[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6894769B2 - Seismic isolation damper - Google Patents

Seismic isolation damper Download PDF

Info

Publication number
JP6894769B2
JP6894769B2 JP2017115671A JP2017115671A JP6894769B2 JP 6894769 B2 JP6894769 B2 JP 6894769B2 JP 2017115671 A JP2017115671 A JP 2017115671A JP 2017115671 A JP2017115671 A JP 2017115671A JP 6894769 B2 JP6894769 B2 JP 6894769B2
Authority
JP
Japan
Prior art keywords
side chamber
piston
compression side
extension side
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017115671A
Other languages
Japanese (ja)
Other versions
JP2019002434A (en
Inventor
三橋 浩司
浩司 三橋
健人 榊原
健人 榊原
中原 学
学 中原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kayaba System Machinery Co Ltd
Original Assignee
Kayaba System Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kayaba System Machinery Co Ltd filed Critical Kayaba System Machinery Co Ltd
Priority to JP2017115671A priority Critical patent/JP6894769B2/en
Publication of JP2019002434A publication Critical patent/JP2019002434A/en
Application granted granted Critical
Publication of JP6894769B2 publication Critical patent/JP6894769B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)
  • Fluid-Damping Devices (AREA)

Description

この発明は、免震用ダンパに関する。 The present invention relates to a seismic isolation damper.

免震装置は、地盤と構造物との間に介装されるボールアイソレータや積層ゴム等といった免震支承装置を備え、構造物を地盤に対して移動可能に支持しており、地震動の構造物への伝達を絶縁する。免震装置は、上記のような免震支承装置の他に、地盤と構造物との間に介装される免震用ダンパを備える場合があり、この場合には、構造物の振動を免震用ダンパが発生する減衰力で減衰させて構造物の振動を抑制する。 The seismic isolation device is equipped with seismic isolation bearing devices such as ball isolators and laminated rubber that are interposed between the ground and the structure, and supports the structure so that it can move with respect to the ground. Insulate transmission to. In addition to the seismic isolation bearing device as described above, the seismic isolation device may be provided with a seismic isolation damper interposed between the ground and the structure. In this case, the vibration of the structure is exempted. The vibration of the structure is suppressed by dampening with the damping force generated by the seismic damper.

免震装置は、地震が発生した場合に免震用ダンパの減衰力が小さければ小さいほど、地盤の振動の建物へ伝達しにくくなり、高い振動絶縁性を確保できる。一方、免震装置は、構造物が地盤に対して大きな振幅で移動するような大規模地震動に対しては、免震用ダンパが発生する減衰力によって構造物の移動を抑制し、免震支承装置からの構造物の脱落や、構造物と構造物の下端を取り囲む擁壁との衝突を回避する必要がある。 When an earthquake occurs, the smaller the damping force of the seismic isolation damper, the more difficult it is for the seismic isolation device to transmit the vibration of the ground to the building, and it is possible to secure high vibration insulation. On the other hand, the seismic isolation device suppresses the movement of the structure by the damping force generated by the seismic isolation damper for large-scale seismic motion in which the structure moves with a large amplitude with respect to the ground, and provides seismic isolation bearings. It is necessary to avoid the structure falling out of the device and the collision between the structure and the retaining wall surrounding the lower end of the structure.

よって、免震装置では、小振幅の振動に対しては免震支承装置の振動絶縁性を阻害しないように免震用ダンパに減衰力を可能な限り発揮させず、大振幅の振動に対しては免震用ダンパに積極的に減衰力を発揮させるのが好ましい。 Therefore, in the seismic isolation device, the damping force is not exerted as much as possible on the seismic isolation damper so as not to hinder the vibration insulation of the seismic isolation support device for vibrations of small amplitude, and for vibrations of large amplitude. It is preferable that the seismic isolation damper actively exerts a damping force.

このような要求に応えるべく、一端に地盤とダンパ本体とを連結する連結装置を備えた免震用ダンパが提案されている。この免震用ダンパは、通常時では地盤とダンパ本体とを連結せず、構造物の地盤に対する振幅が大きくなると、ロックピンでダンパ本体と地盤とを連結してダンパ本体の伸縮を可能として減衰力を発揮させるようになっている(たとえば、特許文献1参照)。 In order to meet such demands, a seismic isolation damper equipped with a connecting device for connecting the ground and the damper body at one end has been proposed. This seismic isolation damper does not normally connect the ground and the damper body, and when the amplitude of the structure with respect to the ground increases, the damper body and the ground are connected by a lock pin to enable expansion and contraction of the damper body and attenuate. It is designed to exert its power (see, for example, Patent Document 1).

また、伸側室と圧側室とに区画するピストンに伸側室と圧側室とを連通する通路を設けて、ピストンがシリンダに対して中立位置から予め設定された移動量以上移動すると通路を閉塞する蓋部材を備えた免震用ダンパの提案もある。この免震用ダンパでは、中小振幅の地震の揺れに対しては蓋部材によって通路が閉塞されず低い減衰力を発揮し、大振幅の地震の揺れに対しては蓋部材が通路を閉塞して高い減衰力を発揮する(たとえば、特許文献2参照)。 Further, the piston that divides the extension side chamber and the compression side chamber is provided with a passage that communicates the extension side chamber and the compression side chamber, and a lid that closes the passage when the piston moves more than a preset amount of movement from the neutral position with respect to the cylinder. There is also a proposal for a seismic isolation damper equipped with members. In this seismic isolation damper, the passage is not blocked by the lid member against the shaking of a small-to-medium-amplitude earthquake and exerts a low damping force, and the lid member blocks the passage against the shaking of a large-amplitude earthquake. It exhibits a high damping force (see, for example, Patent Document 2).

特開2013−87853号公報Japanese Unexamined Patent Publication No. 2013-87853 特開2017−26095号公報JP-A-2017-26095

このような免震用ダンパを利用すれば、免震支承装置の振動絶縁性を損なうことなく大規模地震に対して免震用ダンパの減衰力の発揮で構造物の移動を抑制できる。しかしながら、大規模地震の発生によってダンパ本体を地盤に固定する複雑な構造の機構やダンパ内に減衰力を可変にする複雑な機構を設ける必要があるので、免震用ダンパの構造が複雑となるだけでなく、重量を招き、コストも高くなってしまう。 If such a seismic isolation damper is used, the movement of the structure can be suppressed by exerting the damping force of the seismic isolation damper against a large-scale earthquake without impairing the vibration insulation of the seismic isolation bearing device. However, the structure of the seismic isolation damper becomes complicated because it is necessary to provide a complicated mechanism for fixing the damper body to the ground and a complicated mechanism for changing the damping force in the damper due to the occurrence of a large-scale earthquake. Not only that, it is heavy and costly.

そこで、本発明は、中小振幅の規模の地震の揺れに対して低い減衰力を発揮し、大振幅の地震の揺れに対して高い減衰力を発揮できるだけでなく、軽量かつ構造が簡単で安価な免震用ダンパの提供を目的とする。 Therefore, the present invention not only exerts a low damping force against the shaking of a small-to-medium-amplitude earthquake and exerts a high damping force against the shaking of a large-amplitude earthquake, but is also lightweight, simple in structure, and inexpensive. The purpose is to provide seismic isolation dampers.

上記した目的を達成するために、本発明の免震用ダンパは、シリンダと、シリンダ内に摺動自在に挿入されて伸側室と圧側室を仕切るピストンと、シリンダに挿入されるとともにピストンに連結されるロッドと、伸側室と圧側室とのそれぞれに充填された伸側室と圧側室の容積よりも少ない体積の作動液体と、シリンダに対してピストンが中立位置に配置されて静止すると伸側室と圧側室の作動液体の液面の高さを等しくする液面調整部とを備える。このように構成された免震用ダンパでは、ピストンの中立位置からのストロークが小さいと伸側室と圧側室のうち圧縮される室の圧力上昇が抑えられて低い減衰力を発揮し、ストロークが大きいと伸側室と圧側室のうち圧縮される室の圧力上昇が制限されなくなるので高い減衰力を発揮できる。また、このように構成された免震用ダンパは、地震発生後に再度地震が発生した際に、ピストンの中立位置からの移動距離が設定された距離未満では伸長しても収縮しても必ず低い減衰力を発揮し、設定された距離以上となると伸長しても収縮しても必ず高い減衰力を発揮できる。さらに、このように構成された免震用ダンパでは、地震が発生後に伸側室と圧側室の作動液体の量を調節するメンテナンス作業が不要となる。 To achieve the above object, seismic isolation damper of the present invention, a sheet cylinder, a piston for partitioning the expansion side chamber and the compression side chamber is slidably inserted into the cylinder, the piston while being inserted into the cylinder The rod to be connected, the working liquid having a volume smaller than the volume of the extension chamber and the compression side chamber filled in the extension chamber and the compression side chamber, respectively, and the extension chamber when the piston is arranged in a neutral position with respect to the cylinder and stands still. And a liquid level adjusting unit for equalizing the heights of the working liquids in the compression side chamber. In the seismic isolation damper configured in this way, if the stroke from the neutral position of the piston is small, the pressure rise in the compressed chamber of the extension side chamber and the compression side chamber is suppressed, and a low damping force is exhibited, and the stroke is large. Since the pressure rise in the compressed chamber of the extension side chamber and the compression side chamber is not restricted, a high damping force can be exhibited. In addition, the seismic isolation damper configured in this way is always low even if it expands or contracts if the moving distance from the neutral position of the piston is less than the set distance when an earthquake occurs again after an earthquake occurs. It exerts a damping force, and when it exceeds a set distance, it can always exert a high damping force regardless of whether it expands or contracts. Further, the seismic isolation damper configured in this way does not require maintenance work for adjusting the amount of working liquid in the extension side chamber and the compression side chamber after an earthquake occurs.

また、免震用ダンパは、シリンダ外に設けられて作動液体を貯留して、ロッドのシリンダ内に出入りする体積を補償するタンクを備えていてもよい。このように構成された免震用ダンパにあっても、ピストンが中立位置のストロークが小さいと伸側室と圧側室のうち圧縮される室の圧力上昇が抑えられて低い減衰力を発揮し、ストロークが大きいと伸側室と圧側室のうち圧縮される室の圧力上昇が制限されなくなるので高い減衰力を発揮できる。 Further, the seismic isolation damper may be provided with a tank provided outside the cylinder to store the working liquid and compensate for the volume entering and exiting the cylinder of the rod. Even in the seismic isolation damper configured in this way, if the stroke in the neutral position of the piston is small, the pressure rise in the compressed chamber of the extension side chamber and the compression side chamber is suppressed and a low damping force is exhibited, and the stroke. If is large, the pressure rise in the compressed chamber of the extension side chamber and the compression side chamber is not restricted, so that a high damping force can be exhibited.

また、免震用ダンパは、シリンダに対してピストンが中立位置からの移動距離が所定ストローク範囲未満では発生減衰力を低くし、所定ストローク範囲以上では発生減衰力を高くするよう構成されている。このように免震用ダンパを構成すると、所定ストローク範囲の設定で減衰力を高くするストローク量を決定できる。 Further, MenShinyo damper piston is configured to move a distance from the neutral position to lower the generated damping force is less than a predetermined stroke range, the above predetermined stroke range to increase the generated damping force with respect to the cylinder. When the seismic isolation damper is configured in this way, the stroke amount for increasing the damping force can be determined by setting a predetermined stroke range.

さらに、免震用ダンパは、伸側室と圧側室に充填される作動液体の体積をシリンダに対してピストンが中立位置にある場合における伸側室と圧側室の容積の二分の一以上とするようにしてもよい。このように構成された免震用ダンパでは、ピストンが中立位置から減衰力を高めるまでの移動距離が中立位置からストロークエンドまでの距離の二分の一以下に設定できるので、構造物の擁壁への衝突を効果的に防止できる。 Furthermore, the seismic isolation damper makes the volume of the working liquid filled in the extension side chamber and the compression side chamber more than half the volume of the extension side chamber and the compression side chamber when the piston is in the neutral position with respect to the cylinder. You may. With the seismic isolation damper configured in this way, the moving distance from the neutral position to increasing the damping force of the piston can be set to less than half the distance from the neutral position to the stroke end, so it can be used as a retaining wall for structures. Collision can be effectively prevented.

また、免震用ダンパは、液面調整部が伸側室と圧側室とを連通するとともに第一通路と第一通路を開閉する調整弁とを有し、調整弁が弁体と弁体を附勢して弁体を開弁位置に位置決めるばねとを有し、伸側室と圧側室の圧力差が所定圧未満となると開弁するように構成されてもよい。 In addition, the seismic isolation damper has a liquid level adjusting unit that communicates the extension side chamber and the compression side chamber and has an adjustment valve that opens and closes the first passage and the first passage, and the adjustment valve is attached with a valve body and a valve body. It may have a spring for positioning the valve body at the valve opening position by force, and may be configured to open the valve when the pressure difference between the extension side chamber and the compression side chamber becomes less than a predetermined pressure.

さらに、免震用ダンパは、液面調整部が伸側室とタンクとを連通する第二通路と、圧側室と前記タンクとを連通する第三通路と第二通路を開閉する第一調整弁および第三通路を開閉する第二調整弁とを有し、調整弁が弁体と前記弁体を附勢して前記弁体を開弁位置に位置決めるばねとを有し、伸側室と圧側室の圧力差が所定圧未満となると開弁するように構成されてもよい。 Further, the seismic isolation damper has a second passage in which the liquid level adjusting portion communicates between the extension side chamber and the tank, a third passage in which the compression side chamber and the tank communicate with each other , and a first adjustment valve that opens and closes the second passage. And a second regulating valve that opens and closes the third passage, the regulating valve has a valve body and a spring that urges the valve body to position the valve body at the valve opening position, and has an extension side chamber and a compression side. The valve may be opened when the pressure difference between the chambers becomes less than a predetermined pressure.

そして、免震用ダンパは、液面調整部が伸側室と圧側室とを連通するとともに第一通路と伸側室とタンクとを連通する第二通路或いは圧側室と前記タンクとを連通する第三通路と第一通路および第二通路或いは第三通路を開閉する調整弁とを有し、調整弁が弁体と弁体を附勢して弁体を開弁位置に位置決めるばねとを有し、伸側室と前記圧側室の圧力差が所定圧未満となると開弁するように構成されてもよい。 In the seismic isolation damper, the liquid level adjusting unit communicates the extension side chamber and the compression side chamber, and the first passage, the extension side chamber, and the tank communicate with each other, or the compression side chamber and the tank communicate with each other. It has a passage and a regulating valve that opens and closes the first passage and the second passage or the third passage, and the regulating valve has a valve body and a spring that urges the valve body to position the valve body at the valve opening position. The valve may be opened when the pressure difference between the extension side chamber and the compression side chamber becomes less than a predetermined pressure.

よって、本発明の免震用ダンパによれば、中小振幅の規模の地震の揺れに対して低い減衰力を発揮し、大振幅の地震の揺れに対して高い減衰力を発揮できるだけでなく、軽量かつ構造が簡単で安価となる。 Therefore, according to the seismic isolation damper of the present invention, not only can it exert a low damping force against the shaking of a small-to-medium-amplitude earthquake, it can exert a high damping force against the shaking of a large-amplitude earthquake, but it is also lightweight. Moreover, the structure is simple and inexpensive.

第一の実施の形態におけるダンパを免震装置とともに構造物と地盤との間に介装した状態における側面図である。It is a side view in the state which the damper in 1st Embodiment is intervened between the structure and the ground together with the seismic isolation device. 第一の実施の形態におけるダンパの断面図である。It is sectional drawing of the damper in 1st Embodiment. 調整弁の拡大断面図である。It is an enlarged sectional view of a control valve. 第一の実施の形態におけるダンパの第一変形例の断面図である。It is sectional drawing of the 1st modification of the damper in 1st Embodiment. 第一の実施の形態におけるダンパの第二変形例の断面図である。It is sectional drawing of the 2nd modification of the damper in 1st Embodiment. 第一の実施の形態におけるダンパの第三変形例の断面図である。It is sectional drawing of the 3rd modification of the damper in 1st Embodiment. 第一の実施の形態におけるダンパの第四変形例の断面図である。It is sectional drawing of the 4th modification of the damper in 1st Embodiment. 第二の実施の形態におけるダンパの断面図である。It is sectional drawing of the damper in 2nd Embodiment. 第二の実施の形態におけるダンパの第一変形例の断面図である。It is sectional drawing of the 1st modification of the damper in 2nd Embodiment. 第二の実施の形態におけるダンパの第二変形例の断面図である。It is sectional drawing of the 2nd modification of the damper in 2nd Embodiment. 第二の実施の形態におけるダンパの第三変形例の断面図である。It is sectional drawing of the 3rd modification of the damper in 2nd Embodiment.

以下、図に示した実施の形態に基づき、本発明を説明する。なお、以下に説明する各実施の形態の免震用ダンパにおいて共通する構成については同じ符号を付し、説明の重複を避けるために、一の実施の形態の免震用ダンパの説明において説明した構成については他の実施の形態の免震用ダンパにおける説明では詳細な説明を省略する。 Hereinafter, the present invention will be described based on the embodiments shown in the figure. The configurations common to the seismic isolation dampers of each embodiment described below are designated by the same reference numerals, and in order to avoid duplication of description, the seismic isolation dampers of one embodiment have been described. The detailed description of the configuration will be omitted in the description of the seismic isolation damper of the other embodiment.

<第一の実施の形態>
第一の実施の形態における免震用ダンパD11は、図1に示すように、水平横置きにして積層ゴムで構成される免震装置Mとともに構造物Sと地盤Gとの間に介装される。なお、免震装置Mは、積層ゴムのほか、ボールアイソレータ等といった構造物Sの水平方向の移動を許容できるものを採用できる。
<First Embodiment>
As shown in FIG. 1, the seismic isolation damper D11 according to the first embodiment is interposed between the structure S and the ground G together with the seismic isolation device M composed of laminated rubber placed horizontally and horizontally. Ru. As the seismic isolation device M, in addition to laminated rubber, a device S such as a ball isolator that can allow the structure S to move in the horizontal direction can be adopted.

そして、免震用ダンパD11は、図2に示すように、シリンダ1と、シリンダ1内に摺動自在に挿入されて伸側室R1と圧側室R2を仕切るピストン2と、シリンダ1に挿入されるとともにピストン2に連結されるロッド3と、シリンダ1内に充填される作動液体としての作動油Oとを備えている。 Then, as shown in FIG. 2, the seismic isolation damper D11 is inserted into the cylinder 1, the piston 2 which is slidably inserted into the cylinder 1 and separates the extension side chamber R1 and the compression side chamber R2, and the cylinder 1. A rod 3 connected to the piston 2 and a hydraulic oil O as a hydraulic liquid filled in the cylinder 1 are provided.

以下、免震用ダンパD11の各部について詳細に説明する。シリンダ1は、一端がキャップCによって閉塞されて、他端には、環状のロッドガイド4が装着されている。ピストン2は、シリンダ1内に摺動自在に挿入されており、シリンダ1内を伸側室R1と圧側室R2とに仕切っている。また、ロッド3は、一端がロッドガイド4内を通してシリンダ1内に移動自在に挿入されてピストン2に連結されるとともに他端はシリンダ1外に突出している。本例では、免震用ダンパD11は、ロッド3が伸側室R1内にのみ挿通される所謂片ロッド型のダンパとされているが、圧側室R2にも挿通されてロッド3の両端がシリンダ1の両端側からそれぞれ外方へ突出する所謂両ロッド型のダンパとされていてもよい。キャップCには、免震用ダンパD11を構造物Sに設けた取付部Bsに連結されるブラケットBが設けられ、ロッド3の他端には地盤Gに設けた取付部Bgに連結されるブラケット3aが設けられている。 Hereinafter, each part of the seismic isolation damper D11 will be described in detail. One end of the cylinder 1 is closed by a cap C, and an annular rod guide 4 is attached to the other end. The piston 2 is slidably inserted into the cylinder 1 and partitions the inside of the cylinder 1 into an extension side chamber R1 and a compression side chamber R2. Further, one end of the rod 3 is movably inserted into the cylinder 1 through the rod guide 4 and connected to the piston 2, and the other end protrudes outside the cylinder 1. In this example, the seismic isolation damper D11 is a so-called single rod type damper in which the rod 3 is inserted only into the extension side chamber R1, but it is also inserted into the compression side chamber R2 and both ends of the rod 3 are cylinders 1. It may be a so-called double-rod type damper that protrudes outward from both ends of the damper. The cap C is provided with a bracket B for connecting the seismic isolation damper D11 to the mounting portion Bs provided on the structure S, and the other end of the rod 3 is provided with a bracket connected to the mounting portion Bg provided on the ground G. 3a is provided.

そして、伸側室R1には、シリンダ1に対してピストン2が中立位置にある状態における伸側室R1の容積より少ない体積の作動油Oが気体とともに充填されている。なお、シリンダ1に対するピストン2の中立位置は、ピストン2のシリンダ1に対するストローク範囲の中央とされており、必ずしもシリンダ1の中央に一致しなくともよい。他方の圧側室R2には、シリンダ1に対してピストン2が中立位置にある状態における圧側室R2の容積より少ない体積の作動油Oが気体とともに充填されている。具体的には、シリンダ1に対してピストン2が中立位置にある状態における伸側室R1の容積の十分の七の体積の油量の作動油Oが伸側室R1に充填されており、伸側室R1の残りの空間に気体が充填されている。さらに、シリンダ1に対してピストン2が中立位置にある状態における圧側室R2の容積の十分の七の体積の油量の作動油Oが圧側室R2に充填されており、圧側室R2の残りの空間に気体が充填されている。なお、伸側室R1および圧側室R2にされる作動油Oの油量は、それぞれ、伸側室R1および圧側室R2の容積の二分の一以上充填されていればよい。 Then, the extension side chamber R1 is filled with the hydraulic oil O having a volume smaller than the volume of the extension side chamber R1 in the state where the piston 2 is in the neutral position with respect to the cylinder 1. The neutral position of the piston 2 with respect to the cylinder 1 is set to the center of the stroke range of the piston 2 with respect to the cylinder 1, and does not necessarily coincide with the center of the cylinder 1. The other compression side chamber R2 is filled with gas together with hydraulic oil O having a volume smaller than the volume of the compression side chamber R2 in a state where the piston 2 is in a neutral position with respect to the cylinder 1. Specifically, the extension side chamber R1 is filled with hydraulic oil O having a volume of seven tenths of the volume of the extension side chamber R1 when the piston 2 is in the neutral position with respect to the cylinder 1. The remaining space of is filled with gas. Further, the hydraulic oil O having a volume of seven tenths of the volume of the compression side chamber R2 in the state where the piston 2 is in the neutral position with respect to the cylinder 1 is filled in the compression side chamber R2, and the remaining of the compression side chamber R2. The space is filled with gas. The amount of hydraulic oil O used in the extension side chamber R1 and the compression side chamber R2 may be filled with at least half the volume of the extension side chamber R1 and the compression side chamber R2, respectively.

なお、作動液体は、本例では、作動油Oとされているが、水や水溶液等といった他の液体とされてもよい。また、気体は、本例では、作動油Oの劣化を招かない窒素等の不活性ガスとされるとよいが、大気等、他の気体の利用も可能である。 The hydraulic liquid is the hydraulic oil O in this example, but may be another liquid such as water or an aqueous solution. Further, in this example, the gas is preferably an inert gas such as nitrogen that does not cause deterioration of the hydraulic oil O, but other gases such as the atmosphere can also be used.

また、ピストン2には、伸側室R1と圧側室R2とを連通する減衰通路5と、減衰通路5を通過する作動油Oの流れに抵抗を与える減衰弁6とが設けられている。なお、減衰弁6には、調圧弁、リリーフ弁や絞りといった種々の弁を利用できる。また、一方通行の減衰弁6を用いる場合には、減衰通路5を複数設けておき一部に伸側室R1から圧側室R2へ向かう流体の流れのみを許容するものを設け、残りに反対向きの流体の流れのみを許容するものを設ければよい。さらに、ピストン2は、液面調整部として、伸側室R1と圧側室R2とを連通する第一通路7と、第一通路7の途中に設置される調整弁8とを備えている。 Further, the piston 2 is provided with a damping passage 5 for communicating the extension side chamber R1 and the compression side chamber R2, and a damping valve 6 for giving resistance to the flow of hydraulic oil O passing through the damping passage 5. As the damping valve 6, various valves such as a pressure regulating valve, a relief valve, and a throttle can be used. Further, when a one-way damping valve 6 is used, a plurality of damping passages 5 are provided, and a part of the damping passages 5 is provided to allow only the flow of fluid from the extension side chamber R1 to the compression side chamber R2, and the rest are in opposite directions. It is sufficient to provide a device that allows only the flow of fluid. Further, the piston 2 includes, as a liquid level adjusting portion, a first passage 7 that communicates the extension side chamber R1 and the compression side chamber R2, and an adjustment valve 8 installed in the middle of the first passage 7.

調整弁8は、図3に示すように、第一通路7の途中に設けられた第一通路7よりも大径な弁孔9に摺動自在に挿入される弁体10と、弁体10を附勢して弁体10を開弁位置に位置決めるばね11,12とを備えて構成されている。弁体10は、弁孔9の内周に摺接する胴部10aと、胴部10aの軸方向両端から軸方向へ突出し外径が第一通路7よりも大径な弁頭10b,10cと、弁頭10bの側方から開口して胴部10aを貫き弁頭10cの側方へ開口する弁体通路10dとを備えている。弁体10における胴部10aは、軸方向両側から弁孔9内に収容されるばね11,12によって挟持されている。ばね11,12は、ともに圧縮された状態で弁孔9内に収容されており、弁体10は、ばね11,12によって附勢されて弁孔9に対して中立位置に位置決められている。調整弁8は、弁体10が中立位置にあると弁頭10b,10cが第一通路7の弁孔9への図3中左右の開口部から離間しており、第一通路7を開放して伸側室R1と圧側室R2とを連通状態に維持する。これに対して、弁体10が図3中左方へ移動して弁頭10bが第一通路7の弁孔9への開口部へ当接するか、弁体10が図3中右方へ移動して弁頭10cが第一通路7の弁孔9への開口部を当接すると、第一通路7が閉塞されて伸側室R1と圧側室R2の第一通路7を介しての連通が絶たれる。 As shown in FIG. 3, the adjusting valve 8 has a valve body 10 slidably inserted into a valve hole 9 having a diameter larger than that of the first passage 7 provided in the middle of the first passage 7, and a valve body 10. The valve body 10 is provided with springs 11 and 12 for positioning the valve body 10 at the valve opening position. The valve body 10 includes a body portion 10a that is in sliding contact with the inner circumference of the valve hole 9, and valve heads 10b and 10c that protrude in the axial direction from both ends of the body portion 10a in the axial direction and have an outer diameter larger than that of the first passage 7. It is provided with a valve body passage 10d that opens from the side of the valve head 10b, penetrates the body portion 10a, and opens to the side of the valve head 10c. The body portion 10a of the valve body 10 is sandwiched by springs 11 and 12 housed in the valve hole 9 from both sides in the axial direction. The springs 11 and 12 are both housed in the valve hole 9 in a compressed state, and the valve body 10 is biased by the springs 11 and 12 and positioned in a neutral position with respect to the valve hole 9. In the regulating valve 8, when the valve body 10 is in the neutral position, the valve heads 10b and 10c are separated from the left and right openings in FIG. 3 to the valve hole 9 of the first passage 7, and the first passage 7 is opened. The extension side chamber R1 and the compression side chamber R2 are maintained in a communicating state. On the other hand, the valve body 10 moves to the left in FIG. 3, and the valve head 10b abuts on the opening of the first passage 7 to the valve hole 9, or the valve body 10 moves to the right in FIG. Then, when the valve head 10c abuts the opening of the first passage 7 to the valve hole 9, the first passage 7 is closed and the communication between the extension side chamber R1 and the compression side chamber R2 is cut off through the first passage 7. Is done.

弁体10は、伸側室R1と圧側室R2の圧力を受けており、伸側室R1の圧力によって図3中右方側へ押圧され、圧側室R2の圧力によって図3中左方側へ押圧されている。そして、伸側室R1の圧力と圧側室R2の圧力差が所定圧未満では弁体10が第一通路7を閉塞するまで移動せず調整弁8は開弁状態となり、伸側室R1の圧力と圧側室R2の圧力差が所定圧以上になると弁体10が第一通路7を閉塞する位置まで移動して調整弁8は閉弁状態となる。このように、調整弁8は、伸側室R1と圧側室R2の圧力差が所定圧未満となると開弁するようになっており、所定圧は、弁体10が中立位置にある状態におけるばね11,12の附勢力である初期荷重とばね11,12のばね定数によって設定される。 The valve body 10 receives the pressure of the extension side chamber R1 and the compression side chamber R2, is pressed to the right side in FIG. 3 by the pressure of the extension side chamber R1, and is pressed to the left side in FIG. 3 by the pressure of the compression side chamber R2. ing. When the pressure difference between the extension side chamber R1 and the compression side chamber R2 is less than a predetermined pressure, the valve body 10 does not move until the first passage 7 is closed, the adjusting valve 8 is opened, and the pressure and compression side of the extension side chamber R1. When the pressure difference in the chamber R2 becomes equal to or higher than a predetermined pressure, the valve body 10 moves to a position where the first passage 7 is closed, and the adjusting valve 8 is closed. As described above, the adjusting valve 8 is adapted to open when the pressure difference between the extension side chamber R1 and the compression side chamber R2 becomes less than a predetermined pressure, and the predetermined pressure is the spring 11 in the state where the valve body 10 is in the neutral position. , 12 is set by the initial load which is the urging force and the spring constants of the springs 11 and 12.

また、本例では、第一通路7の設置位置は、ピストン2がシリンダ1に対して中立位置にあって、伸側室R1と圧側室R2にそれぞれ充填される作動油Oの液面が等しくなった際に、丁度、第一通路7の図2中上下方向の幅に作動油Oの液面が位置するように設定してある。そして、免震用ダンパD11が伸縮後にシリンダ1に対してピストン2が中立位置に復帰して静止すると、伸側室R1と圧側室R2の圧力差が少なくなって調整弁8が開弁する。すると、作動油Oの液面が伸側室R1と圧側室R2とで偏りがあっても、調整弁8の開弁により伸側室R1と圧側室R2とが連通状態となり、伸側室R1と圧側室R2との間で作動油Oと気体とがやり取りされ、伸側室R1と圧側室R2の作動油Oの液面を等しくできる。 Further, in this example, in the installation position of the first passage 7, the piston 2 is in a neutral position with respect to the cylinder 1, and the liquid levels of the hydraulic oil O filled in the extension side chamber R1 and the compression side chamber R2 are equal. At that time, the liquid level of the hydraulic oil O is set to be located exactly in the width in the vertical direction in FIG. 2 of the first passage 7. Then, when the piston 2 returns to the neutral position with respect to the cylinder 1 and stands still after the seismic isolation damper D11 expands and contracts, the pressure difference between the extension side chamber R1 and the compression side chamber R2 decreases and the adjusting valve 8 opens. Then, even if the liquid level of the hydraulic oil O is biased between the extension side chamber R1 and the compression side chamber R2, the extension side chamber R1 and the compression side chamber R2 are in a communicating state due to the opening of the adjusting valve 8, and the extension side chamber R1 and the compression side chamber R1 The hydraulic oil O and the gas are exchanged with R2, and the liquid levels of the hydraulic oil O in the extension side chamber R1 and the compression side chamber R2 can be made equal.

このように構成された免震用ダンパD11の作動について説明する。ピストン2がシリンダ1に対して図2に示す中立位置から左方へ移動すると、ピストン2の移動に伴って伸側室R1が圧縮されて容積が減少して、伸側室R1内の圧力が上昇する。反対の圧側室R2は、ピストン2の移動に伴って容積が拡大するので減圧される。伸側室R1と圧側室R2の圧力に差が生じて調整弁8が第一通路7を閉塞するため、第一通路7を介して伸側室R1から圧側室R2への作動油Oと気体の移動は規制される。ピストン2の移動による伸側室R1内の容積減少分は伸側室R1内の気体の体積の減少と減衰通路5を介しての作動油Oの排出により補償され、圧側室R2内の容積増大分は圧側室R2内の気体の体積の膨張と減衰通路5を介しての作動油Oの流入により補償される。ピストン2の中立位置からの移動距離が所定ストローク範囲未満では、伸側室R1内の気体の圧縮量と圧側室R2内の気体の膨張量が小さいために伸側室R1内の圧力上昇が抑制されるとともに圧側室R2内の圧力減少も抑制され、減衰通路5を通過する作動油量も少ない。よって、ピストン2の中立位置からの移動距離が所定ストローク範囲未満である場合、伸側室R1と圧側室R2の圧力差が小さく、免震用ダンパD11は、低い減衰力を発揮する。 The operation of the seismic isolation damper D11 configured in this way will be described. When the piston 2 moves to the left from the neutral position shown in FIG. 2 with respect to the cylinder 1, the extension side chamber R1 is compressed and the volume decreases as the piston 2 moves, and the pressure in the extension side chamber R1 rises. .. The volume of the opposite compression side chamber R2 increases as the piston 2 moves, so that the pressure is reduced. Since the pressure difference between the extension side chamber R1 and the compression side chamber R2 causes the regulating valve 8 to block the first passage 7, the hydraulic oil O and the gas move from the extension side chamber R1 to the compression side chamber R2 via the first passage 7. Is regulated. The volume decrease in the extension chamber R1 due to the movement of the piston 2 is compensated by the decrease in the volume of gas in the extension chamber R1 and the discharge of hydraulic oil O through the damping passage 5, and the volume increase in the compression side chamber R2 is compensated. It is compensated by the expansion of the volume of gas in the compression side chamber R2 and the inflow of hydraulic oil O through the damping passage 5. When the moving distance of the piston 2 from the neutral position is less than the predetermined stroke range, the pressure increase in the extension side chamber R1 is suppressed because the compression amount of the gas in the extension side chamber R1 and the expansion amount of the gas in the compression side chamber R2 are small. At the same time, the pressure decrease in the compression side chamber R2 is suppressed, and the amount of hydraulic oil passing through the damping passage 5 is small. Therefore, when the moving distance of the piston 2 from the neutral position is less than the predetermined stroke range, the pressure difference between the extension side chamber R1 and the compression side chamber R2 is small, and the seismic isolation damper D11 exhibits a low damping force.

他方、ピストン2の中立位置からの移動距離が所定ストローク範囲以上となると、伸側室R1内の気体の圧縮量と圧側室R2内の気体の膨張量が大きく、減衰通路5を通過して伸側室R1から圧側室R2へ移動する作動油量も多くなる。そして、ピストン2の移動距離に応じて伸側室R1と圧側室R2の圧力差も大きくなっていくので、免震用ダンパD11は、ピストン2の中立位置からの移動距離に応じて高い減衰力を発揮するようになる。 On the other hand, when the moving distance of the piston 2 from the neutral position exceeds a predetermined stroke range, the amount of compression of the gas in the extension side chamber R1 and the amount of expansion of the gas in the compression side chamber R2 are large, and the amount of expansion of the gas in the compression side chamber R2 is large, and the extension side chamber passes through the damping passage 5. The amount of hydraulic oil that moves from R1 to the compression side chamber R2 also increases. Then, the pressure difference between the extension side chamber R1 and the compression side chamber R2 also increases according to the movement distance of the piston 2, so that the seismic isolation damper D11 exerts a high damping force according to the movement distance of the piston 2 from the neutral position. It will be demonstrated.

また、ピストン2がシリンダ1に対して図2に示す中立位置から右方へ移動すると、ピストン2の移動に伴って圧側室R2が圧縮されて容積が減少して、圧側室R2内の圧力が上昇する。反対の伸側室R1は、ピストン2の移動に伴って容積が拡大するので減圧される。圧側室R2と伸側室R1の圧力に差が生じて調整弁8が第一通路7を閉塞するため、第一通路7を介して圧側室R2から伸側室R1への作動油Oと気体の移動は規制される。ピストン2の移動による圧側室R2内の容積減少分は圧側室R2内の気体の体積の減少と減衰通路5を介しての作動油Oの排出により補償され、伸側室R1内の容積増大分は伸側室R1内の気体の体積の膨張と減衰通路5を介しての作動油Oの流入により補償される。ピストン2の中立位置からの移動距離が所定ストローク範囲未満では、圧側室R2内の気体の圧縮量と伸側室R1内の気体の膨張量が小さいために圧側室R2内の圧力上昇は抑制されるとともに伸側室R1内の圧力減少も抑制され、減衰通路5を通過する作動油量も少ない。よって、ピストン2の中立位置からの移動距離が所定ストローク範囲未満である場合、圧側室R2と伸側室R1の圧力差が小さく、免震用ダンパD11は、低い減衰力を発揮する。 Further, when the piston 2 moves to the right from the neutral position shown in FIG. 2 with respect to the cylinder 1, the compression side chamber R2 is compressed and the volume decreases as the piston 2 moves, and the pressure in the compression side chamber R2 increases. To rise. The volume of the opposite extension chamber R1 increases as the piston 2 moves, so that the volume is reduced. Since a difference in pressure between the compression side chamber R2 and the extension side chamber R1 occurs and the regulating valve 8 closes the first passage 7, the hydraulic oil O and the gas move from the compression side chamber R2 to the extension side chamber R1 via the first passage 7. Is regulated. The volume decrease in the compression side chamber R2 due to the movement of the piston 2 is compensated by the decrease in the volume of the gas in the compression side chamber R2 and the discharge of the hydraulic oil O through the damping passage 5, and the volume increase in the extension chamber R1 is compensated. It is compensated by the expansion of the volume of gas in the extension side chamber R1 and the inflow of hydraulic oil O through the damping passage 5. When the moving distance of the piston 2 from the neutral position is less than the predetermined stroke range, the pressure increase in the compression side chamber R2 is suppressed because the compression amount of the gas in the compression side chamber R2 and the expansion amount of the gas in the extension side chamber R1 are small. At the same time, the pressure decrease in the extension side chamber R1 is suppressed, and the amount of hydraulic oil passing through the damping passage 5 is small. Therefore, when the moving distance of the piston 2 from the neutral position is less than the predetermined stroke range, the pressure difference between the compression side chamber R2 and the extension side chamber R1 is small, and the seismic isolation damper D11 exhibits a low damping force.

他方、ピストン2の中立位置からの移動距離が所定ストローク範囲以上となると、圧側室R2内の気体の圧縮量と伸側室R1内の気体の膨張量が大きく、減衰通路5を通過して圧側室R2から伸側室R1へ移動する作動油量も多くなる。そして、ピストン2の移動距離に応じて圧側室R2と伸側室R1の圧力差も大きくなっていくので、免震用ダンパD11は、ピストン2の中立位置からの移動距離に応じて高い減衰力を発揮するようになる。 On the other hand, when the moving distance of the piston 2 from the neutral position exceeds a predetermined stroke range, the amount of compression of the gas in the compression side chamber R2 and the amount of expansion of the gas in the extension side chamber R1 are large, and the pressure side chamber passes through the damping passage 5 and passes through the compression side chamber R1. The amount of hydraulic oil that moves from R2 to the extension chamber R1 also increases. Then, the pressure difference between the compression side chamber R2 and the extension side chamber R1 increases according to the moving distance of the piston 2, so that the seismic isolation damper D11 exerts a high damping force according to the moving distance of the piston 2 from the neutral position. It will be demonstrated.

このように本例の免震用ダンパD11は、ピストン2が中立位置から移動して伸長しても収縮しても所定ストローク範囲未満でのストロークでは伸側室R1と圧側室R2のうち圧縮される室の圧力上昇が抑えられて低い減衰力を発揮し、所定ストローク範囲以上のストロークでは伸側室R1と圧側室R2のうち圧縮される室の圧力上昇が妨げられなくなるので高い減衰力を発揮できる。なお、所定ストローク範囲は、免震用ダンパD11を設置する構造物Sの地盤Gに対するストローク限界等によって適するように設定されればよい。所定ストローク範囲は、伸側室R1の容積に対する伸側室R1における作動油Oの体積の割合と伸側室R1の気体の圧力の調節と、圧側室R2の容積に対する圧側室R2における作動油Oの体積の割合と圧側室R2の気体の圧力の調節によって設定できる。また、本例では、伸側室R1と圧側室R2に気体を充填しているが、気体を充填せず真空としても免震用ダンパD11は、同様の作動を呈する。真空とする場合には、所定ストローク範囲は、伸側室R1の容積に対する伸側室R1における作動油Oの体積の割合の調節と、圧側室R2の容積に対する圧側室R2における作動油Oの体積の割合の調節で設定すればよい。 As described above, the seismic isolation damper D11 of this example is compressed among the extension side chamber R1 and the compression side chamber R2 with a stroke less than a predetermined stroke range even if the piston 2 moves from the neutral position and extends or contracts. The pressure rise of the chamber is suppressed and a low damping force is exhibited, and a stroke of a predetermined stroke range or more does not hinder the pressure rise of the compressed chambers of the extension side chamber R1 and the compression side chamber R2, so that a high damping force can be exhibited. The predetermined stroke range may be set so as to be suitable depending on the stroke limit of the structure S on which the seismic isolation damper D11 is installed with respect to the ground G. The predetermined stroke range is the ratio of the volume of the hydraulic oil O in the extension side chamber R1 to the volume of the extension side chamber R1, the adjustment of the gas pressure in the extension side chamber R1, and the volume of the hydraulic oil O in the compression side chamber R2 to the volume of the compression side chamber R2. It can be set by adjusting the ratio and the pressure of the gas in the compression side chamber R2. Further, in this example, the extension side chamber R1 and the compression side chamber R2 are filled with gas, but the seismic isolation damper D11 exhibits the same operation even if the vacuum is not filled with the gas. In the case of a vacuum, the predetermined stroke range is the adjustment of the ratio of the volume of the hydraulic oil O in the extension side chamber R1 to the volume of the extension side chamber R1 and the ratio of the volume of the hydraulic oil O in the compression side chamber R2 to the volume of the compression side chamber R2. It can be set by adjusting.

よって、本例の免震用ダンパD11にあっては、ピストン2の中立位置からの移動距離が小さくなる中小振幅の規模の地震の揺れに対しては、低い減衰力を発揮し、大振幅の地震の揺れに対しては高い減衰力を発揮できる。また、免震用ダンパD11は、ピストン2の中立位置からの移動距離により低い減衰力と高い減衰力を切換えるのに際して、複雑な機構の装置を利用せずに済むので、免震用ダンパD11は、軽量かつ構造が簡単で安価となる。以上より、本発明の免震用ダンパD11によれば、中小振幅の規模の地震の揺れに対して低い減衰力を発揮し、大振幅の地震の揺れに対して高い減衰力を発揮できるとともに、免震用ダンパD11は、軽量かつ構造が簡単で安価となる。 Therefore, the seismic isolation damper D11 of this example exerts a low damping force against the shaking of an earthquake of a small and medium amplitude scale in which the moving distance of the piston 2 from the neutral position is small, and has a large amplitude. It can exert a high damping force against the shaking of an earthquake. Further, since the seismic isolation damper D11 does not need to use a device having a complicated mechanism when switching between a low damping force and a high damping force according to the moving distance of the piston 2 from the neutral position, the seismic isolation damper D11 is used. Lightweight, simple in structure and inexpensive. From the above, according to the seismic isolation damper D11 of the present invention, it is possible to exert a low damping force against the shaking of a small-to-medium-amplitude earthquake, and to exert a high damping force against the shaking of a large-amplitude earthquake. The seismic isolation damper D11 is lightweight, has a simple structure, and is inexpensive.

また、本例の免震用ダンパD11にあっては、シリンダ1に対してピストン2の中立位置からの移動距離が所定ストローク範囲未満では発生減衰力を低くし、所定ストローク範囲以上では発生減衰力を高くするようになっている。このように免震用ダンパD11を構成すると、所定ストローク範囲の設定で減衰力を高くするストローク量を決定できる。 Further, in the seismic isolation damper D11 of this example, the generated damping force is lowered when the moving distance of the piston 2 from the neutral position with respect to the cylinder 1 is less than the predetermined stroke range, and the generated damping force is lowered when the moving distance is less than the predetermined stroke range. Is designed to be high. When the seismic isolation damper D11 is configured in this way, the stroke amount for increasing the damping force can be determined by setting a predetermined stroke range.

さらに、本例の免震用ダンパD11では、シリンダ1に対してピストン2が中立位置に配置されて静止すると伸側室R1と圧側室R2の作動油Oの液面の高さを等しくする液面調整部を備えている。このように構成された免震用ダンパD11では、地震動が収まって免震用ダンパD11が免震装置Mによってピストン2が中立位置に復帰して静止すると、伸側室R1と圧側室R2の作動油Oの液面の高さに偏りがあってもこれを等しくさせる。よって、次回に地震が発生した際に、免震用ダンパD11は、ピストン2の中立位置からの移動距離が設定された距離(所定ストローク範囲)未満では伸長しても収縮しても必ず低い減衰力を発揮し、設定された距離(所定ストローク範囲)以上となると伸長しても収縮しても必ず高い減衰力を発揮できる。したがって、このように構成された免震用ダンパD11では、地震が発生後に伸側室R1と圧側室R2の作動油Oの量を調節するメンテナンス作業が不要となる。 Further, in the seismic isolation damper D11 of this example, when the piston 2 is arranged in a neutral position with respect to the cylinder 1 and stands still, the liquid level of the hydraulic oil O in the extension side chamber R1 and the compression side chamber R2 becomes equal. It has an adjustment unit. In the seismic isolation damper D11 configured in this way, when the seismic motion has subsided and the piston 2 returns to the neutral position by the seismic isolation device M and stands still, the hydraulic oil in the extension side chamber R1 and the compression side chamber R2 Even if there is a bias in the height of the liquid level of O, this is made equal. Therefore, when an earthquake occurs next time, the seismic isolation damper D11 will always have low damping even if it expands or contracts if the moving distance from the neutral position of the piston 2 is less than the set distance (predetermined stroke range). It exerts a force, and when it exceeds a set distance (predetermined stroke range), it can always exert a high damping force regardless of whether it expands or contracts. Therefore, the seismic isolation damper D11 configured in this way does not require maintenance work for adjusting the amount of hydraulic oil O in the extension side chamber R1 and the compression side chamber R2 after an earthquake occurs.

さらに、本例の免震用ダンパD11では、伸側室R1と圧側室R2にそれぞれ充填される作動油Oの体積を伸側室R1と圧側室R2の容積の二分の一以上としているので、減衰力が高くなるピストン2の中立位置からの移動距離は、ピストン2の中立位置からストロークエンドまでの距離の二分の一以下となるので、構造物Sの擁壁への衝突を効果的に防止できる。 Further, in the seismic isolation damper D11 of this example, the volume of the hydraulic oil O filled in the extension side chamber R1 and the compression side chamber R2 is set to more than half the volume of the extension side chamber R1 and the compression side chamber R2, respectively. Since the moving distance of the piston 2 from the neutral position is less than half the distance from the neutral position of the piston 2 to the stroke end, the collision of the structure S with the retaining wall can be effectively prevented.

なお、前述したところでは、伸側室R1と圧側室R2に作動液体として作動油Oを充填するとともに気体を直接充填しているが、図4に示した第一の実施の形態の一変形例における免震用ダンパD12のように、伸側室R1と圧側室R2にそれぞれ気体が充填される伸側気室G1と圧側気室G2を形成する伸側気室形成部材13と圧側気室形成部材14を設けて、液面調整部を廃止してもよい。 In the above-mentioned place, the extension side chamber R1 and the compression side chamber R2 are filled with the hydraulic oil O as the working liquid and directly filled with the gas, but in one modification of the first embodiment shown in FIG. Like the seismic isolation damper D12, the extension side air chamber G1 and the compression side air chamber G2 are filled with gas, respectively, and the extension side air chamber forming member 13 and the compression side air chamber forming member 14 are formed. May be provided and the liquid level adjusting unit may be abolished.

伸側気室形成部材13は、シリンダ1内に摺動自在に挿入されるとともに内周にロッド3が摺動自在に挿入される環状のフリーピストンとされており、ロッドガイド4との間に気体が充填される伸側気室G1を形成している。また、シリンダ1の内周には、伸側気室形成部材13の図4中左方側への移動を規制するストッパ15が装着されている。伸側気室形成部材13は、ピストン2がシリンダ1に対して中立位置に配置される状態では、ストッパ15から離間しており、ピストン2が図4中左方へ移動すると伸側気室G1を圧縮しつつ左方へ移動する。 The extension side air chamber forming member 13 is an annular free piston that is slidably inserted into the cylinder 1 and the rod 3 is slidably inserted into the inner circumference, and is between the extension side air chamber forming member 13 and the rod guide 4. It forms an extensor air chamber G1 filled with gas. Further, a stopper 15 for restricting the movement of the extension side air chamber forming member 13 to the left side in FIG. 4 is mounted on the inner circumference of the cylinder 1. The extension side air chamber forming member 13 is separated from the stopper 15 when the piston 2 is arranged in a neutral position with respect to the cylinder 1, and when the piston 2 moves to the left in FIG. 4, the extension side air chamber G1 Move to the left while compressing.

圧側気室形成部材14は、シリンダ1内に摺動自在に挿入される円盤状のフリーピストンとされており、シリンダ1の一端を閉塞するキャップCとの間に気体が充填される圧側気室G2を形成している。また、シリンダ1の内周には、圧側気室形成部材14の図4中右方側への移動を規制するストッパ16が装着されている。圧側気室形成部材14は、ピストン2がシリンダ1に対して中立位置に配置される状態では、ストッパ16から離間しており、ピストン2が図4中右方へ移動すると圧側気室G2を圧縮しつつ右方へ移動する。 The compression side air chamber forming member 14 is a disk-shaped free piston that is slidably inserted into the cylinder 1, and is filled with gas between the compression side air chamber forming member 14 and the cap C that closes one end of the cylinder 1. It forms G2. Further, a stopper 16 for restricting the movement of the compression side air chamber forming member 14 to the right side in FIG. 4 is mounted on the inner circumference of the cylinder 1. The compression side air chamber forming member 14 is separated from the stopper 16 when the piston 2 is arranged in a neutral position with respect to the cylinder 1, and compresses the compression side air chamber G2 when the piston 2 moves to the right in FIG. While doing so, move to the right.

このように構成される免震用ダンパD12では、伸側気室形成部材13がストッパ15に当接するまでは左方へ移動できる。そして、ピストン2が中立位置から図4中左方への移動距離が所定ストローク範囲に達するまでは、伸側気室形成部材13がストッパ15に当接せず、所定ストローク範囲に達すると伸側気室形成部材13がストッパ15に当接するようになっている。 In the seismic isolation damper D12 configured in this way, the extension side air chamber forming member 13 can move to the left until it comes into contact with the stopper 15. Then, the extension side air chamber forming member 13 does not abut on the stopper 15 until the moving distance of the piston 2 from the neutral position to the left in FIG. 4 reaches a predetermined stroke range, and when the movement distance reaches the predetermined stroke range, the extension side The air chamber forming member 13 comes into contact with the stopper 15.

よって、免震用ダンパD12が伸長する際に、ピストン2が中立位置から所定ストローク範囲未満でストロークする場合には、伸側気室形成部材13がピストン2の移動に応じて同方向へ移動するから伸側室R1内の圧力は然程上昇しない。また、圧側気室形成部材14がピストン2の移動に応じて同方向へ移動するから圧側室R2内の圧力は然程減少しない。このようにピストン2が中立位置から所定ストローク範囲未満でストロークする場合には、伸側室R1と圧側室R2の圧力差は小さいため、免震用ダンパD12が発揮する減衰力は低くなる。 Therefore, when the seismic isolation damper D12 extends and the piston 2 strokes within a predetermined stroke range from the neutral position, the extension side air chamber forming member 13 moves in the same direction according to the movement of the piston 2. The pressure in the extension side chamber R1 does not rise so much. Further, since the compression side air chamber forming member 14 moves in the same direction according to the movement of the piston 2, the pressure in the compression side chamber R2 does not decrease so much. When the piston 2 strokes from the neutral position to less than a predetermined stroke range in this way, the pressure difference between the extension side chamber R1 and the compression side chamber R2 is small, so that the damping force exerted by the seismic isolation damper D12 is low.

他方、ピストン2の中立位置からの左方への移動距離が所定ストローク範囲以上となると、伸側気室形成部材13は、ストッパ15に当接してそれ以上伸側気室G1を圧縮する方向へ移動できなくなる。すると、ピストン2の移動によって伸側室R1内の作動油Oが圧縮されて伸側室R1における作動油Oが充填されている空間の圧力が大きく上昇し減衰通路5を通過して伸側室R1から圧側室R2へ移動する作動油量も多くなる。また、圧側気室形成部材14は、ピストン2の移動に応じて同方向へ移動するが圧側気室G2の容積拡大により圧側室R2内の圧力もピストン2が所定ストローク範囲未満で移動する場合よりも減少する。よって、ピストン2の中立位置からの移動距離が所定ストローク範囲以上となると、伸側室R1と圧側室R2の圧力差が大きくなって、免震用ダンパD12は、高い減衰力の発揮で自身の伸長を妨げるようになる。 On the other hand, when the moving distance of the piston 2 to the left from the neutral position exceeds a predetermined stroke range, the extension side air chamber forming member 13 comes into contact with the stopper 15 and further compresses the extension side air chamber G1. You will not be able to move. Then, the hydraulic oil O in the extension side chamber R1 is compressed by the movement of the piston 2, and the pressure in the space filled with the hydraulic oil O in the extension side chamber R1 rises significantly, passes through the damping passage 5, and is compressed from the extension side chamber R1. The amount of hydraulic oil that moves to the chamber R2 also increases. Further, the compression side air chamber forming member 14 moves in the same direction according to the movement of the piston 2, but the pressure in the compression side chamber R2 also increases within the predetermined stroke range due to the volume expansion of the compression side air chamber G2. Also decreases. Therefore, when the moving distance of the piston 2 from the neutral position exceeds a predetermined stroke range, the pressure difference between the extension side chamber R1 and the compression side chamber R2 becomes large, and the seismic isolation damper D12 exerts its own extension by exerting a high damping force. Will interfere.

また、免震用ダンパD12では、圧側気室形成部材14がストッパ16に当接するまでは右方へ移動できる。そして、ピストン2が中立位置からの図4中右方への移動距離が所定ストローク範囲に達するまでは、圧側気室形成部材14がストッパ16に当接せず、所定ストローク範囲に達すると圧側気室形成部材14がストッパ16に当接するようになっている。 Further, in the seismic isolation damper D12, the compression side air chamber forming member 14 can move to the right until it comes into contact with the stopper 16. Then, the compression side air chamber forming member 14 does not abut on the stopper 16 until the moving distance of the piston 2 from the neutral position to the right in FIG. 4 reaches a predetermined stroke range, and when the movement distance reaches the predetermined stroke range, the compression side air The chamber forming member 14 comes into contact with the stopper 16.

よって、免震用ダンパD12が収縮する際に、ピストン2が中立位置から所定ストローク範囲未満でストロークする場合には、圧側気室形成部材14がピストン2の移動に応じて同方向へ移動するから圧側室R2内の圧力は然程上昇しない。また、伸側気室形成部材13がピストン2の移動に応じて同方向へ移動するから伸側室R1内の圧力は然程減少しない。このようにピストン2が中立位置から所定ストローク範囲未満でストロークする場合には、圧側室R2と伸側室R1の圧力差は小さいため、免震用ダンパD12が発揮する減衰力は低くなる。 Therefore, when the seismic isolation damper D12 contracts, if the piston 2 strokes from the neutral position within a predetermined stroke range, the compression side air chamber forming member 14 moves in the same direction according to the movement of the piston 2. The pressure in the compression side chamber R2 does not rise so much. Further, since the extension side air chamber forming member 13 moves in the same direction according to the movement of the piston 2, the pressure in the extension side chamber R1 does not decrease so much. When the piston 2 strokes from the neutral position to less than a predetermined stroke range in this way, the pressure difference between the compression side chamber R2 and the extension side chamber R1 is small, so that the damping force exerted by the seismic isolation damper D12 is low.

他方、ピストン2の中立位置から右方への移動距離が所定ストローク範囲以上となると、圧側気室形成部材14は、ストッパ16に当接してそれ以上圧側気室G2を圧縮する方向へ移動できなくなる。すると、ピストン2の移動によって圧側室R2内の作動油Oが圧縮されて圧側室R2における作動油Oが充填されている空間の圧力が大きく上昇し減衰通路5を通過して圧側室R2から伸側室R1へ移動する作動油量も多くなる。また、伸側気室形成部材13は、ピストン2の移動に応じて同方向へ移動するが伸側気室G1の容積拡大により伸側室R1内の圧力もピストン2が所定ストローク範囲未満で移動する場合よりも減少する。よって、ピストン2の中立位置からの移動距離が所定ストローク範囲以上となると、圧側室R2と伸側室R1の圧力差が大きくなって、免震用ダンパD12は、高い減衰力の発揮で自身の収縮を妨げるようになる。 On the other hand, when the moving distance of the piston 2 from the neutral position to the right exceeds a predetermined stroke range, the compression side air chamber forming member 14 comes into contact with the stopper 16 and cannot move in the direction of further compressing the compression side air chamber G2. .. Then, the hydraulic oil O in the compression side chamber R2 is compressed by the movement of the piston 2, and the pressure in the space filled with the hydraulic oil O in the compression side chamber R2 rises significantly, passes through the damping passage 5, and extends from the compression side chamber R2. The amount of hydraulic oil that moves to the side chamber R1 also increases. Further, the extension side air chamber forming member 13 moves in the same direction according to the movement of the piston 2, but the pressure in the extension side chamber R1 also moves within the predetermined stroke range due to the volume expansion of the extension side air chamber G1. Less than in the case. Therefore, when the moving distance of the piston 2 from the neutral position exceeds a predetermined stroke range, the pressure difference between the compression side chamber R2 and the extension side chamber R1 becomes large, and the seismic isolation damper D12 contracts itself by exerting a high damping force. Will interfere.

また、この免震用ダンパD12では、伸長時には伸側気室形成部材13がストッパ15に当接するまでは低い減衰力を発揮し、収縮時には圧側気室形成部材14がストッパ16に当接するまでは低い減衰力を発揮するので、ストッパ15,16によって減衰力の高低の切換えができる。したがって、ストッパ15,16の設置位置によって所定ストローク範囲を容易に設定できる。つまり、伸側気室形成部材13と圧側気室形成部材14を停止させるようにすれば、減衰力の高低の切換えが可能となるので、減衰力が切換わるピストン2の中立位置からのストローク量を容易に設定できる。ストッパ15は、ロッドガイド4或いは伸側気室形成部材13に設けてもよいし、ストッパ16は、キャップC或いは圧側気室形成部材14に設けてもよい。なお、ストッパ15,16を設けない場合、所定ストローク範囲の設定は免震用ダンパD11と同様に設定できる。つまり、ピストン2が中立位置にある状態での伸側室R1の容積に対する伸側気室G1の容積の割合と伸側気室G1内の気体の圧力の調節と、ピストン2が中立位置にある状態での圧側室R2の容積に対する圧側気室G2の容積の割合と圧側気室G2内の気体の圧力の調節によって所定ストローク範囲を設定できる。 Further, in this seismic isolation damper D12, a low damping force is exerted until the extension side air chamber forming member 13 abuts on the stopper 15 at the time of extension, and until the compression side air chamber forming member 14 abuts on the stopper 16 at the time of contraction. Since it exhibits a low damping force, the damping force can be switched between high and low by the stoppers 15 and 16. Therefore, a predetermined stroke range can be easily set depending on the installation positions of the stoppers 15 and 16. That is, if the extension side air chamber forming member 13 and the compression side air chamber forming member 14 are stopped, the damping force can be switched between high and low, so that the stroke amount from the neutral position of the piston 2 in which the damping force is switched can be switched. Can be easily set. The stopper 15 may be provided on the rod guide 4 or the extension side air chamber forming member 13, and the stopper 16 may be provided on the cap C or the compression side air chamber forming member 14. When the stoppers 15 and 16 are not provided, the predetermined stroke range can be set in the same manner as the seismic isolation damper D11. That is, the ratio of the volume of the extension side air chamber G1 to the volume of the extension side chamber R1 in the state where the piston 2 is in the neutral position, the adjustment of the gas pressure in the extension side air chamber G1, and the state where the piston 2 is in the neutral position. A predetermined stroke range can be set by adjusting the ratio of the volume of the compression side air chamber G2 to the volume of the compression side chamber R2 and the pressure of the gas in the compression side air chamber G2.

また、図5に示す免震用ダンパD13のように、伸側気室形成部材13は、ピストン2との間に伸側気室G1を形成し、圧側気室形成部材14は、ピストン2との間に圧側気室G2を形成してもよい。この場合、ピストン2の両側にそれぞれに伸側気室形成部材13と圧側気室形成部材14へ向けて突出するストッパ17,18を設けておけば、ストッパ17,18の軸方向長さによって減衰力の高低を切換える所定ストローク範囲の設定を行える。なお、伸側気室G1と圧側気室G2に、伸側気室形成部材13と圧側気室形成部材14をそれぞれピストン2が中立位置に復帰した際にもとの位置に戻す弾性体を設けてもよい。また、免震用ダンパD13のようにピストン2と伸側気室形成部材13との間に伸側気室G1を設け、ピストン2と圧側気室形成部材14との間に圧側気室G2を設ける場合には、図示したように減衰通路5と減衰弁6をシリンダ1外に設けてもよい。 Further, as in the seismic isolation damper D13 shown in FIG. 5, the extension side air chamber forming member 13 forms an extension side air chamber G1 with the piston 2, and the compression side air chamber forming member 14 is formed with the piston 2. The compression side air chamber G2 may be formed between the two. In this case, if stoppers 17 and 18 projecting toward the extension side air chamber forming member 13 and the compression side air chamber forming member 14 are provided on both sides of the piston 2, the stoppers 17 and 18 are damped by the axial lengths of the stoppers 17 and 18. A predetermined stroke range for switching between high and low forces can be set. The extension side air chamber G1 and the compression side air chamber G2 are provided with elastic bodies that return the extension side air chamber forming member 13 and the compression side air chamber forming member 14 to their original positions when the piston 2 returns to the neutral position, respectively. You may. Further, like the seismic isolation damper D13, the extension side air chamber G1 is provided between the piston 2 and the extension side air chamber forming member 13, and the compression side air chamber G2 is provided between the piston 2 and the compression side air chamber forming member 14. When provided, the damping passage 5 and the damping valve 6 may be provided outside the cylinder 1 as shown in the figure.

さらに、図6に示す免震用ダンパD14のように、ロッド3或いはピストン2に伸側室R1と圧側室R2の一部として機能する空間を形成して、これら空間にそれぞれ伸側気室形成部材19と圧側気室形成部材20を挿入して伸側気室G1と圧側気室G2を形成してもよい。このようにすると、伸側気室形成部材19、圧側気室形成部材20、伸側気室G1および圧側気室G2は、免震用ダンパD14のストローク長に与える影響が少なくなるので、免震用ダンパD14の全長を短くしつつも必要なストローク長を確保しやすくなる。 Further, as in the seismic isolation damper D14 shown in FIG. 6, a space that functions as a part of the extension side chamber R1 and the compression side chamber R2 is formed in the rod 3 or the piston 2, and the extension side air chamber forming member is formed in each of these spaces. 19 and the compression side air chamber forming member 20 may be inserted to form the extension side air chamber G1 and the compression side air chamber G2. In this way, the extension side air chamber forming member 19, the compression side air chamber forming member 20, the extension side air chamber G1 and the compression side air chamber G2 are less affected by the stroke length of the seismic isolation damper D14, and thus seismic isolation is achieved. It becomes easy to secure the required stroke length while shortening the total length of the damper D14.

また、図7に示す免震用ダンパD15のように、伸側気室形成部材21と圧側気室形成部材22は、内部空間でそれぞれ伸側気室G1と圧側気室G2を形成するとともに外部から作用する圧力によって伸側気室G1と圧側気室G2を拡縮できる容器であってもよい。容器は、ゴム等の弾性体やベローズ等で形成されればよい。 Further, as in the seismic isolation damper D15 shown in FIG. 7, the extension side air chamber forming member 21 and the compression side air chamber forming member 22 form the extension side air chamber G1 and the compression side air chamber G2 in the internal space, respectively, and also externally. It may be a container that can expand and contract the extension side air chamber G1 and the compression side air chamber G2 by the pressure acting from. The container may be made of an elastic body such as rubber or a bellows.

なお、免震用ダンパD12,D13,D14,D15では、伸側気室G1と圧側気室G2とに気体が収容されており、伸側気室G1と圧側気室G2とが互いに独立しているので、液面調整部を設けなくともピストン2が中立位置に静止すると作動油Oは、伸側室R1と圧側室R2とに設定体積通りに充填された状態となる。よって、次回に地震が発生した際に、免震用ダンパD12,D13,D14,D15は、ピストン2の中立位置からの移動距離が設定された距離(所定ストローク範囲)未満では伸長しても収縮しても必ず低い減衰力を発揮し、設定された距離(所定ストローク範囲)以上となると伸長しても収縮しても必ず高い減衰力を発揮できる。したがって、このように構成された免震用ダンパD12,D13,D14,D15では、地震が発生後に伸側室R1と圧側室R2の作動油Oの量を調節するメンテナンス作業が不要となる。 In the seismic isolation dampers D12, D13, D14, and D15, gas is contained in the extension side air chamber G1 and the compression side air chamber G2, and the extension side air chamber G1 and the compression side air chamber G2 are independent of each other. Therefore, when the piston 2 stands still in the neutral position without providing the liquid level adjusting portion, the hydraulic oil O is filled in the extension side chamber R1 and the compression side chamber R2 according to the set volume. Therefore, when an earthquake occurs next time, the seismic isolation dampers D12, D13, D14, and D15 contract even if they extend when the moving distance of the piston 2 from the neutral position is less than the set distance (predetermined stroke range). Even so, it always exerts a low damping force, and when it exceeds a set distance (predetermined stroke range), it can always exert a high damping force regardless of whether it expands or contracts. Therefore, the seismic isolation dampers D12, D13, D14, and D15 configured in this way do not require maintenance work for adjusting the amount of hydraulic oil O in the extension side chamber R1 and the compression side chamber R2 after an earthquake occurs.

<第二の実施の形態>
第二の実施の形態における免震用ダンパD21は、図8に示すように、シリンダ1と、シリンダ1内に摺動自在に挿入されて伸側室R1と圧側室R2を仕切るピストン2と、シリンダ1に挿入されるとともにピストン2に連結されるロッド3と、シリンダ1の外周を覆ってシリンダ1との間の環状隙間でタンクTを形成する外筒30と、シリンダ1内およびタンクTに充填される作動液体としての作動油Oとを備えている。
<Second embodiment>
As shown in FIG. 8, the seismic isolation damper D21 according to the second embodiment includes a cylinder 1, a piston 2 slidably inserted into the cylinder 1 to partition the extension side chamber R1 and the compression side chamber R2, and a cylinder. The rod 3 inserted into 1 and connected to the piston 2, the outer cylinder 30 that covers the outer periphery of the cylinder 1 and forms the tank T in the annular gap between the cylinder 1, and the inside of the cylinder 1 and the tank T are filled. It is provided with a hydraulic oil O as a hydraulic liquid to be operated.

以下、免震用ダンパD21の各部について詳細に説明する。シリンダ1の一端には、バルブケース31が嵌合されており、他端にはロッドガイド4が嵌合されている。外筒30の一端は、構造物Sに設けた取付部Bsに連結されるブラケット32aを備えてキャップ32によって閉塞され、外筒30の他端の内周にはロッドガイド4が装着されている。シリンダ1は、外筒30に装着されるロッドガイド4とキャップ32に当接するバルブケース31によって挟持されて外筒30内に収容されつつ固定されている。 Hereinafter, each part of the seismic isolation damper D21 will be described in detail. A valve case 31 is fitted to one end of the cylinder 1, and a rod guide 4 is fitted to the other end. One end of the outer cylinder 30 is provided with a bracket 32a connected to the mounting portion Bs provided in the structure S and is closed by a cap 32, and a rod guide 4 is mounted on the inner circumference of the other end of the outer cylinder 30. .. The cylinder 1 is sandwiched by a rod guide 4 mounted on the outer cylinder 30 and a valve case 31 that abuts on the cap 32, and is accommodated and fixed in the outer cylinder 30.

ピストン2は、シリンダ1内に摺動自在に挿入されており、シリンダ1内を伸側室R1と圧側室R2とに仕切っている。また、ロッド3は、ロッドガイド4内を通してシリンダ1内に移動自在に挿入されてピストン2に連結されるとともに、他端がシリンダ1外に突出している。本例では、免震用ダンパD21は、ロッド3が伸側室R1内にのみ挿通される所謂片ロッド型のダンパとされているが、圧側室R2にも挿通されてロッド3の両端がシリンダ1の両端側からそれぞれ外方へ突出する所謂両ロッド型のダンパとされもよい。 The piston 2 is slidably inserted into the cylinder 1 and partitions the inside of the cylinder 1 into an extension side chamber R1 and a compression side chamber R2. Further, the rod 3 is movably inserted into the cylinder 1 through the rod guide 4 and connected to the piston 2, and the other end thereof protrudes out of the cylinder 1. In this example, the seismic isolation damper D21 is a so-called single rod type damper in which the rod 3 is inserted only into the extension side chamber R1, but it is also inserted into the compression side chamber R2 and both ends of the rod 3 are cylinders 1. It may be a so-called double-rod type damper that protrudes outward from both ends of the damper.

そして、免震用ダンパD11と同様に、伸側室R1には、シリンダ1に対してピストン2が中立位置にある状態における伸側室R1の容積より少ない体積の作動油Oが気体とともに充填されている。他方の圧側室R2には、シリンダ1に対してピストン2が中立位置にある状態における圧側室R2の容積より少ない体積の作動油Oが気体とともに充填されている。シリンダ1に対してピストン2が中立位置にある状態で、伸側室R1と圧側室R2の作動油Oの液面とタンクTにおける作動油Oの液面とが一致するように、タンクTにも作動油Oと気体とが充填されている。 Then, similarly to the seismic isolation damper D11, the extension side chamber R1 is filled with the hydraulic oil O having a volume smaller than the volume of the extension side chamber R1 in the state where the piston 2 is in the neutral position with respect to the cylinder 1. .. The other compression side chamber R2 is filled with gas together with hydraulic oil O having a volume smaller than the volume of the compression side chamber R2 in a state where the piston 2 is in a neutral position with respect to the cylinder 1. With the piston 2 in the neutral position with respect to the cylinder 1, the liquid level of the hydraulic oil O in the extension side chamber R1 and the compression side chamber R2 and the liquid level of the hydraulic oil O in the tank T coincide with each other in the tank T. The hydraulic oil O and the gas are filled.

なお、本例では、シリンダ1に対してピストン2が中立位置にある状態における伸側室R1の容積の十分の七の体積の油量の作動油Oが伸側室R1に充填されており、伸側室R1の残りの空間に気体が充填されている。さらに、シリンダ1に対してピストン2が中立位置にある状態における圧側室R2の容積の十分の七の体積の油量の作動油Oが圧側室R2に充填されており、圧側室R2の残りの空間に気体が充填されている。なお、伸側室R1および圧側室R2にされる作動油Oの油量は、それぞれ、伸側室R1および圧側室R2の容積の二分の一以上充填されていればよい。 In this example, the extension side chamber R1 is filled with hydraulic oil O having a volume of seven tenths of the volume of the extension side chamber R1 when the piston 2 is in the neutral position with respect to the cylinder 1. The remaining space of R1 is filled with gas. Further, the hydraulic oil O having a volume of seven tenths of the volume of the compression side chamber R2 in the state where the piston 2 is in the neutral position with respect to the cylinder 1 is filled in the compression side chamber R2, and the remaining of the compression side chamber R2. The space is filled with gas. The amount of hydraulic oil O used in the extension side chamber R1 and the compression side chamber R2 may be filled with at least half the volume of the extension side chamber R1 and the compression side chamber R2, respectively.

また、ピストン2には、伸側室R1と圧側室R2とを連通する減衰通路5と、減衰通路5を通過する作動油Oの流れに抵抗を与える減衰弁6とが設けられている。さらに、バルブケース31には、圧側室R2とタンクTとを連通する減衰通路33と、減衰通路33を通過する作動油Oの流れに抵抗を与える減衰弁34と、タンクTから圧側室R2へ向かう流体の流れのみを許容する吸込通路35とが設けられている。なお、減衰弁34には、減衰弁6と同様に種々の構造の減衰弁を利用でき、減衰弁34は、圧側室R2からタンクTへ向かう流体の流れのみを許容するものでもよい。 Further, the piston 2 is provided with a damping passage 5 for communicating the extension side chamber R1 and the compression side chamber R2, and a damping valve 6 for giving resistance to the flow of hydraulic oil O passing through the damping passage 5. Further, the valve case 31 has a damping passage 33 that communicates the compression side chamber R2 and the tank T, a damping valve 34 that gives resistance to the flow of hydraulic oil O passing through the damping passage 33, and a tank T to the compression side chamber R2. A suction passage 35 is provided that allows only the flow of the flowing fluid. As the damping valve 34, a damping valve having various structures can be used as in the damping valve 6, and the damping valve 34 may allow only the flow of fluid from the compression side chamber R2 to the tank T.

また、ピストン2は、伸側室R1と圧側室R2とを連通する第一通路7と、第一通路7の途中に設置される調整弁8とを備えている。ロッドガイド4は、伸側室R1とタンクTとを連通する第二通路36と、第二通路36の途中に設置される調整弁37とを備えている。調整弁37は、調整弁8と同様の構成とされている。液面調整部は、本例では、第一通路7、調整弁8、第二通路36および調整弁37とで構成されており、伸側室R1とタンクTの圧力差が所定圧未満となると開弁するようになっている。 Further, the piston 2 includes a first passage 7 that communicates the extension side chamber R1 and the compression side chamber R2, and a regulating valve 8 installed in the middle of the first passage 7. The rod guide 4 includes a second passage 36 that communicates the extension side chamber R1 and the tank T, and a regulating valve 37 installed in the middle of the second passage 36. The regulating valve 37 has the same configuration as the regulating valve 8. In this example, the liquid level adjusting portion is composed of the first passage 7, the adjusting valve 8, the second passage 36, and the adjusting valve 37, and opens when the pressure difference between the extension side chamber R1 and the tank T becomes less than a predetermined pressure. It is designed to speak.

また、第二通路36の設置位置は、ピストン2がシリンダ1に対して中立位置にあって、伸側室R1、圧側室R2およびタンクTにそれぞれ充填される作動油Oの液面が等しい場合に、丁度、第二通路36の図8中上下方向の幅に作動油Oの液面が位置するように設定してある。そして、免震用ダンパD21が静止状態となると伸側室R1と圧側室R2の圧力差が少なく調整弁8が開弁し、伸側室R1とタンクTの圧力差が少なく調整弁37が開弁する。これにより、免震用ダンパD21が伸縮後にシリンダ1に対してピストン2が中立位置に復帰した際に作動油Oの液面が伸側室R1、圧側室R2およびタンクTで差ができても、調整弁8,37の開弁によって伸側室R1と圧側室R2とが第一通路7で連通され、伸側室R1とタンクTとが第二通路36によって連通されるので伸側室R1、圧側室R2およびタンクTの作動油Oの液面の高さを等しくできる。 Further, the installation position of the second passage 36 is when the piston 2 is in a neutral position with respect to the cylinder 1 and the liquid levels of the hydraulic oil O filled in the extension side chamber R1, the compression side chamber R2 and the tank T are equal. , The liquid level of the hydraulic oil O is set to be located at the width of the second passage 36 in the vertical direction in FIG. When the seismic isolation damper D21 is in a stationary state, the pressure difference between the extension side chamber R1 and the compression side chamber R2 is small and the adjusting valve 8 is opened, and the pressure difference between the extension side chamber R1 and the tank T is small and the adjustment valve 37 is opened. .. As a result, even if the liquid level of the hydraulic oil O differs between the extension side chamber R1, the compression side chamber R2, and the tank T when the piston 2 returns to the neutral position with respect to the cylinder 1 after the seismic isolation damper D21 expands and contracts. By opening the regulating valves 8 and 37, the extension side chamber R1 and the compression side chamber R2 are communicated with each other in the first passage 7, and the extension side chamber R1 and the tank T are communicated with each other by the second passage 36. And the height of the liquid level of the hydraulic oil O in the tank T can be made equal.

このように構成された免震用ダンパD21の作動について説明する。ピストン2がシリンダ1に対して図8に示す中立位置から左方へ移動すると、ピストン2の移動に伴って伸側室R1が圧縮されて容積が減少して、伸側室R1内の圧力が上昇する。反対の圧側室R2は、ピストン2の移動に伴って容積が拡大するので吸込通路35を通じてタンクTから作動油Oが供給される。伸側室R1と圧側室R2の圧力に差が生じて調整弁8が第一通路7を閉塞するため、第一通路7を介して伸側室R1から圧側室R2への作動油Oと気体の移動は規制される。また、伸側室R1とタンクTの圧力に差が生じて調整弁37が第二通路36を閉塞するため、第二通路36を介して伸側室R1からタンクTへの作動油Oと気体の移動は規制される。 The operation of the seismic isolation damper D21 configured in this way will be described. When the piston 2 moves to the left from the neutral position shown in FIG. 8 with respect to the cylinder 1, the extension side chamber R1 is compressed and the volume decreases as the piston 2 moves, and the pressure in the extension side chamber R1 rises. .. Since the volume of the opposite compression side chamber R2 increases with the movement of the piston 2, the hydraulic oil O is supplied from the tank T through the suction passage 35. Since the pressure difference between the extension side chamber R1 and the compression side chamber R2 causes the regulating valve 8 to block the first passage 7, the hydraulic oil O and the gas move from the extension side chamber R1 to the compression side chamber R2 via the first passage 7. Is regulated. Further, since the pressure difference between the extension side chamber R1 and the tank T causes the adjusting valve 37 to block the second passage 36, the hydraulic oil O and the gas move from the extension side chamber R1 to the tank T via the second passage 36. Is regulated.

ピストン2の移動による伸側室R1内の容積減少分は伸側室R1内の気体の体積の減少により補償され、圧側室R2内の容積増大分はタンクTからの作動油Oの供給により補償される。ピストン2の中立位置からの移動距離が所定ストローク範囲未満では、伸側室R1内の気体の圧縮量が小さいために伸側室R1内の圧力上昇が抑制され、圧側室R2内はタンクTと略等圧となり圧力減少が小さいために減衰通路5を通過する作動油量も少ない。よって、ピストン2の中立位置からの移動距離が所定ストローク範囲未満である場合、伸側室R1と圧側室R2の圧力差が小さく免震用ダンパD21は、低い減衰力を発揮する。 The decrease in volume in the extension chamber R1 due to the movement of the piston 2 is compensated by the decrease in the volume of gas in the extension chamber R1, and the increase in volume in the compression side chamber R2 is compensated by the supply of hydraulic oil O from the tank T. .. When the moving distance of the piston 2 from the neutral position is less than the predetermined stroke range, the pressure increase in the extension side chamber R1 is suppressed because the amount of compression of the gas in the extension side chamber R1 is small, and the inside of the compression side chamber R2 is abbreviated as tank T. Since it becomes a pressure and the pressure decrease is small, the amount of hydraulic oil passing through the damping passage 5 is also small. Therefore, when the moving distance of the piston 2 from the neutral position is less than the predetermined stroke range, the pressure difference between the extension side chamber R1 and the compression side chamber R2 is small, and the seismic isolation damper D21 exhibits a low damping force.

他方、ピストン2の中立位置からの移動距離が所定ストローク範囲以上となると、伸側室R1内の気体の圧縮量が大きく、減衰通路5を通過して伸側室R1から圧側室R2へ移動する作動油量も多くなる。そして、ピストン2の移動距離に応じて伸側室R1と圧側室R2の圧力差も大きくなっていくので、免震用ダンパD21は、ピストン2の中立位置からの移動距離に応じて高い減衰力を発揮するようになる。 On the other hand, when the moving distance of the piston 2 from the neutral position exceeds a predetermined stroke range, the amount of compression of the gas in the extension side chamber R1 is large, and the hydraulic oil moves from the extension side chamber R1 to the compression side chamber R2 through the damping passage 5. The amount will also increase. Then, the pressure difference between the extension side chamber R1 and the compression side chamber R2 also increases according to the movement distance of the piston 2, so that the seismic isolation damper D21 exerts a high damping force according to the movement distance from the neutral position of the piston 2. It will be demonstrated.

また、ピストン2がシリンダ1に対して図2に示す中立位置から右方へ移動すると、ピストン2の移動に伴って圧側室R2が圧縮されて容積が減少して、圧側室R2内の圧力が上昇する。反対の伸側室R1は、ピストン2の移動に伴って容積が拡大するので減圧される。圧側室R2と伸側室R1の圧力に差が生じて調整弁8が第一通路7を閉塞するため、第一通路7を介して圧側室R2から伸側室R1への作動油Oと気体の移動は規制される。また、伸側室R1とタンクTの圧力に差が生じて調整弁37が第二通路36を閉塞するため、第二通路36を介してタンクTから伸側室R1への作動油Oと気体の移動は規制される。 Further, when the piston 2 moves to the right from the neutral position shown in FIG. 2 with respect to the cylinder 1, the compression side chamber R2 is compressed and the volume decreases as the piston 2 moves, and the pressure in the compression side chamber R2 increases. To rise. The volume of the opposite extension chamber R1 increases as the piston 2 moves, so that the volume is reduced. Since a difference in pressure between the compression side chamber R2 and the extension side chamber R1 occurs and the regulating valve 8 closes the first passage 7, the hydraulic oil O and the gas move from the compression side chamber R2 to the extension side chamber R1 via the first passage 7. Is regulated. Further, since the pressure difference between the extension side chamber R1 and the tank T causes the adjusting valve 37 to block the second passage 36, the hydraulic oil O and the gas move from the tank T to the extension side chamber R1 via the second passage 36. Is regulated.

ピストン2の移動による圧側室R2内の容積減少分は圧側室R2内の気体の体積の減少と減衰通路5,33を介して作動油Oの排出により補償され、伸側室R1内の容積増大分は減衰通路5を介しての作動油Oの流入と伸側室R1内の気体の体積の膨張により補償される。ピストン2の中立位置からの移動距離が所定ストローク範囲未満では、圧側室R2内の気体の圧縮量と伸側室R1内の気体の膨張量が小さいために圧側室R2内の圧力上昇は抑制されるとともに伸側室R1内の圧力減少も抑制され、減衰通路5,33を通過する作動油量も少ない。よって、ピストン2の中立位置からの移動距離が所定ストローク範囲未満である場合、圧側室R2と伸側室R1の圧力差が小さいから、免震用ダンパD21は低い減衰力を発揮する。 The volume decrease in the compression side chamber R2 due to the movement of the piston 2 is compensated by the decrease in the volume of the gas in the compression side chamber R2 and the discharge of the hydraulic oil O through the damping passages 5 and 33, and the volume increase in the extension chamber R1. Is compensated by the inflow of hydraulic oil O through the damping passage 5 and the expansion of the volume of gas in the extension chamber R1. When the moving distance of the piston 2 from the neutral position is less than the predetermined stroke range, the pressure increase in the compression side chamber R2 is suppressed because the compression amount of the gas in the compression side chamber R2 and the expansion amount of the gas in the extension side chamber R1 are small. At the same time, the pressure decrease in the extension side chamber R1 is suppressed, and the amount of hydraulic oil passing through the damping passages 5 and 33 is also small. Therefore, when the moving distance of the piston 2 from the neutral position is less than the predetermined stroke range, the pressure difference between the compression side chamber R2 and the extension side chamber R1 is small, so that the seismic isolation damper D21 exhibits a low damping force.

他方、ピストン2の中立位置からの移動距離が所定ストローク範囲以上となると、圧側室R2内の気体の圧縮量と伸側室R1内の気体の膨張量が大きく、減衰通路5,33を通過して圧側室R2から伸側室R1およびタンクTへ移動する作動油量も多くなる。そして、ピストン2の移動距離に応じてシリンダ1内の圧力が大きくなっていくので、免震用ダンパD21は、ピストン2の中立位置からの移動距離に応じて高い減衰力を発揮するようになる。 On the other hand, when the moving distance of the piston 2 from the neutral position exceeds a predetermined stroke range, the amount of compression of the gas in the compression side chamber R2 and the amount of expansion of the gas in the extension side chamber R1 are large and pass through the damping passages 5 and 33. The amount of hydraulic oil that moves from the compression side chamber R2 to the extension side chamber R1 and the tank T also increases. Then, since the pressure in the cylinder 1 increases according to the moving distance of the piston 2, the seismic isolation damper D21 exerts a high damping force according to the moving distance from the neutral position of the piston 2. ..

このように第二の実施の形態における免震用ダンパD21は、ピストン2が中立位置から移動して伸長しても収縮しても所定ストローク範囲未満でのストロークでは低い減衰力を発揮し、所定ストローク範囲以上のストロークでは高い減衰力を発揮できる。なお、所定ストローク範囲は、免震用ダンパD21を設置する構造物Sの地盤Gに対するストローク限界等によって適するように設定されればよい。所定ストローク範囲は、伸側室R1の容積に対する伸側室R1における作動油Oの体積の割合と伸側室R1の気体の圧力の調節と、圧側室R2の容積に対する圧側室R2における作動油Oの体積の割合と圧側室R2の気体の圧力の調節によって設定できる。また、本例では、伸側室R1と圧側室R2に気体を充填しているが、気体を充填せず真空としても免震用ダンパD11は、同様の作動を呈する。真空とする場合には、所定ストローク範囲は、伸側室R1の容積に対する伸側室R1における作動油Oの体積の割合の調節と、圧側室R2の容積に対する圧側室R2における作動油Oの体積の割合の調節で設定すればよい。 As described above, the seismic isolation damper D21 in the second embodiment exerts a low damping force in a stroke less than a predetermined stroke range even if the piston 2 moves from the neutral position and extends or contracts, and is predetermined. A high damping force can be exhibited with a stroke beyond the stroke range. The predetermined stroke range may be set so as to be suitable according to the stroke limit of the structure S on which the seismic isolation damper D21 is installed with respect to the ground G. The predetermined stroke range is the ratio of the volume of the hydraulic oil O in the extension side chamber R1 to the volume of the extension side chamber R1, the adjustment of the gas pressure in the extension side chamber R1, and the volume of the hydraulic oil O in the compression side chamber R2 to the volume of the compression side chamber R2. It can be set by adjusting the ratio and the pressure of the gas in the compression side chamber R2. Further, in this example, the extension side chamber R1 and the compression side chamber R2 are filled with gas, but the seismic isolation damper D11 exhibits the same operation even if the vacuum is not filled with the gas. In the case of a vacuum, the predetermined stroke range is the adjustment of the ratio of the volume of the hydraulic oil O in the extension side chamber R1 to the volume of the extension side chamber R1 and the ratio of the volume of the hydraulic oil O in the compression side chamber R2 to the volume of the compression side chamber R2. It can be set by adjusting.

よって、本例の免震用ダンパD21にあっては、ピストン2の中立位置からの移動距離が小さくなる中小振幅の規模の地震の揺れに対しては、低い減衰力を発揮し、大振幅の地震の揺れに対しては高い減衰力を発揮できる。また、免震用ダンパD21は、ピストン2の中立位置からの移動距離によって低い減衰力と高い減衰力を切換えるのに際して、複雑な機構の装置を利用せずに済むので、免震用ダンパD21は、軽量かつ構造が簡単で安価となる。以上より、本発明の免震用ダンパD21によれば、中小振幅の規模の地震の揺れに対して低い減衰力を発揮し、大振幅の地震の揺れに対して高い減衰力を発揮できるとともに、免震用ダンパD21が軽量かつ構造が簡単で安価となる。 Therefore, the seismic isolation damper D21 of this example exerts a low damping force against the shaking of an earthquake of a small and medium amplitude scale in which the moving distance of the piston 2 from the neutral position is small, and has a large amplitude. It can exert a high damping force against the shaking of an earthquake. Further, since the seismic isolation damper D21 does not need to use a device having a complicated mechanism when switching between a low damping force and a high damping force depending on the moving distance of the piston 2 from the neutral position, the seismic isolation damper D21 is used. Lightweight, simple in structure and inexpensive. From the above, according to the seismic isolation damper D21 of the present invention, it is possible to exert a low damping force against the shaking of a small-to-medium-amplitude earthquake, and to exert a high damping force against the shaking of a large-amplitude earthquake. The seismic isolation damper D21 is lightweight, has a simple structure, and is inexpensive.

また、本例の免震用ダンパD21にあっては、シリンダ1に対してピストン2が中立位置からの移動距離が所定ストローク範囲未満では発生減衰力を低くし、所定ストローク範囲以上では発生減衰力を高くするようになっている。このように免震用ダンパD21を構成すると、所定ストローク範囲の設定で減衰力を高くするストローク量を決定できる。 Further, in the seismic isolation damper D21 of this example, the generated damping force is lowered when the moving distance of the piston 2 from the neutral position with respect to the cylinder 1 is less than the predetermined stroke range, and the generated damping force is lowered when the moving distance is less than the predetermined stroke range. Is designed to be high. When the seismic isolation damper D21 is configured in this way, the stroke amount for increasing the damping force can be determined by setting a predetermined stroke range.

また、本例の免震用ダンパD21においても、伸側室R1と圧側室R2にそれぞれ充填される作動油Oの体積を伸側室R1と圧側室R2の容積の二分の一以上とするとよい。このように本例の免震用ダンパD21を構成すれば、ピストン2が中立位置からストロークエンドまでの距離の二分の一以下のストロークで高い減衰力を発揮できるようになり、構造物Sの擁壁への衝突を効果的に防止できる。 Further, also in the seismic isolation damper D21 of this example, the volume of the hydraulic oil O filled in the extension side chamber R1 and the compression side chamber R2, respectively, may be more than half the volume of the extension side chamber R1 and the compression side chamber R2. By configuring the seismic isolation damper D21 of this example in this way, the piston 2 can exert a high damping force with a stroke of less than half the distance from the neutral position to the stroke end, and the structure S is retained. It can effectively prevent collision with the wall.

さらに、本例の免震用ダンパD21では、シリンダ1に対してピストン2が中立位置に配置されて静止すると、調整弁8と調整弁37が開弁するので、伸側室R1、圧側室R2およびタンクTが第一通路7と第二通路36によって連通状態とされる。このように構成された免震用ダンパD21では、地震動が収まって免震用ダンパD21が免震装置Mによってピストン2が中立位置に復帰して静止すると、伸側室R1と圧側室R2の作動油Oの液面の高さに偏りがあってもこれを等しくさせる。よって、次回に地震が発生した際に、免震用ダンパD21は、ピストン2の中立位置からの移動距離が設定された距離(所定ストローク範囲)未満では伸長しても収縮しても必ず低い減衰力を発揮し、設定された距離(所定ストローク範囲)以上となると伸長しても収縮しても必ず高い減衰力を発揮できる。したがって、このように構成された免震用ダンパD21では、地震が発生後に伸側室R1と圧側室R2の作動油Oの量を調節するメンテナンス作業が不要となる。 Further, in the seismic isolation damper D21 of this example, when the piston 2 is arranged in a neutral position with respect to the cylinder 1 and stands still, the adjusting valve 8 and the adjusting valve 37 open, so that the extension side chamber R1, the compression side chamber R2 and The tank T is in a communicating state by the first passage 7 and the second passage 36. In the seismic isolation damper D21 configured in this way, when the seismic motion has subsided and the piston 2 returns to the neutral position by the seismic isolation device M and stands still, the hydraulic oil in the extension side chamber R1 and the compression side chamber R2 Even if there is a bias in the height of the liquid level of O, this is made equal. Therefore, when an earthquake occurs next time, the seismic isolation damper D21 will always have low damping even if it expands or contracts if the moving distance from the neutral position of the piston 2 is less than the set distance (predetermined stroke range). It exerts a force, and when it exceeds a set distance (predetermined stroke range), it can always exert a high damping force regardless of whether it expands or contracts. Therefore, the seismic isolation damper D21 configured in this way does not require maintenance work for adjusting the amount of hydraulic oil O in the extension side chamber R1 and the compression side chamber R2 after an earthquake occurs.

なお、図9に示す第二の実施の形態の一変形例の免震用ダンパD22のように、第二通路36の設置に代えて、バルブケース31に対して圧側室R2とタンクTとを連通する第三通路38と、第三通路38の途中に設置した調整弁39を設けてもよい。液面調整部は、シリンダ1に対してピストン2が中立位置に配置されて静止すると、伸側室R1、圧側室R2およびタンクTを連通状態とすればよいので、第一通路7、第二通路36および第三通路38の全部或いは任意の二つの通路と、各通路に設けた調整弁とで構成されればよい。 As in the seismic isolation damper D22 of the modified example of the second embodiment shown in FIG. 9, instead of installing the second passage 36, the compression side chamber R2 and the tank T are provided with respect to the valve case 31. A third passage 38 that communicates with the third passage 38 and a regulating valve 39 installed in the middle of the third passage 38 may be provided. In the liquid level adjusting unit, when the piston 2 is arranged in a neutral position with respect to the cylinder 1 and stands still, the extension side chamber R1, the compression side chamber R2 and the tank T may be in a communicative state. It may be composed of all or any two passages of 36 and the third passage 38, and a regulating valve provided in each passage.

また、図10に示す第二の実施の形態の一変形例の免震用ダンパD23のように、伸側室R1とタンクTとを途中に減衰弁41を備える減衰通路40で連通して、ピストン2には圧側室R2から伸側室R1へ向かう流体の流れのみを許容する整流通路42を設けてもよい。この場合、免震用ダンパD23は、伸縮時にシリンダ1から減衰通路40を通じてタンクTへ作動油Oが排出されるユニフロー型のダンパに設定される。このように構成しても免震用ダンパD23は、免震用ダンパD21と同様に、ピストン2が中立位置から移動して伸長しても収縮しても所定ストローク範囲未満でのストロークでは低い減衰力を発揮し、所定ストローク範囲以上のストロークでは高い減衰力を発揮できる。 Further, as in the seismic isolation damper D23 of one modification of the second embodiment shown in FIG. 10, the extension side chamber R1 and the tank T are communicated with each other by a damping passage 40 provided with a damping valve 41 in the middle, and a piston is used. No. 2 may be provided with a rectifying passage 42 that allows only the flow of fluid from the compression side chamber R2 to the extension side chamber R1. In this case, the seismic isolation damper D23 is set to a uniflow type damper in which hydraulic oil O is discharged from the cylinder 1 to the tank T through the damping passage 40 when expanding and contracting. Even with this configuration, the seismic isolation damper D23, like the seismic isolation damper D21, has low damping when the stroke is less than the predetermined stroke range even if the piston 2 moves from the neutral position and extends or contracts. It exerts a force and can exert a high damping force in a stroke exceeding a predetermined stroke range.

さらに、この第二の実施の形態の免震用ダンパD21,D22,D23に対しても、免震用ダンパD12,D13のように伸側気室形成部材と圧側気室形成部材をフリーピストンとして伸側室R1内に伸側気室G1を形成し、圧側室R2内に圧側気室G2を形成する構造を採用できる。この場合、図11に示した免震用ダンパD24のように、シリンダ1内に摺動自在に挿入される伸側気室形成部材50と圧側気室形成部材51を設けて伸側気室G3と圧側気室G4を形成してもよい。 Further, with respect to the seismic isolation dampers D21, D22, and D23 of the second embodiment, the extension side air chamber forming member and the compression side air chamber forming member are used as free pistons like the seismic isolation dampers D12 and D13. A structure can be adopted in which the extension side air chamber G1 is formed in the extension side chamber R1 and the compression side air chamber G2 is formed in the compression side chamber R2. In this case, like the seismic isolation damper D24 shown in FIG. 11, the extension side air chamber forming member 50 and the compression side air chamber forming member 51 slidably inserted into the cylinder 1 are provided to provide the extension side air chamber G3. And the compression side air chamber G4 may be formed.

詳細には、伸側気室形成部材50は、シリンダ1内に摺動自在に挿入されるとともに内周にロッド3が摺動自在に挿入される環状のフリーピストンとされており、ロッドガイド4との間に気体が充填される伸側気室G3を形成している。伸側気室G3内には、ロッドガイド4と伸側気室形成部材50との間に介装されるばね部材52が収容されている。また、伸側気室G3は、タンクTの作動油Oの液面より上方の気体が充填される空間に連通されている。 Specifically, the extension side air chamber forming member 50 is an annular free piston that is slidably inserted into the cylinder 1 and the rod 3 is slidably inserted into the inner circumference of the rod guide 4. An extension side air chamber G3 filled with gas is formed between the two. In the extension side air chamber G3, a spring member 52 interposed between the rod guide 4 and the extension side air chamber forming member 50 is housed. Further, the extension side air chamber G3 communicates with a space filled with gas above the liquid level of the hydraulic oil O in the tank T.

圧側気室形成部材51は、シリンダ1内に摺動自在に挿入されるとともに内周にバルブケース31に設けた円柱状のガイド軸31aが摺動自在に挿入される環状のフリーピストンとされており、バルブケース31との間に気体が充填される圧側気室G4を形成している。圧側気室G4内には、バルブケース31と圧側気室形成部材51との間に介装されるばね部材53が収容されている。また、圧側気室G4は、タンクTの作動油Oの液面より上方の気体が充填される空間に連通されている。 The compression side air chamber forming member 51 is an annular free piston that is slidably inserted into the cylinder 1 and a columnar guide shaft 31a provided in the valve case 31 is slidably inserted into the inner circumference thereof. A pressure side air chamber G4 filled with gas is formed between the cylinder and the valve case 31. A spring member 53 interposed between the valve case 31 and the compression side air chamber forming member 51 is housed in the compression side air chamber G4. Further, the compression side air chamber G4 communicates with a space filled with a gas above the liquid level of the hydraulic oil O in the tank T.

この免震用ダンパD24におけるバルブケース31は、圧側室R2側へ向けて突出するガイド軸31aを備えており、圧側室R2とタンクTとを連通する減衰通路33と吸込通路35はガイド軸31aの先端に開口しており、圧側気室形成部材51によって閉塞されないよう配慮されている。 The valve case 31 in the seismic isolation damper D24 includes a guide shaft 31a that projects toward the compression side chamber R2 side, and the damping passage 33 and the suction passage 35 that communicate the compression side chamber R2 and the tank T are guide shafts 31a. It is open at the tip of the valve, and care is taken not to be blocked by the compression side air chamber forming member 51.

このように免震用ダンパD24では、伸側気室G3と圧側気室R4は、免震用ダンパD24が伸縮してタンクT内の作動油Oの液面が上下しても常にタンクT内の気体が充填されている空間に連通されるようになっている。このように伸側気室G3と圧側気室R4は、タンクTを通じて常時連通されており、内部の圧力が等しくなるようになっている。また、ばね部材52とばね部材53は、供にコイルばねとされており、免震用ダンパD24が伸縮した後にピストン2がシリンダ1に対して中立位置に復帰すると、伸側気室形成部材50と圧側気室形成部材51を元の位置を戻すようになっている。 In this way, in the seismic isolation damper D24, the extension side air chamber G3 and the compression side air chamber R4 are always in the tank T even if the seismic isolation damper D24 expands and contracts and the liquid level of the hydraulic oil O in the tank T rises and falls. It is designed to communicate with the space filled with the gas of. In this way, the extension side air chamber G3 and the compression side air chamber R4 are always in communication with each other through the tank T so that the internal pressures are equal. Further, the spring member 52 and the spring member 53 are also coil springs, and when the piston 2 returns to the neutral position with respect to the cylinder 1 after the seismic isolation damper D24 expands and contracts, the extension side air chamber forming member 50 The compression side air chamber forming member 51 is returned to its original position.

このように構成される免震用ダンパD24では、ばね部材52が最収縮するまでは伸側気室形成部材50が左方へ移動できる。そして、ピストン2が中立位置から図11中左方への移動距離が所定ストローク範囲に達するまでは、伸側気室形成部材50が左方へ移動してもばね部材52が最収縮せず、所定ストローク範囲に達するとばね部材52が最収縮して伸側気室形成部材50の左方への移動が規制される。つまり、ばね部材52は、伸側気室形成部材50を元の位置へ復帰させるだけでなくストッパとしても機能しているが、免震用ダンパD12と同様にストッパを設けてもよい。 In the seismic isolation damper D24 configured in this way, the extension side air chamber forming member 50 can move to the left until the spring member 52 contracts to the maximum. Then, until the movement distance of the piston 2 from the neutral position to the left in FIG. 11 reaches a predetermined stroke range, the spring member 52 does not contract most even if the extension side air chamber forming member 50 moves to the left. When the predetermined stroke range is reached, the spring member 52 contracts most and the movement of the extension side air chamber forming member 50 to the left is restricted. That is, the spring member 52 not only returns the extension side air chamber forming member 50 to the original position but also functions as a stopper, but a stopper may be provided as in the seismic isolation damper D12.

よって、免震用ダンパD24が伸長する際に、ピストン2が中立位置から所定ストローク範囲未満でストロークする場合には、伸側気室形成部材50がピストン2の移動に応じて同方向へ移動する。また、圧側気室形成部材51がピストン2の移動に応じて同方向へ移動する。伸側気室G3と圧側気室G4はタンクTを介して連通されており、伸側気室G3が伸側気室形成部材50の左方への移動によって圧縮されても、圧側気室G4が圧側気室形成部材51の左方への移動によって拡大される。このように免震用ダンパD24が伸長する場合、伸側気室G3と圧側気室G4とタンクT内における気体が充填される空間の全容積、つまり、全気室の容積は、ロッド3がシリンダ1から退出する体積分だけ増大する。よって、減衰通路5を流体が通過する際の圧力損失を無視すれば力の釣り合いから、伸側室R1における圧力上昇量は、ばね部材52の圧縮によって受ける力による圧力上昇から全気室の増大に見合う圧力減少を差し引いた量となる。他方、減衰通路5を流体が通過する際の圧力損失を無視すれば力の釣り合いから、圧側室R2における圧力減少量は、ばね部材53の伸長によって受ける力による圧力減少と全気室の増大に見合う圧力減少を加算した量となる。以上から、ばね部材52,53のばね定数を小さくすれば、伸側室R1と圧側室R2の圧力差が非常に小さくなり、免震用ダンパD24は、ピストン2が中立位置から所定ストローク範囲内でストロークする場合、非常に小さい減衰力しか発揮しない。 Therefore, when the seismic isolation damper D24 extends and the piston 2 strokes from the neutral position within a predetermined stroke range, the extension side air chamber forming member 50 moves in the same direction according to the movement of the piston 2. .. Further, the compression side air chamber forming member 51 moves in the same direction according to the movement of the piston 2. The extension side air chamber G3 and the compression side air chamber G4 are communicated with each other via the tank T, and even if the extension side air chamber G3 is compressed by the movement of the extension side air chamber forming member 50 to the left, the compression side air chamber G4 Is expanded by moving the compression side air chamber forming member 51 to the left. When the seismic isolation damper D24 is extended in this way, the total volume of the space filled with gas in the extension side air chamber G3, the compression side air chamber G4, and the tank T, that is, the total volume of the total air chamber is determined by the rod 3. It increases by the volume that exits the cylinder 1. Therefore, if the pressure loss when the fluid passes through the damping passage 5 is ignored, the amount of pressure increase in the extension side chamber R1 changes from the pressure increase due to the force received by the compression of the spring member 52 to the increase in all air chambers due to the balance of forces. It is the amount after deducting the corresponding pressure drop. On the other hand, if the pressure loss when the fluid passes through the damping passage 5 is ignored, the amount of pressure decrease in the compression side chamber R2 is due to the pressure decrease due to the force received by the extension of the spring member 53 and the increase in the entire air chamber. It is the sum of the corresponding pressure reduction. From the above, if the spring constants of the spring members 52 and 53 are reduced, the pressure difference between the extension side chamber R1 and the compression side chamber R2 becomes very small, and in the seismic isolation damper D24, the piston 2 is within a predetermined stroke range from the neutral position. When stroking, it exerts very little damping force.

他方、ピストン2の中立位置からの移動距離が所定ストローク範囲以上となると、伸側気室形成部材50は、ばね部材52の最圧縮によってそれ以上伸側気室G3を圧縮する方向へ移動できなくなる。すると、ピストン2の移動によって伸側室R1内の作動油Oが圧縮されて伸側室R1における作動油Oが充填されている空間の圧力が大きく上昇し減衰通路5を通過して伸側室R1から圧側室R2へ移動する作動油量が多くなる。また、圧側気室形成部材51がピストン2の移動に応じて同方向へ移動するが、圧側気室G4がタンクT内に連通されており、圧側室R2には、吸込通路35を通じてロッド3がシリンダ1から退出する体積分の作動油が供給される。よって、圧側室R2内の圧力は、ばね部材53の伸長によって作用する力の分だけタンクT内より低い圧力となる。よって、ピストン2の中立位置からの移動距離が所定ストローク範囲以上となると、伸側室R1と圧側室R2の圧力差が大きくなって、免震用ダンパD24は、高い減衰力の発揮で自身の伸長を妨げるようになる。 On the other hand, when the moving distance of the piston 2 from the neutral position exceeds a predetermined stroke range, the extension side air chamber forming member 50 cannot move in the direction of further compressing the extension side air chamber G3 due to the maximum compression of the spring member 52. .. Then, the hydraulic oil O in the extension side chamber R1 is compressed by the movement of the piston 2, and the pressure in the space filled with the hydraulic oil O in the extension side chamber R1 rises significantly, passes through the damping passage 5, and is compressed from the extension side chamber R1. The amount of hydraulic oil that moves to the chamber R2 increases. Further, the compression side air chamber forming member 51 moves in the same direction according to the movement of the piston 2, but the compression side air chamber G4 is communicated with the tank T, and the rod 3 is connected to the compression side chamber R2 through the suction passage 35. A volume of hydraulic oil that exits the cylinder 1 is supplied. Therefore, the pressure in the compression side chamber R2 is lower than that in the tank T by the force acting by the extension of the spring member 53. Therefore, when the moving distance of the piston 2 from the neutral position exceeds a predetermined stroke range, the pressure difference between the extension side chamber R1 and the compression side chamber R2 becomes large, and the seismic isolation damper D24 exerts its own extension by exerting a high damping force. Will interfere.

また、免震用ダンパD24では、ばね部材53が最収縮するまでは圧側気室形成部材51が右方へ移動できる。そして、ピストン2が中立位置から図11中右方への移動距離が所定ストローク範囲に達するまでは、圧側気室形成部材51が右方へ移動してもばね部材53が最収縮せず、所定ストローク範囲に達するとばね部材53が最収縮して圧側気室形成部材51の右方への移動が規制される。つまり、ばね部材53は、圧側気室形成部材51を元の位置へ復帰させるだけでなくストッパとしても機能しているが、免震用ダンパD12と同様にストッパを設けてもよい。 Further, in the seismic isolation damper D24, the compression side air chamber forming member 51 can move to the right until the spring member 53 contracts to the maximum. Then, until the movement distance of the piston 2 from the neutral position to the right in FIG. 11 reaches a predetermined stroke range, the spring member 53 does not contract most even if the compression side air chamber forming member 51 moves to the right, and the spring member 53 does not contract most. When the stroke range is reached, the spring member 53 contracts most and the movement of the compression side air chamber forming member 51 to the right is restricted. That is, the spring member 53 not only returns the compression side air chamber forming member 51 to the original position but also functions as a stopper, but a stopper may be provided as in the seismic isolation damper D12.

よって、免震用ダンパD24が収縮する際に、ピストン2が中立位置から所定ストローク範囲未満でストロークする場合には、圧側気室形成部材51がピストン2の移動に応じて同方向へ移動する。また、伸側気室形成部材50がピストン2の移動に応じて同方向へ移動する。伸側気室G3と圧側気室G4はタンクTを介して連通されており、圧側気室G4が圧側気室形成部材51の右方への移動によって圧縮されても、伸側気室G3が伸側気室形成部材50の右方への移動によって拡大される。よって、免震用ダンパD24が収縮する場合、伸側気室G3と圧側気室G4とタンクT内における気体が充填される空間の全容積、つまり、全気室の容積は、ロッド3がシリンダ1へ侵入する体積分だけ減少する。よって、減衰通路5,33を流体が通過する際の圧力損失を無視すれば力の釣り合いから、圧側室R2における圧力上昇量は、ばね部材53の圧縮によって受ける力による圧力上昇から全気室の減少に見合う圧力増大を加算した量となる。他方、減衰通路5,33を流体が通過する際の圧力損失を無視すれば力の釣り合いから、伸側室R1における圧力減少量は、ばね部材52の伸長によって受ける力による圧力減少から全気室の減少に見合う圧力増大を差し引いた量となる。以上から、ばね部材52,53のばね定数を小さくすれば、圧側室R2と伸側室R1の圧力差が非常に小さくなり、免震用ダンパD24は、ピストン2が中立位置から所定ストローク範囲内でストロークする場合、非常に小さい減衰力しか発揮しない。 Therefore, when the seismic isolation damper D24 contracts and the piston 2 strokes from the neutral position to less than a predetermined stroke range, the compression side air chamber forming member 51 moves in the same direction according to the movement of the piston 2. Further, the extension side air chamber forming member 50 moves in the same direction according to the movement of the piston 2. The extension side air chamber G3 and the compression side air chamber G4 are communicated with each other via the tank T, and even if the compression side air chamber G4 is compressed by the movement of the compression side air chamber forming member 51 to the right, the extension side air chamber G3 remains. It is enlarged by moving the extensor air chamber forming member 50 to the right. Therefore, when the seismic isolation damper D24 contracts, the rod 3 is the cylinder for the total volume of the space filled with gas in the extension side air chamber G3, the compression side air chamber G4, and the tank T, that is, the volume of the total air chamber. The volume that invades 1 is reduced. Therefore, if the pressure loss when the fluid passes through the damping passages 5 and 33 is ignored, the amount of pressure increase in the compression side chamber R2 is due to the pressure increase due to the force received by the compression of the spring member 53. It is the sum of the pressure increase commensurate with the decrease. On the other hand, if the pressure loss when the fluid passes through the damping passages 5 and 33 is ignored, the amount of pressure decrease in the extension side chamber R1 is due to the pressure decrease due to the force received by the extension of the spring member 52 due to the balance of the force. The amount is obtained by subtracting the pressure increase commensurate with the decrease. From the above, if the spring constants of the spring members 52 and 53 are reduced, the pressure difference between the compression side chamber R2 and the extension side chamber R1 becomes very small, and the seismic isolation damper D24 has the piston 2 within a predetermined stroke range from the neutral position. When stroking, it exerts very little damping force.

他方、ピストン2の中立位置からの移動距離が所定ストローク範囲以上となると、圧側気室形成部材51は、ばね部材53の最圧縮によってそれ以上圧側気室G4を圧縮する方向へ移動できなくなる。すると、ピストン2の移動によって圧側室R2内の作動油Oが圧縮されて圧側室R2における作動油Oが充填されている空間の圧力が大きく上昇し減衰通路5および減衰通路33を通過する作動油量が多くなる。また、伸側気室形成部材50がピストン2の移動に応じて同方向へ移動するが、伸側気室G3がタンクT内に連通されている。よって、伸側室R1内の圧力は、ばね部材52の伸長によって作用する力の分だけタンクT内より低い圧力となる。よって、ピストン2の中立位置からの移動距離が所定ストローク範囲以上となると、圧側室R2と伸側室R1の圧力差が大きくなって、免震用ダンパD24は、高い減衰力の発揮で自身の伸長を妨げるようになる。 On the other hand, when the moving distance of the piston 2 from the neutral position is equal to or greater than the predetermined stroke range, the compression side air chamber forming member 51 cannot move in the direction of further compressing the compression side air chamber G4 due to the maximum compression of the spring member 53. Then, the hydraulic oil O in the compression side chamber R2 is compressed by the movement of the piston 2, and the pressure in the space filled with the hydraulic oil O in the compression side chamber R2 rises significantly, and the hydraulic oil passes through the damping passage 5 and the damping passage 33. The amount will increase. Further, the extension side air chamber forming member 50 moves in the same direction according to the movement of the piston 2, but the extension side air chamber G3 is communicated with the tank T. Therefore, the pressure in the extension side chamber R1 is lower than that in the tank T by the force acting by the extension of the spring member 52. Therefore, when the moving distance of the piston 2 from the neutral position exceeds a predetermined stroke range, the pressure difference between the compression side chamber R2 and the extension side chamber R1 becomes large, and the seismic isolation damper D24 exerts its own extension by exerting a high damping force. Will interfere.

免震用ダンパD24では、伸側気室G3と圧側気室G4とがタンクTの気体が充填される空間に連通されて全気室の容積が大きくなるため、伸縮時において伸側気室G3と圧側気室G4内の圧力変動が少なくなる。よって、本例の免震用ダンパD24は、減衰力を低減したい範囲でピストン2がストロークする際に発揮する減衰力をより一層低くできる。なお、伸側気室G3と圧側気室G4をタンクTに連通しない構造の採用も可能であり、ピストン2との間に伸側気室G3と圧側気室G4を形成してもよい。 In the seismic isolation damper D24, the extension side air chamber G3 and the compression side air chamber G4 are communicated with each other in the space filled with the gas in the tank T to increase the volume of the entire air chamber. And the pressure fluctuation in the compression side air chamber G4 is reduced. Therefore, the seismic isolation damper D24 of this example can further reduce the damping force exerted when the piston 2 strokes within the range in which the damping force is desired to be reduced. It is also possible to adopt a structure in which the extension side air chamber G3 and the compression side air chamber G4 do not communicate with the tank T, and the extension side air chamber G3 and the compression side air chamber G4 may be formed between the extension side air chamber G3 and the compression side air chamber G4.

また、この免震用ダンパD24では、伸長時にはばね部材52が最圧縮するまでは伸側気室形成部材50が左方へ移動できるので低い減衰力を発揮し、収縮時にはばね部材53が最圧縮するまでは圧側気室形成部材51が右方へ移動できるので低い減衰力を発揮する。よって、ばね部材52,53によって減衰力の高低の切換えができる。したがって、ばね部材52,53の密着長によって所定ストローク範囲を容易に設定できるが、ストッパを別途設けて所定ストローク範囲を設定してもよい。また、ばね部材52,53は、ピッチが途中で変わるコイルばねか或いはピッチの異なるコイルばねを直列配置した二段ばねとしておき、ピッチが狭い部位が最圧縮されるとばね定数が大きくなるようにしておき、ピッチが狭い部位の最圧縮によって伸側気室形成部材50および圧側気室形成部材51の移動を大きく妨げるようにしてもよい。このようにすれば、ピッチが狭い部位が最圧縮されると免震用ダンパ24の減衰力を高くでき、所定ストローク範囲を設定できる。なお、ばね部材52,53は、コイルばねのほか、ゴム等の弾性体で構成されてもよい。ばね部材52,53を省略する場合には、ピストン2が中立位置にある状態での伸側気室G3と圧側気室G4内の圧力によって伸側気室形成部材50と圧側気室形成部材51とが元の位置に復帰できるようにしつつ所定ストローク範囲を設定すればよい。 Further, in this seismic isolation damper D24, the extension side air chamber forming member 50 can move to the left until the spring member 52 is maximally compressed at the time of extension, so that a low damping force is exhibited, and the spring member 53 is most compressed at the time of contraction. Until this is done, the compression side air chamber forming member 51 can move to the right, so that a low damping force is exhibited. Therefore, the spring members 52 and 53 can switch the damping force between high and low. Therefore, although the predetermined stroke range can be easily set by the close contact length of the spring members 52 and 53, the predetermined stroke range may be set by separately providing a stopper. Further, the spring members 52 and 53 are set as a coil spring whose pitch changes in the middle or a two-stage spring in which coil springs having different pitches are arranged in series so that the spring constant becomes large when the portion having a narrow pitch is maximally compressed. The movement of the extension side air chamber forming member 50 and the compression side air chamber forming member 51 may be greatly hindered by the maximum compression of the portion having a narrow pitch. In this way, the damping force of the seismic isolation damper 24 can be increased when the portion having a narrow pitch is maximally compressed, and a predetermined stroke range can be set. The spring members 52 and 53 may be made of an elastic body such as rubber in addition to the coil spring. When the spring members 52 and 53 are omitted, the extension side air chamber forming member 50 and the compression side air chamber forming member 51 are affected by the pressure in the extension side air chamber G3 and the compression side air chamber G4 in the state where the piston 2 is in the neutral position. A predetermined stroke range may be set while allowing the and to return to the original position.

また、第二の実施の形態の免震用ダンパD21,D22,D23におけるロッド3或いはピストン2に伸側室R1と圧側室R2の一部として機能する空間を形成して、これら空間にそれぞれ伸側気室形成部材19と圧側気室形成部材20を挿入して伸側気室G1と圧側気室G2を形成してもよい。 Further, a space that functions as a part of the extension side chamber R1 and the compression side chamber R2 is formed in the rod 3 or the piston 2 in the seismic isolation dampers D21, D22, D23 of the second embodiment, and the extension side is formed in each of these spaces. The air chamber forming member 19 and the compression side air chamber forming member 20 may be inserted to form the extension side air chamber G1 and the compression side air chamber G2.

以上、本発明の好ましい実施の形態を詳細に説明したが、特許請求の範囲から逸脱しない限り、改造、変形及び変更が可能である。 Although the preferred embodiments of the present invention have been described in detail above, modifications, modifications and changes can be made as long as they do not deviate from the claims.

1・・・シリンダ、2・・・ピストン、3・・・ロッド、7・・・第一通路、8,37,39・・・調整弁、10・・・弁体、11,12・・・ばね、13,19,21,50・・・伸側気室形成部材、14,20,22,51・・・圧側気室形成部材、36・・・第二通路、38・・・第三通路、D11,D12,D13,D14,D15,D21,D22,D23,D24・・・免震用ダンパ、G1,G3・・・伸側気室、G2,G4・・・圧側気室、O・・・作動油(作動液体)、R1・・・伸側室、R2・・・圧側室、T・・・タンク 1 ... Cylinder, 2 ... Piston, 3 ... Rod, 7 ... First passage, 8, 37, 39 ... Adjusting valve, 10 ... Valve body, 11, 12 ... Spring, 13, 19, 21, 50 ... extension side air chamber forming member, 14, 20, 22, 51 ... compression side air chamber forming member, 36 ... second passage, 38 ... third passage , D11, D12, D13, D14, D15, D21, D22, D23, D24 ... Seismic isolation damper, G1, G3 ... Extension side air chamber, G2, G4 ... Pressure side air chamber, O ...・ Hydraulic oil (hydraulic liquid), R1 ・ ・ ・ extension side chamber, R2 ・ ・ ・ compression side chamber, T ・ ・ ・ tank

Claims (7)

シリンダと、
前記シリンダ内に摺動自在に挿入されて伸側室と圧側室を仕切るピストンと、
前記シリンダに挿入されるとともに前記ピストンに連結されるロッドと、
前記伸側室と前記圧側室とのそれぞれに充填された前記伸側室と前記圧側室の容積よりも少ない体積の作動液体と、
前記シリンダに対して前記ピストンが中立位置に配置されて静止すると前記伸側室と前記圧側室の前記作動液体の液面の高さを等しくする液面調整部とを備えた
ことを特徴とする免震用ダンパ。
Cylinder and
A piston that is slidably inserted into the cylinder to separate the extension side chamber and the compression side chamber,
A rod that is inserted into the cylinder and connected to the piston,
A working liquid having a volume smaller than the volume of the extension side chamber and the compression side chamber filled in the extension side chamber and the compression side chamber, respectively.
The isolation is characterized in that the piston is arranged in a neutral position with respect to the cylinder and is provided with a liquid level adjusting portion that equalizes the height of the liquid level of the working liquid in the extension side chamber and the compression side chamber when the piston is stationary. Seismic isolation.
前記液面調整部は、前記伸側室と前記圧側室とを連通する第一通路を有し、
前記第一通路は、前記ピストンが前記中立位置にあって前記伸側室と前記圧側室にそれぞれ充填される前記作動液体の液面が等しくなった際に前記第一通路の上下方向の幅に前記液面が位置するように設置される
ことを特徴とする請求項に記載の免震用ダンパ。
The liquid level adjusting unit has a first passage that communicates the extension side chamber and the compression side chamber.
The first passage has the width in the vertical direction of the first passage when the piston is in the neutral position and the liquid levels of the working liquids filled in the extension side chamber and the compression side chamber are equal to each other. The seismic isolation damper according to claim 1 , wherein the damper is installed so that the liquid level is located.
前記液面調整部は、前記伸側室と前記圧側室とを連通する第一通路と、前記第一通路を開閉する調整弁を有し、
前記調整弁は、弁体と、前記弁体を附勢して前記弁体を開弁位置に位置決めるばねとを有し、前記伸側室と前記圧側室の圧力差が所定圧未満となると開弁する
ことを特徴とする請求項に記載の免震用ダンパ。
The liquid level adjusting unit has a first passage that communicates the extension side chamber and the compression side chamber, and an adjustment valve that opens and closes the first passage.
The adjusting valve has a valve body and a spring that biases the valve body to position the valve body at a valve opening position, and opens when the pressure difference between the extension side chamber and the compression side chamber becomes less than a predetermined pressure. The seismic isolation damper according to claim 1 , wherein the damper is made to speak.
前記伸側室と前記圧側室に充填される前記作動液体の体積は、前記シリンダに対して前記ピストンが中立位置にある場合における前記伸側室と前記圧側室の容積の二分の一以上である
ことを特徴とする請求項1からのいずれか一項に記載の免震用ダンパ。
The volume of the working liquid filled in the extension side chamber and the compression side chamber is one half or more of the volume of the extension side chamber and the compression side chamber when the piston is in a neutral position with respect to the cylinder. The seismic isolation damper according to any one of claims 1 to 3, which is characteristic.
前記シリンダに対して前記ピストンの中立位置からの移動距離が所定ストローク範囲未満では発生減衰力を低くし、所定ストローク範囲以上では発生減衰力を高くする
ことを特徴とする請求項1から4のいずれか一項に記載の免震用ダンパ。
Any of claims 1 to 4, wherein the generated damping force is lowered when the moving distance of the piston from the neutral position of the piston is less than the predetermined stroke range with respect to the cylinder, and the generated damping force is increased when the moving distance of the piston is less than the predetermined stroke range. The seismic isolation damper described in item 1.
前記シリンダ外に設けられて作動液体を貯留して、前記ロッドの前記シリンダ内に出入りする体積を補償するタンクを備え、
前記液面調整部は、前記伸側室と前記タンクとを連通する第二通路と、前記圧側室と前記タンクとを連通する第三通路と、前記第二通路を開閉する第一調整弁および前記第三通路を開閉する第二調整弁とを有し、
前記第一および第二の調整弁は、弁体と、前記弁体を附勢して前記弁体を開弁位置に位置決めるばねとを有し、前記伸側室と前記圧側室の圧力差が所定圧未満となると開弁する
ことを特徴とする請求項に記載の免震用ダンパ。
A tank provided outside the cylinder to store the working liquid and compensate for the volume of the rod entering and exiting the cylinder is provided.
The liquid level adjusting unit includes a second passage that communicates the extension side chamber and the tank, a third passage that communicates the compression side chamber and the tank, a first adjustment valve that opens and closes the second passage, and the said. It has a second regulating valve that opens and closes the third passage,
The first and second regulating valves have a valve body and a spring that biases the valve body to position the valve body at a valve opening position, and the pressure difference between the extension side chamber and the compression side chamber is large. The seismic isolation damper according to claim 1 , wherein the valve is opened when the pressure becomes less than a predetermined pressure.
前記シリンダ外に設けられて作動液体を貯留して、前記ロッドの前記シリンダ内に出入りする体積を補償するタンクを備え、
前記液面調整部は、記伸側室と前記タンクとを連通する第二通路或いは前記圧側室と前記タンクとを連通する第三通路と、前記第一通路および前記第二通路或いは前記第三通路を開閉する調整弁とを有し、
前記調整弁は、弁体と、前記弁体を附勢して前記弁体を開弁位置に位置決めるばねとを有し、前記伸側室と前記圧側室の圧力差が所定圧未満となると開弁する
ことを特徴とする請求項に記載の免震用ダンパ。
A tank provided outside the cylinder to store the working liquid and compensate for the volume of the rod entering and exiting the cylinder is provided.
The liquid level adjusting unit, before a third passage communicating with said tank and second passage or said compression-side chamber communicating with said with lymphotoxin side chamber tank, the first passage and the second passage or the third It has a regulating valve that opens and closes the passage,
The adjusting valve has a valve body and a spring that biases the valve body to position the valve body at a valve opening position, and opens when the pressure difference between the extension side chamber and the compression side chamber becomes less than a predetermined pressure. The seismic isolation damper according to claim 1 , wherein the damper is made to speak.
JP2017115671A 2017-06-13 2017-06-13 Seismic isolation damper Active JP6894769B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017115671A JP6894769B2 (en) 2017-06-13 2017-06-13 Seismic isolation damper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017115671A JP6894769B2 (en) 2017-06-13 2017-06-13 Seismic isolation damper

Publications (2)

Publication Number Publication Date
JP2019002434A JP2019002434A (en) 2019-01-10
JP6894769B2 true JP6894769B2 (en) 2021-06-30

Family

ID=65005770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017115671A Active JP6894769B2 (en) 2017-06-13 2017-06-13 Seismic isolation damper

Country Status (1)

Country Link
JP (1) JP6894769B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115552142A (en) * 2020-06-02 2022-12-30 株式会社松美可管理控股公司 Flow control valve, damper, and steering device
CN115228324B (en) * 2022-07-26 2024-01-26 辽宁鑫钙环保科技有限公司 Self-weighing feeding type mixer

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50123784U (en) * 1974-03-28 1975-10-09
JPS56120841A (en) * 1980-02-27 1981-09-22 Nissan Motor Co Ltd Shock absorber
JPS60116437U (en) * 1984-01-18 1985-08-06 トヨタ自動車株式会社 damping force generator
JPH0517461Y2 (en) * 1986-12-23 1993-05-11
JPH04254023A (en) * 1991-02-05 1992-09-09 Toyota Motor Corp Gas damper stay
JP5370650B2 (en) * 2009-03-04 2013-12-18 日立オートモティブシステムズ株式会社 Damping damper and structure
JP2017026095A (en) * 2015-07-27 2017-02-02 カヤバ システム マシナリー株式会社 Damper

Also Published As

Publication number Publication date
JP2019002434A (en) 2019-01-10

Similar Documents

Publication Publication Date Title
US6340153B1 (en) Shock and acoustic mount
JP6370405B2 (en) Valve for hydraulic damper
JP5961129B2 (en) Shock absorber
KR100965918B1 (en) Selfpumping, hydropneumatic strut unit
JP6894769B2 (en) Seismic isolation damper
KR20110099659A (en) Damper
JP4901896B2 (en) Hydraulic damper
JP6128636B2 (en) Shock absorber
JP6774234B2 (en) Seismic isolation damper
JP6565442B2 (en) Cylinder device
JP5756310B2 (en) Double cylinder type hydraulic shock absorber
JP7268973B2 (en) seismic isolation damper
JP6720570B2 (en) Damper
JP6875961B2 (en) Seismic isolation damper
KR102614825B1 (en) Shock absorber
JPH08135714A (en) Hydraulic shock absorber
JP7570250B2 (en) Damper
WO2020241422A1 (en) Shock absorber
JP4858990B2 (en) Valve device
JPS5817140Y2 (en) hydraulic shock absorber
JP6622637B2 (en) damper
JP7422941B2 (en) buffer
WO2024185396A1 (en) Damping valve and buffer
JP6873562B2 (en) Valves and fluid dampers with valves
JP2018135904A (en) Horizontal type damper

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210604

R150 Certificate of patent or registration of utility model

Ref document number: 6894769

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350