[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6893344B2 - Copper gallium tellurium-based p-type thermoelectric semiconductor and thermoelectric power generation element using it - Google Patents

Copper gallium tellurium-based p-type thermoelectric semiconductor and thermoelectric power generation element using it Download PDF

Info

Publication number
JP6893344B2
JP6893344B2 JP2016204235A JP2016204235A JP6893344B2 JP 6893344 B2 JP6893344 B2 JP 6893344B2 JP 2016204235 A JP2016204235 A JP 2016204235A JP 2016204235 A JP2016204235 A JP 2016204235A JP 6893344 B2 JP6893344 B2 JP 6893344B2
Authority
JP
Japan
Prior art keywords
thermoelectric
manganese
semiconductor
copper gallium
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016204235A
Other languages
Japanese (ja)
Other versions
JP2018067590A (en
Inventor
直人 辻井
直人 辻井
孝雄 森
孝雄 森
ファヒム アハマド
ファヒム アハマド
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2016204235A priority Critical patent/JP6893344B2/en
Publication of JP2018067590A publication Critical patent/JP2018067590A/en
Application granted granted Critical
Publication of JP6893344B2 publication Critical patent/JP6893344B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Powder Metallurgy (AREA)

Description

本発明は、銅ガリウムテルル系p型熱電半導体、及びそれを用いた熱電発電素子に関する。 The present invention relates to a copper gallium tellurium-based p-type thermoelectric semiconductor and a thermoelectric power generation device using the same.

従来、熱電半導体については、現代社会で効率的にエネルギーを使用するために盛んな材料研究が行われており、信頼性の高い静かな冷却装置や発電機に使用するための大きな需要が築かれている。
熱電半導体の1つとして、銅ガリウムテルル化合物が知られている。銅ガリウムテルル化合物は、特許文献1及び非特許文献1に示されるように、高温で低い電気抵抗、大きなゼーベック係数、比較的低い熱伝導率を示し、高温領域で熱電半導体としての優れた性能を示す。しかしそれは、800K以上(約500℃以上)という高温での性能である。一方で、室温に近い低温、中温領域での熱の有効利用需要も高い。そのような需要に応えるためには、熱電半導体としての新たな熱電変換材料が必要とされていた。また、室温に近い低温、中温領域での発電効率が高い熱電発電素子が求められていた。
Conventionally, thermoelectric semiconductors have been actively researched for materials in order to use energy efficiently in modern society, and great demand has been established for use in reliable and quiet cooling devices and generators. ing.
A copper gallium tellurium compound is known as one of the thermoelectric semiconductors. As shown in Patent Document 1 and Non-Patent Document 1, the copper gallium tellurium compound exhibits low electric resistance at high temperature, a large Seebeck coefficient, and a relatively low thermal conductivity, and exhibits excellent performance as a thermoelectric semiconductor in a high temperature region. Shown. However, it is a performance at a high temperature of 800 K or higher (about 500 ° C or higher). On the other hand, there is a high demand for effective use of heat in the low and medium temperature regions near room temperature. In order to meet such demand, a new thermoelectric conversion material as a thermoelectric semiconductor was required. Further, there has been a demand for a thermoelectric power generation element having high power generation efficiency in a low temperature and medium temperature region close to room temperature.

特開2013−016685号公報Japanese Unexamined Patent Publication No. 2013-016685

Advanced Materials,vol.24(2012)pp.3622−3626Advanced Materials, vol. 24 (2012) pp. 3622-3626 Inorganic Materials,vol.43(2007)pp.12−17Inorganic Materials, vol. 43 (2007) pp. 12-17

本発明は、室温近傍から400℃程度の熱電半導体としては比較的低い温度領域においても高い熱電変換効率を有する熱電半導体及び熱電発電素子を提供することを目的とする。 An object of the present invention is to provide a thermoelectric semiconductor and a thermoelectric power generation element having high thermoelectric conversion efficiency even in a relatively low temperature region as a thermoelectric semiconductor of about 400 ° C. from around room temperature.

本発明者らは、種々検討した結果、銅ガリウムテルル化合物にクロム、マンガン、鉄、コバルト、及びニッケルからなる群から選ばれる1以上の磁性をもつ元素を添加することにより、上記目的である比較的低い作動温度領域においても高い熱電変換効率を有するp型熱電半導体を提供することができることを見出した。本発明の構成は以下のとおりである。 As a result of various studies, the present inventors have added an element having one or more magnetisms selected from the group consisting of chromium, manganese, iron, cobalt, and nickel to a copper gallium tellurium compound, thereby making a comparison for the above purpose. It has been found that a p-type thermoelectric semiconductor having high thermoelectric conversion efficiency can be provided even in a low operating temperature region. The configuration of the present invention is as follows.

(構成1)
銅ガリウムテルル化合物を含むp型熱電半導体であって、
クロム、マンガン、鉄、コバルト、及びニッケルからなる群から選択される1以上の元素を含有することを特徴とするp型熱電半導体。
(Structure 1)
A p-type thermoelectric semiconductor containing a copper gallium tellurium compound.
A p-type thermoelectric semiconductor comprising one or more elements selected from the group consisting of chromium, manganese, iron, cobalt, and nickel.

(構成2)
前記元素を、該元素の総量として、前記銅ガリウムテルル化合物に対してモル比で0%を超えて5%未満含有することを特徴とする構成1記載のp型熱半導体。
(Structure 2)
The p-type thermal semiconductor according to Configuration 1, wherein the element is contained as the total amount of the element in a molar ratio of more than 0% and less than 5% with respect to the copper gallium tellurium compound.

(構成3)
前記元素を、該元素の総量として、前記銅ガリウムテルル化合物に対してモル比で1%以上3%以下含有することを特徴とする構成1記載のp型熱電半導体。
(Structure 3)
The p-type thermoelectric semiconductor according to Configuration 1, wherein the element is contained as a total amount of the element in a molar ratio of 1% or more and 3% or less with respect to the copper gallium tellurium compound.

(構成4)
構成1及至3のいずれかに記載のp型熱電半導体において、その組成が式1に示す組成を有する正方晶系p型熱電半導体であることを特徴とするp型熱電半導体。
CuGa1−xTe (式1)
(MはCr、Mn、Fe、Co、及びNiからなる1以上であり、xは0を超えて1未満である。)
(Structure 4)
The p-type thermoelectric semiconductor according to any one of configurations 1 to 3, wherein the composition is a tetragonal p-type thermoelectric semiconductor having the composition represented by the formula 1.
CuGa 1-x M x Te 2 (Equation 1)
(M is 1 or more consisting of Cr, Mn, Fe, Co, and Ni, and x is more than 0 and less than 1.)

(構成5)
前記xが、0を超えて0.05未満であることを特徴とする構成4記載のp型熱半導体。
(Structure 5)
The p-type thermal semiconductor according to configuration 4, wherein x is more than 0 and less than 0.05.

(構成6)
前記xが、0.01以上0.03以下であることを特徴とする構成4記載のp型熱電半導体。
(Structure 6)
The p-type thermoelectric semiconductor according to the configuration 4, wherein x is 0.01 or more and 0.03 or less.

(構成7)
p型半導体とn型半導体が一体化されてなる熱電発電素子であって、前記p型半導体として構成1及至6のいずれかに記載のp型熱電半導体を用いたことを特徴とする熱電発電素子。
(Structure 7)
A thermoelectric power generation device in which a p-type semiconductor and an n-type semiconductor are integrated, wherein the p-type thermoelectric power generation element according to any one of configurations 1 to 6 is used as the p-type semiconductor. ..

本発明の熱電半導体は、室温近傍から400℃というような比較的低い作動温度領域においても、低い電気抵抗(高い電気伝導度)、高いゼーベック係数、及び低い熱伝導率という特性を有していることから、高い熱電変換効率が得られる。
また、本発明の熱電半導体を使用した熱電発電素子は、上記のような低い作動温度領域においても高い熱発電効率が得られる。このため、従来よりも低温域からの熱回収が可能となり、利用可能な熱の範囲が大きく広がる。
The thermoelectric semiconductor of the present invention has the characteristics of low electrical resistance (high electrical conductivity), high Seebeck coefficient, and low thermal conductivity even in a relatively low operating temperature range such as 400 ° C from near room temperature. Therefore, high thermoelectric conversion efficiency can be obtained.
Further, the thermoelectric power generation element using the thermoelectric semiconductor of the present invention can obtain high thermoelectric power generation efficiency even in the low operating temperature region as described above. For this reason, heat can be recovered from a low temperature range as compared with the conventional case, and the range of available heat is greatly expanded.

本発明の半導体材料の結晶構造模式図。Schematic diagram of the crystal structure of the semiconductor material of the present invention. 銅ガリウムテルル化合物試料の粉末X線回折パターン図。The powder X-ray diffraction pattern figure of a copper gallium tellurium compound sample. 銅ガリウムテルル化合物の電気伝導率特性を調べた熱電特性図。The thermoelectric characteristic diagram which investigated the electric conductivity characteristic of a copper gallium tellurium compound. 銅ガリウムテルル化合物のゼーベック係数特性を調べた熱電特性図。The thermoelectric characteristic diagram which investigated the Seebeck coefficient characteristic of a copper gallium tellurium compound. 銅ガリウムテルル化合物の出力因子特性を調べた熱電特性図。The thermoelectric characteristic diagram which investigated the output factor characteristic of a copper gallium tellurium compound. 銅ガリウムテルル化合物の熱伝導率特性を調べた熱電特性図。The thermoelectric characteristic diagram which investigated the thermal conductivity characteristic of a copper gallium tellurium compound. 銅ガリウムテルル化合物の無次元性能指数ZT特性を調べた熱電特性図。The thermoelectric characteristic diagram which investigated the dimensionless figure of merit ZT characteristic of a copper gallium tellurium compound. 銅ガリウムテルル化合物の出力因子特性を調べた熱電特性図。The thermoelectric characteristic diagram which investigated the output factor characteristic of a copper gallium tellurium compound. 銅ガリウムテルル化合物の無次元性能指数ZT特性を調べた熱電特性図。The thermoelectric characteristic diagram which investigated the dimensionless figure of merit ZT characteristic of a copper gallium tellurium compound. 鉄を添加した銅ガリウムテルル化合物の出力因子特性を調べた熱電特性図。The thermoelectric characteristic diagram which investigated the output factor characteristic of the copper gallium tellurium compound to which iron was added. 実施例3の熱電発電素子を示す断面模式図。The cross-sectional schematic diagram which shows the thermoelectric power generation element of Example 3. FIG.

(熱電半導体)
最初に、本発明の熱半導体の製造方法について説明する。
原料として、銅(Cu)、マンガン(Mn)、テルル(Te)、及びクロム(Cr)、マンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)からなる群から選ばれる1以上の磁性元素Mを準備する。ここでは、磁性元素Mとしてマンガンを準備した場合を中心に説明するが、マンガンをクロム、鉄、コバルト、ニッケルに置き換えたものを磁性元素Mとしてもよい。また、マンガン、クロム、鉄、コバルト、ニッケルから選ばれる2以上を磁性元素Mとしてもよい。
(Thermoelectric semiconductor)
First, the method for manufacturing a thermal semiconductor of the present invention will be described.
As a raw material, it is selected from the group consisting of copper (Cu), manganese (Mn), tellurium (Te), and chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), and nickel (Ni). The above magnetic element M is prepared. Here, the case where manganese is prepared as the magnetic element M will be mainly described, but a manganese replaced with chromium, iron, cobalt, or nickel may be used as the magnetic element M. Further, two or more selected from manganese, chromium, iron, cobalt and nickel may be used as the magnetic element M.

次に、Cu、Ga、M及びTeを、モル比で1:1−x:x:2となるように秤量する。ここで、磁性元素Mが上記複数の元素からなるときは、その総量がモル比でxになるように秤量する。xは0を超えて0.05未満とすることが好ましい。ここで、「0を超えて」という意味は、磁性元素Mを実質的に含むという意味であり、例えば意図せずに不純物としてごく少量含有する場合は含まれない。意図せずにごく少量含まれる場合は、その量や分布にばらつきが生じやすく、熱電特性がばらつく可能性が高い。
xは0.01以上0.03以下が、不純物相を発生せず、熱電変換効率が高く、しかもその熱電特性が安定しているため、特に好ましい。
秤量した上記元素を混合した後、その混合物をCu,Ga,M及びTeが十分溶融する温度まで加熱し、その後、例えば600℃というような固相を形成する温度ではあるが、原子が動いて均質な結晶が生じやすい温度まで均質な結晶成長が進むようにゆっくり冷却する。
その後、室温まで冷却して銅ガリウムテルル化合物に磁性元素Mが加わったインゴットを得る。
次に、このインゴットを例えばボールミルなどを用いて粉砕し、放電プラズマ焼結法、ホットプレス法などによって焼結体を得て、所定の磁気元素Mが所定量添加された銅ガリウムテルル化合物CuGa1−xTeからなるp型熱電半導体を製造する。
Next, Cu, Ga, M and Te are weighed so as to have a molar ratio of 1: 1-x: x: 2. Here, when the magnetic element M is composed of the above-mentioned plurality of elements, it is weighed so that the total amount thereof becomes x in terms of molar ratio. It is preferable that x is more than 0 and less than 0.05. Here, the meaning of "beyond 0" means that the magnetic element M is substantially contained, and is not included when, for example, it is unintentionally contained in a very small amount as an impurity. If it is unintentionally contained in a very small amount, the amount and distribution are likely to vary, and the thermoelectric characteristics are likely to vary.
It is particularly preferable that x is 0.01 or more and 0.03 or less because an impurity phase is not generated, the thermoelectric conversion efficiency is high, and the thermoelectric characteristics are stable.
After mixing the weighed elements, the mixture is heated to a temperature at which Cu, Ga, M and Te are sufficiently melted, and then the atoms move, although at a temperature such as 600 ° C. to form a solid phase. Slowly cool so that homogeneous crystal growth proceeds to a temperature at which homogeneous crystals are likely to form.
Then, the mixture is cooled to room temperature to obtain an ingot in which the magnetic element M is added to the copper gallium tellurium compound.
Next, this ingot is pulverized using, for example, a ball mill, a sintered body is obtained by a discharge plasma sintering method, a hot press method, or the like, and a predetermined amount of a predetermined amount of magnetic element M is added to the copper gallium tellurium compound CuGa 1. producing p-type thermoelectric semiconductor formed of -x M x Te 2.

磁性元素Mとしてマンガン(Mn)が添加された銅ガリウムテルル化合物CuGa1−xMnTeの結晶構造(カルコパイライト構造)の模式図を図1に示す。マンガンはモル比で数%しか添加されていないので、いくつかのユニットセルのうち一つのガリウム(Ga)サイトだけがマンガン(Mn)で置換されている様子を示している。マンガンに代えて上記の他の磁性元素Mが添加された場合も同様になる。 FIG. 1 shows a schematic diagram of the crystal structure (chalcopyrite structure) of the copper gallium tellurium compound CuGa 1-x Mn x Te 2 to which manganese (Mn) is added as the magnetic element M. Since manganese is added in a molar ratio of only a few percent, it shows that only one gallium (Ga) site out of several unit cells is replaced with manganese (Mn). The same applies when the other magnetic element M described above is added in place of manganese.

以下の実施例1で示すように、マンガンが5mol%未満添加された銅ガリウムテルル化合物CuGa1−xMnTeは、正方晶系の1つであるカルコパイライト構造の均質な結晶となるが、マンガンが5mol%添加された場合にはその結晶に不純物相が現れる。
不純物相が現れると熱電に関する特性が安定しにくくなるので、銅ガリウムテルル化合物に磁性元素Mとしてのマンガンがモル比で5%以上含まれることは好ましくない。この例でも示されるように、十分な純度の結晶を得るという観点から、本発明のp型熱電半導体である磁性元素Mが添加された銅ガリウムテルル化合物CuGa1−xTeにおいて、xは0.05未満が好ましい。
As shown in Example 1 below, the copper gallium tellurium compound CuGa 1-x Mn x Te 2 to which less than 5 mol% of manganese is added becomes a homogeneous crystal having a chalcopyrite structure, which is one of the tetragonal systems. When 5 mol% of manganese is added, an impurity phase appears in the crystal.
When an impurity phase appears, it becomes difficult to stabilize the thermoelectric properties. Therefore, it is not preferable that the copper gallium tellurium compound contains manganese as the magnetic element M in a molar ratio of 5% or more. As shown in this example, from the viewpoint of obtaining crystals of sufficient purity, in the copper gallium tellurium compound CuGa 1-x M x Te 2 to which the magnetic element M, which is the p-type thermoelectric semiconductor of the present invention, is added, x Is preferably less than 0.05.

次に、磁性元素Mが所定の量添加された銅ガリウムテルル化合物からなる熱電半導体の熱電特性について述べる。
その熱電特性の測定は、例えば下記のようにして行う。
磁性元素Mが所定の量添加された銅ガリウムテルル化合物からなる熱電半導体の電気伝導度(σ)、ゼーベック係数(S)、熱拡散率(α)、熱容量(C)、及び試料の密度(d)の測定を行い、その測定結果から、出力因子(PW)、熱伝導率(κ)及び無次元性能指数(ZT)を計算によって求める。ここで、出力因子PWはPW=Sσ、熱伝導率κはκ=α・C・d、及び無次元性能指数ZTはZT=SσT/κの式により算出することができる。ここで、Tは絶対温度である。
Next, the thermoelectric characteristics of the thermoelectric semiconductor composed of the copper gallium tellurium compound to which the magnetic element M is added in a predetermined amount will be described.
The thermoelectric characteristics are measured, for example, as follows.
Electric conductivity (σ), Zebeck coefficient (S), thermal diffusivity (α), thermal capacity ( Cp ), and sample density (s) of a thermoelectric semiconductor made of a copper gallium tellurium compound to which a predetermined amount of magnetic element M is added. d) is measured, and the output factor (PW), thermal conductivity (κ), and dimensionless performance index (ZT) are calculated from the measurement results. Here, the output factor PW can be calculated by the formula of PW = S 2 σ, the thermal conductivity κ can be calculated by the formula of κ = α · C p · d, and the dimensionless figure of merit ZT can be calculated by the formula of ZT = S 2 σT / κ. Here, T is the absolute temperature.

以下の実施例1に示すように、磁性元素Mとして例えばマンガンを添加することにより、電気伝導度σは桁違いに増加する。これはキャリア濃度が増えたことが主要な原因と考えられる。
キャリア濃度が大幅に増加した場合、通常は、ゼーベック係数Sが著しく低下してしまい、Sσで算出される出力因子PWは単純には増加しない。しかし、実施例1に示すように、ゼーベック係数Sはマンガンを添加した試料ではあまり大きくは低減しておらず、最大で半分程度の減少にとどまる。また、熱伝導率κはマンガンを添加しない場合より低く、熱電半導体として好ましい特性を有する。
これらのことから、実施例1に示されるように、マンガン添加によって、室温近傍から400℃程度の比較的低温領域において、出力因子PWは倍増し、無次元性能指数ZTは約3倍増になる。
As shown in Example 1 below, by adding, for example, manganese as the magnetic element M, the electrical conductivity σ is increased by an order of magnitude. This is thought to be mainly due to the increased carrier concentration.
When the carrier concentration increases significantly, the Seebeck coefficient S usually decreases significantly, and the output factor PW calculated by S 2 σ does not simply increase. However, as shown in Example 1, the Seebeck coefficient S is not significantly reduced in the sample to which manganese is added, and is reduced by only about half at the maximum. Further, the thermal conductivity κ is lower than that when manganese is not added, and has preferable characteristics as a thermoelectric semiconductor.
From these facts, as shown in Example 1, the addition of manganese doubles the output factor PW and the dimensionless figure of merit ZT by about 3 times in a relatively low temperature region of about 400 ° C. from around room temperature.

このような出力因子PWの大幅な増大は、半導体中の電気伝導を担うキャリア(電子やホール)が、添加された磁気元素(磁性イオン)と相互作用することによって有効質量が増大し、その結果、キャリア密度が高くなったにもかかわらず大きなゼーベック係数が維持されたためと推測される。
このことを裏付けるため、マンガンを添加した試料について、ホール係数測定から、キャリアの有効質量の算出を行った。その結果、マンガンを添加していない銅ガリウムテルル化合物において、ホール係数測定とゼーベック係数値から算出された電子の有効質量は0.22m(mは自由電子の質量)であった。それに対し、マンガンを1mol%、2mol%、及び3mol%添加した試料での電子の有効質量は、それぞれ0.62m、1.0m、0.92mであった。従って、磁性イオンと半導体中のキャリアとの間に相互作用が生じ、有効質量が増大したことが、熱電特性の向上をもたらしたのと考えられる。同様の相互作用は、類似の磁性イオンを添加した場合にも働くので、強磁性または反強磁性を示す遷移金属元素として、クロム、マンガン、鉄、コバルト、ニッケルでも、同様の効果が得られる。
一方、磁性を示す希土類元素(ネオジウム(Nd)、ガドリニウム(Gd)、ジスプロシウム(Dy)等)については、銅ガリウムテルル化合物への許容含有量がppmオーダーなので効果は少ない。
Such a large increase in the output factor PW is due to the fact that the carriers (electrons and holes) responsible for electrical conduction in the semiconductor interact with the added magnetic element (magnetic ion) to increase the effective mass, resulting in an increase in effective mass. It is presumed that the large Seebeck coefficient was maintained despite the increase in carrier density.
To support this, the effective mass of carriers was calculated from the Hall coefficient measurement for the manganese-added sample. As a result, the copper gallium telluride without the addition of manganese, effective mass of electrons was calculated from the Hall coefficient measurement and Seebeck coefficient value was 0.22 m o (m o is the free electron mass). In contrast, 1 mol% of manganese, 2 mol%, and the effective electron mass at 3 mol% added sample, respectively 0.62 meters o, 1.0 m o, was 0.92 m o. Therefore, it is considered that the interaction between the magnetic ions and the carriers in the semiconductor and the increase in the effective mass brought about the improvement of the thermoelectric characteristics. Since the same interaction works when similar magnetic ions are added, the same effect can be obtained with chromium, manganese, iron, cobalt, and nickel as transition metal elements exhibiting ferromagnetism or antiferromagnetism.
On the other hand, for rare earth elements exhibiting magnetism (neodymium (Nd), gadolinium (Gd), dysprosium (Dy), etc.), the permissible content in the copper gallium tellurium compound is on the order of ppm, so the effect is small.

なお、非特許文献2には銅ガリウムテルル化合物にマンガンを添加する実験が行われているが、そこでは磁性の測定のみを行っている。その目的は新しい強磁性体の探索とスピントロニクス応用であり、熱電半導体を対象にはしていない。室温以上の電気伝導度σや、ゼーベック係数S、熱伝導率κの測定は見当たらず、非特許文献2からマンガンの添加が熱電特性にどのような影響を与えるかを類推することは困難である。 In Non-Patent Document 2, an experiment of adding manganese to a copper gallium tellurium compound is carried out, but only the magnetism is measured there. Its purpose is to search for new ferromagnets and apply spintronics, not to thermoelectric semiconductors. No measurements of electrical conductivity σ above room temperature, Seebeck coefficient S, and thermal conductivity κ have been found, and it is difficult to infer from Non-Patent Document 2 how the addition of manganese affects thermoelectric properties. ..

半導体に価数が異なる元素を添加することによって熱電特性を向上させるという研究は様々なところで行われている。これは「キャリア密度の最適化」が起こることを利用したもので、この手法は周知である。しかし、本発明は、単なる「キャリア密度の最適化」ではなく、磁性とキャリアの相互作用による増強効果という全く新しいメカニズムを利用したものとなっている。 Studies on improving thermoelectric properties by adding elements with different valences to semiconductors have been conducted in various places. This utilizes the fact that "optimization of carrier density" occurs, and this method is well known. However, the present invention is not merely "optimization of carrier density", but utilizes a completely new mechanism of enhancing effect by interaction between magnetism and carriers.

本発明が「キャリア密度の最適化」によるものではないことは、ガリウム(Ga)の一部を形式価数に差のない鉄(Fe)に置換する実験によって確かめている。Ga、Feは共に3価のイオンであり、キャリア数の変化はない。その詳細は、以下の実施例2に示す。 The fact that the present invention is not based on "optimization of carrier density" has been confirmed by experiments in which a part of gallium (Ga) is replaced with iron (Fe) having no difference in formal valence. Both Ga and Fe are trivalent ions, and the number of carriers does not change. The details are shown in Example 2 below.

(熱電発電素子)
エネルギーの約3/4が廃熱として無駄に捨てられていることが知られている。熱電変換は熱エネルギーを回収して有用な電気エネルギーに直接変換できる手法であり、可動部分がないことによるメンテナンスの容易さ、スケーラビリティ等のメリットがある。このような発電に用いるには高い熱電変換効率を持つp型とn型の熱電材料で素子を形成する必要がある。
(Thermoelectric power generation element)
It is known that about 3/4 of the energy is wasted as waste heat. Thermoelectric conversion is a method that can recover thermal energy and directly convert it into useful electrical energy, and has merits such as ease of maintenance and scalability due to the absence of moving parts. In order to use it for such power generation, it is necessary to form an element with p-type and n-type thermoelectric materials having high thermoelectric conversion efficiency.

熱電発電素子31は、図11に示すように、低温となる側の電極35と高温となる側の電極34の間に、これらの電極を介してn型半導体32とp型半導体33が電気的に直列配置された構造からなる素子である。
このp型半導体33として、本発明の磁性元素Mを所定の量添加した銅ガリウムテルル化合物を用いる。その結果、従来よりも低温域からの熱回収が可能となり、利用可能な熱の範囲が大きく広がり、従来は困難とされていた低温域からのエネルギー回収が可能になる。
As shown in FIG. 11, in the thermoelectric power generation element 31, the n-type semiconductor 32 and the p-type semiconductor 33 are electrically connected between the electrode 35 on the low temperature side and the electrode 34 on the high temperature side via these electrodes. It is an element having a structure arranged in series with each other.
As the p-type semiconductor 33, a copper gallium tellurium compound to which the magnetic element M of the present invention is added in a predetermined amount is used. As a result, heat can be recovered from the low temperature region as compared with the conventional case, the range of available heat can be greatly expanded, and energy can be recovered from the low temperature range, which has been difficult in the past.

以下、本発明を実施例により説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described with reference to Examples, but the present invention is not limited to these Examples.

(実施例1)
実施例1は、銅ガリウムテルル化合物に対してモル比で1%,2%及び3%のマンガン(Mn)を添加した場合のp型熱電半導体を示す。
(Example 1)
Example 1 shows a p-type thermoelectric semiconductor when manganese (Mn) of 1%, 2% and 3% in molar ratio is added to a copper gallium tellurium compound.

((熱電半導体の作製))
最初に、原料として、銅(Cu)(粉末、フルウチ化学(株)、99.99%)、ガリウム(Ga)(粒状、フルウチ化学(株)、99.999%)、マンガン(Mn)(粉末、フルウチ化学(株)、99.99%)、テルル(Te)(粒状、(株)高純度化学研究所、99.9999%)を準備した。
次に、Cu、Ga、Mn及びTeを、モル比で1:0.99:0.01:2となるように電子天秤を用いて秤量した。
その後、真空石英管中で900℃まで3日かけて加熱し、2時間保持した後、600℃まで冷却した。しかる後、室温まで6時間で冷却して、CuGa0.99Mn0.01Teのインゴットを得た。
次に、このインゴットを乳鉢で粉砕し、グラファイト製のダイ(内径10mm)に充填し、放電プラズマ焼結法によって焼結体を得て、1mol%のマンガンが添加された銅ガリウムテルル化合物からなるp型熱電半導体を作製した。ここで、焼結には富士電波工機(株)製のDr.SINTERを用い、焼結条件は、圧力50MPa、温度600℃、5分間とした。
((Manufacturing of thermoelectric semiconductor))
First, as raw materials, copper (Cu) (powder, Furuuchi Kagaku Co., Ltd., 99.99%), gallium (Ga) (granular, Furuuchi Kagaku Co., Ltd., 99.999%), manganese (Mn) (powder). , Furuuchi Chemical Co., Ltd., 99.99%), Tellur (Te) (granular, High Purity Chemistry Laboratory Co., Ltd., 99.99999%) were prepared.
Next, Cu, Ga, Mn and Te were weighed using an electronic balance so that the molar ratio was 1: 0.99: 0.01: 2.
Then, it was heated to 900 ° C. for 3 days in a vacuum quartz tube, held for 2 hours, and then cooled to 600 ° C. Then, the mixture was cooled to room temperature for 6 hours to obtain an ingot of CuGa 0.99 Mn 0.01 Te 2.
Next, this ingot was crushed in a dairy pot, filled in a graphite die (inner diameter 10 mm), obtained by a discharge plasma sintering method, and composed of a copper gallium tellurium compound to which 1 mol% of manganese was added. A p-type thermoelectric semiconductor was manufactured. Here, for sintering, Dr. Fuji Radio Industrial Co., Ltd. Using SINTER, the sintering conditions were a pressure of 50 MPa, a temperature of 600 ° C., and 5 minutes.

また、Cu、Ga、Mn及びTeを、モル比で1:0.98:0.02:2、及び1:0.97:0.03:2となるように秤量して、同様の工程を経て、2mol%及び3mol%のマンガンが添加された銅ガリウムテルル化合物からなるp型熱電半導体を作製した。 Further, Cu, Ga, Mn and Te are weighed so as to have a molar ratio of 1: 0.98: 0.02: 2 and 1: 0.97: 0.03: 2, and the same step is performed. Then, a p-type thermoelectric semiconductor made of a copper gallium tellurium compound to which 2 mol% and 3 mol% of manganese was added was prepared.

((熱電半導体の特性評価))
マンガンが1mol%、2mol%及び3mol%添加された銅ガリウムテルル化合物試料の粉末X線回折パターンを図2に示す。この図で、xはマンガンのモル比を示す。また、同図には、マンガンを添加しないx=0の場合(比較例1)と、マンガンをモル比で5%添加させたx=0.05の場合(比較例2)も併せて載せている。
((Characteristic evaluation of thermoelectric semiconductor))
The powder X-ray diffraction pattern of the copper gallium tellurium compound sample to which 1 mol%, 2 mol% and 3 mol% of manganese was added is shown in FIG. In this figure, x represents the molar ratio of manganese. Further, in the figure, the case where x = 0 without adding manganese (Comparative Example 1) and the case where x = 0.05 with 5% of manganese added in molar ratio are also shown (Comparative Example 2). There is.

マンガンが添加されていない場合とマンガンの添加量が1mol%、2mol%及び3mol%の場合(x=0〜0.03)は、全ての試料がカルコパイライト構造を仮定した計算と一致しており、均一な試料が作製できたことを示している。一方、マンガンをモル比で5%添加させたx=0.05の場合は、矢印で示した部分に小さいながらも不純物相のピークが見られて、完全には均一な試料は得られなかった。
不純物相が現れると電気伝導性の低下など熱電に関する特性が安定しにくくなるケースがあるので、銅ガリウムテルル化合物にマンガンがモル比で5%以上含まれることは好ましくない可能性がある。
When manganese is not added and when the amount of manganese added is 1 mol%, 2 mol% and 3 mol% (x = 0 to 0.03), all the samples are consistent with the calculation assuming the chalcopyrite structure. , Indicates that a uniform sample could be prepared. On the other hand, in the case of x = 0.05 in which manganese was added at a molar ratio of 5%, a small but impurity phase peak was observed in the portion indicated by the arrow, and a completely uniform sample could not be obtained. ..
When the impurity phase appears, it may be difficult to stabilize the thermoelectric properties such as a decrease in electrical conductivity. Therefore, it may not be preferable that the copper gallium tellurium compound contains manganese in a molar ratio of 5% or more.

次に、焼結体を棒状に切り出して電気伝導度(σ)とゼーベック係数(S)の測定を行い、出力因子(PW)を、PW=Sσの式により算出した。また円板上に切り出した試料を用いて熱拡散率(α)の測定を行った。さらに、小さな試料片を用いて、DSC(Differential Scanning Calorimetry)法により熱容量Cの測定を行った。そして、熱拡散率(α)、熱容量(C)、試料の密度(d)から、熱伝導率(κ)を、κ=α・C・dによって算出した。その後、無次元性能指数(ZT)を、ZT=SσT/κによって計算した。ここで、Tは絶対温度である。 Next, the sintered body was cut out in a rod shape, the electrical conductivity (σ) and the Seebeck coefficient (S) were measured, and the output factor (PW) was calculated by the formula PW = S 2 σ. In addition, the thermal diffusivity (α) was measured using a sample cut out on a disk. Moreover, using a small test piece was measured heat capacity C p by DSC (Differential Scanning Calorimetry) method. Then, the thermal conductivity (κ) was calculated by κ = α · C p · d from the thermal diffusivity (α), the heat capacity (C p ), and the density (d) of the sample. The dimensionless figure of merit (ZT) was then calculated by ZT = S 2 σT / κ. Here, T is the absolute temperature.

324Kから669Kまでの温度に対する電気伝導率σ、ゼーベック係数S、出力因子PW、熱伝導率κ及び無次元性能指数ZTの関係を、添加したマンガンのモル比xをパラメータにして、それぞれ図3から図7に示す。 The relationship between the electrical conductivity σ, the Seebeck coefficient S, the output factor PW, the thermal conductivity κ, and the dimensionless performance index ZT with respect to the temperature from 324K to 669K is shown in FIG. It is shown in FIG.

マンガンを添加することにより、電気伝導度σが、大幅に向上し、特にマンガンを3mol%(x=0.03)添加した場合は、その向上率は約10倍に達する(図3参照)。これはキャリア濃度が増えたことが主要な原因と考えられる。
キャリア濃度が大幅に増加した場合、通常は、ゼーベック係数Sが著しく低下してしまい、Sσで算出される出力因子PWは単純には増加しない。しかしながら、図4に示すように、ゼーベック係数Sはマンガンを添加した試料でもあまり大きくは低減しておらず、最大で50%までの減少にとどまっている。
このことから、図5に示すように、出力因子PWは、マンガン添加によって、大きく増大した。特に、室温から500Kまでの低温域での増加率が大きく、特にマンガンを2mol%(x=0.02)以上添加した場合は、その増加率は100%を超える。
By adding manganese, the electrical conductivity σ is significantly improved, and especially when manganese is added in an amount of 3 mol% (x = 0.03), the improvement rate reaches about 10 times (see FIG. 3). This is thought to be mainly due to the increased carrier concentration.
When the carrier concentration increases significantly, the Seebeck coefficient S usually decreases significantly, and the output factor PW calculated by S 2 σ does not simply increase. However, as shown in FIG. 4, the Seebeck coefficient S does not decrease so much even in the sample to which manganese is added, and the decrease is limited to 50% at the maximum.
From this, as shown in FIG. 5, the output factor PW was greatly increased by the addition of manganese. In particular, the rate of increase in the low temperature range from room temperature to 500 K is large, and in particular, when manganese is added in an amount of 2 mol% (x = 0.02) or more, the rate of increase exceeds 100%.

図6に示すように、マンガンを添加した銅ガリウムテルル化合物試料の熱伝導率κの温度依存性はマンガンを添加しない場合より低く、熱電半導体として好ましい特性を有する。 As shown in FIG. 6, the temperature dependence of the thermal conductivity κ of the copper gallium tellurium compound sample to which manganese is added is lower than that when manganese is not added, and has preferable characteristics as a thermoelectric semiconductor.

これらのことから、図7に示されるように、ZT=SσT/κによって計算される無次元性能指数ZTは、銅ガリウムテルル化合物にマンガンを添加することによって、室温に近い低温領域から、マンガンを添加しない場合よりほぼ2倍を超える高い値が得られた。
また、マンガン添加濃度に対する出力因子PWと無次元性能指数ZTの変化をそれぞれ図8及び図9に示す。マンガンを添加することによって、出力因子PWや無次元性能指数ZTといった熱電特性が急激に向上した。
From these facts, as shown in FIG. 7, the dimensionless figure of merit ZT calculated by ZT = S 2 σT / κ is obtained by adding manganese to the copper gallium tellurium compound from a low temperature region close to room temperature. A value almost twice as high as that when manganese was not added was obtained.
The changes in the output factor PW and the dimensionless figure of merit ZT with respect to the manganese addition concentration are shown in FIGS. 8 and 9, respectively. By adding manganese, thermoelectric characteristics such as output factor PW and dimensionless figure of merit ZT were sharply improved.

(実施例2)
実施例2は、実施例1に記載した熱電特性の向上が、「キャリア密度の最適化」によるものではないことを確認した例である。
(Example 2)
Example 2 is an example in which it is confirmed that the improvement in thermoelectric characteristics described in Example 1 is not due to "optimization of carrier density".

銅ガリウムテルル化合物に鉄(Fe)を添加した実験結果を図10に示す。FeはGaの一部を置換する形で、CuGa1−xFeTeとして添加されている。ここで、図10中に記載されているCGFT0、CGFT1、CGFT2及びCGFT3は、CuGa1−xFeTeのxがそれぞれ0,0.01,0.02及び0.03の場合を示す。すなわち、銅ガリウムテルル化合物に鉄が、それぞれ0mol%、1mol%、2mol%及び3mol%添加された場合を示す。試料は、実施例1と同様の工程で、マンガンを鉄に代えて作製した。
Ga、Feは共に3価のイオンであり、形式価数には変化がないことから、キャリア数の変化はない。従って、実施例2は、「キャリア密度の最適化」が該当しない場合といえる。
The experimental result of adding iron (Fe) to the copper gallium tellurium compound is shown in FIG. Fe is added as CuGa 1-x Fe x Te 2 in a form that replaces a part of Ga. Here, CGFT0, CGFT1, CGFT2 and CGFT3 described in FIG. 10 indicate the case where x of CuGa 1-x Fe x Te 2 is 0, 0.01, 0.02 and 0.03, respectively. That is, the case where iron is added to the copper gallium tellurium compound in an amount of 0 mol%, 1 mol%, 2 mol% and 3 mol%, respectively, is shown. The sample was prepared by substituting manganese with iron in the same process as in Example 1.
Since both Ga and Fe are trivalent ions and there is no change in the formal value, there is no change in the number of carriers. Therefore, it can be said that the second embodiment does not correspond to the “optimization of carrier density”.

実験を行った結果、Feを添加した化合物でも良好な電気伝導度(電気抵抗)と大きなゼーベック係数が観測され、図10に示したように、出力因子PWの増大が室温付近で起こっていることを確認した。この結果は、熱電特性の向上が、「キャリア密度の最適化」によるものではないことを示す。 As a result of the experiment, good electrical conductivity (electrical resistance) and a large Seebeck coefficient were observed even in the compound to which Fe was added, and as shown in FIG. 10, the output factor PW increased near room temperature. It was confirmed. This result indicates that the improvement in thermoelectric properties is not due to "optimization of carrier density".

(実施例3)
実施例3は、熱電発電素子31を作製した例である(図11参照)。
作製した熱電発電素子31は、低温となる側の電極35に、半田によって熱電材料チップであるn型半導体32が接合され、n型半導体32の反対側の端部と高温となる側の電極34とが同じく半田によって接合されている。さらに同じ電極34と熱電材料チップであるp型半導体33とが接合され、p型半導体33の反対側の端部は別のn型半導体32が接合された別の電極35に接合されている。このような構成にすることによって電気的に直列接続した熱電発電素子31とした。
このp型半導体33として、本発明の磁性イオンを添加した銅ガリウムテルル化合物を用いた。その結果、従来よりも低温域からの熱回収が可能となり、利用可能な熱の範囲が大きく広がった。
(Example 3)
Example 3 is an example in which the thermoelectric power generation element 31 is manufactured (see FIG. 11).
In the manufactured thermoelectric power generation element 31, an n-type semiconductor 32, which is a thermoelectric material chip, is bonded to an electrode 35 on the low temperature side by soldering, and an electrode 34 on the opposite side of the n-type semiconductor 32 and a high temperature side. Are also joined by solder. Further, the same electrode 34 and the p-type semiconductor 33 which is a thermoelectric material chip are bonded, and the opposite end portion of the p-type semiconductor 33 is bonded to another electrode 35 to which another n-type semiconductor 32 is bonded. With such a configuration, the thermoelectric power generation element 31 is electrically connected in series.
As the p-type semiconductor 33, the copper gallium tellurium compound to which the magnetic ion of the present invention was added was used. As a result, heat can be recovered from a lower temperature range than before, and the range of available heat has been greatly expanded.

(比較例1)
比較例1は、マンガンを添加しない銅ガリウムテルル化合物を評価した例で、その試料の作製方法は、マンガンを添加しない以外は、実施例1と同様の工程とした。
既出であるが、その評価結果を実施例の結果と合わせて図2から図9に示す。
この銅ガリウムテルル化合物もカルコパイライト構造を示す(図2参照)が、すでに述べてきたように、マンガンを添加した場合に比べ、室温付近の低温領域から、比較例1は出力因子PWも無次元性能指数ZTも大幅に小さかった。
(Comparative Example 1)
Comparative Example 1 is an example of evaluating a copper gallium tellurium compound to which manganese is not added, and the method for producing the sample was the same as that of Example 1 except that manganese was not added.
Although it has already been mentioned, the evaluation results are shown in FIGS. 2 to 9 together with the results of the examples.
This copper gallium tellurium compound also exhibits a chalcopyrite structure (see FIG. 2), but as already described, the output factor PW of Comparative Example 1 is also dimensionless from the low temperature region near room temperature as compared with the case where manganese is added. The figure of merit ZT was also significantly smaller.

(比較例2)
比較例2は、銅ガリウムテルル化合物にマンガンを5mol%添加して作製した粉末試料に対してX線回折によりその構造を評価した例で、その試料の作製方法は、マンガンの添加量を5mol%としたこと以外は、実施例1と同様の工程とした。
その評価結果を実施例の結果と合わせて図2に示す。
このマンガンを5mol%添加した銅ガリウムテルル化合物は、基本骨格としてはカルコパイライト構造であるが、すでに述べてきたように、不純物相が認められた。
(Comparative Example 2)
Comparative Example 2 is an example in which the structure of a powder sample prepared by adding 5 mol% of manganese to a copper gallium tellurium compound was evaluated by X-ray diffraction, and the method for producing the sample was to add 5 mol% of manganese. The process was the same as that of Example 1 except that the above was used.
The evaluation results are shown in FIG. 2 together with the results of the examples.
The copper gallium tellurium compound to which 5 mol% of manganese is added has a chalcopyrite structure as a basic skeleton, but as described above, an impurity phase was observed.

以上説明したように、クロム、マンガン、鉄、コバルト、及びニッケルの群から選択される1以上の元素を銅ガリウムテルル化合物に添加した本発明のp型熱電半導体は、室温近傍から400℃程度の熱電半導体としては比較的低い温度領域においても高い熱電変換効率を示す熱電半導体である。また、この熱電半導体を有する熱電発電素子は、500℃以下というような比較的低い作動温度領域においても高い発電効率を提供することが可能となる。このため、従来よりも低温域からの熱回収が可能となり、利用可能な熱の範囲が大きく広がる。 As described above, the p-type thermoelectric semiconductor of the present invention in which one or more elements selected from the group of chromium, manganese, iron, cobalt, and nickel are added to the copper gallium tellurium compound has a temperature of about 400 ° C. from around room temperature. As a thermoelectric semiconductor, it is a thermoelectric semiconductor that exhibits high thermoelectric conversion efficiency even in a relatively low temperature region. Further, the thermoelectric power generation element having this thermoelectric semiconductor can provide high power generation efficiency even in a relatively low operating temperature region such as 500 ° C. or lower. For this reason, heat can be recovered from a low temperature range as compared with the conventional case, and the range of available heat is greatly expanded.

31 熱電発電素子
32 n型半導体
33 p型半導体
34 電極
35 電極
36 電流

31 Thermoelectric power generation element 32 n-type semiconductor 33 p-type semiconductor 34 electrode 35 electrode 36 current

Claims (2)

銅ガリウムテルル化合物を含むp型熱電半導体であって、
前記銅ガリウムテルル化合物は、クロム、マンガン、鉄、コバルト、及びニッケルからなる群から選択される1以上の元素を含有し、
その組成が式1に示す組成を有する正方晶系p型熱電半導体であることを特徴とするp型熱電半導体。
CuGa 1-x x Te 2 (式1)
(MはCr、Mn、Fe、Co,及びNiのいずれか1以上であり、xは0.01以上0.03以下である。)
A p-type thermoelectric semiconductor containing a copper gallium tellurium compound.
The copper gallium telluride compound contains chromium, manganese, iron, cobalt, and one or more elements selected from the group consisting of nickel,
A p-type thermoelectric semiconductor whose composition is a tetragonal p-type thermoelectric semiconductor having the composition shown in Formula 1 .
CuGa 1-x M x Te 2 (Equation 1)
(M is any one or more of Cr, Mn, Fe, Co, and Ni, and x is 0.01 or more and 0.03 or less.)
p型半導体とn型半導体が一体化されてなる熱電発電素子であって、前記p型半導体として請求項1記載のp型熱電半導体を用いたことを特徴とする熱電発電素子。


A thermoelectric power generating element p-type semiconductor and the n-type semiconductor is formed by integrated thermoelectric power generation device characterized by using a p-type thermoelectric semiconductor according to claim 1 Symbol placement as the p-type semiconductor.


JP2016204235A 2016-10-18 2016-10-18 Copper gallium tellurium-based p-type thermoelectric semiconductor and thermoelectric power generation element using it Active JP6893344B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016204235A JP6893344B2 (en) 2016-10-18 2016-10-18 Copper gallium tellurium-based p-type thermoelectric semiconductor and thermoelectric power generation element using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016204235A JP6893344B2 (en) 2016-10-18 2016-10-18 Copper gallium tellurium-based p-type thermoelectric semiconductor and thermoelectric power generation element using it

Publications (2)

Publication Number Publication Date
JP2018067590A JP2018067590A (en) 2018-04-26
JP6893344B2 true JP6893344B2 (en) 2021-06-23

Family

ID=62086262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016204235A Active JP6893344B2 (en) 2016-10-18 2016-10-18 Copper gallium tellurium-based p-type thermoelectric semiconductor and thermoelectric power generation element using it

Country Status (1)

Country Link
JP (1) JP6893344B2 (en)

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09213978A (en) * 1996-01-30 1997-08-15 Asahi Chem Ind Co Ltd Semiconductor of chalcopyrite structure and photovolatic device therewith
CA2499965C (en) * 2002-09-30 2013-03-19 Nanosys, Inc. Large-area nanoenabled macroelectronic substrates and uses therefor
JPWO2005062394A1 (en) * 2003-12-24 2007-07-19 日本電気株式会社 Bolometer
KR20100009455A (en) * 2008-07-18 2010-01-27 삼성전자주식회사 Thermoelectric materials and chalcogenide compounds
JP2010106291A (en) * 2008-10-28 2010-05-13 Idemitsu Kosan Co Ltd Oxide semiconductor and manufacturing method therefor
WO2011108033A1 (en) * 2010-03-05 2011-09-09 株式会社 東芝 Compound thin film solar cell and method for manufacturing same
JP5548923B2 (en) * 2010-08-27 2014-07-16 株式会社三菱ケミカルホールディングス Electrode for water splitting, method for producing electrode for water splitting, and water splitting method
WO2012157909A1 (en) * 2011-05-13 2012-11-22 주식회사 엘지화학 Novel compound semiconductor and usage for same
JP2013016685A (en) * 2011-07-05 2013-01-24 Osaka Univ Thermoelectric conversion material, thermoelectric conversion element, and method for manufacturing the same
CN104137263A (en) * 2012-01-23 2014-11-05 索尼公司 Solid-state image pickup apparatus, method for manufacturing solid-state image pickup apparatus, and electronic apparatus
JP2016000674A (en) * 2014-06-12 2016-01-07 東ソー株式会社 Barium silicide polycrystal and sputtering target or thermoelectric conversion element comprising the barium silicide polycrystal
WO2016030964A1 (en) * 2014-08-26 2016-03-03 株式会社日立製作所 n-TYPE THERMOELECTRIC CONVERSION MATERIAL AND THERMOELECTRIC CONVERSION ELEMENT
CN105957954B (en) * 2016-05-13 2018-05-15 宁波工程学院 P-type Cu containing Mn5Ga9Te16Warm thermoelectric material and its preparation process

Also Published As

Publication number Publication date
JP2018067590A (en) 2018-04-26

Similar Documents

Publication Publication Date Title
Ahmed et al. Thermoelectric properties of CuGa 1− x Mn x Te 2: power factor enhancement by incorporation of magnetic ions
Sadia et al. Silicon-rich higher manganese silicides for thermoelectric applications
JP6401436B2 (en) Thermoelectric material having strained electronic density of state, manufacturing method thereof, thermoelectric module and thermoelectric device including the same
KR101688528B1 (en) Thermoelectric materials, and thermoelectric module and thermoelectric device comprising same
EP2552830B1 (en) Thermoelectric module and thermoelectric device including the thermoelectric module
JP6563031B2 (en) Thermoelectric material, thermoelectric element and thermoelectric module including the same
JP6460225B2 (en) Thermoelectric conversion material and method for producing the same
KR101663183B1 (en) Thermoelectric materials, and thermoelectric module and thermoelectric device comprising same
JP4374578B2 (en) Thermoelectric material and manufacturing method thereof
CN101082114B (en) Middle-low temperature pseudo-binary electrothermal alloy and preparation process
JP2007158191A (en) Thermoelectric material and thermoelectric conversion element using this material
JPWO2016185852A1 (en) Thermoelectric conversion material
KR102059674B1 (en) P type skutterudite thermoelectric material, method for manufacturing the same, thermoelectric element comprising the same
Zhang et al. Enhanced thermoelectric performance of CuGaTe2 by Gd-doping and Te incorporation
KR20140065721A (en) Thermoelectric material, thermoelectric device and apparatus comprising same, and preparation method thereof
JP4497981B2 (en) Thermoelectric material and thermoelectric conversion element
JP6635581B2 (en) Skutterudite thermoelectric semiconductor doped with silicon and tellurium, method for producing the same, and thermoelectric power generation element using the same
JP6893344B2 (en) Copper gallium tellurium-based p-type thermoelectric semiconductor and thermoelectric power generation element using it
KR20170069795A (en) Half-heusler type thermoelectric material, method for manufacturing the same, thermoelectric element comprising the same
Ye et al. Thermoelectric properties of Au-containing type-I clathrates Ba8AuxGa16− 3xGe30+ 2x
Zhang et al. Thermoelectric Properties of Mg 2 (Si 0.3 Sn 0.7) 1− y Sb y Solid Solutions Doped with Co as CoSi Secondary Phase
KR102073949B1 (en) P type skutterudite thermoelectric material, and thermoelectric element comprising the same
KR102339632B1 (en) Half-heusler type thermoelectric material, method for manufacturing the same, thermoelectric element comprising the same
JP2008227321A (en) Thermoelectric conversion material and thermoelectric conversion module using the same
JP2021044424A (en) Thermoelectric conversion material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191003

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210525

R150 Certificate of patent or registration of utility model

Ref document number: 6893344

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250