[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6898261B2 - Mixer - Google Patents

Mixer Download PDF

Info

Publication number
JP6898261B2
JP6898261B2 JP2018005544A JP2018005544A JP6898261B2 JP 6898261 B2 JP6898261 B2 JP 6898261B2 JP 2018005544 A JP2018005544 A JP 2018005544A JP 2018005544 A JP2018005544 A JP 2018005544A JP 6898261 B2 JP6898261 B2 JP 6898261B2
Authority
JP
Japan
Prior art keywords
mixing
plate
circular hole
casing
upstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018005544A
Other languages
Japanese (ja)
Other versions
JP2018114493A (en
Inventor
勤 本田
勤 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichimo Co Ltd
Original Assignee
Nichimo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichimo Co Ltd filed Critical Nichimo Co Ltd
Publication of JP2018114493A publication Critical patent/JP2018114493A/en
Application granted granted Critical
Publication of JP6898261B2 publication Critical patent/JP6898261B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、複数の流体を細かく混合する混合装置に係り、特に、装置の構成を簡素化して製造コストを低減するとともに、メンテナンス性を向上させることのできる混合装置に関する。 The present invention relates to a mixing device for finely mixing a plurality of fluids, and more particularly to a mixing device capable of simplifying the configuration of the device, reducing the manufacturing cost, and improving maintainability.

従来から、液体と液体、あるいは液体と気体といった複数の流体を微細かつ均一に混合する各種の混合装置が使用されている。 Conventionally, various mixing devices that finely and uniformly mix a plurality of fluids such as liquid and liquid or liquid and gas have been used.

このような従来の混合装置の一例としては、複数の流体が流入される流入口あるいは流出される流出口が形成された1対の蓋体が各開口部にそれぞれ配設された円筒形状のケーシング内に、複数の流体が流通されることにより混合される混合流路が形成されている(特許文献1参照)。 As an example of such a conventional mixing device, a cylindrical casing in which a pair of lids having an inlet or an outlet into which a plurality of fluids flow in or out is formed at each opening. Inside, a mixing flow path is formed in which a plurality of fluids are circulated to be mixed (see Patent Document 1).

また、前記混合流路は、前記ケーシング内における流体の流れ方向に複数の混合板を積層して構成されている。前記各混合板は、前記ケーシングの内径とほぼ同径に形成され、他の混合板とそれぞれ連通して前記ケーシングの中央に中空部を形成する貫通孔と、積層方向に隣接する他の混合板間において一部が連通するようにそれぞれ位置をずらして全面に配置された複数の流通孔とが穿設されている。さらに、前記各流通孔のうちの一部が前記貫通孔に連通あるいは外周縁側に解放されている。 Further, the mixing flow path is configured by laminating a plurality of mixing plates in the flow direction of the fluid in the casing. Each of the mixing plates is formed to have substantially the same diameter as the inner diameter of the casing, and has a through hole that communicates with the other mixing plates to form a hollow portion in the center of the casing, and other mixing plates adjacent to each other in the stacking direction. A plurality of flow holes arranged on the entire surface at different positions are provided so that some of them communicate with each other. Further, a part of each of the flow holes communicates with the through hole or is opened to the outer peripheral edge side.

そして、あらかじめ混合された複数の流体が圧力を掛けられて前記ケーシングの流入口から前記ケーシング内に流入されると、各混合板の各貫通孔および各流通孔において複数の流体が分散、合流、反転、乱流、渦流、衝突を繰り返し、微細かつ均一に混合されて、前記ケーシングの流出口から流出されるようになっている。 Then, when a plurality of premixed fluids are applied with pressure and flow into the casing from the inflow port of the casing, the plurality of fluids are dispersed and merged in each through hole and each flow hole of each mixing plate. Inversion, turbulence, vortex, and collision are repeated, and the mixture is finely and uniformly mixed and discharged from the outlet of the casing.

特許第5887688号公報Japanese Patent No. 5887688

しかしながら、従来の混合装置は、装置の構造、特に混合流路の構造が複雑であり、製造コストがかかるとともにメンテナンスが煩雑になってしまうという問題があった。 However, the conventional mixing device has a problem that the structure of the device, particularly the structure of the mixing flow path, is complicated, the manufacturing cost is high, and the maintenance becomes complicated.

そこで、本発明は、好適な混合性能を保持した状態で製造コストを削減するとともにメンテナンス性を向上することのできる混合装置を提供することを目的とするものである。 Therefore, an object of the present invention is to provide a mixing device capable of reducing manufacturing costs and improving maintainability while maintaining suitable mixing performance.

前述した目的を達成するため、本発明に係る混合装置の特徴は、筒体の両端にそれぞれ流体が流通される流入口あるいは流出口が形成された蓋体が配設されたケーシング内に混合流路が形成され、圧力を掛けて前記流入口からケーシング内に流入された2つ以上の流体が前記混合流路を通過することにより混合されて前記流出口から流出される混合装置において、前記混合流路が、前記ケーシングの各蓋体との間にそれぞれ所定の間隙を設け、1枚あるいは流体の流れ方向に所定の間隔を隔てて平行に配置された2枚以上の混合板から構成されており、前記各混合板が、前記ケーシングの筒体の内径とほぼ同径に形成され、乱流発生機構を備えた複数の混合孔がそれぞれ所定の間隔を隔てて当該混合板の外周縁より内側部分の全面に穿設されているとともに、当該各混合孔が流体の流れ方向における上流側から厚さ方向に穿設された上流側円形穴と、前記上流側円形穴よりも直径が小さく前記上流側円形穴と同心状に下流側から厚さ方向に穿設された下流側円形穴とが連通されて構成されている点にある。 In order to achieve the above-mentioned object, the feature of the mixing device according to the present invention is that the mixing flow is provided in a casing in which a lid having an inflow port or an outflow port through which a fluid flows is provided at both ends of the cylinder. In a mixing device in which a path is formed, two or more fluids flowed into a casing from the inflow port under pressure are mixed by passing through the mixing flow path and flowed out from the outflow port. The flow path is composed of one or two or more mixing plates arranged in parallel with each lid of the casing at a predetermined interval in the flow direction of the fluid. Each of the mixing plates is formed to have substantially the same diameter as the inner diameter of the cylinder of the casing, and a plurality of mixing holes provided with a turbulent flow generation mechanism are located inside the outer peripheral edge of the mixing plate at predetermined intervals. An upstream circular hole formed in the entire surface of the portion and each mixing hole formed in the thickness direction from the upstream side in the fluid flow direction, and the upstream circular hole having a smaller diameter than the upstream circular hole. The point is that the side circular hole and the downstream circular hole drilled concentrically from the downstream side in the thickness direction are communicated with each other.

このような構成を採用したことにより、混合板の各混合孔を流通させることにより複数の流体を混合流路内において衝突、分散、合流などを繰り返えさせることができ、これにより複数の流体を微細に混合させることができる。 By adopting such a configuration, it is possible to repeat collision, dispersion, merging, etc. of a plurality of fluids in the mixing flow path by circulating each mixing hole of the mixing plate, thereby causing a plurality of fluids. Can be finely mixed.

また、混合板の各混合孔に乱流発生機構を付与することにより、装置全体の構造を簡素化することができ、装置の製造コストを削減することができるとともにメンテナンス性を向上させることができる。 Further, by providing a turbulent flow generation mechanism to each mixing hole of the mixing plate, the structure of the entire device can be simplified, the manufacturing cost of the device can be reduced, and the maintainability can be improved. ..

また、混合板の各混合孔を直径の異なる円形穴を同心状に穿設して連通させる構成としたことにより、簡素な構成により十分な縮流加速性能を保持させることができるとともに各混合孔の形成を容易にすることができ、混合板ないし混合装置の製造コストを削減することができるとともにメンテナンス性を向上することができる。 Further, since the mixing holes of the mixing plate are concentrically bored with circular holes having different diameters to communicate with each other, it is possible to maintain sufficient contraction acceleration performance with a simple structure and each mixing hole. Can be easily formed, the manufacturing cost of the mixing plate or the mixing device can be reduced, and the maintainability can be improved.

また、本発明に係る混合装置の他の特徴は、筒体の両端にそれぞれ流体が流通される流入口あるいは流出口が形成された蓋体が配設されたケーシング内に混合流路が形成され、圧力を掛けて前記流入口からケーシング内に流入された2つ以上の流体が前記混合流路を通過することにより混合されて前記流出口から流出される混合装置において、前記混合流路が、前記ケーシングの各蓋体との間にそれぞれ所定の間隙を設け、1枚あるいは流体の流れ方向に所定の間隔を隔てて平行に配置された2枚以上の混合板と前記各混合板のうちの最上流側に配置された混合板の上流側に所定の間隔を隔てて平行に配置された第2混合板とから構成されており、前記混合板が、前記ケーシングの筒体の内径とほぼ同径に形成され、乱流発生機構を備えた複数の混合孔がそれぞれ所定の間隔を隔てて当該混合板の外周縁より内側部分の全面に穿設されているとともに、当該各混合孔が流体の流れ方向における上流側から厚さ方向に穿設された上流側円形穴と、前記上流側円形穴よりも直径が小さく前記上流側円形穴と同心状に下流側から厚さ方向に穿設された下流側円形穴とが連通されて構成されており、前記第2混合板が、前記混合板と同径に形成され、厚さ方向に貫通する複数の流通孔が外周と同心状に配置された仮想円環上に等間隔に穿設されている点にある。 Further, another feature of the mixing device according to the present invention is that a mixing flow path is formed in a casing in which a lid having an inflow port or an outflow port through which a fluid flows is formed at both ends of the cylinder. In a mixing device in which two or more fluids that have been pressured and flowed into a casing from the inlet are mixed by passing through the mixing channel and flow out from the outlet, the mixing channel is: Of the two or more mixing plates and each of the mixing plates, each of which is provided with a predetermined gap between each lid of the casing and is arranged in parallel with one or a predetermined interval in the flow direction of the fluid. are composed of a second mixing plate arranged in parallel at predetermined intervals on the upstream side of the mixing plate disposed on the most upstream side, the mixing plate is substantially the same as the inner diameter of the cylindrical body of the casing A plurality of mixing holes formed in a diameter and provided with a turbulent flow generation mechanism are bored on the entire surface of the inner portion of the mixing plate from the outer peripheral edge at predetermined intervals, and each of the mixing holes is a fluid. An upstream circular hole drilled in the thickness direction from the upstream side in the flow direction and a thickness direction from the downstream side concentrically with the upstream circular hole having a diameter smaller than that of the upstream circular hole. downstream and a circular hole is configured in communication, the second mixing plate is formed in the same diameter as the mixing plate, a plurality of through-holes extending in the thickness direction is arranged on the outer periphery and concentrically It is located on the virtual ring at regular intervals.

このような構成を採用したことにより、混合板の各混合孔を流通させることにより複数の流体を混合流路内において衝突、分散、合流などを繰り返えさせることができ、これにより複数の流体を微細に混合させることができる。 By adopting such a configuration, it is possible to repeat collision, dispersion, merging, etc. of a plurality of fluids in the mixing flow path by circulating each mixing hole of the mixing plate, thereby causing a plurality of fluids. Can be finely mixed.

さらに、流入口からケーシング内に流入された複数の流体が第2混合板の各流通孔により縮流加速され、流体の流れ方向における上流側の混合板との間において衝突、分散、合流などが繰り返され、各混合板における混合性能を向上させることができる。 Further, a plurality of fluids flowing into the casing from the inflow port are accelerated by the flow holes of the second mixing plate, causing collision, dispersion, merging, etc. with the mixing plate on the upstream side in the fluid flow direction. Repeatedly, the mixing performance in each mixing plate can be improved.

また、混合板の各混合孔に乱流発生機構を付与するとともに、第2混合板の各流通孔を第2混合板の外周と同心状の仮想円環上に等間隔に穿設する構成としたことにより、装置全体の構造を簡素化することができ、装置の製造コストを削減することができるとともにメンテナンス性を向上させることができる。 Further, a turbulent flow generation mechanism is provided to each mixing hole of the mixing plate, and each flow hole of the second mixing plate is formed at equal intervals on a virtual ring concentric with the outer circumference of the second mixing plate. As a result, the structure of the entire device can be simplified, the manufacturing cost of the device can be reduced, and the maintainability can be improved.

また、本発明に係る混合装置の他の特徴は、筒体の両端にそれぞれ流体が流通される流入口あるいは流出口が形成された蓋体が配設されたケーシング内に混合流路が形成され、圧力を掛けて前記流入口からケーシング内に流入された2つ以上の流体が前記混合流路を通過することにより混合されて前記流出口から流出される混合装置において、前記混合流路が、前記ケーシングの各蓋体との間にそれぞれ所定の間隙を設け、流体の流れ方向に所定の間隔を隔てて平行に配置された2つ以上の混合ユニットから構成されており、前記各混合ユニットが、前記ケーシングの筒体の内径とほぼ同径に形成され、乱流発生機構を備えた複数の混合孔がそれぞれ所定の間隔を隔てて混合板の外周縁より内側部分の全面に穿設され、1枚あるいは流体の流れ方向に所定の間隔を隔てて平行に配置された2枚以上の混合板と、前記混合板と同径に形成され、厚さ方向に貫通する複数の流通孔が外周と同心状に配置された仮想円環上に等間隔に穿設され、前記各混合板のうちの最上流側に配置された混合板の上流側に所定の間隔を隔てて平行に配置された第2混合板と、前記各混合板および前記第2混合板よりも直径が小さく形成され、前記各混合板のうちの最下流側に配置された混合板の下流側に所定の間隔を隔てて配置された第3混合板とから構成されている点にある。 Further, another feature of the mixing device according to the present invention is that a mixing flow path is formed in a casing in which a lid having an inflow port or an outflow port through which a fluid flows is formed at both ends of the cylinder. In a mixing device in which two or more fluids that have been pressured and flowed into a casing from the inlet are mixed by passing through the mixing channel and flow out from the outlet, the mixing channel is: A predetermined gap is provided between each lid of the casing, and the mixing unit is composed of two or more mixing units arranged in parallel with a predetermined interval in the flow direction of the fluid. A plurality of mixing holes, which are formed to have substantially the same diameter as the inner diameter of the cylinder of the casing and have a turbulent flow generation mechanism, are bored on the entire surface of the inner portion from the outer peripheral edge of the mixing plate at predetermined intervals. One or two or more mixing plates arranged in parallel with each other at predetermined intervals in the fluid flow direction, and a plurality of flow holes formed in the same diameter as the mixing plate and penetrating in the thickness direction are formed on the outer periphery. A first, which is perforated on a concentric virtual ring at equal intervals and arranged in parallel with a predetermined interval on the upstream side of the mixing plate arranged on the most upstream side of each of the mixing plates. The two mixing plates are formed to have a diameter smaller than that of each of the mixing plates and the second mixing plate, and are arranged at predetermined intervals on the downstream side of the mixing plate arranged on the most downstream side of the mixing plates. The point is that it is composed of a third mixing plate.

このような構成を採用したことにより、混合板の各混合孔を流通させることにより複数の流体を混合流路内において衝突、分散、合流などを繰り返えさせることができ、これにより複数の流体を微細に混合させることができる。 By adopting such a configuration, it is possible to repeat collision, dispersion, merging, etc. of a plurality of fluids in the mixing flow path by circulating each mixing hole of the mixing plate, thereby causing a plurality of fluids. Can be finely mixed.

また、流入口からケーシング内に流入された複数の流体が第2混合板の各流通孔により縮流加速され、第2混合板と流体の流れ方向における最上流側の混合板との間において衝突、分散、合流などが繰り返され、各混合板における混合性能を向上させることができる。 Further, a plurality of fluids flowing into the casing from the inflow port are accelerated by the flow holes of the second mixing plate, and collide between the second mixing plate and the mixing plate on the most upstream side in the fluid flow direction. , Dispersion, merging, etc. are repeated, and the mixing performance in each mixing plate can be improved.

さらに、流体の流れ方向における最下流側の混合板の各混合孔を流通して混合された流体が第3混合板に衝突して第3混合板の外周側へ迂回され、第3混合板の外周とケーシングの内周面との間の隙間を流通することによってさらに加速されたのち第3混合板と下流側の蓋体との間で衝突することにより、各混合板により混合された流体をより微細に混合させることができる。 Further, the fluid mixed by flowing through each mixing hole of the mixing plate on the most downstream side in the flow direction of the fluid collides with the third mixing plate and is diverted to the outer peripheral side of the third mixing plate. The fluid mixed by each mixing plate is further accelerated by flowing through the gap between the outer periphery and the inner peripheral surface of the casing, and then colliding between the third mixing plate and the lid on the downstream side. It can be mixed more finely.

また、混合板の各混合孔に乱流発生機構を付与する構成とし、第2混合板の各流通孔を第2混合板の外周と同心状の仮想円環上に等間隔に穿設する構成とし、さらに、第3混合板を混合板および第2混合板よりも直径を小さく形成する構成としたことにより、装置全体の構造を簡素化することができ、装置の製造コストを削減することができるとともにメンテナンス性を向上させることができる。 Further, each mixing hole of the mixing plate is provided with a turbulent flow generation mechanism, and each flow hole of the second mixing plate is formed at equal intervals on a virtual ring concentric with the outer circumference of the second mixing plate. Further, by forming the third mixing plate to have a smaller diameter than the mixing plate and the second mixing plate, the structure of the entire device can be simplified and the manufacturing cost of the device can be reduced. It can be done and maintainability can be improved.

また、本発明に係る混合装置の他の特徴は、請求項3に記載の混合装置において、前記混合板の各混合孔が、流体の流れ方向における上流側から厚さ方向に穿設された上流側円形穴と、前記上流側円形穴よりも直径が小さく前記上流側円形穴と同心状に下流側から厚さ方向に穿設された下流側円形穴とが連通されて構成されている点にある。 Further, another feature of the mixing device according to the present invention is that in the mixing device according to claim 3 , each mixing hole of the mixing plate is bored from the upstream side in the fluid flow direction to the upstream side in the thickness direction. The point is that the side circular hole and the downstream circular hole, which is smaller in diameter than the upstream circular hole and is concentrically bored with the upstream circular hole in the thickness direction from the downstream side, are communicated with each other. is there.

このような構成を採用したことにより、各混合孔を流通される複数の流体が各混合孔の直径の異なる上流側円形穴と下流側円形穴において縮流加速され、混合流路内において衝突、分散、合流などが繰り返され、これにより複数の流体を微細に混合させることができる。 By adopting such a configuration, a plurality of fluids flowing through each mixing hole are accelerated by contraction in the upstream circular hole and the downstream circular hole having different diameters of each mixing hole, and collide in the mixing flow path. Dispersion, merging, etc. are repeated, which allows a plurality of fluids to be finely mixed.

また、簡素な構成により十分な縮流加速性能を保持させることができ、混合板ないし混合装置の製造コストを削減することができるとともにメンテナンス性を向上させることができる。 In addition, sufficient contraction acceleration performance can be maintained by a simple configuration, the manufacturing cost of the mixing plate or the mixing device can be reduced, and maintainability can be improved.

本発明の混合装置によれば、好適な混合性能を保持した状態で製造コストを削減するとともにメンテナンス性を向上することのできる混合装置を提供することができる。 According to the mixing device of the present invention, it is possible to provide a mixing device capable of reducing manufacturing costs and improving maintainability while maintaining suitable mixing performance.

本発明に係る混合装置の第1実施形態を示す概略断面図Schematic cross-sectional view showing the first embodiment of the mixing apparatus according to the present invention. 第1実施形態における混合板の概略正面図Schematic front view of the mixing plate in the first embodiment 混合板の各混合孔の1実施形態を示す縦断面図A vertical sectional view showing one embodiment of each mixing hole of the mixing plate. 混合板を支持する軸受体を示す概略断面図Schematic cross-sectional view showing a bearing body supporting a mixing plate 本発明に係る混合装置の第2実施形態を示す概略断面図Schematic cross-sectional view showing a second embodiment of the mixing apparatus according to the present invention. 第2実施形態における第2混合板の概略正面図Schematic front view of the second mixing plate in the second embodiment 第2混合板の各流通孔の他の形態を示す縦断面図A vertical sectional view showing another form of each flow hole of the second mixing plate. 本発明に係る混合装置の第3実施形態を示す概略断面図Schematic cross-sectional view showing a third embodiment of the mixing apparatus according to the present invention. 本第3実施形態における第3混合板の概略正面図Schematic front view of the third mixing plate in the third embodiment 本発明の更に他の実施形態を示す概略断面図Schematic cross-sectional view showing still another embodiment of the present invention. 実施例1および2に基づいて性能試験結果を上流側円形穴の直径が6mmと7mmとで相違する混合板を比較して示し、(a)は溶存酸素量の計測値の時間経過を示し、(b)はその変化特性グラフである。Based on Examples 1 and 2, the performance test results are shown by comparing the mixing plates having different diameters of the upstream circular holes of 6 mm and 7 mm, and (a) shows the time course of the measured value of the dissolved oxygen amount. (B) is the change characteristic graph. 実施例3および4に基づいて性能試験結果を上流側円形穴の直径が6mmと7mmとで相違する混合板を比較して示し、(a)は溶存酸素量の計測値の時間経過を示し、(b)はその変化特性グラフである。The performance test results are shown by comparing the mixing plates having different diameters of the upstream circular holes of 6 mm and 7 mm based on Examples 3 and 4, and (a) shows the time lapse of the measured value of the dissolved oxygen amount. (B) is the change characteristic graph. 実施例5および6に基づいて性能試験結果を上流側円形穴の直径が6mmと7mmとで相違する混合板を比較して示し、(a)は溶存酸素量の計測値の時間経過を示し、(b)はその変化特性グラフである。The performance test results are shown by comparing the mixing plates having different diameters of the upstream circular holes of 6 mm and 7 mm based on Examples 5 and 6, and (a) shows the time lapse of the measured value of the dissolved oxygen amount. (B) is the change characteristic graph. 実施例7および8に基づいて性能試験結果を上流側円形穴の直径が6mmと7mmとで相違する混合板を比較して示し、(a)は溶存酸素量の計測値の時間経過を示し、(b)はその変化特性グラフである。The performance test results are shown by comparing the mixing plates having different diameters of the upstream circular holes of 6 mm and 7 mm based on Examples 7 and 8, and (a) shows the time course of the measured value of the dissolved oxygen amount. (B) is the change characteristic graph. 実施例9および10に基づいて性能試験結果を上流側円形穴の直径が6mmと7mmとで相違する混合板を比較して示し、(a)は溶存酸素量の計測値の時間経過を示し、(b)はその変化特性グラフである。Based on Examples 9 and 10, the performance test results are shown by comparing the mixing plates having different diameters of the upstream circular holes of 6 mm and 7 mm, and (a) shows the time course of the measured value of the dissolved oxygen amount. (B) is the change characteristic graph.

以下、本発明に係る混合装置を図面に示す各実施形態により説明する。 Hereinafter, the mixing apparatus according to the present invention will be described with reference to the embodiments shown in the drawings.

(第1実施形態) (First Embodiment)

第1実施形態を図1〜4によって説明する。 The first embodiment will be described with reference to FIGS.

本第1実施形態の混合装置1は、図1に示すように、筒体3の両開口部3a,3bにそれぞれ複数の流体を流入させる流入口5aあるいは混合された流体を流出させる流出口6aが形成された1対の蓋体5,6が配設されて構成されるケーシング2内に、流入された複数の流体を混合する混合流路10が形成されて構成されている。 As shown in FIG. 1, the mixing device 1 of the first embodiment has an inflow port 5a for inflowing a plurality of fluids into both openings 3a and 3b of the tubular body 3, or an outflow port 6a for discharging the mixed fluid. A mixing flow path 10 for mixing a plurality of inflowing fluids is formed in a casing 2 formed by arranging a pair of lids 5 and 6 formed by the above.

前記筒体3は、本実施形態においては略円筒形状に形成されているとともに両開口部3a,3bの端縁にそれぞれ円盤状に側方に張り出すフランジ部4が一体に形成されている。これらフランジ部4には、それぞれ前記各蓋体5,6を固定するためのボルト(図示せず)が挿通される複数のボルト挿通孔(図示せず)が穿設されている。この筒体3としては断面四角形等の他の形状としてもよい。 In the present embodiment, the tubular body 3 is formed in a substantially cylindrical shape, and flange portions 4 projecting laterally in a disk shape are integrally formed at the edge edges of both openings 3a and 3b. Each of the flange portions 4 is provided with a plurality of bolt insertion holes (not shown) through which bolts (not shown) for fixing the lids 5 and 6 are inserted. The tubular body 3 may have another shape such as a quadrangular cross section.

前記各蓋体5,6は、本実施形態においてはそれぞれ略円盤状に形成されており、中央には前記筒体3に対してそれぞれ外側に立設され前記筒体3内に連通する円筒形状の流入口5aあるいは流出口6aが形成され、周縁にはそれぞれ前記筒体3の各フランジ部4に穿設された各ボルト挿通孔にそれぞれ対応してボルトが挿通されて前記筒体3と固定される複数のボルト挿通孔(図示せず)が穿設されている。 In the present embodiment, each of the lids 5 and 6 is formed in a substantially disk shape, and has a cylindrical shape in the center which is erected on the outside of the cylinder 3 and communicates with the inside of the cylinder 3. The inflow port 5a or the outflow port 6a is formed, and bolts are inserted into the peripheral edges corresponding to the bolt insertion holes formed in the flanges 4 of the cylinder 3 and fixed to the cylinder 3. A plurality of bolt insertion holes (not shown) are bored.

そして、好ましくは、前記筒体3の各フランジ部4と前記各蓋体5,6との間にゴムシール(図示せず)を介在させ、各ボルト挿通孔にそれぞれボルトを挿通して締結することにより密閉封止されている。 Then, preferably, a rubber seal (not shown) is interposed between each flange portion 4 of the tubular body 3 and each of the lid bodies 5 and 6, and bolts are inserted into and fastened to each bolt insertion hole. It is hermetically sealed.

前記混合流路10は、前記筒体3内において前記各蓋体5,6との間に所定の間隙を設け、本実施形態においては前記筒体3内における流体の流れ方向にそれぞれ所定の間隔を隔てて平行に配置された4枚の混合板11をもって形成されている。 The mixing flow path 10 is provided with a predetermined gap between the lids 5 and 6 in the cylinder 3, and in the present embodiment, the mixing flow path 10 has a predetermined interval in the flow direction of the fluid in the cylinder 3. It is formed by four mixing plates 11 arranged in parallel with each other.

本第1実施形態における各混合板11は、図1および図2に示すように、前記筒体3の内径とほぼ同径に形成されており、中心には軸16に挿通される挿通孔12が穿設されるとともに、円盤の全面には流体を流通して混合する乱流発生機構を備えた複数の混合孔13(図3参照)がそれぞれ所定の間隔を隔てて穿設されている。 As shown in FIGS. 1 and 2, each mixing plate 11 in the first embodiment is formed to have substantially the same diameter as the inner diameter of the tubular body 3, and the insertion hole 12 inserted into the shaft 16 is at the center. Is bored, and a plurality of mixing holes 13 (see FIG. 3) provided with a turbulent flow generating mechanism for flowing and mixing the fluid are bored on the entire surface of the disk at predetermined intervals.

4枚の混合板11の上下流側にはそれぞれ任意の固定手段(図示せず)により前記筒体3の内周面に固定された1対の軸受体15(図4参照)が配設されており、各軸受体15の中心部の軸受部15a間に支軸16が掛け渡されている。そして、前記筒体3の中央に流体の流れ方向に渡って支持された支軸16に各混合板11の挿通孔12を挿通するとともに各混合板11間にリング状のスペーサ14を介在させて所定の間隔を隔てて4枚の混合板11が平行に配置されている。 A pair of bearing bodies 15 (see FIG. 4) fixed to the inner peripheral surface of the tubular body 3 by arbitrary fixing means (not shown) are arranged on the upstream and downstream sides of each of the four mixing plates 11. A support shaft 16 is hung between the bearing portions 15a at the center of each bearing body 15. Then, the insertion hole 12 of each mixing plate 11 is inserted into the support shaft 16 supported in the center of the tubular body 3 in the fluid flow direction, and the ring-shaped spacer 14 is interposed between the mixing plates 11. Four mixing plates 11 are arranged in parallel with a predetermined interval.

前記各混合孔13は、本実施形態においては、図3に示すように、図示左方に示す流体の流れ方向における上流側から厚さ方向に穿設された円形状の上流側円形穴13aと、図示右方に示す流体の流れ方向における下流側から厚さ方向に前記上流側円形穴13aと同心状に穿設された円形状の下流側円形穴13bとが連通されて構成されており、前記下流側円形穴13bの内径は前記上流側円形穴13aの内径よりも小さく形成されている。 In the present embodiment, each of the mixing holes 13 is a circular upstream circular hole 13a formed in the thickness direction from the upstream side in the fluid flow direction shown on the left side of the drawing, as shown in FIG. , The upstream circular hole 13a and the circular downstream circular hole 13b bored concentrically in the thickness direction from the downstream side in the fluid flow direction shown on the right side of the drawing are communicated with each other. The inner diameter of the downstream circular hole 13b is formed to be smaller than the inner diameter of the upstream circular hole 13a.

各混合孔13は、混合すべき複数の流体の特性、目的とする混合状態に応じて種々に変形するとよい。 Each mixing hole 13 may be variously deformed according to the characteristics of the plurality of fluids to be mixed and the target mixing state.

例えば、上流側円形穴13aの厚さ方向の幅(長さ)を下流側円形穴13bの厚さ方向の幅(長さ)より大きくしたり、その逆とするとよい。図3の例においては長さを同一にしている。また、上流側円形穴13aおよび下流側円形穴の内周面の双方またはいずれか一方にねじ山を形成したり、当該ねじ山のピッチを異ならせたりするとよい。 For example, the width (length) of the upstream circular hole 13a in the thickness direction may be made larger than the width (length) of the downstream circular hole 13b in the thickness direction, or vice versa. In the example of FIG. 3, the lengths are the same. Further, it is preferable to form threads on both or one of the inner peripheral surfaces of the upstream circular hole 13a and the downstream circular hole, or to make the pitches of the threads different.

なお、本第1実施形態においては、混合流路10を4枚の混合板11により構成しているが、任意の枚数に設定することができ、枚数を増やすことにより流体の混合精度を高くすることができる。 In the first embodiment, the mixing flow path 10 is composed of four mixing plates 11, but the number of mixing channels 10 can be set to an arbitrary number, and the fluid mixing accuracy is increased by increasing the number of sheets. be able to.

また、前記ケーシング2の筒体3内に、流体の流れ方向に延在する支軸16が前記筒体3の中央に配置されて配設されるとともに、前記各混合板11の中央に前記支軸16を挿通する挿通孔12が穿設され、前記各混合板11間にそれぞれ所定の厚さに形成されたリング状のスペーサ14を介在させ、前記各混合板11の挿通孔12および前記各スペーサ14に前記支軸16を挿通して前記各混合板11が前記筒体3内に支持されているので、装置全体をシンプルな構成とすることができ、分解組立も容易となる。 Further, a support shaft 16 extending in the fluid flow direction is arranged and arranged in the center of the cylinder 3 in the cylinder 3 of the casing 2, and the support is provided in the center of each of the mixing plates 11. An insertion hole 12 through which the shaft 16 is inserted is bored, and a ring-shaped spacer 14 formed to a predetermined thickness is interposed between the mixing plates 11, and the insertion hole 12 of each of the mixing plates 11 and each of the above. Since the support shaft 16 is inserted through the spacer 14 and each of the mixing plates 11 is supported in the tubular body 3, the entire device can be made simple and disassembly and assembly can be facilitated.

また、前記支軸16が、前記ケーシング2の各蓋体5、6との間に所定の間隙を設けて前記筒体3の内周面に着脱自在に配設された1対の軸受体15に保持されており、前記各軸受体15は、前記筒体3の内径とほぼ同径に形成され、ほぼ全面に渡って流体を流通させる開口15bが形成されるとともに前記支軸16の端部を保持する軸受部15が形成されているので、より一層装置全体をシンプルな構成とすることができ、分解組立も容易となる。 Further, a pair of bearing bodies 15 in which the support shaft 16 is detachably arranged on the inner peripheral surface of the tubular body 3 with a predetermined gap provided between the lid bodies 5 and 6 of the casing 2. Each bearing body 15 is formed to have substantially the same diameter as the inner diameter of the tubular body 3, an opening 15b for allowing fluid to flow over almost the entire surface is formed, and an end portion of the support shaft 16 is formed. Since the bearing portion 15 for holding the above is formed, the entire device can be further simplified, and disassembly and assembly can be facilitated.

つぎに、本第1実施形態の混合装置1の作用について説明する。 Next, the operation of the mixing device 1 of the first embodiment will be described.

図1において左側の蓋体5の流入口5aより複数の流体をポンプ等の圧送装置(図示せず)によって圧送流入させる。複数の流体はケーシング2の筒体3内を圧送される間に、本第1実施形態においては4枚の混合板11の各混合孔13を流通される。そして、複数の流体が各混合孔13の直径の異なる上流側円形穴13aと下流側円形穴13bにおいて縮流加速されるとともに、複数の混合板11間および各混合孔13において衝突、分散、合流などが繰り返され、複数の流体は微細に混合される。 In FIG. 1, a plurality of fluids are pumped in from the inflow port 5a of the lid 5 on the left side by a pumping device (not shown) such as a pump. While the plurality of fluids are pumped through the cylinder 3 of the casing 2, in the first embodiment, they are circulated through the mixing holes 13 of the four mixing plates 11. Then, the plurality of fluids are compressed and accelerated in the upstream circular holes 13a and the downstream circular holes 13b having different diameters of the mixing holes 13, and collide, disperse, and merge between the plurality of mixing plates 11 and in the mixing holes 13. Etc. are repeated, and a plurality of fluids are finely mixed.

また、混合板11の各混合孔13を直径の異なる円形穴13a、13bを同心状に穿設して連通させる構成としたことにより、簡素な構成により十分な縮流加速性能を保持させることができるとともに各混合孔13の形成を容易にすることができ、混合板11ないし混合装置1の製造コストを削減することができるとともにメンテナンス性を向上することができる。 Further, by concentrically drilling circular holes 13a and 13b having different diameters in the mixing holes 13 of the mixing plate 11 so as to communicate with each other, it is possible to maintain sufficient contraction acceleration performance by a simple structure. At the same time, the formation of each mixing hole 13 can be facilitated, the manufacturing cost of the mixing plate 11 or the mixing device 1 can be reduced, and the maintainability can be improved.

複数の流体としては、液体、気体のいずれであってもよく、例えば、海水と酸素とするとよい。この場合、酸素発生装置により発生される高濃度の酸素と海水とをポンプによって同時に本第1実施形態の混合装置1の一方の蓋体5の流入口5aに圧送すると、他方の蓋体6の流出口6aより高精細に混合された高濃度酸素入りの海水が得られる。この場合には、酸素はナノバブル状とされる。 The plurality of fluids may be either a liquid or a gas, and may be, for example, seawater and oxygen. In this case, when the high-concentration oxygen generated by the oxygen generator and seawater are simultaneously pumped to the inflow port 5a of one lid 5 of the mixing device 1 of the first embodiment, the other lid 6 is pumped. Seawater containing high-concentration oxygen mixed with high definition can be obtained from the outlet 6a. In this case, the oxygen is in the form of nanobubbles.

(第2実施形態) (Second Embodiment)

つぎに、本発明に係る混合装置の第2実施形態について図5〜7によって説明する。なお、本第1実施形態と同構成の箇所については同一の符号を付し、詳細な説明については省略する。 Next, the second embodiment of the mixing apparatus according to the present invention will be described with reference to FIGS. 5 to 7. The parts having the same configuration as those of the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.

本第2実施形態の混合装置21は、図5に示すように、筒体3の両開口部3a,3bにそれぞれ複数の流体を流入させる流入口5aあるいは混合された流体を流出させる流出口6aが形成された1対の蓋体5,6が配設されて構成されるケーシング2内に、流入された複数の流体を混合する混合流路30が形成されて構成されている。 As shown in FIG. 5, the mixing device 21 of the second embodiment has an inflow port 5a for inflowing a plurality of fluids into both openings 3a and 3b of the tubular body 3, or an outflow port 6a for discharging the mixed fluid. A mixing flow path 30 for mixing a plurality of inflowing fluids is formed in a casing 2 formed by arranging a pair of lids 5 and 6 formed by the above.

前記混合流路30は、前記筒体3内において前記各蓋体5,6との間に所定の間隙を設け、本実施形態においては前記筒体3内における流体の流れ方向にそれぞれ所定の間隔を隔てて平行に配置された4枚の混合板11と、流体の流れ方向における最上流側に配置された混合板11の上流側に所定の間隔を隔てて平行に配置された第2混合板31とから構成されている。 The mixing flow path 30 is provided with a predetermined gap between the lids 5 and 6 in the cylinder 3, and in the present embodiment, the mixing flow path 30 has a predetermined interval in the flow direction of the fluid in the cylinder 3. A second mixing plate arranged in parallel with a predetermined interval on the upstream side of the four mixing plates 11 arranged in parallel with each other and the mixing plate 11 arranged on the most upstream side in the fluid flow direction. It is composed of 31 and.

本第2実施形態における第2混合板31は、図6に示すように、前記混合板11と同径に形成されており、前記支軸16を挿通させる挿通孔33が中央に穿設されるとともに、外周と同心状の仮想円環上に円形状に形成された複数の流通孔32が所定の間隔を隔てて等分に配置して穿設されている。 As shown in FIG. 6, the second mixing plate 31 in the second embodiment is formed to have the same diameter as the mixing plate 11, and an insertion hole 33 through which the support shaft 16 is inserted is formed in the center. At the same time, a plurality of circulation holes 32 formed in a circular shape on a virtual ring concentric with the outer circumference are formed by arranging them evenly at predetermined intervals.

流通孔32の他の形態としては、図7に示すように、上流側から下流側にかけて直径が小さくなるテーパ状に形成するとよい。このような構成により流体をより縮流加速させることができる。 As another form of the flow hole 32, as shown in FIG. 7, it is preferable to form the flow hole 32 in a tapered shape in which the diameter becomes smaller from the upstream side to the downstream side. With such a configuration, the fluid can be further compressed and accelerated.

なお、本第2実施形態において前記混合流路30は平行に配置された4枚の混合板11と最上流側に配置された混合板11の上流側に平行に配置された1枚の第2混合板31とから構成されているが、混合板11は任意の枚数でよい。 In the second embodiment, the mixing flow path 30 is a second one arranged parallel to the upstream side of the four mixing plates 11 arranged in parallel and the mixing plate 11 arranged on the most upstream side. Although it is composed of a mixing plate 31, the number of mixing plates 11 may be arbitrary.

つぎに、本第2実施形態の混合装置1の作用について説明する。 Next, the operation of the mixing device 1 of the second embodiment will be described.

本第2実施形態においては、第1実施形態と同様に、混合板11の各混合孔13を流通される複数の流体が各混合孔13の直径の異なる上流側円形穴13aと下流側円形穴13bにおいて縮流加速されるとともに、複数の混合板11間および各混合孔13において衝突、分散、合流などが繰り返され、複数の流体を微細に混合させることができる。 In the second embodiment, as in the first embodiment, the plurality of fluids flowing through the mixing holes 13 of the mixing plate 11 are the upstream circular holes 13a and the downstream circular holes 13a having different diameters of the mixing holes 13. The contraction is accelerated at 13b, and collision, dispersion, merging, and the like are repeated between the plurality of mixing plates 11 and at each mixing hole 13, so that the plurality of fluids can be finely mixed.

さらに、流入口5aからケーシング2内に流入された複数の流体が第2混合板31の各流通孔32により縮流加速され、流体の流れ方向における上流側の混合板11との間において衝突、分散、合流などが繰り返され、各混合板11における混合性能を向上させることができる。 Further, a plurality of fluids flowing into the casing 2 from the inflow port 5a are accelerated by the flow holes 32 of the second mixing plate 31 and collide with the mixing plate 11 on the upstream side in the fluid flow direction. Dispersion, merging, and the like are repeated, and the mixing performance of each mixing plate 11 can be improved.

また、混合板11の各混合孔13を直径の異なる円形穴13a、13bを同心状に穿設して連通させる構成とするとともに、第2混合板31の各流通孔32を第2混合板31の外周と同心状の仮想円環上に等間隔に穿設する構成としたことにより、簡素な構成により十分な縮流加速性能を保持させることができるとともに各混合孔13および各流通孔32の形成を容易にすることができ、各混合板11、31ないし混合装置1の製造コストを削減することができるとともにメンテナンス性を向上することができる。 Further, the mixing holes 13 of the mixing plate 11 are concentrically bored with circular holes 13a and 13b having different diameters to communicate with each other, and the flow holes 32 of the second mixing plate 31 are connected to the second mixing plate 31. By forming the holes at equal intervals on the virtual ring concentric with the outer circumference of the above, sufficient contraction acceleration performance can be maintained by a simple configuration, and the mixing holes 13 and the flow holes 32 can be maintained. The formation can be facilitated, the manufacturing cost of each of the mixing plates 11, 31 or the mixing device 1 can be reduced, and the maintainability can be improved.

(第3実施形態) (Third Embodiment)

つぎに、本発明に係る混合装置の第3実施形態について図8および9により説明する。なお、本第1実施形態ならびに本第2実施形態と同構成の箇所については同一の符号を付し、詳細な説明については省略する。 Next, a third embodiment of the mixing device according to the present invention will be described with reference to FIGS. 8 and 9. The parts having the same configuration as those of the first embodiment and the second embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.

本第3実施形態の混合装置41は、図8および9に示すように、筒体3の両開口部3a,3bにそれぞれ複数の流体を流入させる流入口5aあるいは混合された流体を流出させる流出口6aが形成された1対の蓋体5,6が配設されて構成されるケーシング2内に、流入された複数の流体を混合する混合流路50が形成されて構成されている。 As shown in FIGS. 8 and 9, the mixing device 41 of the third embodiment has an inflow port 5a for inflowing a plurality of fluids into both openings 3a and 3b of the tubular body 3, or a flow for discharging the mixed fluid. A mixing flow path 50 for mixing a plurality of inflowing fluids is formed in a casing 2 formed by arranging a pair of lids 5 and 6 on which an outlet 6a is formed.

前記混合流路50は、前記筒体3内において前記各蓋体5,6との間に所定の間隙を設け、前記筒体3内における流体の流れ方向に連続して配置された少なくとも2つ(本実施形態においては4つ)の混合ユニット51から構成されている。前記各混合ユニット51は、本実施形態においては前記筒体3内における流体の流れ方向にそれぞれ所定の間隔を隔てて平行に配置された4枚の混合板11と、流体の流れ方向における最上流側に配置された混合板11の上流側に所定の間隔を隔てて平行に配置された第2混合板31と、流体の流れ方向における最下流側に配置された混合板11の下流側に所定の間隔を隔てて平行に配置された第3混合板52とから構成されている。 The mixing flow path 50 is provided with a predetermined gap between the lids 5 and 6 in the cylinder 3, and at least two are arranged continuously in the fluid flow direction in the cylinder 3. It is composed of (four in this embodiment) mixing units 51. In the present embodiment, each of the mixing units 51 includes four mixing plates 11 arranged in parallel in the fluid flow direction in the cylinder 3 at predetermined intervals, and the most upstream flow in the fluid flow direction. A second mixing plate 31 arranged in parallel with a predetermined interval on the upstream side of the mixing plate 11 arranged on the side, and a predetermined mixing plate 11 on the downstream side of the mixing plate 11 arranged on the most downstream side in the fluid flow direction. It is composed of a third mixing plate 52 arranged in parallel at intervals of.

前記第3混合板52は、図9に示すように、前記混合板11および前記第2混合板31よりも小径に形成されて前記筒体3の内周面との間に僅かな間隙を設けるようになっており、中央に前記支軸16を挿通させる挿通孔53が穿設されている。 As shown in FIG. 9, the third mixing plate 52 is formed to have a smaller diameter than the mixing plate 11 and the second mixing plate 31, and a slight gap is provided between the third mixing plate 52 and the inner peripheral surface of the cylinder 3. An insertion hole 53 through which the support shaft 16 is inserted is formed in the center.

つぎに、本第3実施形態の混合装置1の作用について説明する。 Next, the operation of the mixing device 1 of the third embodiment will be described.

本第3実施形態においては、第1実施形態と同様に、混合板11の各混合孔13を流通される複数の流体が各混合孔13の直径の異なる上流側円形穴13aと下流側円形穴13bにおいて縮流加速されるとともに、複数の混合板11間および各混合孔13において衝突、分散、合流などが繰り返され、複数の流体を微細に混合させることができる。 In the third embodiment, as in the first embodiment, the plurality of fluids flowing through the mixing holes 13 of the mixing plate 11 are the upstream circular holes 13a and the downstream circular holes 13a having different diameters of the mixing holes 13. The contraction is accelerated at 13b, and collision, dispersion, merging, and the like are repeated between the plurality of mixing plates 11 and at each mixing hole 13, so that the plurality of fluids can be finely mixed.

また、本第2実施形態と同様に、流入口5aからケーシング2内に流入された複数の流体が第2混合板31の各流通孔32により縮流加速され、第2混合板31と流体の流れ方向における最上流側の混合板11との間において衝突、分散、合流などが繰り返され、各混合板11、31における混合性能を向上させることができる。 Further, as in the second embodiment, the plurality of fluids flowing into the casing 2 from the inflow port 5a are accelerated by the flow holes 32 of the second mixing plate 31, and the second mixing plate 31 and the fluid are combined. Collision, dispersion, merging, etc. are repeated with the mixing plate 11 on the most upstream side in the flow direction, and the mixing performance of the mixing plates 11 and 31 can be improved.

さらに、流体の流れ方向における最下流側の混合板11の各混合孔13を流通して混合された流体が第3混合板52に衝突して第3混合板52の外周側へ迂回され、第3混合板52の外周とケーシング2の筒体3の内周面との間の隙間を流通することによってさらに加速されたのち第3混合板52と下流側の混合ユニット51の第2混合板31若しくは蓋体6との間で衝突することにより、各混合板11、31、52により混合された流体をより微細に混合させることができる。 Further, the fluid mixed by flowing through each mixing hole 13 of the mixing plate 11 on the most downstream side in the flow direction of the fluid collides with the third mixing plate 52 and is diverted to the outer peripheral side of the third mixing plate 52. 3 The second mixing plate 31 of the third mixing plate 52 and the mixing unit 51 on the downstream side is further accelerated by flowing through the gap between the outer circumference of the mixing plate 52 and the inner peripheral surface of the tubular body 3 of the casing 2. Alternatively, by colliding with the lid 6, the fluid mixed by the mixing plates 11, 31, and 52 can be mixed more finely.

また、混合板11の各混合孔13を直径の異なる円形穴13a、13bを同心状に穿設して連通させる構成とし、第2混合板31の各流通孔32を第2混合板31の外周と同心状の仮想円環上に等間隔に穿設する構成とし、さらに、第3混合板52を混合板11および第2混合板31よりも直径を小さく形成する構成としたことにより、簡素な構成により十分な縮流加速性能を保持させることができるとともに各混合孔13および各流通孔32の形成を容易にすることができ、各混合板11、31、52ないし混合装置1、21、41の製造コストを削減することができるとともにメンテナンス性を向上することができる。 Further, the mixing holes 13 of the mixing plate 11 are concentrically bored with circular holes 13a and 13b having different diameters to communicate with each other, and the flow holes 32 of the second mixing plate 31 are formed on the outer periphery of the second mixing plate 31. The structure is simple because the third mixing plate 52 is formed to have a diameter smaller than that of the mixing plate 11 and the second mixing plate 31 in a configuration in which the third mixing plate 52 is formed at equal intervals on a virtual ring concentric with the above. Depending on the configuration, sufficient contraction acceleration performance can be maintained, and the formation of each mixing hole 13 and each flow hole 32 can be facilitated, and the mixing plates 11, 31, 52 or the mixing devices 1, 21, 41 can be easily formed. It is possible to reduce the manufacturing cost of the product and improve the maintainability.

本発明においては、前記各構成を種々に変更するとよい。 In the present invention, each of the above configurations may be changed in various ways.

例えば、図10に示すように、図8の第3実施形態における各軸受体15のみを更に大径に形成して、筒体3の内周に配置した円筒状のスペーサ60a、60b、60cを介して狭持して固定するようにしてもよい。これにより装置の分解組立が更に容易となる。 For example, as shown in FIG. 10, only the bearing bodies 15 in the third embodiment of FIG. 8 are formed to have a larger diameter, and cylindrical spacers 60a, 60b, 60c arranged on the inner circumference of the tubular body 3 are provided. It may be held tightly and fixed. This makes it easier to disassemble and assemble the device.

また、混合孔13に付与される乱流発生機構としては、混合孔を流通する2種類以上の流体に乱流を発生させて混合させる機能を備えるものであれば、どのような構成のものでも採用することができる。例えば、混合孔13の長手方向の途中に段差を設けないで、内面にねじ山を形成したり、セレーションを形成したりしてもよい。 Further, the turbulent flow generation mechanism provided to the mixing hole 13 may have any configuration as long as it has a function of generating turbulent flow in two or more types of fluids flowing through the mixing hole and mixing them. Can be adopted. For example, a screw thread or serration may be formed on the inner surface without providing a step in the middle of the mixing hole 13 in the longitudinal direction.

また、前記混合板11の各混合孔13が、上流側円形穴13aの直径が6.0mmに形成されているとともに、下流側円形穴13bの直径が5.0mmに形成されているとよい。 Further, it is preferable that each of the mixing holes 13 of the mixing plate 11 is formed so that the diameter of the upstream circular hole 13a is 6.0 mm and the diameter of the downstream circular hole 13b is 5.0 mm.

このような構成を採用したことにより、各混合孔13を流通する複数の流体を超微細に混合させるための好適な縮流加速を得ることができる。 By adopting such a configuration, it is possible to obtain suitable contraction acceleration for mixing a plurality of fluids flowing through each mixing hole 13 in an ultrafine manner.

また、前記混合板11の各混合孔13が、上流側円形穴13aの前記混合板11の厚さ方向における幅が、前記下流側円形穴の幅よりも広く若しくは狭く形成されていることにより、各混合孔13を流通する流体の縮流加速性能を向上させることができる。 Further, each of the mixing holes 13 of the mixing plate 11 is formed so that the width of the upstream circular hole 13a in the thickness direction of the mixing plate 11 is wider or narrower than the width of the downstream circular hole. It is possible to improve the contraction acceleration performance of the fluid flowing through each mixing hole 13.

また、前記混合板11の各混合孔13の上流側円形穴13aの内周面に周方向に周回するねじ山が突設されており、前記ねじ山の高さが前記上流側円形穴13aの直径と前記下流側円形穴13bの直径の差の半分未満とするとよい。 Further, a screw thread that circulates in the circumferential direction is projected on the inner peripheral surface of the upstream circular hole 13a of each mixing hole 13 of the mixing plate 11, and the height of the screw thread is the upstream circular hole 13a. It is preferable that the difference between the diameter and the diameter of the downstream circular hole 13b is less than half.

このような構成を採用したことにより、ねじ山による撹乱作用によって混合精度を向上させることができる。 By adopting such a configuration, the mixing accuracy can be improved by the disturbing action of the screw thread.

また、前記混合板11の各混合孔13の下流側円形穴13bの内周面に周方向に周回するねじ山が突設されており、前記ねじ山の高さが前記上流側円形穴13aの直径と前記下流側円形穴13bの直径の差の半分未満とするとよい。 Further, a screw thread that circulates in the circumferential direction is provided on the inner peripheral surface of the downstream circular hole 13b of each mixing hole 13 of the mixing plate 11, and the height of the screw thread is the upstream circular hole 13a. It is preferable that the difference between the diameter and the diameter of the downstream circular hole 13b is less than half.

このような構成を採用したことにより、ねじ山による撹乱作用によって混合精度を向上させることができる。 By adopting such a configuration, the mixing accuracy can be improved by the disturbing action of the screw thread.

また、前記混合板11の各混合孔13の上流側円形穴13aおよび前記下流側円形穴13bの内周面にそれぞれ周方向に周回するねじ山が突設されており、前記各ねじ山の高さが前記上流側円形穴13aの直径と前記下流側円形穴13bの直径の差の半分未満とするとよい。 Further, threads that circulate in the circumferential direction are provided on the inner peripheral surfaces of the upstream circular hole 13a and the downstream circular hole 13b of each mixing hole 13 of the mixing plate 11, and the height of each thread is high. It is preferable that the diameter is less than half of the difference between the diameter of the upstream circular hole 13a and the diameter of the downstream circular hole 13b.

このような構成を採用したことにより、ねじ山による撹乱作用によって混合精度を向上させることができる。 By adopting such a configuration, the mixing accuracy can be improved by the disturbing action of the screw thread.

また、前記第2混合板31の各流通孔32の下流側の直径が、前記混合板11の各混合孔13の上流側円形穴13aの直径よりも大径とするとよい。 Further, the diameter on the downstream side of each flow hole 32 of the second mixing plate 31 may be larger than the diameter of the upstream circular hole 13a of each mixing hole 13 of the mixing plate 11.

このような構成を採用したことにより、各流通孔32と上流側円形穴13aとの間における流体の流路の膨縮を形成することができ、流体の混合精度を向上させることができる。 By adopting such a configuration, expansion and contraction of the fluid flow path between each flow hole 32 and the upstream circular hole 13a can be formed, and the fluid mixing accuracy can be improved.

また、前記第2混合板31の各流通孔32の上流側の直径が、それぞれ前記第2混合板31の直径の11%程度とするとよい。 Further, it is preferable that the diameter of each flow hole 32 of the second mixing plate 31 on the upstream side is about 11% of the diameter of the second mixing plate 31.

このような構成を採用したことにより、流体を加速させることができる。 By adopting such a configuration, the fluid can be accelerated.

また、本発明に係る各混合装置1、21、41を用いて流体処理システムを形成する場合には、例えば流体の1つとして高純度の気体を供給する気体発生装置と、前記混合装置および前記気体発生装置に接続され、前記気体発生装置により発生された気体とともに流体の1つとしての液体を圧力を掛けて前記混合装置に供給するポンプとを備えるとよい。 When a fluid treatment system is formed by using the mixing devices 1, 21, and 41 according to the present invention, for example, a gas generator that supplies a high-purity gas as one of the fluids, the mixing device, and the above. It is preferable to include a pump which is connected to the gas generator and applies pressure to supply the liquid as one of the fluids together with the gas generated by the gas generator to the mixing device.

次に、本発明の混合装置の実施例について説明する。 Next, an example of the mixing apparatus of the present invention will be described.

本実施例においては、一種類のケーシング2に対して、2種類の混合板11a、11b、1種類の第2混合板31および1種類の第3混合板51を種々に組み合わせて内蔵することによって形成されている。 In this embodiment, two types of mixing plates 11a and 11b, one type of second mixing plate 31 and one type of third mixing plate 51 are incorporated in one type of casing 2 in various combinations. It is formed.

ケーシング2は、基本的には図1に示す形状に形成されており、筒体3の内径が140mm、長さが380mmであり、蓋体5の流入口5aおよび蓋体6の流出口6aの内径がそれぞれ38mmである。 The casing 2 is basically formed in the shape shown in FIG. 1, has an inner diameter of 140 mm and a length of 380 mm, and has an inlet 5a of the lid 5 and an outlet 6a of the lid 6. Each has an inner diameter of 38 mm.

混合板11aは、基本的には図2および図3に示す形状に形成されており、円盤の厚さが10mm、外径が139mm、挿通孔12の内径が15mm、合計234個の混合孔13の上流側円形穴13aの内径が6mm(M6のねじ山(正逆のいずれでもよい)が形成されている)、下流側円形穴13bの内径が5mmである。 The mixing plate 11a is basically formed in the shapes shown in FIGS. 2 and 3, and has a disk thickness of 10 mm, an outer diameter of 139 mm, and an inner diameter of the insertion hole 12 of 15 mm, for a total of 234 mixing holes 13. The inner diameter of the upstream circular hole 13a is 6 mm (M6 threads (either forward or reverse) are formed), and the inner diameter of the downstream circular hole 13b is 5 mm.

混合板11bは、混合板11aの混合孔13の上流側円形穴13aの内径が7mm(m7のねじ山(正逆のいずれでもよい)が形成されている)の他は混合板11aと同一である。 The mixing plate 11b is the same as the mixing plate 11a except that the inner diameter of the circular hole 13a on the upstream side of the mixing hole 13 of the mixing plate 11a is 7 mm (a thread of m7 (either forward or reverse) is formed). is there.

第2混合板31は、基本的には図6および図7に示す形状に形成されており、円盤の厚さが10mm、外径が139mm、挿通孔32の内径が15mm、合計6個の流通孔32のテーパ状の上流側の内径が20mm、下流側の内径が14mmである。 The second mixing plate 31 is basically formed in the shapes shown in FIGS. 6 and 7, and has a disk thickness of 10 mm, an outer diameter of 139 mm, and an inner diameter of the insertion hole 32 of 15 mm, for a total of 6 distributions. The inner diameter of the tapered upstream side of the hole 32 is 20 mm, and the inner diameter of the downstream side is 14 mm.

第3混合板52は、基本的には図9に示す形状に形成されており、円盤の厚さが10mm、外径が130mm、挿通孔53の内径が15mmである。 The third mixing plate 52 is basically formed in the shape shown in FIG. 9, and has a disk thickness of 10 mm, an outer diameter of 130 mm, and an inner diameter of the insertion hole 53 of 15 mm.

混合板11a、11b、第2混合板31および第3混合板52を組み立てて混合流路10、30、50とするための軸16は、直径15mmおよび長さ350mmであり、軸受体15は、基本的には図4に示す形状に形成されており、厚さが10mm、外径が140mmであり、スペーサ14は、厚さが2mm、外径が25mmである。 The shaft 16 for assembling the mixing plates 11a and 11b, the second mixing plate 31 and the third mixing plate 52 into the mixing flow paths 10, 30 and 50 has a diameter of 15 mm and a length of 350 mm, and the bearing body 15 has a bearing body 15. It is basically formed in the shape shown in FIG. 4, has a thickness of 10 mm and an outer diameter of 140 mm, and the spacer 14 has a thickness of 2 mm and an outer diameter of 25 mm.

混合流路の実施例1〜10における混合板11a、11b、第2混合板31および第3混合板51の組み合わせを次の通りとした。
実施例1:順向の混合板11aの8枚直列配置
実施例2:順向の混合板11bの8枚直列配置
実施例3:逆向の混合板11aの8枚直列配置(逆向は上下流の逆転である)
実施例4:逆向の混合板11bの8枚直列配置
実施例5:順向の混合板11aの4枚直列配置
実施例6:順向の混合板11bの4枚直列配置
実施例7:順向と逆向交互の混合板11aの8枚直列配置
実施例8:順向と逆向交互の混合板11bの8枚直列配置
実施例9:順向の混合板11aを用いた図8の混合ユニット2組直列配置
実施例10:順向の混合板11bを用いた図8の混合ユニット2組直列配置
The combinations of the mixing plates 11a and 11b, the second mixing plate 31 and the third mixing plate 51 in Examples 1 to 10 of the mixing flow path were as follows.
Example 1: Eight sheets of forward mixing plate 11a arranged in series Example 2: Eight sheets of forward mixing plate 11b arranged in series Example 3: Eight sheets of reverse mixing plate 11a arranged in series (reverse direction is upstream and downstream) Is a reversal)
Example 4: Eight sheets of reverse mixing plate 11b arranged in series Example 5: Four sheets of forward mixing plate 11a arranged in series Example 6: Four sheets of forward mixing plate 11b arranged in series Example 7: Forward 8 series arrangement of alternating forward and reverse mixing plates 11a Example 8: 8 series arrangement of alternating forward and reverse mixing plates 11b Example 9: Two sets of mixing units of FIG. 8 using forward and reverse alternating mixing plates 11a Series Arrangement Example 10: Two sets of mixing units of FIG. 8 using a forward mixing plate 11b arranged in series

前記各実施例1〜10の混合装置を前記流体処理システムに配置して性能試験を実行した。 The mixing apparatus of each of Examples 1 to 10 was placed in the fluid processing system and a performance test was performed.

具体的には、ポンプによって流体の1つとしての真水を350リットル/分で各実施例の混合装置に対して圧力を掛けて500リットル容量の水槽より循環供給するとともに、気体発生装置より他の流体の1つとして高純度の酸素を4リットル/分で真水とともに混合装置に供給し、混合装置より送出された水槽内の真水の溶存酸素量(D.O.)(mg/リットル)を溶存酸素計によって計測した。 Specifically, fresh water as one of the fluids is circulated and supplied from a water tank having a capacity of 500 liters by applying pressure to the mixing device of each embodiment at 350 liters / minute by a pump, and other than the gas generator. High-purity oxygen as one of the fluids is supplied to the mixing device together with fresh water at 4 liters / minute, and the dissolved oxygen amount (DO) (mg / liter) of the fresh water in the water tank sent from the mixing device is dissolved. Measured with an oxygenometer.

性能試験結果を上流側円形穴13aの直径が6mmと7mmとで相違する混合板11aと11bとを比較して図11〜図15に示す。図11〜図15の(a)は溶存酸素量の計測値の時間経過を示し、(b)はその変化特性グラフである。 The performance test results are shown in FIGS. 11 to 15 by comparing the mixing plates 11a and 11b in which the diameters of the upstream circular holes 13a are different between 6 mm and 7 mm. (A) of FIGS. 11 to 15 shows the passage of time of the measured value of the dissolved oxygen amount, and (b) is a graph of the change characteristic.

性能試験結果によれば、上流側円形穴13aの直径が6mmの混合板11aを用いた実施例1、3、5、7の混合装置の溶存酸素の発生速度(約45mg/リットルに到達する時間)より、上流側円形穴13aの直径が7mmの混合板11bを用いた実施例2、4、6、8の混合装置の溶存酸素の発生速度(約45mg/リットルに到達する時間)がそれぞれ2〜4分早い関係であった。これは上流側円形穴13aと下流側円形穴13bとの差が大きい混合板11bによる流体の縮小率が大きいことによる装置全体の防縮率が高いことに起因していると考えられる。 According to the performance test results, the rate of generation of dissolved oxygen (time to reach about 45 mg / liter) of the mixing apparatus of Examples 1, 3, 5, and 7 using the mixing plate 11a having a diameter of 6 mm in the upstream circular hole 13a. ), The rate of generation of dissolved oxygen (time to reach about 45 mg / liter) of the mixers of Examples 2, 4, 6 and 8 using the mixing plate 11b having a diameter of 7 mm in the upstream circular hole 13a is 2 respectively. The relationship was ~ 4 minutes earlier. It is considered that this is because the shrinkage-proof rate of the entire device is high due to the large reduction rate of the fluid by the mixing plate 11b, which has a large difference between the upstream circular hole 13a and the downstream circular hole 13b.

性能試験結果によれば、上流側円形穴13aの直径が6mmの混合板11aを用いた実施例1、3、5、7の混合装置の溶存酸素の発生速度(発生効率)は、約45mg/リットルに到達する時間の早さより判断すると、以下の関係であった。
実施例1:約9分<実施例3:約12分<実施例5≒実施例7:約14〜15分
これより混合板11aの配置枚数が多い程溶存酸素の発生速度が早く、順向きの方が逆向きよりも溶存酸素の発生速度が早い傾向にある。
According to the performance test results, the generation rate (generation efficiency) of dissolved oxygen of the mixing apparatus of Examples 1, 3, 5, and 7 using the mixing plate 11a having a diameter of 6 mm in the upstream circular hole 13a is about 45 mg / Judging from the speed of reaching liters, the relationship was as follows.
Example 1: Approximately 9 minutes <Example 3: Approximately 12 minutes <Example 5 ≒ Example 7: Approximately 14 to 15 minutes The larger the number of mixing plates 11a arranged, the faster the dissolved oxygen is generated, which is forward. Dissolved oxygen tends to be generated faster in the case than in the opposite direction.

性能試験結果によれば、上流側円形穴13aの直径が7mmの混合板11bを用いた実施例2、4、6、8の混合装置の溶存酸素の発生速度(発生効率)は、全部の実施例においてほぼ同一の早い溶存酸素の発生速度であった。また、実施例9、10に示すように混合板11a、11bの他に第2混合板31および第3混合板51を用いた混合ユニットとすると、混合板11a、11bのみを用いた場合より混合装置の溶存酸素の発生速度が早いことがわかった。 According to the performance test results, the generation rate (generation efficiency) of dissolved oxygen in the mixers of Examples 2, 4, 6 and 8 using the mixing plate 11b having a diameter of the upstream circular hole 13a of 7 mm was all carried out. In the example, the rate of generation of dissolved oxygen was almost the same. Further, as shown in Examples 9 and 10, when the mixing unit uses the second mixing plate 31 and the third mixing plate 51 in addition to the mixing plates 11a and 11b, the mixing unit is more mixed than the case where only the mixing plates 11a and 11b are used. It was found that the rate of generation of dissolved oxygen in the device was high.

溶存酸素量が約45mg/リットルに到達した水槽内の真水を目視すると透明であり、レーザポインタによって赤色レーザ光を真水に照射すると赤色レーザ光が目しされたので、溶存酸素はナノバブル化してブラウン運動をしているものと認められた。更に、水槽内の真水の状態は実験後1〜2週間経過しても変化しないことによっても、溶存酸素はナノバブル化してブラウン運動をしているものと認められた。 When the fresh water in the water tank where the dissolved oxygen amount reached about 45 mg / liter was visually observed, it was transparent, and when the fresh water was irradiated with a red laser beam with a laser pointer, the red laser beam was seen, so the dissolved oxygen became nanobubbles and browned. It was recognized that he was exercising. Furthermore, the state of fresh water in the water tank did not change even after 1 to 2 weeks after the experiment, and it was confirmed that the dissolved oxygen became nanobubbles and performed Brownian motion.

以上の実施例より前記混合板11の各混合孔13の上流側円形穴13aの直径が6.0〜7/0mmに形成されているとともに、下流側円形穴13bの直径が5.0mmに形成されているとよい。 From the above examples, the diameter of the upstream circular hole 13a of each mixing hole 13 of the mixing plate 11 is formed to be 6.0 to 7/0 mm, and the diameter of the downstream circular hole 13b is formed to 5.0 mm. It should be done.

なお、本発明は、前述した実施の形態および実施例等に限定されるものではなく、必要に応じて種々の変更が可能である。 The present invention is not limited to the above-described embodiments and examples, and various modifications can be made as necessary.

1、21、41 混合装置
2 ケーシング
3 筒体
5、6 蓋体
10、30、50 混合流路
11、11a、11b 混合板
13 混合孔
13a 上流側円形穴
13b 下流側円形穴
31 第2混合板
32 流通孔
51 混合ユニット
52 第3混合板
1, 21, 41 Mixing device 2 Casing 3 Cylindrical body 5, 6 Lid body 10, 30, 50 Mixing flow path 11, 11a, 11b Mixing plate 13 Mixing hole 13a Upstream circular hole 13b Downstream circular hole 31 Second mixing plate 32 Flow hole 51 Mixing unit 52 Third mixing plate

Claims (5)

筒体の両端にそれぞれ流体が流通される流入口あるいは流出口が形成された蓋体が配設されたケーシング内に混合流路が形成され、圧力を掛けて前記流入口からケーシング内に流入された2つ以上の流体が前記混合流路を通過することにより混合されて前記流出口から流出される混合装置において、
前記混合流路が、
前記ケーシングの各蓋体との間にそれぞれ所定の間隙を設け、1枚あるいは流体の流れ方向に所定の間隔を隔てて平行に配置された2枚以上の混合板から構成されており、
前記各混合板が、
前記ケーシングの筒体の内径とほぼ同径に形成され、乱流発生機構を備えた複数の混合孔がそれぞれ所定の間隔を隔てて当該混合板の外周縁より内側部分の全面に穿設されているとともに、当該各混合孔が流体の流れ方向における上流側から厚さ方向に穿設された上流側円形穴と、前記上流側円形穴よりも直径が小さく前記上流側円形穴と同心状に下流側から厚さ方向に穿設された下流側円形穴とが連通されて構成されている
ことを特徴とする混合装置。
A mixing flow path is formed in a casing in which a lid having an inflow port or an outflow port through which a fluid flows is formed at both ends of the cylinder, and pressure is applied to flow into the casing from the inflow port. In a mixing device in which two or more fluids are mixed by passing through the mixing flow path and flowed out from the outlet.
The mixing flow path
A predetermined gap is provided between each lid of the casing, and the casing is composed of one plate or two or more mixing plates arranged in parallel at a predetermined distance in the flow direction of the fluid.
Each of the mixing plates
A plurality of mixing holes, which are formed to have substantially the same diameter as the inner diameter of the cylinder of the casing and have a turbulent flow generation mechanism, are bored on the entire surface of the inner portion from the outer peripheral edge of the mixing plate at predetermined intervals. In addition, each of the mixing holes is concentrically downstream with the upstream circular hole formed in the fluid flow direction from the upstream side in the thickness direction and the upstream circular hole having a smaller diameter than the upstream circular hole. A mixing device characterized in that it is configured by communicating with a circular hole on the downstream side drilled from the side in the thickness direction.
筒体の両端にそれぞれ流体が流通される流入口あるいは流出口が形成された蓋体が配設されたケーシング内に混合流路が形成され、圧力を掛けて前記流入口からケーシング内に流入された2つ以上の流体が前記混合流路を通過することにより混合されて前記流出口から流出される混合装置において、
前記混合流路が、
前記ケーシングの各蓋体との間にそれぞれ所定の間隙を設け、1枚あるいは流体の流れ方向に所定の間隔を隔てて平行に配置された2枚以上の混合板と前記各混合板のうちの最上流側に配置された混合板の上流側に所定の間隔を隔てて平行に配置された第2混合板とから構成されており、
前記混合板が、
前記ケーシングの筒体の内径とほぼ同径に形成され、乱流発生機構を備えた複数の混合孔がそれぞれ所定の間隔を隔てて当該混合板の外周縁より内側部分の全面に穿設されているとともに、当該各混合孔が流体の流れ方向における上流側から厚さ方向に穿設された上流側円形穴と、前記上流側円形穴よりも直径が小さく前記上流側円形穴と同心状に下流側から厚さ方向に穿設された下流側円形穴とが連通されて構成されており、
前記第2混合板が、
前記混合板と同径に形成され、厚さ方向に貫通する複数の流通孔が外周と同心状に配置された仮想円環上に等間隔に穿設されていることを特徴とする混合装置。
A mixing flow path is formed in a casing in which a lid having an inflow port or an outflow port through which a fluid flows is formed at both ends of the cylinder, and pressure is applied to flow into the casing from the inflow port. In a mixing device in which two or more fluids are mixed by passing through the mixing flow path and flowed out from the outlet.
The mixing flow path
A predetermined gap is provided between each lid of the casing, and one of the two or more mixing plates arranged in parallel with each other at a predetermined interval in the flow direction of the fluid and each of the mixing plates. are composed of a second mixing plate arranged in parallel at predetermined intervals on the upstream side of the mixing plate disposed on the most upstream side,
The mixing plate
A plurality of mixing holes, which are formed to have substantially the same diameter as the inner diameter of the cylinder of the casing and have a turbulent flow generation mechanism, are bored on the entire surface of the inner portion from the outer peripheral edge of the mixing plate at predetermined intervals. In addition, each of the mixing holes is concentrically downstream with the upstream circular hole formed in the fluid flow direction from the upstream side in the thickness direction and the upstream circular hole having a smaller diameter than the upstream circular hole. It is configured by communicating with a circular hole on the downstream side drilled from the side in the thickness direction.
The second mixing plate
A mixing device having the same diameter as the mixing plate, and having a plurality of flow holes penetrating in the thickness direction formed at equal intervals on a virtual ring arranged concentrically with the outer circumference.
筒体の両端にそれぞれ流体が流通される流入口あるいは流出口が形成された蓋体が配設されたケーシング内に混合流路が形成され、圧力を掛けて前記流入口からケーシング内に流入された2つ以上の流体が前記混合流路を通過することにより混合されて前記流出口から流出される混合装置において、
前記混合流路が、
前記ケーシングの各蓋体との間にそれぞれ所定の間隙を設け、流体の流れ方向に所定の間隔を隔てて平行に配置された2つ以上の混合ユニットから構成されており、
前記各混合ユニットが、
前記ケーシングの筒体の内径とほぼ同径に形成され、乱流発生機構を備えた複数の混合孔がそれぞれ所定の間隔を隔てて混合板の外周縁より内側部分の全面に穿設され、1枚あるいは流体の流れ方向に所定の間隔を隔てて平行に配置された2枚以上の混合板と、
前記混合板と同径に形成され、厚さ方向に貫通する複数の流通孔が外周と同心状に配置された仮想円環上に等間隔に穿設され、前記各混合板のうちの最上流側に配置された混合板の上流側に所定の間隔を隔てて平行に配置された第2混合板と、
前記各混合板および前記第2混合板よりも直径が小さく形成され、前記各混合板のうちの最下流側に配置された混合板の下流側に所定の間隔を隔てて配置された第3混合板
とから構成されていることを特徴とする混合装置。
A mixing flow path is formed in a casing in which a lid having an inflow port or an outflow port through which a fluid flows is formed at both ends of the cylinder, and pressure is applied to flow into the casing from the inflow port. In a mixing device in which two or more fluids are mixed by passing through the mixing flow path and flowed out from the outlet.
The mixing flow path
A predetermined gap is provided between each lid of the casing, and the casing is composed of two or more mixing units arranged in parallel with a predetermined interval in the flow direction of the fluid.
Each of the mixing units
A plurality of mixing holes, which are formed to have substantially the same diameter as the inner diameter of the cylinder of the casing and have a turbulent flow generation mechanism, are bored on the entire surface of the inner portion from the outer peripheral edge of the mixing plate at predetermined intervals. Two or more mixing plates arranged in parallel with each other at a predetermined interval in the flow direction of the sheets or fluids.
A plurality of flow holes formed with the same diameter as the mixing plate and penetrating in the thickness direction are bored at equal intervals on a virtual annulus arranged concentrically with the outer circumference, and the uppermost stream of each of the mixing plates. A second mixing plate arranged in parallel with a predetermined interval on the upstream side of the mixing plate arranged on the side,
A third mixing plate having a diameter smaller than that of each of the mixing plates and the second mixing plate and arranged at a predetermined interval on the downstream side of the mixing plate arranged on the most downstream side of the mixing plates. A mixing device characterized in that it is composed of a plate.
前記混合板の各混合孔が、流体の流れ方向における上流側から厚さ方向に穿設された上流側円形穴と、前記上流側円形穴よりも直径が小さく前記上流側円形穴と同心状に下流側から厚さ方向に穿設された下流側円形穴とが連通されて構成されていることを特徴とする請求項3に記載の混合装置。 Each mixing hole of the mixing plate is concentric with the upstream circular hole formed in the thickness direction from the upstream side in the fluid flow direction and the upstream circular hole having a smaller diameter than the upstream circular hole. The mixing device according to claim 3 , further comprising communicating with a downstream circular hole drilled from the downstream side in the thickness direction. 前記混合板の各混合孔の前記上流側円形穴の直径が6〜7mmであり、前記下流側円形穴の直径が5mmであることを特徴とする請求項1、請求項2および請求項4のいずれか1項に記載の混合装置。 The first, second, and fourth aspects of the mixing plate, wherein the diameter of the upstream circular hole is 6 to 7 mm, and the diameter of the downstream circular hole is 5 mm. The mixing device according to any one of the following items.
JP2018005544A 2017-01-17 2018-01-17 Mixer Active JP6898261B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017006147 2017-01-17
JP2017006147 2017-01-17

Publications (2)

Publication Number Publication Date
JP2018114493A JP2018114493A (en) 2018-07-26
JP6898261B2 true JP6898261B2 (en) 2021-07-07

Family

ID=62984694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018005544A Active JP6898261B2 (en) 2017-01-17 2018-01-17 Mixer

Country Status (1)

Country Link
JP (1) JP6898261B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113797785B (en) * 2021-09-30 2023-11-17 交通运输部天津水运工程科学研究所 Diffuser device for rapidly removing seawater

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60176237U (en) * 1984-09-28 1985-11-21 不二製油株式会社 Continuous whipper
US4874248A (en) * 1988-07-27 1989-10-17 Marathon Oil Company Apparatus and method for mixing a gel and liquid
US5356565A (en) * 1992-08-26 1994-10-18 Marathon Oil Company In-line foam generator for hydrocarbon recovery applications and its use
JP4244214B2 (en) * 2005-01-21 2009-03-25 佐藤工業株式会社 Redox potential water production equipment
JP2008161825A (en) * 2006-12-28 2008-07-17 Daikin Ind Ltd Gas dissolving device
JP5216295B2 (en) * 2007-10-05 2013-06-19 Jx日鉱日石エネルギー株式会社 Method for controlling particle size and particle size distribution of emulsion and apparatus used in this method
JP6276603B2 (en) * 2014-02-03 2018-02-07 啓二 山▲崎▼ Mixing equipment

Also Published As

Publication number Publication date
JP2018114493A (en) 2018-07-26

Similar Documents

Publication Publication Date Title
KR101969772B1 (en) Gas-dissolved water producing device for dissolving air or gas in liquid
KR102093837B1 (en) Nano-bubble generating and gas-liquid mixing apparatus
JP4680946B2 (en) Static fluid mixing device
US7708453B2 (en) Device for creating hydrodynamic cavitation in fluids
WO2009088085A1 (en) Static fluid mixer
US7600911B2 (en) Water-mixing device, sand trap and method of using same
US10232315B2 (en) Seawater desalination system and energy recovery apparatus
KR101980480B1 (en) Apparatus for generating nano bubble
KR101869487B1 (en) Nano bubble generator for bathtub or sink with cleaning and sterilizing function
US20160175791A1 (en) Device for cavitational mixing
JP6898261B2 (en) Mixer
KR101947084B1 (en) Nano-micro bubble generator and gas mixed nano-micro bubble generating system using the same
US20210060502A1 (en) Nano-micro bubble generator
JP7251730B2 (en) Ultra fine bubble generator
GB2612389A (en) A micro-nano bubble-cavitation nozzle
WO2019069349A1 (en) Bubble generating device and bubble generating method
JP2006326498A (en) Static mixer
JP5491792B2 (en) Mixing mixer and mixing equipment
WO2020105274A1 (en) Static mixer
KR20190076819A (en) Nano-micro bubble generator and gas mixed nano-micro bubble generating system using the same
JP2013163184A (en) Mixing method, mixer and mixed fluid
JP6234723B2 (en) Fluid mixing device
KR102130543B1 (en) Apparatus for generating nano bubble
JP2013081944A (en) Fining mixer
KR20140113044A (en) Static mixer homogenizer

Legal Events

Date Code Title Description
AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20180206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180220

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201202

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20201202

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20201202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20201202

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20210105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210610

R150 Certificate of patent or registration of utility model

Ref document number: 6898261

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250