[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6896054B2 - Heat source system - Google Patents

Heat source system Download PDF

Info

Publication number
JP6896054B2
JP6896054B2 JP2019232730A JP2019232730A JP6896054B2 JP 6896054 B2 JP6896054 B2 JP 6896054B2 JP 2019232730 A JP2019232730 A JP 2019232730A JP 2019232730 A JP2019232730 A JP 2019232730A JP 6896054 B2 JP6896054 B2 JP 6896054B2
Authority
JP
Japan
Prior art keywords
temperature
fluid
heat source
flow rate
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019232730A
Other languages
Japanese (ja)
Other versions
JP2020056571A (en
Inventor
拓也 伊藤
拓也 伊藤
靖 大越
靖 大越
善生 山野
善生 山野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018531694A external-priority patent/JP6639677B2/en
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2019232730A priority Critical patent/JP6896054B2/en
Publication of JP2020056571A publication Critical patent/JP2020056571A/en
Application granted granted Critical
Publication of JP6896054B2 publication Critical patent/JP6896054B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Air-Conditioning Systems (AREA)
  • Air Conditioning Control Device (AREA)

Description

本発明は、熱源ユニットを備え、例えば空調用チリングシステム等に利用される熱源システムに関する。 The present invention relates to a heat source system including a heat source unit and used for, for example, a chilling system for air conditioning.

一般に、冷媒回路の冷媒と水配管の水媒体とを熱媒体側熱交換器で熱交換させて水媒体を加熱及び冷却するチリングシステムが知られている。そのうち空冷式のチリングシステムでは、加熱時に、蒸発器となる空気側熱交換器に着霜が生じる場合がある。そのため、このようなチリングシステムでは、空気側熱交換器の除霜が必要になる。従来、複数台の熱源ユニットが水配管に接続された空冷式チリングシステムにおいて、除霜運転方法を提案したものがある(例えば特許文献1参照)。特許文献1では、2台以上の熱源ユニットが含まれる熱源システムにおいて、熱源ユニットが同時に除霜することを極力回避し、水温の低下を防止する除霜運転方法が開示されている。 Generally, there is known a chilling system that heats and cools the water medium by exchanging heat between the refrigerant of the refrigerant circuit and the water medium of the water pipe by a heat exchanger on the heat medium side. Of these, in the air-cooled chilling system, frost may occur on the air side heat exchanger, which is the evaporator, during heating. Therefore, in such a chilling system, it is necessary to defrost the air side heat exchanger. Conventionally, in an air-cooled chilling system in which a plurality of heat source units are connected to water pipes, a defrosting operation method has been proposed (see, for example, Patent Document 1). Patent Document 1 discloses a defrosting operation method for preventing a decrease in water temperature by avoiding defrosting of heat source units at the same time as much as possible in a heat source system including two or more heat source units.

特開2013−108732号公報Japanese Unexamined Patent Publication No. 2013-108732

しかしながら、特許文献1の除霜制御では、熱源ユニット1台のみを運転させる単体の除霜運転において、水温が低下してしまう。 However, in the defrosting control of Patent Document 1, the water temperature drops in the defrosting operation of a single unit that operates only one heat source unit.

本発明は、上記のような課題を解決するためになされたもので、熱源ユニットの台数によらず、除霜運転時であっても、供給水温の低下が抑制される熱源システムを提供することを目的とする。 The present invention has been made to solve the above problems, and to provide a heat source system in which a decrease in supply water temperature is suppressed even during a defrosting operation regardless of the number of heat source units. With the goal.

本発明に係る熱源システムは、流体の加熱及び冷却を行う熱源ユニットと前記熱源ユニットを制御する制御装置とを備える熱源システムにおいて、前記熱源ユニットは、圧縮機と冷媒流路切替装置と空気側熱交換器と減圧装置と熱媒体側熱交換器とが冷媒配管を介して接続された冷媒回路と、前記熱媒体側熱交換器により前記冷媒回路の冷媒と熱交換される前記流体が流れる流体配管と、前記流体配管に設けられ、前記流体を前記熱媒体側熱交換器に供給する流体ポンプと、前記熱媒体側熱交換器に流入する前記流体の温度を測定する入口温度センサと、前記冷媒の蒸発温度を測定する蒸発温度センサと、を備え、前記制御装置は、前記空気側熱交換器が凝縮器になり前記熱媒体側熱交換器が蒸発器になる除霜運転時に、前記熱媒体側熱交換器に供給される前記流体の流量が前記入口温度センサにより測定された流体温度に応じて変化するように、前記流体ポンプを制御する運転制御手段と、前記除霜運転時に、前記供給される流体流量と前記測定された流体温度と前記測定された蒸発温度とに基づいて、前記熱媒体側熱交換器が凍結するか否かを判定する凍結判定手段と、前記除霜運転時に、前記測定された流体温度が第2設定温度より低いか否かを判定する温度判定手段と、を備え、前記凍結判定手段は、前記除霜運転時に、前記測定された流体温度が前記第2設定温度より低いと判定された場合に、前記熱媒体側熱交換器が凍結するか否かを判定し、前記凍結判定手段は、前記供給される流体流量及び前記測定された流体温度に応じた凍結蒸発温度を算出し、前記測定された蒸発温度が前記算出された凍結蒸発温度より低い場合には凍結すると判定し、前記測定された蒸発温度が前記算出された凍結蒸発温度より高い場合には凍結しないと判定するものであって、前記運転制御手段は、前記熱媒体側熱交換器が凍結しないと判定されているときには、前記除霜運転を継続するものである。 The heat source system according to the present invention is a heat source system including a heat source unit that heats and cools a fluid and a control device that controls the heat source unit. The heat source unit includes a compressor, a refrigerant flow path switching device, and air side heat. A refrigerant circuit in which a exchanger, a decompression device, and a heat exchanger on the heat medium side are connected via a refrigerant pipe, and a fluid pipe through which the fluid that exchanges heat with the refrigerant in the refrigerant circuit by the heat exchanger on the heat medium side flows. A fluid pump provided in the fluid pipe to supply the fluid to the heat medium side heat exchanger, an inlet temperature sensor for measuring the temperature of the fluid flowing into the heat medium side heat exchanger, and the refrigerant. The control device includes an evaporation temperature sensor for measuring the evaporation temperature of the heat medium, and the control device performs the heat medium during a defrosting operation in which the air side heat exchanger becomes a condenser and the heat medium side heat exchanger becomes an evaporator. An operation control means for controlling the fluid pump so that the flow rate of the fluid supplied to the side heat exchanger changes according to the fluid temperature measured by the inlet temperature sensor, and the supply during the defrosting operation. A freezing determination means for determining whether or not the heat medium side heat exchanger freezes based on the measured fluid flow rate, the measured fluid temperature, and the measured evaporation temperature, and during the defrosting operation, The freezing determination means includes a temperature determining means for determining whether or not the measured fluid temperature is lower than the second set temperature, and the freeze determining means sets the measured fluid temperature to the second set during the defrosting operation. When it is determined that the temperature is lower than the temperature, it is determined whether or not the heat exchanger on the heat medium side freezes, and the freeze determination means freezes according to the supplied fluid flow rate and the measured fluid temperature. The evaporation temperature is calculated, and if the measured evaporation temperature is lower than the calculated freeze evaporation temperature, it is determined to freeze, and if the measured evaporation temperature is higher than the calculated freeze evaporation temperature, it is frozen. The operation control means continues the defrosting operation when it is determined that the heat exchanger on the heat medium side does not freeze.

本発明の熱源システムによれば、温度判定手段と凍結判定手段と運転制御手段とを備えているので、従来の凍結判断に基づいて除霜運転が行われる場合に比べて、高精度な凍結判定がなされ、除霜運転を長く実施できる。 According to the heat source system of the present invention, since the temperature determination means, the freeze determination means, and the operation control means are provided, the freeze determination is more accurate than the case where the defrosting operation is performed based on the conventional freeze determination. This is done, and the defrosting operation can be carried out for a long time.

本発明の実施の形態1に係る熱源システムの暖房運転時の概略構成図である。It is a schematic block diagram at the time of heating operation of the heat source system which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る熱源システムの除霜運転時の概略構成図である。It is a schematic block diagram at the time of defrosting operation of the heat source system which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る制御装置の機能ブロック図である。It is a functional block diagram of the control device which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る流体流量制御のフローチャートを示したものである。The flowchart of fluid flow rate control which concerns on Embodiment 1 of this invention is shown. 入口温度と凍結する蒸発温度との関係を示すグラフである。It is a graph which shows the relationship between the inlet temperature and the freezing evaporation temperature. 水流量と凍結する蒸発温度との関係を示すグラフである。It is a graph which shows the relationship between the water flow rate and the freezing evaporation temperature. 本発明の実施の形態1に係る凍結制御のフローチャートを示したものである。The flowchart of the freezing control which concerns on Embodiment 1 of this invention is shown. 本発明の実施の形態2に係る熱源システムの概略構成図である。It is a schematic block diagram of the heat source system which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る流体流量制御のフローチャートを示したものである。It shows the flowchart of the fluid flow rate control which concerns on Embodiment 2 of this invention. 従来装置の制御のフローチャートを示したものである。It shows the flowchart of the control of the conventional apparatus.

以下に、本発明の熱源システムについて、図面を参照して説明する。熱源システム100は、空冷式のチリングシステムであって、例えば建物内部の空調のセントラル熱源として使用される。熱源システム100は、利用者から指定された運転内容に基づいて暖房運転又は冷房運転等を行う。熱源システム100の運転中には、冷媒回路2の冷媒配管11を流れる冷媒と、流体配管22を流れる流体との間で熱交換がなされ、流体は加熱又は冷却される。熱源システム100で加熱又は冷却された流体は空調機等の負荷側機器に供給される。実施の形態では、流体が不凍液等の水熱媒である場合を例に説明する。 Hereinafter, the heat source system of the present invention will be described with reference to the drawings. The heat source system 100 is an air-cooled chilling system, and is used, for example, as a central heat source for air conditioning inside a building. The heat source system 100 performs a heating operation, a cooling operation, or the like based on the operation content specified by the user. During the operation of the heat source system 100, heat exchange is performed between the refrigerant flowing through the refrigerant pipe 11 of the refrigerant circuit 2 and the fluid flowing through the fluid pipe 22, and the fluid is heated or cooled. The fluid heated or cooled by the heat source system 100 is supplied to load-side equipment such as an air conditioner. In the embodiment, a case where the fluid is a water heat medium such as antifreeze will be described as an example.

実施の形態1.
(熱源システム100の構成)
図1は、本発明の実施の形態1に係る熱源システムの暖房運転時の概略構成図である。図2は、本発明の実施の形態1に係る熱源システムの除霜運転時の概略構成図である。図1及び図2に基づいて、以下に熱源システム100の構成について説明する。
Embodiment 1.
(Configuration of heat source system 100)
FIG. 1 is a schematic configuration diagram of a heat source system according to a first embodiment of the present invention during a heating operation. FIG. 2 is a schematic configuration diagram of the heat source system according to the first embodiment of the present invention during the defrosting operation. The configuration of the heat source system 100 will be described below with reference to FIGS. 1 and 2.

熱源システム100は、熱源ユニット1と制御装置50とを備えている。熱源ユニット1は、冷媒回路2と、水熱媒が流れる流体配管22と、流体ポンプ20と、ポンプ制御装置21とを備えている。冷媒回路2には、圧縮機3、冷媒流路切替装置4、空気側熱交換器5、減圧装置7、熱媒体側熱交換器8、及びアキュムレータ9が冷媒配管11を介して接続されている。 The heat source system 100 includes a heat source unit 1 and a control device 50. The heat source unit 1 includes a refrigerant circuit 2, a fluid pipe 22 through which a water heat medium flows, a fluid pump 20, and a pump control device 21. A compressor 3, a refrigerant flow path switching device 4, an air side heat exchanger 5, a decompression device 7, a heat medium side heat exchanger 8, and an accumulator 9 are connected to the refrigerant circuit 2 via a refrigerant pipe 11. ..

圧縮機3は、低温低圧の冷媒を吸入し、その冷媒を圧縮して高温高圧の状態にするものであり、例えば容量制御可能なインバータ圧縮機等で構成される。冷媒流路切替装置4は、例えば四方弁等で構成され、冷房運転時又は除霜運転時における冷媒の流れと暖房運転時における冷媒の流れとを切り替えるものである。 The compressor 3 sucks in a low-temperature low-pressure refrigerant and compresses the refrigerant into a high-temperature and high-pressure state. For example, the compressor 3 is composed of an inverter compressor or the like whose capacity can be controlled. The refrigerant flow path switching device 4 is composed of, for example, a four-way valve or the like, and switches between the flow of the refrigerant during the cooling operation or the defrosting operation and the flow of the refrigerant during the heating operation.

減圧装置7は、例えば電子膨張弁等で構成され、冷媒を減圧して膨張させるものである。アキュムレータ9は、圧縮機3の吸入側に設けられ、凝縮した液冷媒を貯留するものである。アキュムレータ9は、液冷媒がそのまま圧縮機3に吸入されるのを防いでいる。 The pressure reducing device 7 is composed of, for example, an electronic expansion valve or the like, and decompresses and expands the refrigerant. The accumulator 9 is provided on the suction side of the compressor 3 and stores the condensed liquid refrigerant. The accumulator 9 prevents the liquid refrigerant from being sucked into the compressor 3 as it is.

空気側熱交換器5は、空気と冷媒との間で熱交換させるものであって、暖房運転時には蒸発器として機能し、冷房運転時又は除霜運転時には凝縮器として機能する。また、空気側熱交換器5には、例えばプロペラファン等で構成される空気側熱交換器用送風機6が付設されており、空気側熱交換器用送風機6は、空気側熱交換器5に空気を供給している。 The air side heat exchanger 5 exchanges heat between the air and the refrigerant, and functions as an evaporator during the heating operation and as a condenser during the cooling operation or the defrosting operation. Further, the air side heat exchanger 5 is provided with an air side heat exchanger blower 6 composed of, for example, a propeller fan, and the air side heat exchanger blower 6 sends air to the air side heat exchanger 5. We are supplying.

熱媒体側熱交換器8は、冷媒と水熱媒とを熱交換させるものである。熱媒体側熱交換器8は、暖房運転時には、高温高圧の冷媒と水熱媒とを熱交換させて高温水を生成し、冷房運転時には、低温低圧の冷媒と水熱媒とを熱交換させて低温水を生成する。 The heat medium side heat exchanger 8 exchanges heat between the refrigerant and the water heat medium. The heat medium side heat exchanger 8 generates high temperature water by exchanging heat between a high temperature and high pressure refrigerant and a water heat medium during a heating operation, and heat exchanges a low temperature and low pressure refrigerant and a water heat medium during a cooling operation. To generate low temperature water.

流体ポンプ20は、流体配管22を介して水熱媒を熱媒体側熱交換器8に供給するものである。流体ポンプ20は、例えば回転数制御される構成であって、水流量FRを多い方から、最大流量、大流量、通常流量、及び小流量等、多段階で供給する。 The fluid pump 20 supplies a water heat medium to the heat medium side heat exchanger 8 via the fluid pipe 22. The fluid pump 20 has a configuration in which the rotation speed is controlled, for example, and supplies the water flow rate FR in multiple stages such as a maximum flow rate, a large flow rate, a normal flow rate, and a small flow rate from the one having the largest water flow rate FR.

ポンプ制御装置21は、後述する制御装置50から制御信号を受け、制御信号に応じて流体ポンプ20を運転する周波数を変化させることで、制御装置50から要求される水流量で流体ポンプ20に水熱媒を供給させるものである。例えば、ポンプ制御装置21は、最大周波数、大周波数、通常周波数、小周波数等、多段階の駆動周波数を有しており、駆動周波数でポンプモータを回転させる。 The pump control device 21 receives a control signal from the control device 50, which will be described later, and changes the operating frequency of the fluid pump 20 according to the control signal. It supplies a heat medium. For example, the pump control device 21 has a multi-step drive frequency such as a maximum frequency, a large frequency, a normal frequency, and a small frequency, and rotates the pump motor at the drive frequency.

熱源ユニット1は更に、複数の温度センサ及び圧力センサ等のセンサ群12〜17を備えている。低圧圧力センサ12は、圧縮機3の吸入管に設置され、圧縮機吸入圧力を検出する。吸入ガス温度センサ13は、圧縮機3の吸入側に設けられ、圧縮機に吸入される冷媒の吸入ガス温度を検出する。外気温度センサ15は、外気温度を検出する。また、蒸発温度センサ14は、熱媒体側熱交換器8を流通する冷媒配管の中間位置に設けられ、配置場所の冷媒温度(蒸発温度Te)を計測する。 The heat source unit 1 further includes sensor groups 12 to 17 such as a plurality of temperature sensors and pressure sensors. The low pressure pressure sensor 12 is installed in the suction pipe of the compressor 3 and detects the compressor suction pressure. The intake gas temperature sensor 13 is provided on the suction side of the compressor 3 and detects the suction gas temperature of the refrigerant sucked into the compressor. The outside air temperature sensor 15 detects the outside air temperature. Further, the evaporation temperature sensor 14 is provided at an intermediate position of the refrigerant pipe flowing through the heat medium side heat exchanger 8 and measures the refrigerant temperature (evaporation temperature Te) at the arrangement location.

暖房運転時に熱源システム100から送出された高温水は、負荷側機器に送られ、例えば負荷側機器において暖房に利用されて低温水となり、再び熱源システム100の熱媒体側熱交換器8に供給されて加熱される。水熱媒は、このように流体配管22を介して負荷側機器と熱源システム100との間を循環している。 The high-temperature water sent from the heat source system 100 during the heating operation is sent to the load-side equipment, for example, is used for heating in the load-side equipment to become low-temperature water, and is again supplied to the heat medium-side heat exchanger 8 of the heat source system 100. Is heated. The water heat medium circulates between the load-side equipment and the heat source system 100 via the fluid pipe 22 in this way.

入口温度センサ16は、熱媒体側熱交換器8の入口側の流体配管22に設けられ、設置位置の水温(入口温度Twi)を測定する。出口温度センサ17は、熱媒体側熱交換器8の出口側の流体配管22に設けられ、設置位置の水温(出口温度Two)を測定する。 The inlet temperature sensor 16 is provided in the fluid pipe 22 on the inlet side of the heat exchanger 8 on the heat medium side, and measures the water temperature (inlet temperature Twi) at the installation position. The outlet temperature sensor 17 is provided in the fluid pipe 22 on the outlet side of the heat exchanger 8 on the heat medium side, and measures the water temperature (outlet temperature Two) at the installation position.

制御装置50は、例えばマイコン等で構成され、熱源システム100の制御を行う。具体的には、制御装置50は、低圧圧力センサ12、吸入ガス温度センサ13、蒸発温度センサ14、外気温度センサ15、入口温度センサ16、及び出口温度センサ17等のセンサ群から、冷媒の圧力情報及び温度情報、並びに水熱媒の温度情報等を受信する。制御装置50は、センサ群12〜17から取得した情報、熱源ユニット1の運転情報、及び利用者によって入力された指令内容に基づき、運転制御を行う。具体的には、制御装置50は、圧縮機3の運転及び停止、又は回転数の制御、減圧装置7の開度調整、空気側熱交換器用送風機6の回転制御、並びにアキュムレータ9の制御を行う。また、制御装置50は、除霜運転時に、流体ポンプ20によって熱媒体側熱交換器8に供給される水熱媒の水流量FRを変化させる。 The control device 50 is composed of, for example, a microcomputer or the like, and controls the heat source system 100. Specifically, the control device 50 receives the pressure of the refrigerant from a group of sensors such as the low pressure pressure sensor 12, the intake gas temperature sensor 13, the evaporation temperature sensor 14, the outside air temperature sensor 15, the inlet temperature sensor 16, and the outlet temperature sensor 17. Receives information, temperature information, temperature information of the water heat medium, and the like. The control device 50 performs operation control based on the information acquired from the sensor groups 12 to 17, the operation information of the heat source unit 1, and the command content input by the user. Specifically, the control device 50 operates and stops the compressor 3, controls the rotation speed, adjusts the opening degree of the decompression device 7, controls the rotation of the air side heat exchanger blower 6, and controls the accumulator 9. .. Further, the control device 50 changes the water flow rate FR of the water heat medium supplied to the heat medium side heat exchanger 8 by the fluid pump 20 during the defrosting operation.

(除霜中の熱源ユニット1動作)
水熱媒を加熱する暖房運転において、空気側熱交換器5に着霜が検知されると、制御装置50は、冷媒回路2の冷媒の流れを切り替えて、付着した霜を冷媒の熱により融解する。空気側熱交換器5の着霜検出は、例えば、温度センサを空気側熱交換器5に設けて冷媒温度を測定し、測定された温度が、予め設定された閾値温度以下となった場合に着霜を検出する。空気側熱交換器5の除霜運転では、図2に示すように、空気側熱交換器5は凝縮器になり、熱媒体側熱交換器8は蒸発器になる。したがって、熱媒体側熱交換器8には低温の冷媒が流入するため、水熱媒は熱媒体側熱交換器8において冷却される。
(Operation of heat source unit 1 during defrosting)
When frost is detected in the air side heat exchanger 5 in the heating operation for heating the water heat medium, the control device 50 switches the flow of the refrigerant in the refrigerant circuit 2 and melts the adhering frost by the heat of the refrigerant. To do. The frost formation detection of the air side heat exchanger 5 is performed, for example, when a temperature sensor is provided in the air side heat exchanger 5 to measure the refrigerant temperature and the measured temperature becomes equal to or lower than a preset threshold temperature. Detect frost formation. In the defrosting operation of the air side heat exchanger 5, as shown in FIG. 2, the air side heat exchanger 5 becomes a condenser and the heat medium side heat exchanger 8 becomes an evaporator. Therefore, since the low-temperature refrigerant flows into the heat medium side heat exchanger 8, the water heat medium is cooled in the heat medium side heat exchanger 8.

(制御装置50の機能)
図3は、本発明の実施の形態1に係る制御装置の機能ブロック図である。図3に基づき、制御装置50について説明する。制御装置50は、運転制御手段51と温度判定手段52と凍結判定手段53と記憶手段54とを備えている。
(Function of control device 50)
FIG. 3 is a functional block diagram of the control device according to the first embodiment of the present invention. The control device 50 will be described with reference to FIG. The control device 50 includes an operation control means 51, a temperature determination means 52, a freeze determination means 53, and a storage means 54.

運転制御手段51は、センサ群12〜17からの温度情報及び圧力情報等に基づき、冷媒回路2の運転制御、及び流体ポンプ20の流量制御を実施する。具体的には、運転制御手段51は、例えば出口温度センサ17で測定された出口温度Twoが、設定された目標温度に近づくよう、圧縮機3の運転周波数を調整する。また運転制御手段51は、空気側熱交換器5の除霜運転時に、ポンプ制御装置21を介して、流体ポンプ20によって熱媒体側熱交換器8に供給される水熱媒の水流量FRを変化させる。具体的には、運転制御手段51は、ポンプ制御装置21に流体ポンプ20の駆動周波数を調整する制御信号を送信する。ポンプ制御装置21は、制御信号に応じて駆動周波数を変え、流体ポンプ20の回転数を変化させる。また運転制御手段51は、温度判定手段52及び凍結判定手段53に、実施中の運転情報を送信する。更に運転制御手段51は、温度判定手段52の判断結果に基づき、供給される水流量FRを変化させ、また、凍結判定手段53の結果に基づき、除霜運転を継続又は終了させる。 The operation control means 51 executes the operation control of the refrigerant circuit 2 and the flow rate control of the fluid pump 20 based on the temperature information, the pressure information, and the like from the sensor groups 12 to 17. Specifically, the operation control means 51 adjusts the operation frequency of the compressor 3 so that, for example, the outlet temperature Two measured by the outlet temperature sensor 17 approaches the set target temperature. Further, the operation control means 51 determines the water flow rate FR of the water heat medium supplied to the heat medium side heat exchanger 8 by the fluid pump 20 via the pump control device 21 during the defrosting operation of the air side heat exchanger 5. Change. Specifically, the operation control means 51 transmits a control signal for adjusting the drive frequency of the fluid pump 20 to the pump control device 21. The pump control device 21 changes the drive frequency according to the control signal and changes the rotation speed of the fluid pump 20. Further, the operation control means 51 transmits the operation information being carried out to the temperature determination means 52 and the freeze determination means 53. Further, the operation control means 51 changes the supplied water flow rate FR based on the judgment result of the temperature determination means 52, and continues or terminates the defrosting operation based on the result of the freeze determination means 53.

温度判定手段52は、入口温度センサ16から温度情報を取得して、水温の高低を判断するものである。具体的には、除霜運転時に、入口温度センサ16で測定された入口温度Twiが第1設定温度T1より低いか否かを判定し、判定結果を運転制御手段51に送信する。また、除霜運転時に、測定された入口温度Twiが第2設定温度T2より低いか否かを判定し、判定結果に応じて、判定結果を運転制御手段51又は凍結判定手段53に送信する。温度判定手段52は、温度判定が要求されると、記憶手段54に記憶された第1設定温度T1及び第2設定温度T2を参照する。 The temperature determining means 52 acquires temperature information from the inlet temperature sensor 16 and determines whether the water temperature is high or low. Specifically, during the defrosting operation, it is determined whether or not the inlet temperature Twi measured by the inlet temperature sensor 16 is lower than the first set temperature T1, and the determination result is transmitted to the operation control means 51. Further, during the defrosting operation, it is determined whether or not the measured inlet temperature Twi is lower than the second set temperature T2, and the determination result is transmitted to the operation control means 51 or the freeze determination means 53 according to the determination result. When the temperature determination is requested, the temperature determination means 52 refers to the first set temperature T1 and the second set temperature T2 stored in the storage means 54.

凍結判定手段53は、入口温度センサ16から入口温度Twiを取得して、蒸発温度センサ14から蒸発温度Teを取得する。また、凍結判定手段53は、運転制御手段51から、熱源システム100が暖房運転、冷房運転、又は除霜運転のいずれの運転モードを実施しているか、及び、流体ポンプ20がどの水流量で稼動されているか等の運転情報を取得する。そして、凍結判定手段53は、除霜運転時に、温度判定手段52によって、測定された入口温度Twiが第2設定温度T2より低いと判定された場合に、熱媒体側熱交換器8が凍結するか否かを判定する凍結判定制御を実施する。凍結判定手段53は、凍結判定制御において、熱媒体側熱交換器8に供給される水流量FRと、測定された入口温度Twiと、測定された蒸発温度Teとに基づいて、熱媒体側熱交換器8が凍結するか否かを判定する。具体的には、記憶手段54に記憶されている凍結閾値情報T3を参照して、供給される水流量FR及び測定された入口温度Twiに応じた凍結蒸発温度Tfを算出する。また凍結判定手段53は、測定された蒸発温度Teと算出した凍結蒸発温度Tfとを比較する。そして、凍結判定手段53は、測定された蒸発温度Teが凍結蒸発温度Tfより低い場合には、熱媒体側熱交換器8が凍結すると判定し、一方、測定された蒸発温度Teが凍結蒸発温度Tfより高い場合には、熱媒体側熱交換器8は凍結しないと判定する。また凍結判定手段53は、凍結判定結果を運転制御手段51に送信する。つまり凍結判定手段53は、運転制御手段51によって実施されている除霜運転の、終了のタイミングを変更することができる。 The freezing determination means 53 acquires the inlet temperature Twi from the inlet temperature sensor 16 and acquires the evaporation temperature Te from the evaporation temperature sensor 14. Further, in the freezing determination means 53, from the operation control means 51, which operation mode of the heating operation, the cooling operation, or the defrosting operation is executed by the heat source system 100, and at what water flow rate the fluid pump 20 operates. Acquire driving information such as whether it is done. Then, when the temperature determination means 52 determines that the measured inlet temperature Twi is lower than the second set temperature T2 during the defrosting operation, the freeze determination means 53 freezes the heat exchanger 8 on the heat medium side. The freeze determination control for determining whether or not it is performed is performed. In the freezing determination control, the freezing determination means 53 heats the heat medium side based on the water flow rate FR supplied to the heat medium side heat exchanger 8, the measured inlet temperature Twi, and the measured evaporation temperature Te. It is determined whether or not the exchanger 8 freezes. Specifically, the freezing evaporation temperature Tf corresponding to the supplied water flow rate FR and the measured inlet temperature Twi is calculated with reference to the freezing threshold information T3 stored in the storage means 54. Further, the freeze determination means 53 compares the measured evaporation temperature Te with the calculated freeze evaporation temperature Tf. Then, the freezing determination means 53 determines that the heat exchanger 8 on the heat medium side freezes when the measured evaporation temperature Te is lower than the freezing evaporation temperature Tf, while the measured evaporation temperature Te is the freezing evaporation temperature. If it is higher than Tf, it is determined that the heat exchanger 8 on the heat medium side does not freeze. Further, the freeze determination means 53 transmits the freeze determination result to the operation control means 51. That is, the freeze determination means 53 can change the end timing of the defrosting operation performed by the operation control means 51.

記憶手段54は、例えばROM等のメモリで構成され、予め第1設定温度T1と、第2設定温度T2と、凍結閾値情報T3とが設定されて記憶されている。第1設定温度T1は、例えば熱源ユニット1が除霜運転を行うことにより、熱源システム100から送出される水熱媒の水温の低下が顕著になる境界における、入口温度である。第1設定温度T1は、冷媒回路の冷却能力、目標の出口温度、及び通常水流量等に基づいて自動設定される構成であってもよい。また第2設定温度T2は、例えば第1設定温度より低い温度であって、熱媒体側熱交換器8の通常の凍結温度より高い温度である。また、凍結閾値情報T3は、入口温度Twiと凍結する蒸発温度との対応情報、及び、水流量FRと凍結する蒸発温度との対応情報であって、凍結判定手段53が凍結蒸発温度Tfを算出する際に参照されるものである。なお、凍結閾値情報T3は、式又はテーブル等のように、入口温度Twi又は水流量FRに対応して凍結する蒸発温度が変化する値として関連付けられて記憶されていれば、どのような形式で記憶されていてもよい。 The storage means 54 is composed of, for example, a memory such as a ROM, and the first set temperature T1, the second set temperature T2, and the freezing threshold information T3 are set and stored in advance. The first set temperature T1 is an inlet temperature at a boundary where, for example, when the heat source unit 1 performs a defrosting operation, the water temperature of the water heat medium sent from the heat source system 100 drops significantly. The first set temperature T1 may be configured to be automatically set based on the cooling capacity of the refrigerant circuit, the target outlet temperature, the normal water flow rate, and the like. The second set temperature T2 is, for example, a temperature lower than the first set temperature and higher than the normal freezing temperature of the heat medium side heat exchanger 8. Further, the freezing threshold information T3 is the correspondence information between the inlet temperature Twi and the freezing evaporation temperature and the correspondence information between the water flow rate FR and the freezing evaporation temperature, and the freezing determination means 53 calculates the freezing evaporation temperature Tf. It is used as a reference when doing so. The freezing threshold information T3 is stored in any format as long as it is associated and stored as a value in which the freezing evaporation temperature changes according to the inlet temperature Twi or the water flow rate FR, as in the formula or table. It may be remembered.

(除霜中のポンプ制御)
図4は、本発明の実施の形態1に係る流体流量制御のフローチャートを示したものである。除霜運転中には、冷媒は冷房運転と同じ方向に流れるため、入口温度Twiに対して出口温度Twoが低下する。そのため、除霜運転中には、熱源システム100の供給水温の低下、及び熱媒体側熱交換器8の凍結等が懸念される。これに対して、図4の流体流量制御では、流体ポンプ20の駆動周波数を変化させて水流量FRを変化させている。冷媒回路2の冷却能力は、水流量FRと、入口温度Twi及び出口温度Twoの差との積によって規定される。したがって、冷却能力及び入口温度Twiが一定である場合には、水流量FRが多い方が、水流量FRが低い方と比較して出口温度Twoの低下は抑制される。
(Pump control during defrosting)
FIG. 4 shows a flowchart of fluid flow rate control according to the first embodiment of the present invention. During the defrosting operation, the refrigerant flows in the same direction as the cooling operation, so that the outlet temperature Two drops with respect to the inlet temperature Twi. Therefore, during the defrosting operation, there is a concern that the supply water temperature of the heat source system 100 may decrease and the heat exchanger 8 on the heat medium side may freeze. On the other hand, in the fluid flow rate control of FIG. 4, the drive frequency of the fluid pump 20 is changed to change the water flow rate FR. The cooling capacity of the refrigerant circuit 2 is defined by the product of the water flow rate FR and the difference between the inlet temperature Twi and the outlet temperature Two. Therefore, when the cooling capacity and the inlet temperature Twi are constant, the decrease in the outlet temperature Two is suppressed when the water flow rate FR is large as compared with the case where the water flow rate FR is low.

熱源システム100において、例えば熱源ユニット1の暖房運転が開始されると、制御装置50は、熱源ユニット1に対して図4の流体流量制御を開始する。そしてまず、運転制御手段51は、熱源ユニット1が除霜運転中であるか否かを判断する(ステップST101)。運転制御手段51は、除霜運転中でない場合には(ステップST101;NO)、流体ポンプ20が供給する水流量FRが通常水流量となるよう制御する(ステップST104)。具体的には、運転制御手段51はポンプ制御装置21に制御信号を送信し、ポンプ制御装置21は制御信号に応じて流体ポンプ20を通常周波数(例えば40Hz)で回転させる。一方、運転制御手段51は、除霜運転中である場合には(ステップST101;YES)、温度判定手段52に通知する。温度判定手段52は、運転制御手段51から通知を受信すると、熱源ユニット1の入口温度センサ16から入口温度Twiの情報を取得し、また、記憶手段54から第1設定温度T1を取得する。そして温度判定手段52は、取得した入口温度Twiが第1設定温度T1以下であるか否かを判定する(ステップST102)。第1設定閾値は、予め設定された水温であって、ここでは例えば30℃としている。温度判定手段52は、判定結果を運転制御手段51に通知する。運転制御手段51は、温度判定手段52から通知を受信し、入口温度Twiが第1設定温度T1以下である場合には(ステップST102;YES)、供給される水流量FRを大きくする(ステップST103)。具体的には、ポンプ制御装置21を介して流体ポンプ20の回転数を「最大」(例えば60Hz)まで上昇させ、入口温度Twiに対する出口温度Twoの低下を抑制する。一方、運転制御手段51は、入口温度Twiが第1設定温度T1より高い場合には、供給される水流量FRを通常水流量とする(ステップST104)。ステップST103又はステップST104を行った後、運転制御手段51はステップST101に戻り、ステップST101〜ステップST104の流体流量制御を繰り返す。運転制御手段51は、暖房運転が終了すると、流体流量制御を終了する。 In the heat source system 100, for example, when the heating operation of the heat source unit 1 is started, the control device 50 starts the fluid flow rate control of FIG. 4 for the heat source unit 1. First, the operation control means 51 determines whether or not the heat source unit 1 is in the defrosting operation (step ST101). When the defrosting operation is not in progress (step ST101; NO), the operation control means 51 controls so that the water flow rate FR supplied by the fluid pump 20 becomes a normal water flow rate (step ST104). Specifically, the operation control means 51 transmits a control signal to the pump control device 21, and the pump control device 21 rotates the fluid pump 20 at a normal frequency (for example, 40 Hz) in response to the control signal. On the other hand, when the operation control means 51 is in the defrosting operation (step ST101; YES), the operation control means 51 notifies the temperature determination means 52. Upon receiving the notification from the operation control means 51, the temperature determination means 52 acquires the information of the inlet temperature Twi from the inlet temperature sensor 16 of the heat source unit 1 and also acquires the first set temperature T1 from the storage means 54. Then, the temperature determining means 52 determines whether or not the acquired inlet temperature Twi is equal to or lower than the first set temperature T1 (step ST102). The first set threshold value is a preset water temperature, and is set to, for example, 30 ° C. here. The temperature determination means 52 notifies the operation control means 51 of the determination result. The operation control means 51 receives the notification from the temperature determination means 52, and when the inlet temperature Twi is equal to or lower than the first set temperature T1 (step ST102; YES), the supplied water flow rate FR is increased (step ST103). ). Specifically, the rotation speed of the fluid pump 20 is increased to the "maximum" (for example, 60 Hz) via the pump control device 21, and the decrease of the outlet temperature Two with respect to the inlet temperature Twi is suppressed. On the other hand, when the inlet temperature Twi is higher than the first set temperature T1, the operation control means 51 sets the supplied water flow rate FR as the normal water flow rate (step ST104). After performing step ST103 or step ST104, the operation control means 51 returns to step ST101 and repeats the fluid flow rate control of steps ST101 to ST104. The operation control means 51 ends the fluid flow rate control when the heating operation is completed.

(凍結蒸発温度Tf)
ところで、水量の増加は出口温度Twoの低下抑制に加えて、熱媒体側熱交換器8の凍結抑制にも効果がある。図5は、入口温度と凍結する蒸発温度との関係を示すグラフである。入口温度Twiが高いと凍結する蒸発温度は低下し、一方、入口温度Twiが低いと凍結する蒸発温度は上昇する。例えば、水流量FRと、冷媒回路2の冷却能力としての蒸発温度Teとが一定の場合、水熱媒の入口温度Twiが低いと、その分、出口温度Twoも低くなるため凍結し易い状態となる。
(Freeze evaporation temperature Tf)
By the way, the increase in the amount of water is effective not only in suppressing the decrease in the outlet temperature Two but also in suppressing the freezing of the heat exchanger 8 on the heat medium side. FIG. 5 is a graph showing the relationship between the inlet temperature and the freezing evaporation temperature. When the inlet temperature Twi is high, the freezing evaporation temperature decreases, while when the inlet temperature Twi is low, the freezing evaporation temperature rises. For example, when the water flow rate FR and the evaporation temperature Te as the cooling capacity of the refrigerant circuit 2 are constant, if the inlet temperature Twi of the water heat medium is low, the outlet temperature Two is also lowered accordingly, so that the state is likely to freeze. Become.

図6は、水流量と凍結する蒸発温度との関係を示すグラフである。熱媒体側熱交換器8に供給される水流量FRが多いと凍結する蒸発温度は低下し、一方、水流量FRが少ないと凍結する蒸発温度は上昇する。例えば水流量FRが多い場合、入口温度Twi及び蒸発温度Teが一定であっても、熱媒体側熱交換器8に流れる水熱媒の熱容量が大きくなるため、出口温度Twoの低下が抑制され、熱媒体側熱交換器8は凍結しにくい状態となる。 FIG. 6 is a graph showing the relationship between the water flow rate and the freezing evaporation temperature. When the water flow rate FR supplied to the heat medium side heat exchanger 8 is large, the freezing evaporation temperature decreases, while when the water flow rate FR is small, the freezing evaporation temperature rises. For example, when the water flow rate FR is large, even if the inlet temperature Twi and the evaporation temperature Te are constant, the heat capacity of the water heat medium flowing through the heat medium side heat exchanger 8 becomes large, so that the decrease in the outlet temperature Two is suppressed. The heat exchanger 8 on the heat medium side is in a state where it is difficult to freeze.

また、入口温度Twiと凍結する蒸発温度との関係、及び、水流量FRと凍結する蒸発温度との関係を利用して、蒸発温度Teに基づいて熱媒体側熱交換器8の凍結抑制を行うこともできる。水流量FRが変化する熱源システム100では、水流量FRの変化に応じて熱容量が変化する。そのため、空気側熱交換器5の除霜運転時における熱媒体側熱交換器8の凍結検知に、従来のように入口温度Twi又は出口温度Twoの低下を検知して除霜運転を終了させるよう制御する場合は、凍結検知の閾値を安全のため高い温度に設定する必要がある。 Further, the heat exchanger 8 is suppressed from freezing based on the evaporation temperature Te by utilizing the relationship between the inlet temperature Twi and the freezing evaporation temperature and the relationship between the water flow rate FR and the freezing evaporation temperature. You can also do it. In the heat source system 100 in which the water flow rate FR changes, the heat capacity changes according to the change in the water flow rate FR. Therefore, in the freeze detection of the heat medium side heat exchanger 8 during the defrosting operation of the air side heat exchanger 5, the defrosting operation is terminated by detecting the decrease in the inlet temperature Twi or the outlet temperature Two as in the conventional case. When controlling, it is necessary to set the freezing detection threshold to a high temperature for safety.

図7は、本発明の実施の形態1に係る凍結制御のフローチャートを示したものである。制御装置50は、入口温度Twiが所定の温度より低下した場合には、蒸発温度Teと、入口温度Twi及び水流量FRに対する凍結蒸発温度Tfとを比較することで凍結を検知している。 FIG. 7 shows a flowchart of freezing control according to the first embodiment of the present invention. When the inlet temperature Twi drops below a predetermined temperature, the control device 50 detects freezing by comparing the evaporation temperature Te with the freeze evaporation temperature Tf with respect to the inlet temperature Twi and the water flow rate FR.

熱源システム100において、例えば熱源ユニット1の暖房運転が開始されると、制御装置50は、熱源ユニット1に対して図7の冷凍制御を開始する。そしてまず、運転制御手段51は、熱源ユニット1が除霜運転中であるか否かを判断する(ステップST111)。運転制御手段51は、除霜運転中である場合には(ステップST111;YES)、温度判定手段52に通知する。一方、運転制御手段51は、除霜運転中でない場合には(ステップST111;NO)ステップ111に戻り、暖房運転中に除霜運転が開始されていないか監視する。次に温度判定手段52は、運転制御手段51から通知を受信すると、熱源ユニット1の入口温度センサ16から入口温度Twiの温度情報を取得し、また、記憶手段54から第2設定温度T2を取得する。そして温度判定手段52は、取得した入口温度Twiが第2設定温度以下であるか否かを判定する(ステップST112)。第2設定温度T2は、予め設定された水温であって、ここでは例えば15℃としている。温度判定手段52は、運転制御手段51により入口温度Twiが第2設定温度T2以下であると判定された場合には(ステップST112;YES)、凍結判定手段53に通知する。一方、温度判定手段52は、入口温度Twiが第2設定温度より大きい場合には(ステップST112;NO)、運転制御手段51に通知する。運転制御手段51は、温度判定手段52から通知を受信すると、除霜運転を継続する(ステップST115)一方、凍結判定手段53は、温度判定手段52から通知を受信すると、蒸発温度センサ14及び入口温度センサ16から温度情報を取得する。また凍結判定手段53は、運転制御手段51から、流体ポンプ20に設定されている水流量に関する運転情報を取得する。そして凍結判定手段53は、記憶手段54の凍結閾値情報T3を参照して、蒸発温度Teと入口温度Twiと水流量FRとに応じた凍結蒸発温度Tfを算出する。また凍結判定手段53は、取得した蒸発温度Teが算出された凍結蒸発温度Tf以下であるか否かを判定する(ステップST113)。凍結判定の結果は、凍結判定手段53から運転制御手段51に通知される。運転制御手段51は、蒸発温度Teが凍結蒸発温度Tf以下である場合には(ステップST113;YES)、除霜運転を終了する(ステップST114)。つまり、設定されている水流量FR及び入口温度Twiの水熱媒が、蒸発温度Teの熱媒体側熱交換器8を通過した場合に、出口温度で凍結が生じる程に水温が低下するような場合は、除霜運転が終了され、凍結の発生が抑制される。一方、運転制御手段51は、蒸発温度Teが凍結蒸発温度Tfより大きい場合には(ステップST113;NO)、熱媒体側熱交換器8は凍結しないと判断して除霜運転を継続する(ステップST115)。運転制御手段は、ステップST114又はステップST115において除霜運転を終了又は継続させた後、ステップST111に戻って凍結制御を繰り返す。運転制御手段は、暖房運転が終了すると、凍結制御を終了する。 In the heat source system 100, for example, when the heating operation of the heat source unit 1 is started, the control device 50 starts the refrigeration control of FIG. 7 for the heat source unit 1. First, the operation control means 51 determines whether or not the heat source unit 1 is in the defrosting operation (step ST111). When the operation control means 51 is in the defrosting operation (step ST111; YES), the operation control means 51 notifies the temperature determination means 52. On the other hand, if the operation control means 51 is not in the defrosting operation (step ST111; NO), the operation control means 51 returns to step 111 and monitors whether the defrosting operation is started during the heating operation. Next, when the temperature determination means 52 receives the notification from the operation control means 51, the temperature information of the inlet temperature Twi is acquired from the inlet temperature sensor 16 of the heat source unit 1, and the second set temperature T2 is acquired from the storage means 54. To do. Then, the temperature determining means 52 determines whether or not the acquired inlet temperature Twi is equal to or lower than the second set temperature (step ST112). The second set temperature T2 is a preset water temperature, and is set to, for example, 15 ° C. here. When the operation control means 51 determines that the inlet temperature Twi is equal to or lower than the second set temperature T2 (step ST112; YES), the temperature determination means 52 notifies the freeze determination means 53. On the other hand, when the inlet temperature Twi is larger than the second set temperature (step ST112; NO), the temperature determining means 52 notifies the operation control means 51. When the operation control means 51 receives the notification from the temperature determination means 52, the defrosting operation is continued (step ST115), while the freeze determination means 53 receives the notification from the temperature determination means 52, the evaporation temperature sensor 14 and the inlet. The temperature information is acquired from the temperature sensor 16. Further, the freeze determination means 53 acquires operation information regarding the water flow rate set in the fluid pump 20 from the operation control means 51. Then, the freezing determination means 53 calculates the freezing evaporation temperature Tf according to the evaporation temperature Te, the inlet temperature Twi, and the water flow rate FR with reference to the freezing threshold information T3 of the storage means 54. Further, the freezing determination means 53 determines whether or not the acquired evaporation temperature Te is equal to or lower than the calculated freeze evaporation temperature Tf (step ST113). The result of the freeze determination is notified from the freeze determination means 53 to the operation control means 51. When the evaporation temperature Te is equal to or lower than the freeze evaporation temperature Tf (step ST113; YES), the operation control means 51 ends the defrosting operation (step ST114). That is, when the set water flow rate FR and the water heat medium having the inlet temperature Twi pass through the heat medium side heat exchanger 8 having the evaporation temperature Te, the water temperature drops to the extent that freezing occurs at the outlet temperature. In that case, the defrosting operation is terminated and the occurrence of freezing is suppressed. On the other hand, when the evaporation temperature Te is higher than the freeze evaporation temperature Tf (step ST113; NO), the operation control means 51 determines that the heat exchanger 8 on the heat medium side does not freeze and continues the defrosting operation (step). ST115). The operation control means returns to step ST111 and repeats the freezing control after ending or continuing the defrosting operation in step ST114 or step ST115. The operation control means ends the freezing control when the heating operation is completed.

凍結制御は、流体ポンプ20が熱媒体側熱交換器8に供給する水流量FRが変化する熱源システム100では、水流量FRの変化を加味した凍結判定ができるため有効である。制御装置50は、図7に示される凍結制御と、図4に示される流量制御とを併用して実施できる。 Freezing control is effective in the heat source system 100 in which the water flow rate FR supplied by the fluid pump 20 to the heat medium side heat exchanger 8 changes, because the freezing determination can be made in consideration of the change in the water flow rate FR. The control device 50 can be implemented by using the freezing control shown in FIG. 7 and the flow rate control shown in FIG. 4 in combination.

以上のように実施の形態1において熱源システム100は、流体の加熱及び冷却を行う熱源ユニット1と熱源ユニット1を制御する制御装置50とを備える熱源システム100において、熱源ユニット1は、圧縮機3と冷媒流路切替装置4と空気側熱交換器5と減圧装置7と熱媒体側熱交換器8とが冷媒配管11を介して接続された冷媒回路2と、熱媒体側熱交換器8により冷媒回路2の冷媒と熱交換される流体が流れる流体配管22と、流体配管22に設けられ、流体を熱媒体側熱交換器8に供給する流体ポンプ20と、熱媒体側熱交換器8に流入する流体の温度を測定する入口温度センサ16と、を備え、制御装置50は、空気側熱交換器5が凝縮器になり熱媒体側熱交換器8が蒸発器になる除霜運転時に、熱媒体側熱交換器8に供給される流体の流量が入口温度センサ16により測定された流体温度Twiに応じて変化するように、流体ポンプ20を制御する運転制御手段51を備えるものである。 As described above, in the first embodiment, the heat source system 100 includes a heat source unit 1 that heats and cools the fluid and a control device 50 that controls the heat source unit 1. In the heat source system 100, the heat source unit 1 is a compressor 3. And the fluid fluid flow path switching device 4, the air side heat exchanger 5, the decompression device 7, and the heat medium side heat exchanger 8 are connected via the refrigerant pipe 11, and the hot medium side heat exchanger 8 is used. A fluid pipe 22 through which a fluid that exchanges heat with the refrigerant of the refrigerant circuit 2 flows, a fluid pump 20 provided in the fluid pipe 22 that supplies the fluid to the heat medium side heat exchanger 8, and a heat medium side heat exchanger 8. The control device 50 includes an inlet temperature sensor 16 for measuring the temperature of the inflowing fluid, and the control device 50 during a defrosting operation in which the air side heat exchanger 5 becomes a condenser and the heat medium side heat exchanger 8 becomes an evaporator. The operation control means 51 for controlling the fluid pump 20 is provided so that the flow rate of the fluid supplied to the heat medium side heat exchanger 8 changes according to the fluid temperature Twi measured by the inlet temperature sensor 16.

これより、熱源システム100を構成する熱源ユニット1が単体又は複数台のどちらで構成される場合であっても、熱源システム100から供給される水熱媒の、除霜時の温度低下が抑制される。 As a result, regardless of whether the heat source unit 1 constituting the heat source system 100 is composed of a single unit or a plurality of units, the temperature drop of the water heat medium supplied from the heat source system 100 during defrosting is suppressed. To.

また、制御装置50は更に、除霜運転時に、測定された流体温度Twiが第1設定温度T1より低いか否かを判定する温度判定手段52を備え、運転制御手段51は、除霜運転時に、測定された流体温度Twiが第1設定温度T1より低いと判定された場合に、供給される流体流量FRを通常流量より多くする。 Further, the control device 50 further includes a temperature determining means 52 for determining whether or not the measured fluid temperature Twi is lower than the first set temperature T1 during the defrosting operation, and the operation control means 51 is provided with the operation control means 51 during the defrosting operation. When it is determined that the measured fluid temperature Twi is lower than the first set temperature T1, the supplied fluid flow rate FR is made larger than the normal flow rate.

これより、除霜運転中に熱媒体側熱交換器8の入口における流体温度Twoが低いときは、供給する水熱媒の水流量FRを増加させるので、熱源システム100が供給する水熱媒の温度低下が抑制される。また、熱媒体側熱交換器8の凍結が抑制される。 From this, when the fluid temperature Two at the inlet of the heat medium side heat exchanger 8 is low during the defrosting operation, the water flow rate FR of the supplied water heat medium is increased, so that the water heat medium supplied by the heat source system 100 is used. The temperature drop is suppressed. Further, freezing of the heat exchanger 8 on the heat medium side is suppressed.

また、熱源ユニット1は更に、冷媒の蒸発温度を測定する蒸発温度センサ14、を備え、制御装置50は更に、除霜運転時に、供給される流体流量FRと測定された流体温度Twiと前記蒸発温度センサ14で測定された蒸発温度Teとに基づいて、熱媒体側熱交換器8が凍結するか否かを判定する凍結判定手段53を備え、運転制御手段51は、熱媒体側熱交換器8が凍結しないと判定されているときには、除霜運転を継続する。 Further, the heat source unit 1 further includes an evaporation temperature sensor 14 for measuring the evaporation temperature of the refrigerant, and the control device 50 further includes the fluid flow rate FR supplied during the defrosting operation, the measured fluid temperature Twi, and the evaporation. The operation control means 51 includes a freezing determination means 53 for determining whether or not the heat medium side heat exchanger 8 freezes based on the evaporation temperature Te measured by the temperature sensor 14, and the operation control means 51 is a heat medium side heat exchanger. When it is determined that 8 does not freeze, the defrosting operation is continued.

これより、水流量FRの違いによる凍結蒸発温度Tfの違いも加味した凍結制御がなされる。水温が低い場合でも、水流量FRによっては熱媒体側熱交換器8を凍結させずに空気側熱交換器5の除霜運転が継続できる。また、凍結制御は、凍結抑制のために流量を増加させるよう構成すれば、更に低い温度でも除霜運転が継続される。したがって、除霜が不完全な状態であるにもかかわらず、熱媒体側熱交換器8の凍結を防ぐために除霜運転が中止されるのを回避できる。 As a result, freezing control is performed in consideration of the difference in the freezing evaporation temperature Tf due to the difference in the water flow rate FR. Even when the water temperature is low, the defrosting operation of the air side heat exchanger 5 can be continued without freezing the heat medium side heat exchanger 8 depending on the water flow rate FR. Further, if the freezing control is configured to increase the flow rate to suppress freezing, the defrosting operation is continued even at a lower temperature. Therefore, even though the defrosting is incomplete, it is possible to prevent the defrosting operation from being stopped in order to prevent the heat exchanger 8 on the heat medium side from freezing.

また、制御装置50は更に、除霜運転時に、測定された流体温度Twiが第2設定温度T2より低いか否かを判定する温度判定手段52を備え、凍結判定手段53は、除霜運転時に、測定された流体温度Twiが第2設定温度T2より低いと判定された場合に、熱媒体側熱交換器8が凍結するか否かを判定する。これより、制御装置50は、流体の温度について閾値を設定し、凍結判定手段53が凍結判定を開始する条件として利用することができる。 Further, the control device 50 further includes a temperature determining means 52 for determining whether or not the measured fluid temperature Twi is lower than the second set temperature T2 during the defrosting operation, and the freezing determining means 53 is provided during the defrosting operation. When it is determined that the measured fluid temperature Twi is lower than the second set temperature T2, it is determined whether or not the heat exchanger 8 on the heat medium side freezes. From this, the control device 50 can set a threshold value for the temperature of the fluid and use it as a condition for the freezing determination means 53 to start the freezing determination.

また、凍結判定手段53は、供給される流体流量FR及び測定された流体温度Twiに応じた凍結蒸発温度Tfを算出し、測定された蒸発温度Teが算出された凍結蒸発温度Tfより低い場合には凍結すると判定し、測定された蒸発温度Teが算出された凍結蒸発温度Tfより高い場合には凍結しないと判定する。 Further, the freeze determination means 53 calculates the freeze evaporation temperature Tf according to the supplied fluid flow rate FR and the measured fluid temperature Twi, and when the measured evaporation temperature Te is lower than the calculated freeze evaporation temperature Tf. Is determined to freeze, and if the measured evaporation temperature Te is higher than the calculated freeze-evaporation temperature Tf, it is determined not to freeze.

これより、入口温度Twi及び水流量FRに応じて閾値(凍結蒸発温度Tf)が算出されるので、高精度な凍結判定がなされる。したがって、熱源システム100は、例えば入口温度Twiが高いとき、又は水流量FRが多いときに、従来の凍結判断に基づいて除霜運転が行われる場合に比べ、除霜運転を長く実施できる。 From this, the threshold value (freeze evaporation temperature Tf) is calculated according to the inlet temperature Twi and the water flow rate FR, so that the freezing determination can be made with high accuracy. Therefore, the heat source system 100 can carry out the defrosting operation for a longer time than when the defrosting operation is performed based on the conventional freezing determination, for example, when the inlet temperature Twi is high or the water flow rate FR is large.

また、運転制御手段51は、対応する流体ポンプ20の駆動周波数を調整して供給される流体流量FRを変化させるものであって、供給される流体流量FRを多くするときには流体ポンプ20の駆動周波数を大きくし、供給される流体流量FRを少なくするときには流体ポンプ20の駆動周波数を小さくする。これより、流体ポンプ20の駆動周波数と水流量FRとを同期させておけば、制御装置50は目的の水流量に応じた制御信号を送信することで、水流量FRを多段階に変化させることができる。 Further, the operation control means 51 adjusts the drive frequency of the corresponding fluid pump 20 to change the supplied fluid flow rate FR, and when the supplied fluid flow rate FR is increased, the drive frequency of the fluid pump 20 is increased. When the fluid flow rate FR to be supplied is reduced, the drive frequency of the fluid pump 20 is reduced. From this, if the drive frequency of the fluid pump 20 and the water flow rate FR are synchronized, the control device 50 can change the water flow rate FR in multiple stages by transmitting a control signal according to the target water flow rate. Can be done.

実施の形態2.
実施の形態2では、熱源システム100は、実施の形態1の熱源ユニット1と同一構成の熱源ユニット1a〜1cを複数台備えている。複数の熱源ユニット1a〜1cは、流体配管22a〜22cが熱媒体側熱交換器8a〜8cの上流側及び下流側で互いに合流するよう並列接続されている。貯湯タンクから熱源システム100に供給された水熱媒は、上流側の合流点で各熱源ユニット1a〜1cに分岐して流れ、各熱媒体側熱交換器8a〜8cで加熱又は冷却された後に下流側の合流点で再び合流し、熱源システム100から送出されて貯湯タンクに戻る。以下、暖房運転中の熱源システム100において、複数の熱源ユニット1a〜1cのうち、熱源ユニット1aは除霜運転中であり、残りの熱源ユニット1b,1cは除霜運転を行っていない場合について説明する。
Embodiment 2.
In the second embodiment, the heat source system 100 includes a plurality of heat source units 1a to 1c having the same configuration as the heat source unit 1 of the first embodiment. The plurality of heat source units 1a to 1c are connected in parallel so that the fluid pipes 22a to 22c merge with each other on the upstream side and the downstream side of the heat medium side heat exchangers 8a to 8c. The water heat medium supplied from the hot water storage tank to the heat source system 100 branches into the heat source units 1a to 1c at the confluence on the upstream side, and after being heated or cooled by the heat exchangers 8a to 8c on the heat medium side. It rejoins at the confluence on the downstream side, is sent from the heat source system 100, and returns to the hot water storage tank. Hereinafter, in the heat source system 100 during the heating operation, a case where the heat source unit 1a is in the defrosting operation and the remaining heat source units 1b and 1c are not in the defrosting operation among the plurality of heat source units 1a to 1c will be described. To do.

図9は、本発明の実施の形態2に係る流体流量制御のフローチャートを示したものである。図9に冷媒回路は図示されていないが、各熱源ユニット1a〜1cは、実施の形態1と同様の冷媒回路を備えている。実施の形態2において、制御装置50は、複数の熱源ユニット1a〜1cを総括して制御するとともに、夫々を区別して管理し、個別に制御できるものとする。 FIG. 9 shows a flowchart of fluid flow rate control according to the second embodiment of the present invention. Although the refrigerant circuit is not shown in FIG. 9, each heat source unit 1a to 1c includes the same refrigerant circuit as in the first embodiment. In the second embodiment, the control device 50 can collectively control the plurality of heat source units 1a to 1c, manage each of them separately, and control them individually.

(除霜中のポンプ制御)
実施の形態2では、制御装置50は、除霜運転中の熱源ユニット1aにおいて入口温度Twiが所定の温度より高い場合には、熱源ユニット1aの流体ポンプ20aが熱媒体側熱交換器8aに供給する水流量FRaを少なくする。これより、冷却された熱媒体の送水量が抑えられ、貯湯タンクに送出される水温の低下を抑制している。複数の熱源ユニット1a〜1cで構成される熱源システム100では、除霜中でない熱源ユニット1b,1cが温水を供給することができるため、単体の熱源ユニットで構成された熱源システムの場合よりも低い温度まで、除霜中の熱源ユニット1aの水流量FRaを低下させることができる。
(Pump control during defrosting)
In the second embodiment, when the inlet temperature Twi of the heat source unit 1a during the defrosting operation is higher than a predetermined temperature, the control device 50 supplies the fluid pump 20a of the heat source unit 1a to the heat exchanger 8a on the heat medium side. Reduce the water flow rate FRa. As a result, the amount of water sent from the cooled heat medium is suppressed, and the decrease in water temperature sent to the hot water storage tank is suppressed. In the heat source system 100 composed of a plurality of heat source units 1a to 1c, the heat source units 1b and 1c that are not being defrosted can supply hot water, which is lower than that of the heat source system composed of a single heat source unit. The water flow rate FRa of the heat source unit 1a during defrosting can be reduced to the temperature.

熱源システム100において暖房運転が開始されると、制御装置50は、図9の流体流量制御を開始する。まず、運転制御手段51は、複数の熱源ユニット1a〜1cのうち、除霜運転中の熱源ユニットがあるか否かを判断する(ステップST201)。運転制御手段51は、除霜運転中の熱源ユニットがない場合には(ステップST201;NO)、流体ポンプ20a〜20cが供給する水流量FRa〜FRcを通常水流量にする(ステップST207)。具体的には、運転制御手段51は、ポンプ制御装置21a〜21cに制御信号を送信して、流体ポンプ20a〜20cを通常周波数(例えば40Hz)で回転させる。一方、運転制御手段51は、除霜運転中の熱源ユニット1aがある場合には(ステップST201;YES)、温度判定手段52に通知する。温度判定手段52は、運転制御手段51から通知を受信すると、除霜中の熱源ユニット1aの入口温度センサ16aから入口温度Twiの情報を取得し、また、記憶手段54から第1設定温度T1を取得する。そして温度判定手段52は、取得した入口温度Twiが第1設定温度T1以下であるか否かを判定する(ステップST202)。第1設定温度T1は、予め設定された水温であり、例えば30℃と設定されているものとする。温度判定手段52は、判定結果を運転制御手段51に通知する。運転制御手段51は、温度判定手段52から通知を受信し、入口温度Twiが第1設定温度T1以下である場合には(ステップST202;YES)、除霜中の熱源ユニット1aの水流量FRaを最大水流量にする(ステップST203)。具体的には、流体ポンプ20aの駆動周波数を最大(例えば60Hz)にする。また、運転制御手段51は、除霜中でない熱源ユニット1b,1cの水流量FRb,FRcを通常水流量にする(ステップST204)。一方、取得した入口温度Twiが第1設定温度T1より高い場合(ステップST202;NO)、運転制御手段51は、除霜中の熱源ユニット1aの水流量FRaを小水流量にする(ステップST205)。具体的には、運転制御手段51は、流体ポンプ20aの駆動周波数を小(例えば30Hz)にする。また、運転制御手段51は、除霜していない熱源ユニット1b,1cの水流量FRb,FRcを大流量にする(ステップST206)。具体的には、運転制御手段51は、流体ポンプ20b、20cの駆動周波数を大(例えば50Hz)にする。運転制御手段51は、ステップST204、ステップST206、又はステップST207において、各流体ポンプの流量を設定した後、ステップST201に戻って流体流量制御を繰り返す。運転制御手段51は、暖房運転が終了すると、流体流量制御を終了する。 When the heating operation is started in the heat source system 100, the control device 50 starts the fluid flow rate control of FIG. First, the operation control means 51 determines whether or not there is a heat source unit during the defrosting operation among the plurality of heat source units 1a to 1c (step ST201). When there is no heat source unit during the defrosting operation (step ST201; NO), the operation control means 51 sets the water flow rates FRa to FRc supplied by the fluid pumps 20a to 20c to the normal water flow rate (step ST207). Specifically, the operation control means 51 transmits a control signal to the pump control devices 21a to 21c to rotate the fluid pumps 20a to 20c at a normal frequency (for example, 40 Hz). On the other hand, if there is a heat source unit 1a during the defrosting operation (step ST201; YES), the operation control means 51 notifies the temperature determination means 52. Upon receiving the notification from the operation control means 51, the temperature determination means 52 acquires the information of the inlet temperature Twi from the inlet temperature sensor 16a of the heat source unit 1a during defrosting, and also stores the first set temperature T1 from the storage means 54. get. Then, the temperature determining means 52 determines whether or not the acquired inlet temperature Twi is equal to or lower than the first set temperature T1 (step ST202). The first set temperature T1 is a preset water temperature, and is assumed to be set to, for example, 30 ° C. The temperature determination means 52 notifies the operation control means 51 of the determination result. The operation control means 51 receives a notification from the temperature determination means 52, and when the inlet temperature Twi is equal to or lower than the first set temperature T1 (step ST202; YES), the operation control means 51 determines the water flow rate FRa of the heat source unit 1a during defrosting. The maximum water flow rate is set (step ST203). Specifically, the drive frequency of the fluid pump 20a is maximized (for example, 60 Hz). Further, the operation control means 51 sets the water flow rates FRb and FRc of the heat source units 1b and 1c that are not being defrosted to the normal water flow rate (step ST204). On the other hand, when the acquired inlet temperature Twi is higher than the first set temperature T1 (step ST202; NO), the operation control means 51 sets the water flow rate FRa of the heat source unit 1a during defrosting to a small water flow rate (step ST205). .. Specifically, the operation control means 51 reduces the drive frequency of the fluid pump 20a (for example, 30 Hz). Further, the operation control means 51 increases the water flow rates FRb and FRc of the heat source units 1b and 1c that have not been defrosted (step ST206). Specifically, the operation control means 51 increases the drive frequency of the fluid pumps 20b and 20c (for example, 50 Hz). The operation control means 51 sets the flow rate of each fluid pump in step ST204, step ST206, or step ST207, and then returns to step ST201 to repeat the fluid flow rate control. The operation control means 51 ends the fluid flow rate control when the heating operation is completed.

したがって、入口温度Twiが第1設定温度T1より高い場合には、除霜中の熱源ユニット1aで低下した供給水量は、除霜中でない熱源ユニット1b,1cの水流量FRb,FRcを多くすることで補われ、熱源システム100から供給される水流量の低下が抑制される。 Therefore, when the inlet temperature Twi is higher than the first set temperature T1, the amount of supplied water reduced by the heat source unit 1a during defrosting increases the water flow rates FRb and FRc of the heat source units 1b and 1c not being defrosted. The decrease in the flow rate of water supplied from the heat source system 100 is suppressed.

制御装置50は、複数の熱源ユニット1a〜1cに対応する出口温度Twoが目標水温になるよう、対応する圧縮機3の周波数制御を行う。ステップST206において、除霜運転中でない熱源ユニット1b,1cでは、水量が通常より多くなるため出口温度Twoの上昇が抑制され、目標水温よりも低くなることが懸念される。しかし、圧縮機3の周波数制御が行われる構成では、除霜中でない熱源ユニット1b,1cの圧縮機周波数が増速して加熱能力が上昇するので、除霜中の熱源ユニット1aで低下した分の水温低下はバックアップされる。 The control device 50 controls the frequency of the corresponding compressor 3 so that the outlet temperature Two corresponding to the plurality of heat source units 1a to 1c becomes the target water temperature. In step ST206, in the heat source units 1b and 1c that are not in the defrosting operation, the amount of water becomes larger than usual, so that the rise in the outlet temperature Two is suppressed, and there is a concern that the water temperature becomes lower than the target water temperature. However, in the configuration in which the frequency of the compressor 3 is controlled, the compressor frequencies of the heat source units 1b and 1c that are not being defrosted are accelerated and the heating capacity is increased. The water temperature drop is backed up.

ステップST204において、運転制御手段51が、除霜中でない熱源ユニット1b,1cの水流量FRb,FRcを通常水流量に設定するものとしたが、これに限定されない。例えば水流量FRb,FRcを大水流量にすれば、熱源ユニット1aのバックアップができる。なお、ステップST203では熱源ユニット1aも最大水流量になっていることから、熱源ユニット1b,1cを大水流量で運転させた場合、合計の水量が多くなることが懸念される。そのため、運転制御手段51は、ステップST204において、熱源ユニット1b,1cの水流量FRb,FRcを低水流量にするよう構成してもよい。 In step ST204, the operation control means 51 sets the water flow rates FRb and FRc of the heat source units 1b and 1c that are not being defrosted to the normal water flow rate, but the present invention is not limited to this. For example, if the water flow rates FRb and FRc are set to a large water flow rate, the heat source unit 1a can be backed up. Since the heat source unit 1a also has the maximum water flow rate in step ST203, there is a concern that the total amount of water will increase when the heat source units 1b and 1c are operated at a large water flow rate. Therefore, the operation control means 51 may be configured to reduce the water flow rates FRb and FRc of the heat source units 1b and 1c in step ST204.

実施の形態2では、熱源システム100は、熱源ユニット1a〜1cを複数備え、複数の熱源ユニット1a〜1cは流体配管22a〜22cが互いに並列接続されており、運転制御手段51は、複数の熱源ユニット1a〜1cのうち第1熱源ユニット1aが除霜運転中であり第2熱源ユニット1b,1cが除霜運転中でない場合であって、第1熱源ユニット1aの測定された流体温度Twiが第1設定温度T1より高いと判定された場合に、第1熱源ユニット1aの供給される流体流量FRaを通常流量より少なくし、第2熱源ユニット1b,1cの供給される流体流量FRb,FRcを通常流量より多くするものである。 In the second embodiment, the heat source system 100 includes a plurality of heat source units 1a to 1c, the plurality of heat source units 1a to 1c have fluid pipes 22a to 22c connected in parallel to each other, and the operation control means 51 has a plurality of heat sources. When the first heat source unit 1a of the units 1a to 1c is in the defrosting operation and the second heat source units 1b and 1c are not in the defrosting operation, the measured fluid temperature Twi of the first heat source unit 1a is the first. When it is determined that the temperature is higher than the set temperature T1, the fluid flow rate FRa supplied by the first heat source unit 1a is made smaller than the normal flow rate, and the fluid flow rates FRb and FRc supplied by the second heat source units 1b and 1c are usually set. It is more than the flow rate.

これより、熱源システム100は複数の熱源ユニット1a〜1cを備えているので、流体温度Twiが第1設定温度T1より高いときには、除霜中の熱源ユニット1aで冷却される流量を減らすとともに、他の熱源ユニット1b,1cで全体としての供給水量及び供給温度をバックアップできる。 As a result, since the heat source system 100 includes a plurality of heat source units 1a to 1c, when the fluid temperature Twi is higher than the first set temperature T1, the flow rate of cooling by the heat source unit 1a during defrosting is reduced, and the other The heat source units 1b and 1c of the above can back up the supply water amount and supply temperature as a whole.

また、各熱源ユニット1a〜1cは更に、熱媒体側熱交換器8a〜8cから流出する流体の出口温度を測定する出口温度センサ17a〜17cを備え、運転制御手段51は、第2熱源ユニット1b,1cにおいて測定された出口温度Twoが設定された目標温度に近づくよう、第2熱源ユニット1b,1cの圧縮機3の周波数を調整する。 Further, each heat source unit 1a to 1c further includes outlet temperature sensors 17a to 17c for measuring the outlet temperature of the fluid flowing out from the heat medium side heat exchangers 8a to 8c, and the operation control means 51 includes a second heat source unit 1b. The frequency of the compressor 3 of the second heat source units 1b and 1c is adjusted so that the outlet temperature Two measured in 1c and 1c approaches the set target temperature.

これより、他の熱源ユニット1b,1cの水流量FRb,FRcが多い場合でも、加熱能力が増加されるので、除霜中の熱源ユニット1aがある場合でも、熱源システム100から供給される水温の低下が抑制される。 As a result, the heating capacity is increased even when the water flow rates FRb and FRc of the other heat source units 1b and 1c are large, so that even if there is a heat source unit 1a during defrosting, the water temperature supplied from the heat source system 100 The decrease is suppressed.

なお、本発明の実施形態は上記実施形態に限定されず、種々の変更を行うことができる。例えば、複数台の熱源ユニット1a〜1cで構成される熱源システム100においては、1台の制御装置50が複数の熱源ユニット1a〜1cを制御する場合について説明したが、例えば夫々の熱源ユニット1a〜1cが制御装置50a〜50cを備えるよう構成してもよい。この場合、例えば1台の制御装置50aが他の熱源ユニット1b,1cから運転情報等を取得し、図9の流体流量制御を実施して他の制御装置50b,50cに水流量の変更等を通知すればよい。 The embodiment of the present invention is not limited to the above embodiment, and various modifications can be made. For example, in the heat source system 100 composed of a plurality of heat source units 1a to 1c, a case where one control device 50 controls a plurality of heat source units 1a to 1c has been described. For example, the respective heat source units 1a to 1c have been described. 1c may be configured to include control devices 50a to 50c. In this case, for example, one control device 50a acquires operation information and the like from the other heat source units 1b and 1c, performs fluid flow rate control in FIG. 9, and changes the water flow rate to the other control devices 50b and 50c. Just notify.

また、流体ポンプ20は、送り出す水熱媒の水流量FRを複数段階で変えられればよく、回転運動の代わりに往復運動により流体を循環させる運動エネルギーを得るポンプで構成されてもよい。 Further, the fluid pump 20 may be configured by a pump that obtains kinetic energy to circulate the fluid by reciprocating motion instead of rotary motion, as long as the water flow rate FR of the water heat medium to be sent out can be changed in a plurality of steps.

また、実施の形態2の熱源システム100は、複数の熱源ユニット1a〜1c夫々について、実施の形態1と同様に、凍結判定により除霜運転の終了のタイミングが制御されてもよい。 Further, in the heat source system 100 of the second embodiment, the timing of the end of the defrosting operation may be controlled by the freezing determination for each of the plurality of heat source units 1a to 1c, as in the first embodiment.

また、負荷側機器が空調機である場合について説明したが、例えば床暖房システム又は給湯システム等であってもよい。また、熱源システムと負荷側機器との間に貯塔タンクを設け、水熱媒が、熱源システムと貯塔タンクとの間、及び貯塔タンクと負荷側機器との間で循環するよう構成してもよい。 Further, although the case where the load side device is an air conditioner has been described, for example, a floor heating system or a hot water supply system may be used. In addition, a storage tower tank is provided between the heat source system and the load-side equipment so that the water heat medium circulates between the heat source system and the storage tower tank and between the storage tower tank and the load-side equipment. You may.

1,1a〜1c 熱源ユニット、2 冷媒回路、3 圧縮機、4 冷媒流路切替装置、5 空気側熱交換器、6 空気側熱交換器用送風機、7 減圧装置、8,8a〜8c 熱媒体側熱交換器、9 アキュムレータ、11 冷媒配管、12 低圧圧力センサ、13 吸入ガス温度センサ、14 蒸発温度センサ、15 外気温度センサ、16,16a〜16c 入口温度センサ、17,17a〜17c 出口温度センサ、20,20a〜20c 流体ポンプ、21,21a〜21c ポンプ制御装置、22,22a〜22c 流体配管、50 制御装置、51 運転制御手段、52 温度判定手段、53 凍結判定手段、54 記憶手段、100 熱源システム、T1 第1設定温度、T2 第2設定温度、T3 凍結閾値情報、FR,FRa〜FRc 水流量(流体流量)、Twi 流体温度(入口温度)、Two 出口温度、Te 蒸発温度、Tf 凍結蒸発温度。 1,1a to 1c Heat source unit, 2 Fluid circuit, 3 Compressor, 4 Fluid flow path switching device, 5 Air side heat exchanger, 6 Air side heat exchanger blower, 7 Decompression device, 8, 8a to 8c Heat medium side Heat exchanger, 9 accumulator, 11 fluid piping, 12 low pressure pressure sensor, 13 intake gas temperature sensor, 14 evaporation temperature sensor, 15 outside air temperature sensor, 16, 16a to 16c inlet temperature sensor, 17, 17a to 17c outlet temperature sensor, 20, 20a to 20c fluid pump, 21,21a to 21c pump control device, 22, 22a to 22c fluid piping, 50 control device, 51 operation control means, 52 temperature judgment means, 53 freeze judgment means, 54 storage means, 100 heat sources System, T1 1st set temperature, T2 2nd set temperature, T3 freezing threshold information, FR, FRa to FRc water flow rate (fluid flow rate), Twi fluid temperature (inlet temperature), Two outlet temperature, Te evaporation temperature, Tf freeze evaporation temperature.

Claims (2)

流体の加熱及び冷却を行う熱源ユニットと前記熱源ユニットを制御する制御装置とを備える熱源システムにおいて、
前記熱源ユニットは、
圧縮機と冷媒流路切替装置と空気側熱交換器と減圧装置と熱媒体側熱交換器とが冷媒配管を介して接続された冷媒回路と、
前記熱媒体側熱交換器により前記冷媒回路の冷媒と熱交換される前記流体が流れる流体配管と、
前記流体配管に設けられ、前記流体を前記熱媒体側熱交換器に供給する流体ポンプと、
前記熱媒体側熱交換器に流入する前記流体の温度を測定する入口温度センサと、
前記冷媒の蒸発温度を測定する蒸発温度センサと、を備え、
前記制御装置は、
前記空気側熱交換器が凝縮器になり前記熱媒体側熱交換器が蒸発器になる除霜運転時に、前記熱媒体側熱交換器に供給される前記流体の流量が前記入口温度センサにより測定された流体温度に応じて変化するように、前記流体ポンプを制御する運転制御手段と、
前記除霜運転時に、前記供給される流体流量と前記測定された流体温度と前記測定された蒸発温度とに基づいて、前記熱媒体側熱交換器が凍結するか否かを判定する凍結判定手段と、
前記除霜運転時に、前記測定された流体温度が第2設定温度より低いか否かを判定する温度判定手段と、を備え、
前記凍結判定手段は、前記除霜運転時に、前記測定された流体温度が前記第2設定温度より低いと判定された場合に、前記熱媒体側熱交換器が凍結するか否かを判定し、
前記凍結判定手段は、前記供給される流体流量及び前記測定された流体温度に応じた凍結蒸発温度を算出し、前記測定された蒸発温度が前記算出された凍結蒸発温度より低い場合には凍結すると判定し、前記測定された蒸発温度が前記算出された凍結蒸発温度より高い場合には凍結しないと判定するものであって、
前記運転制御手段は、前記熱媒体側熱交換器が凍結しないと判定されているときには、前記除霜運転を継続する熱源システム。
In a heat source system including a heat source unit that heats and cools a fluid and a control device that controls the heat source unit.
The heat source unit is
A refrigerant circuit in which a compressor, a refrigerant flow path switching device, an air side heat exchanger, a decompression device, and a heat medium side heat exchanger are connected via a refrigerant pipe.
A fluid pipe through which the fluid that is heat-exchanged with the refrigerant in the refrigerant circuit by the heat medium side heat exchanger flows.
A fluid pump provided in the fluid pipe and supplying the fluid to the heat medium side heat exchanger.
An inlet temperature sensor that measures the temperature of the fluid flowing into the heat exchanger on the heat medium side, and an inlet temperature sensor.
A evaporation temperature sensor for measuring the evaporation temperature of the refrigerant is provided.
The control device is
During the defrosting operation in which the air side heat exchanger becomes a condenser and the heat medium side heat exchanger becomes an evaporator, the flow rate of the fluid supplied to the heat medium side heat exchanger is measured by the inlet temperature sensor. An operation control means for controlling the fluid pump so as to change according to the fluid temperature.
Freezing determination means for determining whether or not the heat exchanger on the heat medium side freezes based on the supplied fluid flow rate, the measured fluid temperature, and the measured evaporation temperature during the defrosting operation. When,
A temperature determining means for determining whether or not the measured fluid temperature is lower than the second set temperature during the defrosting operation is provided.
The freezing determination means determines whether or not the heat exchanger on the heat medium side freezes when the measured fluid temperature is determined to be lower than the second set temperature during the defrosting operation.
The freezing determination means calculates a freeze-evaporation temperature according to the supplied fluid flow rate and the measured fluid temperature, and freezes when the measured evaporation temperature is lower than the calculated freeze-evaporation temperature. Judgment is made, and when the measured evaporation temperature is higher than the calculated freeze evaporation temperature, it is determined that the product does not freeze.
The operation control means is a heat source system that continues the defrosting operation when it is determined that the heat exchanger on the heat medium side does not freeze.
前記運転制御手段は、対応する前記流体ポンプの駆動周波数を調整して前記供給される流体流量を変化させるものであって、前記供給される流体流量を多くするときには前記流体ポンプの駆動周波数を大きくし、前記供給される流体流量を少なくするときには前記流体ポンプの駆動周波数を小さくする請求項1に記載の熱源システム。 The operation control means adjusts the drive frequency of the corresponding fluid pump to change the supplied fluid flow rate, and increases the drive frequency of the fluid pump when the supplied fluid flow rate is increased. The heat source system according to claim 1, wherein the drive frequency of the fluid pump is reduced when the flow rate of the supplied fluid is reduced.
JP2019232730A 2016-08-04 2019-12-24 Heat source system Active JP6896054B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019232730A JP6896054B2 (en) 2016-08-04 2019-12-24 Heat source system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018531694A JP6639677B2 (en) 2016-08-04 2016-08-04 Heat source system
JP2019232730A JP6896054B2 (en) 2016-08-04 2019-12-24 Heat source system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018531694A Division JP6639677B2 (en) 2016-08-04 2016-08-04 Heat source system

Publications (2)

Publication Number Publication Date
JP2020056571A JP2020056571A (en) 2020-04-09
JP6896054B2 true JP6896054B2 (en) 2021-06-30

Family

ID=70107029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019232730A Active JP6896054B2 (en) 2016-08-04 2019-12-24 Heat source system

Country Status (1)

Country Link
JP (1) JP6896054B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023195125A1 (en) * 2022-04-07 2023-10-12 三菱電機株式会社 Refrigeration cycle system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4222993B2 (en) * 2004-10-08 2009-02-12 東芝機器株式会社 Water heater
JP4823264B2 (en) * 2008-03-31 2011-11-24 三菱電機株式会社 Cooling device and cooling device monitoring system
EP3361189B1 (en) * 2009-11-25 2019-10-23 Mitsubishi Electric Corporation Auxiliary heater control device, heated fluid utilization system, and auxiliary heater control method
JP5573740B2 (en) * 2011-03-18 2014-08-20 三菱電機株式会社 Heat pump water heater
WO2014091548A1 (en) * 2012-12-11 2014-06-19 三菱電機株式会社 Air conditioning hot water supply composite system
JP6190388B2 (en) * 2012-12-26 2017-08-30 ダイキン工業株式会社 Heat pump hot water heater
NO2990737T3 (en) * 2013-04-26 2018-10-27
JP2015064169A (en) * 2013-09-26 2015-04-09 パナソニックIpマネジメント株式会社 Hot water generation device

Also Published As

Publication number Publication date
JP2020056571A (en) 2020-04-09

Similar Documents

Publication Publication Date Title
KR101588205B1 (en) Air conditioner and Defrosting driving method of the same
JP2010127568A (en) Abnormality detection device and refrigerating cycle device including the same
WO2014102934A1 (en) Heat pump hot water heater
JP6639677B2 (en) Heat source system
JP6477802B2 (en) Refrigeration equipment
JP2017142038A (en) Refrigeration cycle device
US11320186B2 (en) Heat pump with defrost termination based upon system temperatures
JP5274174B2 (en) Air conditioner
JP5501279B2 (en) HEAT PUMP SYSTEM AND HEAT PUMP SYSTEM CONTROL METHOD
JP5220045B2 (en) Cooling system
JP6950191B2 (en) Air conditioner
US11333388B2 (en) Controller of air conditioning system, outdoor unit, relay unit, heat source apparatus, and air conditioning system
JP6710313B2 (en) Air conditioning system
JP5558132B2 (en) Refrigerator and refrigeration apparatus to which the refrigerator is connected
JP6896054B2 (en) Heat source system
JP5496161B2 (en) Refrigeration cycle system
JP2012007751A (en) Heat pump cycle device
US11940192B2 (en) Air conditioning device
US11913694B2 (en) Heat pump system
US11585578B2 (en) Refrigeration cycle apparatus
JP2021055854A (en) Refrigeration cycle unit, air conditioner including the same, and heat pump type water heater
KR20100079405A (en) Air conditioner and operating method thereof
US12098855B2 (en) Air-conditioning apparatus
JP6111692B2 (en) Refrigeration equipment
JP2011127778A (en) Fluid utilization system and operation control method of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210608

R150 Certificate of patent or registration of utility model

Ref document number: 6896054

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250