light emitting region in the light emitting device. The light emitting device is disclosed.

特許第552682号公報Japanese Patent No. 552682

ところで、上述した特許文献1に開示された半導体発光装置等に適用される光透過部材は、発光面表面が平坦な無機材料で構成されているため、発光素子から出射した光が発光面表面において反射されて発光面から外部に出射することができず、発光効率が低下する。一方、これを改善するために発光面表面を粗面にした、すなわち発光面表面に凹凸面を形成した半導体発光装置がある。ところが、発光面表面を粗面にすることで、半導体発光装置の製造工程中の光反射材料を含む被覆部材を塗布する際に、被覆部材が発光面に這い上がる問題が生じる。特に、被覆部材として樹脂を使用した場合には、発光面表面の粗面において毛細管現象が生じ、樹脂が塗れ広がりやすい。また、発光面表面の角部に丸みがある場合には、表面張力による樹脂の止まりが弱く、発光面表面に樹脂が塗れ広がりやすい。このように、樹脂が発光面表面に這い上がり、濡れ広がることにより、発光面の表面面積が狭められ、発光効率が低下する虞がある。 By the way, since the light transmitting member applied to the semiconductor light emitting device and the like disclosed in Patent Document 1 described above is made of an inorganic material having a flat light emitting surface surface, the light emitted from the light emitting element is emitted from the light emitting surface surface. It is reflected and cannot be emitted from the light emitting surface to the outside, and the luminous efficiency is lowered. On the other hand, in order to improve this, there is a semiconductor light emitting device in which the surface of the light emitting surface is roughened, that is, an uneven surface is formed on the surface of the light emitting surface. However, by making the surface of the light emitting surface rough, there arises a problem that the covering member crawls up on the light emitting surface when the coating member containing the light reflecting material is applied during the manufacturing process of the semiconductor light emitting device. In particular, when a resin is used as the covering member, a capillary phenomenon occurs on the rough surface of the light emitting surface surface, and the resin is easily spread and spread. Further, when the corners of the light emitting surface surface are rounded, the resin does not stop easily due to surface tension, and the resin easily spreads on the light emitting surface surface. As described above, the resin crawls on the surface of the light emitting surface and spreads wet, so that the surface area of the light emitting surface is narrowed and the luminous efficiency may be lowered.

本発明は、上記事情に鑑みてなされたものであり、発光面表面への被覆部材の這い上がりを抑制し、発光効率を向上させることを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to suppress the crawling of a covering member onto the surface of a light emitting surface and to improve the luminous efficiency.

本発明の一態様は、発光素子と、該発光素子から出射される光を所定波長の光に変換する波長変換層と、少なくとも前記波長変換層の側面を覆う光反射部材と、前記波長変換層の波長変換された光が出射する最表面に設けられた、未硬化の前記光反射部材をはじく性質を有する薄膜と、を備えた半導体発光装置を提供する。 One aspect of the present invention includes a light emitting element, a wavelength conversion layer that converts light emitted from the light emitting element into light having a predetermined wavelength, a light reflecting member that covers at least the side surface of the wavelength conversion layer, and the wavelength conversion layer. Provided is a semiconductor light emitting device provided with a thin film having a property of repelling the uncured light reflecting member, which is provided on the outermost surface from which the wavelength-converted light of the above is emitted.

また、本発明の他の態様は、発光素子と、該発光素子から出射される光を所定波長の光に変換する波長変換層と、該波長変換層によって波長変換された光を透過する光透過性基板と、少なくとも該光透過性基板の側面を覆う光反射部材と、前記光透過性基板の、前記波長変換層によって波長変換された光が出射する最表面に設けられた、未硬化の前記光反射部材をはじく性質を有する薄膜と、を備えた半導体発光装置を提供する。 In addition, another aspect of the present invention is a light emitting element, a wavelength conversion layer that converts light emitted from the light emitting element into light having a predetermined wavelength, and light transmission that transmits light wavelength-converted by the wavelength conversion layer. The uncured surface of the sex substrate, at least a light reflecting member covering the side surface of the light transmitting substrate, and the outermost surface of the light transmitting substrate from which light wavelength-converted by the wavelength conversion layer is emitted. Provided is a semiconductor light emitting device including a thin film having a property of repelling a light reflecting member.

上記各態様において、薄膜の表面が粗面であること、薄膜上の、未硬化の被覆部材に対する接触角が、波長変換層及び光透過性基板上の接触角よりも大きいこと、薄膜がフッ素樹脂であること、が好ましく、薄膜の厚さが1nm〜10μm、より好ましくは50nm〜1μmであることが好ましい。また薄膜の接触角が40°以上であることが好ましい。 In each of the above aspects, the surface of the thin film is rough, the contact angle of the thin film with respect to the uncured coating member is larger than the contact angle of the wavelength conversion layer and the light transmissive substrate, and the thin film is a fluororesin. The thickness of the thin film is preferably 1 nm to 10 μm, more preferably 50 nm to 1 μm. Further, it is preferable that the contact angle of the thin film is 40 ° or more.

本発明によれば、発光面表面への被覆部材の這い上がりを抑制し、発光効率を向上させることができる。 According to the present invention, it is possible to suppress the crawling of the covering member onto the surface of the light emitting surface and improve the luminous efficiency.

本発明の第1の実施形態に係る半導体発光装置の概略構成を示し、(A)は断面図であり、(B)は上面図である。A schematic configuration of the semiconductor light emitting device according to the first embodiment of the present invention is shown, (A) is a cross-sectional view, and (B) is a top view. 本発明の第1の実施形態の他の例に係る半導体発光装置の概略構成を示し、(A)は断面図であり、(B)は上面図である。A schematic configuration of a semiconductor light emitting device according to another example of the first embodiment of the present invention is shown, (A) is a cross-sectional view, and (B) is a top view. 本発明の第1の実施形態の他の例に係る半導体発光装置の概略構成を示し、(A)は断面図であり、(B)は上面図である。A schematic configuration of a semiconductor light emitting device according to another example of the first embodiment of the present invention is shown, (A) is a cross-sectional view, and (B) is a top view. 本発明の第2の実施形態に係る半導体発光装置の概略構成を示す断面図である。It is sectional drawing which shows the schematic structure of the semiconductor light emitting device which concerns on 2nd Embodiment of this invention. 本発明の第1の実施形態に係る半導体発光装置において、ワイヤボンディング型の発光素子を適用した場合の概略構成を示す上面図である。It is a top view which shows the schematic structure when the wire bonding type light emitting element is applied in the semiconductor light emitting device which concerns on 1st Embodiment of this invention.

以下、本発明の一実施形態について図面を参照して説明する。なお、以下に示す図面において、理解の容易及び視認性向上のため、断面図であってもハッチングを適宜省略している。また、半導体発光装置の上面図において、本来上面視では視認できない構成については破線で示すと共に、説明の便宜上ハッチング等を付している。さらに、以下の説明において、異なる実施形態や変形例である場合にも、同一の構成には同一の符号を付し、その説明を省略する。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. In the drawings shown below, hatching is omitted as appropriate even in the cross-sectional view for easy understanding and improvement of visibility. Further, in the top view of the semiconductor light emitting device, the configuration that cannot be visually recognized from the top view is shown by a broken line, and hatching or the like is added for convenience of explanation. Further, in the following description, even when different embodiments or modifications are made, the same reference numerals are given to the same configurations, and the description thereof will be omitted.

(第1の実施形態)
本発明の第1の実施形態に係る半導体発光装置について説明する。
本実施形態に係る半導体発光装置は、発光素子10と、発光素子から出射される光を所定波長の光に変換する波長変換層12と、少なくとも波長変換層の側面を覆う光反射部材と、波長変換層によって波長変換された光が出射する最表面に設けられ、表面が粗面であり波長変換層よりも接触角が大きい薄膜とを備えている。
(First Embodiment)
The semiconductor light emitting device according to the first embodiment of the present invention will be described.
The semiconductor light emitting device according to the present embodiment includes a light emitting element 10, a wavelength conversion layer 12 that converts light emitted from the light emitting element into light having a predetermined wavelength, a light reflecting member that covers at least a side surface of the wavelength conversion layer, and a wavelength. It is provided on the outermost surface from which light wavelength-converted by the conversion layer is emitted, and includes a thin film having a rough surface and a larger contact angle than the wavelength conversion layer.

より具体的には、図1(A)は半導体発光装置1の断面図、図1(B)は半導体発光装置1の上面図であり、図1に示すように、半導体発光装置1は、発光素子10と、発光素子10を実装する実装基板11と、波長変換層12と、光反射部材13と、薄膜14とを備えている。 More specifically, FIG. 1A is a sectional view of the semiconductor light emitting device 1, FIG. 1B is a top view of the semiconductor light emitting device 1, and as shown in FIG. 1, the semiconductor light emitting device 1 emits light. It includes an element 10, a mounting substrate 11 on which the light emitting element 10 is mounted, a wavelength conversion layer 12, a light reflecting member 13, and a thin film 14.

発光素子10は、上面視で矩形状であり、発する光に対して透明な基板上に半導体層及び発光層を積層し、給電用の電極を形成したものを反転させたフリップチップ構造を成している。発光素子10は、発光層から照射された光を外部へ照射する。従って、発光素子10は、上面及び側面が発光面となる。なお、発光素子10の電極は、図示しないバンプ等により実装基板11上の配線パターンに導通している。 The light emitting element 10 has a rectangular shape when viewed from above, and has a flip-chip structure in which a semiconductor layer and a light emitting layer are laminated on a substrate transparent to the emitted light, and an electrode for feeding is formed and inverted. ing. The light emitting element 10 irradiates the light emitted from the light emitting layer to the outside. Therefore, the upper surface and the side surface of the light emitting element 10 are light emitting surfaces. The electrodes of the light emitting element 10 are electrically connected to the wiring pattern on the mounting substrate 11 by bumps or the like (not shown).

実装基板11は、本実施形態において、セラミックス材料で形成された板状体であり、窒化アルミニウムで形成された板状の基板を適用している。なお、基板は、一般に、ガラスエポキシ、樹脂、セラミックス等の絶縁性材料、又は絶縁性材料と金属部材との複合材料等によって形成される。基板としては、耐熱性及び耐候性の高いセラミックス又は樹脂を利用したものが好ましい。
なお、実装基板11には、図示しない配線パターンが形成されている。配線パターンは、主に、発光素子10の実装パターン及び発光素子10への電源供給のための電流引き回しパターンとして、実装基板11の表面に形成されている。配線パターンとしては、Al,Ni,Cu,Ag,Au等の導電性材料を用いることができる。
In the present embodiment, the mounting substrate 11 is a plate-shaped body made of a ceramic material, and a plate-shaped substrate made of aluminum nitride is applied. The substrate is generally formed of an insulating material such as glass epoxy, resin, or ceramics, or a composite material of an insulating material and a metal member. As the substrate, those using ceramics or resin having high heat resistance and weather resistance are preferable.
A wiring pattern (not shown) is formed on the mounting board 11. The wiring pattern is mainly formed on the surface of the mounting substrate 11 as a mounting pattern of the light emitting element 10 and a current routing pattern for supplying power to the light emitting element 10. As the wiring pattern, a conductive material such as Al, Ni, Cu, Ag, or Au can be used.

波長変換層12は、発光素子10から照射された光を所望波長の光に変換する蛍光体を含み、発光素子10の上面に設けられている。より具体的には、波長変換層12には、例えば、セラミックと蛍光体の混合物や焼結体、ガラスと蛍光体の混合物、蛍光体膜を配置したセラミック、蛍光体膜を形成したガラス、蛍光体分散ガラスや蛍光体セラミックプレートなどを適用することができる。本実施形態において、波長変換層12は、発光素子10の上面の発光面と略同一の大きさであり、上面は粗面となっている。波長変換層の厚みは、例えば、10μm〜500μm程度、特に30μm〜250μm程度とすることが好ましい。 The wavelength conversion layer 12 contains a phosphor that converts the light emitted from the light emitting element 10 into light having a desired wavelength, and is provided on the upper surface of the light emitting element 10. More specifically, the wavelength conversion layer 12 includes, for example, a mixture or sintered body of ceramic and a phosphor, a mixture of glass and a phosphor, a ceramic on which a phosphor film is arranged, a glass on which a phosphor film is formed, and fluorescence. A body-dispersed glass, a fluorescent ceramic plate, or the like can be applied. In the present embodiment, the wavelength conversion layer 12 has substantially the same size as the light emitting surface on the upper surface of the light emitting element 10, and the upper surface is a rough surface. The thickness of the wavelength conversion layer is preferably, for example, about 10 μm to 500 μm, particularly preferably about 30 μm to 250 μm.

光反射部材13は、波長変換層12の側面を覆い、かつ、波長変換層12の上面を外部に露出させるように設けられている。光反射部材13としては、例えば、シリコーン樹脂に光反射性フィラー(例えば酸化チタン、酸化アルミニウム、酸化ジルコニウム、酸化亜鉛など)を所定量混合したものを適用することができる。 The light reflecting member 13 is provided so as to cover the side surface of the wavelength conversion layer 12 and expose the upper surface of the wavelength conversion layer 12 to the outside. As the light reflecting member 13, for example, a silicone resin mixed with a predetermined amount of a light reflecting filler (for example, titanium oxide, aluminum oxide, zirconium oxide, zinc oxide, etc.) can be applied.

薄膜14は、半導体発光装置の最表面に設けられる。本実施形態においては波長変換層12の上面に設けられており、波長変換層12の上面の粗面に均一の膜厚で設けられている。従って、薄膜14の表面は粗面となっている。また、薄膜14としては、波長変換層12よりも未硬化の前記光反射部材に対する接触角の大きくなる材料を選択して適用する。より具体的には、薄膜14として、硬化する前の液体の状態の光反射部材13をはじく材料を適用する。また薄膜14の水に対する接触角が40°以上であることが好ましい。例えば、フッ素樹脂等の非粘着性及びすべり性が優れた材料を適用することで水の接触角40°以上を保持することができる。この他、薄膜14として、オルガノエポキシ等の有機物を適用することもできる。 The thin film 14 is provided on the outermost surface of the semiconductor light emitting device. In the present embodiment, it is provided on the upper surface of the wavelength conversion layer 12, and is provided on the rough surface of the upper surface of the wavelength conversion layer 12 with a uniform film thickness. Therefore, the surface of the thin film 14 is a rough surface. Further, as the thin film 14, a material having a larger contact angle with respect to the uncured light reflecting member than the wavelength conversion layer 12 is selected and applied. More specifically, as the thin film 14, a material that repels the light reflecting member 13 in a liquid state before curing is applied. Further, it is preferable that the contact angle of the thin film 14 with water is 40 ° or more. For example, by applying a material having excellent non-adhesiveness and slipperiness such as fluororesin, the contact angle of water can be maintained at 40 ° or more. In addition, an organic substance such as organoepoxy can be applied as the thin film 14.

また、薄膜の膜厚は、1nm〜10μm、より好ましくは50nm〜1μm、さらに好ましくは50nm〜100nmとすることが好ましい。本実施形態においては、波長変換層12の上面が粗面であるため、薄膜14を波長変換層12上に均一の膜厚で儲けることで、波長変換層12の凹凸に追随し、薄膜14の上面も凹凸を維持した粗面となる。なお、薄膜14は、予め波長変換層12の上面に、例えばスピンコーターやスプレーで形成しておくことが好ましい。 The film thickness of the thin film is preferably 1 nm to 10 μm, more preferably 50 nm to 1 μm, and even more preferably 50 nm to 100 nm. In the present embodiment, since the upper surface of the wavelength conversion layer 12 is a rough surface, by making a profit on the wavelength conversion layer 12 with a uniform film thickness, the thin film 14 follows the unevenness of the wavelength conversion layer 12. The upper surface is also a rough surface that maintains unevenness. The thin film 14 is preferably formed in advance on the upper surface of the wavelength conversion layer 12 by, for example, a spin coater or a spray.

このように構成された半導体発光装置は以下のように製造される。
半導体発光装置の製造に先立って、波長変換層12となる蛍光体セラミックプレート上に、フッ素樹脂からなる薄膜14を形成しておく。なお、蛍光体セラミックプレートは、予め蛍光体濃度および厚みが調整されており、薄膜14が形成された後に所望の大きさに切断されている。本実施形態では、波長変換層12となる蛍光体セラミックプレートは、発光素子10の上面と略同サイズに切断されている。
The semiconductor light emitting device configured in this way is manufactured as follows.
Prior to manufacturing the semiconductor light emitting device, a thin film 14 made of a fluororesin is formed on a phosphor ceramic plate to be a wavelength conversion layer 12. The fluoroceramic plate is preliminarily adjusted in phosphor concentration and thickness, and is cut into a desired size after the thin film 14 is formed. In the present embodiment, the phosphor ceramic plate to be the wavelength conversion layer 12 is cut to have substantially the same size as the upper surface of the light emitting element 10.

そして、予め配線パターン(図示せず)が形成された実装基板11に発光素子10を図示しないバンプを介して実装する。次に、予め薄膜14が形成され発光素子10の上面と略同サイズに切断された蛍光体セラミックプレートを蛍光体セラミックプレート接着用の樹脂を塗布し発光素子10上面に搭載して、樹脂を加熱硬化させ波長変換層12及び薄膜14とする。 Then, the light emitting element 10 is mounted on the mounting substrate 11 on which the wiring pattern (not shown) is formed in advance via bumps (not shown). Next, a phosphor ceramic plate on which a thin film 14 is formed in advance and cut to substantially the same size as the upper surface of the light emitting element 10 is coated with a resin for adhering the phosphor ceramic plate and mounted on the upper surface of the light emitting element 10 to heat the resin. It is cured to form a wavelength conversion layer 12 and a thin film 14.

次に、予め未硬化のシリコーン樹脂に光反射性フィラーを所定量混合した光反射部材を実装基板11上に、発光素子10及び波長変換層12の側面を完全に囲繞するまで流し込む。このとき、流し込まれた光反射部材13は、波長変換層12と光反射部材13の境界部が最も高く、波長変換層12から離れるにつれ徐々に低くなる。半導体発光装置がキャビティのある場合は、低くなった部分からキャビティ上面に向かって高くなり、波長変換層よりキャビティ上面が高い場合は、被覆部材の高さはキャビティと接続部が最も高くなる。 Next, a light-reflecting member in which a predetermined amount of a light-reflecting filler is mixed with an uncured silicone resin is poured onto the mounting substrate 11 until the side surfaces of the light emitting element 10 and the wavelength conversion layer 12 are completely surrounded. At this time, the boundary between the wavelength conversion layer 12 and the light reflection member 13 of the poured light reflecting member 13 is the highest, and gradually decreases as the distance from the wavelength conversion layer 12 increases. When the semiconductor light emitting device has a cavity, the height increases from the lowered portion toward the upper surface of the cavity, and when the upper surface of the cavity is higher than the wavelength conversion layer, the height of the covering member is the highest at the cavity and the connection portion.

このように、光反射部材13は、光反射部材13が波長変換層12側へ這い上がり、波長変換層12の粗面において毛細管現象を生じて濡れ広がろうとする。ところが、波長変換層12の上面に未硬化の光反射部材13をはじく薄膜14が形成されているので、光反射部材13が波長変換層12に這い上がり濡れ広がることが抑制される。この状態で、光反射部材13を加熱又は紫外線照射等の適切な硬化方法により硬化させ、所定サイズにダイシングカットすることで、光反射部材13が波長変換層12の側面を覆う構造として個片化された半導体発光装置を製造することができる。
このように、光反射部材13が波長変換層12に這い上がり濡れ広がることが抑制されるので、波長変換層12の上面の粗面形状を維持し、光反射部材の這い上がりに起因した発光効率の低下や明るさの低下を抑制することができる。
In this way, in the light reflecting member 13, the light reflecting member 13 crawls up to the wavelength conversion layer 12 side, causes a capillary phenomenon on the rough surface of the wavelength conversion layer 12, and tries to get wet and spread. However, since the thin film 14 that repels the uncured light reflecting member 13 is formed on the upper surface of the wavelength conversion layer 12, it is suppressed that the light reflecting member 13 crawls up to the wavelength conversion layer 12 and spreads wet. In this state, the light reflecting member 13 is cured by an appropriate curing method such as heating or ultraviolet irradiation, and dicing cut to a predetermined size so that the light reflecting member 13 is individualized as a structure covering the side surface of the wavelength conversion layer 12. The semiconductor light emitting device can be manufactured.
In this way, the light reflecting member 13 is prevented from crawling up to the wavelength conversion layer 12 and spreading wet, so that the rough surface shape of the upper surface of the wavelength conversion layer 12 is maintained and the luminous efficiency due to the crawling up of the light reflecting member 12 is maintained. It is possible to suppress the decrease in brightness and the decrease in brightness.

本実施形態においては、波長変換層12が発光素子10の上面と略同サイズである例について説明したが、例えば、図2(A)及び(B)に示すように、波長変換層12が発光素子10の上面よりも小さいサイズであってもよい。また、図3(A)及び(B)に示すように、波長変換層12が発光素子10の上面よりも大きいサイズであってもよい。
さらに、波長変換層12の表面が粗面ではなく平坦面である場合には、薄膜14の表面を粗面とすることにより、同様に光反射部材13が波長変換層12に這い上がり濡れ広がることが抑制され、発光効率の低下や明るさの低下を抑制することができる。
In the present embodiment, an example in which the wavelength conversion layer 12 has substantially the same size as the upper surface of the light emitting element 10 has been described. For example, as shown in FIGS. 2A and 2B, the wavelength conversion layer 12 emits light. The size may be smaller than the upper surface of the element 10. Further, as shown in FIGS. 3A and 3B, the wavelength conversion layer 12 may have a size larger than the upper surface of the light emitting element 10.
Further, when the surface of the wavelength conversion layer 12 is not a rough surface but a flat surface, by making the surface of the thin film 14 a rough surface, the light reflecting member 13 also crawls up to the wavelength conversion layer 12 and spreads wet. Can be suppressed, and a decrease in luminous efficiency and a decrease in brightness can be suppressed.

なお、薄膜14を波長変換層12の上面に形成する際に、薄膜14が粗面における凹部に厚く、凸部に薄く形成され、凹凸形状がわずかになだらかになることが考えられるが、このような場合にも粗面が完全に平坦になることはなく、粗面の凹凸形状を維持することができるため、発光効率を維持することができる。 When the thin film 14 is formed on the upper surface of the wavelength conversion layer 12, it is conceivable that the thin film 14 is formed thick in the concave portion on the rough surface and thin in the convex portion, and the uneven shape becomes slightly gentle. In such a case, the rough surface is not completely flat, and the uneven shape of the rough surface can be maintained, so that the luminous efficiency can be maintained.

(第2の実施形態)
次に、本発明の第2の実施形態に係る半導体発光装置について説明する。
上述した本発明の第1の実施形態では、波長変換層12の上面に薄膜を形成する例について説明した。本実施形態では、半導体発光装置が、光透過性基板を備えており、光透過性基板に薄膜14を形成する例について説明する。図4は、本実施形態に係る半導体発光装置の断面図である。以下の説明において、上述した第1の実施形態と同一の構成には同符号を付し、その説明を省略する。
(Second Embodiment)
Next, the semiconductor light emitting device according to the second embodiment of the present invention will be described.
In the first embodiment of the present invention described above, an example of forming a thin film on the upper surface of the wavelength conversion layer 12 has been described. In the present embodiment, an example in which the semiconductor light emitting device includes a light-transmitting substrate and the thin film 14 is formed on the light-transmitting substrate will be described. FIG. 4 is a cross-sectional view of the semiconductor light emitting device according to the present embodiment. In the following description, the same components as those in the first embodiment described above will be designated by the same reference numerals, and the description thereof will be omitted.

本実施形態に係る半導体発光装置は、発光素子10と、発光素子10から出射される光を所定波長の光に変換する波長変換層12と、波長変換層12によって波長変換された光を透過する光透過性基板15と、少なくとも光透過性基板15の側面を覆う光反射部材13と、波長変換層12によって波長変換された光が出射する最表面に設けられ、表面が粗面であり光透過性基板15よりも接触角が大きい薄膜と、を備えている。 The semiconductor light emitting device according to the present embodiment transmits the light emitting element 10, the wavelength conversion layer 12 that converts the light emitted from the light emitting element 10 into light of a predetermined wavelength, and the light wavelength-converted by the wavelength conversion layer 12. The light transmissive substrate 15, the light reflecting member 13 covering at least the side surface of the light transmissive substrate 15, and the outermost surface from which the light wavelength-converted by the wavelength conversion layer 12 is emitted are provided, and the surface is a rough surface and transmits light. A thin film having a contact angle larger than that of the sex substrate 15 is provided.

光透過性基板15は、例えばガラス、サファイア、シリコーン樹脂などからなり、本実施形態においては波長変換層12とほぼ同じ面積を有し、波長変換層12の上面に配置される。
薄膜14は、上述した第1の実施形態と同様に、半導体発光装置の最表面に設けられる。従って、本実施形態においては光透過性基板15の上面に設けられており、光透過性基板15の上面の粗面に均一の膜厚で設けられている。従って、薄膜14の表面は粗面となっている。また、薄膜14としては、光透過性基板15よりも未硬化の前記光反射部材に対する接触角の大きくなる材料を選択して適用する。より具体的には、薄膜14として、硬化する前の液体の状態の光反射部材13をはじき、水に対する接触角が40°以上となる材料を適用する。例えば、フッ素樹脂等の非粘着性及びすべり性が優れた材料を適用することで水の接触角40°以上を保持することができる。
The light transmissive substrate 15 is made of, for example, glass, sapphire, silicone resin, etc., has substantially the same area as the wavelength conversion layer 12 in the present embodiment, and is arranged on the upper surface of the wavelength conversion layer 12.
The thin film 14 is provided on the outermost surface of the semiconductor light emitting device, as in the first embodiment described above. Therefore, in the present embodiment, it is provided on the upper surface of the light transmissive substrate 15, and is provided on the rough surface of the upper surface of the light transmissive substrate 15 with a uniform film thickness. Therefore, the surface of the thin film 14 is a rough surface. Further, as the thin film 14, a material having a larger contact angle with respect to the uncured light reflecting member than the light transmitting substrate 15 is selected and applied. More specifically, as the thin film 14, a material that repels the light reflecting member 13 in a liquid state before curing and has a contact angle with water of 40 ° or more is applied. For example, by applying a material having excellent non-adhesiveness and slipperiness such as fluororesin, the contact angle of water can be maintained at 40 ° or more.

また、薄膜の膜厚は、1nm〜10μmであることが好ましく、特に50nm〜1μmがより好ましい。本実施形態においては、光透過性基板15の上面が粗面であるため、薄膜14を波長変換層12上に均一の膜厚で儲けることで、光透過性基板15の凹凸に追随し、薄膜14の上面も凹凸を維持した粗面となる。なお、薄膜14は、予め光透過性基板15の上面に、例えばスピンコーターやスプレーで形成しておくことが好ましい。 The film thickness of the thin film is preferably 1 nm to 10 μm, more preferably 50 nm to 1 μm. In the present embodiment, since the upper surface of the light-transmitting substrate 15 is a rough surface, the thin film 14 is made profitable on the wavelength conversion layer 12 with a uniform film thickness, so that the thin film follows the unevenness of the light-transmitting substrate 15. The upper surface of 14 is also a rough surface that maintains unevenness. The thin film 14 is preferably formed in advance on the upper surface of the light transmissive substrate 15 by, for example, a spin coater or a spray.

このように構成された半導体発光装置は、以下のように製造される。
半導体発光装置の製造に先立って、光透過性基板15となるガラス等の板状部材に、フッ素樹脂からなる薄膜14を形成しておく。なお、光透過性基板15は、薄膜14が形成された後に所望の大きさに切断されている。本実施形態では、光透過性基板15は、発光素子10及び波長変換層12の上面と略同サイズに切断されている。
そして、予め配線パターン(図示せず)が形成された実装基板11に発光素子10を図示しないバンプを介して実装する。次に、蛍光体セラミックプレートを蛍光体セラミックプレート接着用の樹脂を塗布し発光素子10上面に搭載して、蛍光体セラミックプレート接着用の樹脂を塗布して波長変換層12とする。続いて、波長変換層12の上面に薄膜14が形成された光透過性基板15を搭載し固着させる。
The semiconductor light emitting device configured in this way is manufactured as follows.
Prior to the manufacture of the semiconductor light emitting device, a thin film 14 made of fluororesin is formed on a plate-shaped member such as glass to be a light transmissive substrate 15. The light-transmitting substrate 15 is cut to a desired size after the thin film 14 is formed. In the present embodiment, the light transmissive substrate 15 is cut to have substantially the same size as the upper surfaces of the light emitting element 10 and the wavelength conversion layer 12.
Then, the light emitting element 10 is mounted on the mounting substrate 11 on which the wiring pattern (not shown) is formed in advance via bumps (not shown). Next, the phosphor ceramic plate is coated with a resin for adhering the phosphor ceramic plate and mounted on the upper surface of the light emitting element 10, and the resin for adhering the phosphor ceramic plate is coated to form the wavelength conversion layer 12. Subsequently, the light transmissive substrate 15 having the thin film 14 formed on the upper surface of the wavelength conversion layer 12 is mounted and fixed.

次に、予めシリコーン樹脂に光反射性フィラーを所定量混合した光反射部材を実装基板11上に、発光素子10及び光透過性基板15の側面を完全に囲繞するまで流し込む。このとき、流し込まれた光反射部材13は、光透過性基板15と光反射部材13の境界部が最も高く、光透過性基板15から離れるにつれ徐々に低くなる。 Next, a light-reflecting member in which a predetermined amount of a light-reflecting filler is mixed with a silicone resin in advance is poured onto the mounting substrate 11 until the side surfaces of the light-emitting element 10 and the light-transmitting substrate 15 are completely surrounded. At this time, the light-reflecting member 13 poured into the light-transmitting member 13 has the highest boundary between the light-transmitting substrate 15 and the light-transmitting member 13, and gradually decreases as the distance from the light-transmitting substrate 15 increases.

光反射部材13は光透過性基板15側へ這い上がり、光透過性基板15の粗面において毛細管現象を生じて濡れ広がろうとする。ところが、光透過性基板15の上面に光反射部材をはじく薄膜14が形成されているので、光反射部材13が波長変換層12に這い上がり濡れ広がることが抑制される。この状態で、加熱硬化させ、所定サイズにダイシングカットすることで、光反射部材13が光透過性基板15の側面を覆う構造として個片化された半導体発光装置を製造することができる。
このように、光反射部材13が光透過性基板15に這い上がり濡れ広がることが抑制されるので、光反射部材の這い上がりに起因した発光効率の低下や明るさの低下を抑制することができる。
The light-reflecting member 13 crawls up to the light-transmitting substrate 15 side, causes a capillary phenomenon on the rough surface of the light-transmitting substrate 15, and tries to get wet and spread. However, since the thin film 14 that repels the light reflecting member is formed on the upper surface of the light transmitting substrate 15, the light reflecting member 13 is prevented from crawling up to the wavelength conversion layer 12 and spreading wet. In this state, the semiconductor light emitting device is manufactured as a structure in which the light reflecting member 13 covers the side surface of the light transmitting substrate 15 by heating and curing the light-transmitting member 13 and cutting the dicing to a predetermined size.
In this way, since the light reflecting member 13 is prevented from crawling up on the light transmitting substrate 15 and spreading wet, it is possible to suppress a decrease in luminous efficiency and a decrease in brightness due to the crawling up of the light reflecting member. ..

なお、図5に、発光素子の上面に接続されたボンディングワイヤを介して給電を行うワイヤボンディング型の発光素子を適用した例を示した。図5では、発光素子10の上面、すなわち発光面側に波長変換層12を配置している。この例では、発光素子10上面にワイヤを配置するため、波長変換層12にワイヤを逃がすための切欠き12Aを形成している。図では、波長変換層12の任意の一辺の中央部に切欠きを設けているが、切欠きの位置は素子中央、角、辺など適宜定めることができ、また、ワイヤの数も1本、複数本等適宜定めることができる。 Note that FIG. 5 shows an example in which a wire bonding type light emitting element that supplies power via a bonding wire connected to the upper surface of the light emitting element is applied. In FIG. 5, the wavelength conversion layer 12 is arranged on the upper surface of the light emitting element 10, that is, on the light emitting surface side. In this example, in order to arrange the wire on the upper surface of the light emitting element 10, a notch 12A for letting the wire escape is formed in the wavelength conversion layer 12. In the figure, a notch is provided at the center of any one side of the wavelength conversion layer 12, but the position of the notch can be appropriately determined such as the center of the element, the corner, and the side, and the number of wires is one. Multiple pieces can be set as appropriate.

上述した各実施形態に係る半導体発光装置は、ヘッドランプやADB(Adaptive Driving Beam)型の車両用灯具の光源に適用することができる他、照明用等の一般的な灯具に適用することもできる。
なお、光反射部材13の高さは、波長変換層12又は光透過性基板15から離れるに従って低下する傾向にあり、これが顕著になると、波長変換層12又は光透過性基板15の側面からの光漏れが大きくなり、半導体発光装置を、例えば、車両用灯具に適用した場合にはグレアの問題が発生する。上述した各実施形態における薄膜14を設けることにより、光反射部材13の高さを高くすることができるので、光反射部材13の形状を波長変換層12又は光透過性基板15に対して略平坦に広がる形状とすることができる。これにより、車両用前照灯に用いたときのグレアの問題を回避することができる。
The semiconductor light emitting device according to each of the above-described embodiments can be applied to a light source of a headlamp or an ADB (Adaptive Driving Beam) type vehicle lighting device, and can also be applied to a general lighting device for lighting or the like. ..
The height of the light reflecting member 13 tends to decrease as the distance from the wavelength conversion layer 12 or the light transmitting substrate 15 increases, and when this becomes remarkable, the light from the side surface of the wavelength conversion layer 12 or the light transmitting substrate 15 tends to decrease. Leakage increases and glare problems occur when semiconductor light emitting devices are applied to, for example, vehicle lighting fixtures. By providing the thin film 14 in each of the above-described embodiments, the height of the light reflecting member 13 can be increased, so that the shape of the light reflecting member 13 is substantially flat with respect to the wavelength conversion layer 12 or the light transmitting substrate 15. It can be shaped to spread out. This makes it possible to avoid the problem of glare when used in vehicle headlights.

10・・・発光素子、11・・・実装基板、12・・・波長変換層、13・・・光反射部材、14・・・薄膜、15・・・光透過性基板 10 ... light emitting element, 11 ... mounting substrate, 12 ... wavelength conversion layer, 13 ... light reflecting member, 14 ... thin film, 15 ... light transmissive substrate

Claims (9)

上面と側面を有し、上面視が矩形状である発光素子と、
前記発光素子を実装する実装基板と、
前記発光素子上に配置され、上面と下面および側面を有するプレート状の波長変換層と、
前記実装基板上に形成され、前記波長変換層の側面および前記発光素子の側面を覆う光反射部材と、
前記波長変換層の上面に設けられた薄膜と、を備え、
前記波長変換層は、前記発光素子から照射された光を所望波長の光に変換する蛍光材料を含み、セラミックと蛍光材料の混合物、セラミックと蛍光材料の焼結体、ガラスと蛍光材料の混合物、蛍光材料膜を配置したセラミック、蛍光材料膜を形成したガラス、蛍光体分散ガラス、蛍光体セラミックプレートの何れかからなり、
前記光反射部材は、上面と、内側側面と、側面視が矩形状の外側側面とを有し、未硬化の樹脂材料に光反射性フィラーを所定量混合した光反射部材の硬化物からなり、
前記光反射部材の内側側面は、前記波長変換層の側面および前記発光素子の側面を囲繞して、前記波長変換層と前記光反射部材の境界部を形成し、
前記光反射部材の外側側面は、前記光反射部材の内側側面に対向しており、
前記光反射部材の形状は、前記実装基板に対して略平坦に広がる形状であり、
前記薄膜は、前記波長変換層の波長変換された光が出射する最表面に位置し、前記未硬化の光反射部材をはじく性質を有する樹脂膜であり、
前記波長変換層の上面は、外部出射効率改善のための粗面を全面に有し、
前記薄膜は、前記波長変換層の前記粗面の凹凸に追随し、前記薄膜の上面は、前記波長変換層の上面の凹凸を維持した粗面となるように設けられており、
前記薄膜の厚さは、50nm〜1μmである半導体発光装置。
A light emitting element having an upper surface and a side surface and having a rectangular top view ,
A mounting board on which the light emitting element is mounted and
A plate-shaped wavelength conversion layer arranged on the light emitting element and having an upper surface, a lower surface and a side surface ,
A light reflecting member formed on the mounting substrate and covering the side surface of the wavelength conversion layer and the side surface of the light emitting element .
A thin film provided on the upper surface of the wavelength conversion layer is provided.
The wavelength conversion layer contains a fluorescent material that converts the light emitted from the light emitting element into light having a desired wavelength, and includes a mixture of ceramic and fluorescent material, a sintered body of ceramic and fluorescent material, and a mixture of glass and fluorescent material. It consists of a ceramic on which a fluorescent material film is placed, a glass on which a fluorescent material film is formed, a fluorescent material dispersed glass, or a fluorescent material ceramic plate.
The light-reflecting member has an upper surface, an inner side surface, and an outer side surface having a rectangular side view, and is made of a cured product of the light-reflecting member obtained by mixing a predetermined amount of a light-reflecting filler with an uncured resin material.
The inner side surface of the light reflecting member surrounds the side surface of the wavelength conversion layer and the side surface of the light emitting element to form a boundary portion between the wavelength conversion layer and the light reflecting member.
The outer side surface of the light reflecting member faces the inner side surface of the light reflecting member.
The shape of the light reflecting member is a shape that spreads substantially flat with respect to the mounting substrate.
The thin film is a resin film located on the outermost surface of the wavelength conversion layer from which wavelength-converted light is emitted and has a property of repelling the uncured light-reflecting member.
The upper surface of the wavelength conversion layer has a rough surface for improving external emission efficiency.
The thin film follows the unevenness of the rough surface of the wavelength conversion layer, and the upper surface of the thin film is provided so as to be a rough surface that maintains the unevenness of the upper surface of the wavelength conversion layer.
A semiconductor light emitting device having a thin film thickness of 50 nm to 1 μm .
前記光反射部材は、前記薄膜の端部に接しており、当該端部で前記薄膜により前記波長変換層上面への這い上がりと濡れ拡がりが抑制されている請求項1に記載の半導体発光装置。 The semiconductor light emitting device according to claim 1, wherein the light reflecting member is in contact with an end portion of the thin film, and the thin film suppresses creeping up to the upper surface of the wavelength conversion layer and wet spreading at the end portion. 前記薄膜、水に対する接触角が40°以上の材料から構成される請求項1または請求項2に記載の半導体発光装置。 The semiconductor light emitting device according to claim 1 or 2, wherein the thin film is made of a material having a contact angle with water of 40 ° or more. 前記薄膜は、フッ素樹脂から構成される請求項1乃至請求項3のいずれかに記載の半導体発光装置。 The semiconductor light emitting device according to any one of claims 1 to 3 , wherein the thin film is made of a fluororesin. 前記光反射部材は、シリコーン樹脂に前記光反射性フィラーを混合して形成される請求項1乃至請求項4のいずれかに記載の半導体発光装置。 The semiconductor light emitting device according to any one of claims 1 to 4, wherein the light reflecting member is formed by mixing the light reflecting filler with a silicone resin. 前記波長変換層は、前記発光素子の上面に接着用樹脂を介して配置されている請求項1乃至請求項5のいずれかに記載の半導体発光装置。 The semiconductor light emitting device according to any one of claims 1 to 5, wherein the wavelength conversion layer is arranged on the upper surface of the light emitting element via an adhesive resin. 上面の全面が粗面を有する波長変換プレートの前記上面に、前記粗面の凹凸に追随し、その上面が前記凹凸を維持した粗面を有し、かつ、未硬化の樹脂をはじく性質を有する厚さ50nm〜1μmの薄膜を、樹脂により形成し、前記薄膜付き前記波長変換プレートを用意する工程と、 The upper surface of the wavelength conversion plate having a rough surface on the entire upper surface has a rough surface that follows the unevenness of the rough surface and maintains the unevenness on the upper surface, and has a property of repelling uncured resin. A step of forming a thin film having a thickness of 50 nm to 1 μm with a resin and preparing the wavelength conversion plate with the thin film.
実装基板に実装された発光素子の上面に接着用樹脂を塗布し、前記薄膜付き前記波長変換プレートを搭載する工程と、 A process of applying an adhesive resin to the upper surface of a light emitting element mounted on a mounting substrate and mounting the wavelength conversion plate with a thin film.
光反射性フィラーが混合された未硬化の樹脂を、前記実装基板の上に流し込むことにより、前記波長変換プレートの上面の前記薄膜によって、前記未硬化の樹脂の前記波長変換プレートの側面から前記薄膜の上面への這い上がりを抑制しながら、前記発光素子および前記波長変換プレートの側面を前記光反射部材によって囲繞する工程と、 By pouring an uncured resin mixed with a light-reflecting filler onto the mounting substrate, the thin film on the upper surface of the wavelength conversion plate allows the thin film from the side surface of the wavelength conversion plate of the uncured resin. The step of surrounding the light emitting element and the side surface of the wavelength conversion plate with the light reflecting member while suppressing the creeping up to the upper surface of the
前記未硬化の樹脂を硬化させることにより、前記発光素子および前記波長変換プレートの側面を囲繞し、かつ、前記波長変換プレートの上面の前記薄膜の上面には、前記樹脂が這い上がっていない光反射部材を形成する工程と By curing the uncured resin, the side surfaces of the light emitting element and the wavelength conversion plate are surrounded, and the resin does not crawl up on the upper surface of the thin film on the upper surface of the wavelength conversion plate. With the process of forming members
を有する半導体発光装置の製造方法。A method for manufacturing a semiconductor light emitting device having the above.
前記薄膜付き前記波長変換プレートを用意する工程は、 The step of preparing the wavelength conversion plate with the thin film is
フッ素樹脂からなる前記薄膜を前記波長変換プレート上に形成する工程と、 A step of forming the thin film made of fluororesin on the wavelength conversion plate, and
前記薄膜付き前記波長変換プレートを切断して個片化する工程と、 A step of cutting the wavelength conversion plate with a thin film to separate it into individual pieces.
を有する請求項7に記載の半導体発光装置の製造方法。The method for manufacturing a semiconductor light emitting device according to claim 7.
前記波長変換プレートは、前記発光素子から照射された光を所望波長の光に変換する蛍光材料を含み、セラミックと蛍光材料の混合物、セラミックと蛍光材料の焼結体、ガラスと蛍光材料の混合物、蛍光材料膜を配置したセラミック、蛍光材料膜を形成したガラス、蛍光体分散ガラス、蛍光体セラミックプレートの何れかからなる請求項7または請求項8に記載の半導体発光装置の製造方法。 The wavelength conversion plate contains a fluorescent material that converts the light emitted from the light emitting element into light having a desired wavelength, and includes a mixture of ceramic and fluorescent material, a sintered body of ceramic and fluorescent material, and a mixture of glass and fluorescent material. The method for manufacturing a semiconductor light emitting device according to claim 7 or 8, which comprises any of a ceramic on which a fluorescent material film is arranged, a glass on which a fluorescent material film is formed, a phosphor-dispersed glass, and a fluorescent material ceramic plate.
JP2016218246A 2016-11-08 2016-11-08 Semiconductor light emitting device and its manufacturing method Active JP6800702B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016218246A JP6800702B2 (en) 2016-11-08 2016-11-08 Semiconductor light emitting device and its manufacturing method
US15/800,495 US10971663B2 (en) 2016-11-08 2017-11-01 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016218246A JP6800702B2 (en) 2016-11-08 2016-11-08 Semiconductor light emitting device and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2018078170A JP2018078170A (en) 2018-05-17
JP6800702B2 true JP6800702B2 (en) 2020-12-16

Family

ID=62151002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016218246A Active JP6800702B2 (en) 2016-11-08 2016-11-08 Semiconductor light emitting device and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6800702B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10862008B2 (en) * 2018-11-20 2020-12-08 Osram Opto Semiconductors Gmbh Ceramic conversion element, light-emitting device and method for producing a ceramic conversion element
JP7226131B2 (en) * 2019-06-25 2023-02-21 豊田合成株式会社 Light emitting device and manufacturing method thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4979299B2 (en) * 2006-08-03 2012-07-18 豊田合成株式会社 Optical device and manufacturing method thereof
JP5006102B2 (en) * 2007-05-18 2012-08-22 株式会社東芝 Light emitting device and manufacturing method thereof
JP5779097B2 (en) * 2008-09-25 2015-09-16 コーニンクレッカ フィリップス エヌ ヴェ Coated light emitting device and method for coating light emitting device
JP5326705B2 (en) * 2009-03-17 2013-10-30 日亜化学工業株式会社 Light emitting device
JP5539849B2 (en) * 2010-12-13 2014-07-02 スタンレー電気株式会社 Light emitting device and manufacturing method thereof
JP5518662B2 (en) * 2010-09-30 2014-06-11 スタンレー電気株式会社 Light emitting device and manufacturing method thereof
US20120205695A1 (en) * 2011-02-16 2012-08-16 Tzu-Han Lin Light-emitting diode device
JP5856816B2 (en) * 2011-11-14 2016-02-10 株式会社小糸製作所 Light emitting device
JP6107024B2 (en) * 2012-09-26 2017-04-05 日亜化学工業株式会社 Light emitting device and manufacturing method thereof
JP2015034948A (en) * 2013-08-09 2015-02-19 ソニー株式会社 Display device and electronic device

Also Published As

Publication number Publication date
JP2018078170A (en) 2018-05-17

Similar Documents

Publication Publication Date Title
JP5899507B2 (en) LIGHT EMITTING DEVICE AND LIGHTING DEVICE USING THE SAME
JP5113820B2 (en) Light emitting device
US20160276320A1 (en) Semiconductor light-emitting device and the manufacturing method thereof
JP6387954B2 (en) Method for manufacturing light emitting device using wavelength conversion member
JP6940776B2 (en) Light emitting device and its manufacturing method
JP2013175531A (en) Light-emitting device
JP6982233B2 (en) Light emitting device and its manufacturing method
JPWO2010123059A1 (en) Manufacturing method of LED light emitting device
JP2007266356A (en) Light-emitting device and illuminator using the same
JP2011035198A (en) Method of manufacturing led light-emitting device
CN110323213A (en) The manufacturing method of light emitting device
JP2010225791A (en) Semiconductor light emitting device
JP2008147610A (en) Light emitting device
JP2018049875A (en) Semiconductor light emitting device and vehicle lamp
US12100786B2 (en) Light emitting device with high near-field contrast ratio
JP2017152475A (en) Light-emitting device
JP6800703B2 (en) Semiconductor light emitting device
JP6800702B2 (en) Semiconductor light emitting device and its manufacturing method
JP6116228B2 (en) Semiconductor light emitting device and manufacturing method thereof
US10971663B2 (en) Semiconductor light emitting device
JP6097040B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP6485503B2 (en) Method for manufacturing light emitting device
JP7598533B2 (en) Light-emitting device
JP5970215B2 (en) Light emitting device and manufacturing method thereof
JP6024685B2 (en) Light emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201125

R150 Certificate of patent or registration of utility model

Ref document number: 6800702

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250