[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6888863B1 - Evaluation support system, evaluation support method and evaluation support program - Google Patents

Evaluation support system, evaluation support method and evaluation support program Download PDF

Info

Publication number
JP6888863B1
JP6888863B1 JP2020553552A JP2020553552A JP6888863B1 JP 6888863 B1 JP6888863 B1 JP 6888863B1 JP 2020553552 A JP2020553552 A JP 2020553552A JP 2020553552 A JP2020553552 A JP 2020553552A JP 6888863 B1 JP6888863 B1 JP 6888863B1
Authority
JP
Japan
Prior art keywords
work
evaluation support
data
electronic file
name
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020553552A
Other languages
Japanese (ja)
Other versions
JPWO2021140681A1 (en
Inventor
章宏 香月
章宏 香月
健太 中
健太 中
祐一 武井
祐一 武井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JAPAN AI CONSULTING CORPORATION
Original Assignee
JAPAN AI CONSULTING CORPORATION
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2020/000706 external-priority patent/WO2021140660A1/en
Application filed by JAPAN AI CONSULTING CORPORATION filed Critical JAPAN AI CONSULTING CORPORATION
Application granted granted Critical
Publication of JP6888863B1 publication Critical patent/JP6888863B1/en
Publication of JPWO2021140681A1 publication Critical patent/JPWO2021140681A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

評価支援システム(11)は、管理サーバー(12)を含む。管理サーバー(12)は、電子ファイルのファイル名、電子ファイルが格納されているディレクトリのディレクトリ名、電子ファイルのアプリケーション名および電子ファイルを操作した作業者名を含む電子ファイルの作業履歴情報をログデータとして取得するログデータ取得部(41)と、ログデータ取得部(41)により取得されたログデータに含まれるファイル名、ディレクトリ名およびアプリケーション名のうちの少なくともいずれか一つからキーワードを抽出するキーワード抽出部(42)と、ログデータ取得部(41)により取得されたログデータに含まれる電子ファイルの作業者毎の作業履歴情報から作業を分類する作業分類部(43)と、キーワード抽出部(42)により抽出されたキーワードおよび作業分類部(43)により分類された作業分類に基づいて、キーワードに紐付けられた作業者個人の業務に関連するタグである個人業務タグを生成する個人業務タグ生成部(44)と、個人業務タグ生成部(44)により生成された個人業務タグに基づいて評価の支援となる評価支援データを生成する評価支援データ生成部(45)と、を備える。The evaluation support system (11) includes a management server (12). The management server (12) logs the work history information of the electronic file including the file name of the electronic file, the directory name of the directory in which the electronic file is stored, the application name of the electronic file, and the name of the worker who operated the electronic file. A keyword that extracts a keyword from at least one of a file name, a directory name, and an application name included in the log data acquisition unit (41) acquired by the log data acquisition unit (41) and the log data acquired by the log data acquisition unit (41). An extraction unit (42), a work classification unit (43) that classifies work from work history information of each worker in an electronic file included in the log data acquired by the log data acquisition unit (41), and a keyword extraction unit (keyword extraction unit). A personal business tag that generates a personal business tag that is a tag related to the worker's personal business associated with the keyword based on the keyword extracted by 42) and the work classification classified by the work classification unit (43). It includes a generation unit (44) and an evaluation support data generation unit (45) that generates evaluation support data that supports evaluation based on the personal business tag generated by the personal business tag generation unit (44).

Description

本開示は、評価支援システム、評価支援方法および評価支援プログラムに関するものである。 This disclosure relates to an evaluation support system, an evaluation support method, and an evaluation support program.

人事評価に用いる評価支援システムが開示されている(例えば、特許文献1参照)。 An evaluation support system used for personnel evaluation is disclosed (see, for example, Patent Document 1).

特開2014−164344号公報Japanese Unexamined Patent Publication No. 2014-164344

業務を介した人事評価や業務の評価を行う上で、作業者(従業員)の各自が作業した電子ファイルの内容を分析して評価する場合がある。分析に際しては、各自の関与した電子ファイルの内部のデータを基に、ある基準に沿って分類を行う。そして、管理サーバーのような処理装置を含むシステムを利用して、分類結果に基づいて評価を支援するデータを出力させる。ここで、分類に関し、電子ファイルへの入力内容を全て利用して分類を行う場合がある。そうすると、処理する情報の処理量が多大となり、システムへの負担が過大となってしまう。また、適切な分類ができないおそれもある。 In conducting personnel evaluations and business evaluations through work, there are cases where each worker (employee) analyzes and evaluates the contents of the electronic file that he / she worked on. In the analysis, classification is performed according to a certain standard based on the data inside the electronic file in which each person is involved. Then, a system including a processing device such as a management server is used to output data that supports evaluation based on the classification result. Here, regarding the classification, there is a case where the classification is performed by using all the input contents in the electronic file. Then, the amount of information to be processed becomes large, and the burden on the system becomes excessive. In addition, there is a possibility that proper classification cannot be performed.

一方、ある従業員が自らの分類手法に則って分類する場合がある。しかし、このような場合、客観性を担保することができないおそれが高い。さらに、当該従業員の業務効率が非効率となるおそれがある。 On the other hand, an employee may classify according to his / her own classification method. However, in such a case, there is a high possibility that objectivity cannot be guaranteed. Furthermore, the work efficiency of the employee may become inefficient.

そこで、客観的な評価を行うことができ、効率的な評価支援を行うことができる評価支援システム、評価支援方法および評価支援プログラムを提供することを目的の1つとする。 Therefore, one of the purposes is to provide an evaluation support system, an evaluation support method, and an evaluation support program capable of performing objective evaluation and providing efficient evaluation support.

本開示に従った評価支援システムは、管理サーバーと、管理サーバーに通信可能なコンピューターと、を含む。コンピューターは、コンピューターによって操作された電子ファイルのログデータを生成するログデータ生成部と、ログデータ生成部により生成されたログデータを管理サーバーに送信するよう制御する送信制御部と、を含む。管理サーバーは、電子ファイルのファイル名、電子ファイルが格納されているディレクトリのディレクトリ名、電子ファイルのアプリケーション名および電子ファイルを操作した作業者名を含む電子ファイルの作業履歴情報をログデータとして取得するログデータ取得部と、ログデータ取得部により取得されたログデータに含まれるファイル名、ディレクトリ名およびアプリケーション名のうちの少なくともいずれか一つからキーワードを抽出するキーワード抽出部と、ログデータ取得部により取得されたログデータに含まれる電子ファイルの作業者毎の作業履歴情報から作業を分類する作業分類部と、キーワード抽出部により抽出されたキーワードおよび作業分類部により分類された作業分類に基づいて、キーワードに紐付けられた作業者個人の業務に関連するタグである個人業務タグを生成する個人業務タグ生成部と、個人業務タグ生成部により生成された個人業務タグに基づいて評価の支援となる評価支援データを生成する評価支援データ生成部と、評価支援データ生成部により生成した評価支援データを出力するよう制御する出力制御部と、を備える。 The evaluation support system according to the present disclosure includes a management server and a computer capable of communicating with the management server. The computer includes a log data generation unit that generates log data of an electronic file operated by the computer, and a transmission control unit that controls the log data generated by the log data generation unit to be transmitted to the management server. The management server acquires the work history information of the electronic file including the file name of the electronic file, the directory name of the directory where the electronic file is stored, the application name of the electronic file, and the name of the worker who operated the electronic file as log data. By the log data acquisition unit, the keyword extraction unit that extracts keywords from at least one of the file name, directory name, and application name included in the log data acquired by the log data acquisition unit, and the log data acquisition unit. Based on the work classification unit that classifies work from the work history information of each worker in the electronic file included in the acquired log data, the keywords extracted by the keyword extraction unit, and the work classification classified by the work classification unit. Evaluation is supported based on the personal business tag generation unit that generates the personal business tag, which is a tag related to the worker's individual business linked to the keyword, and the personal business tag generated by the personal business tag generation department. It includes an evaluation support data generation unit that generates evaluation support data, and an output control unit that controls to output the evaluation support data generated by the evaluation support data generation unit.

上記評価支援システムによれば、客観的な評価を行うことができ、効率的な評価支援を行うことができる。 According to the above evaluation support system, objective evaluation can be performed and efficient evaluation support can be performed.

図1は、実施の形態1における評価支援システムの構成を示すブロック図である。FIG. 1 is a block diagram showing a configuration of an evaluation support system according to the first embodiment. 図2は、図1に示す評価支援システムの外観を概略的に示す図である。FIG. 2 is a diagram schematically showing the appearance of the evaluation support system shown in FIG. 図3は、データ加工部に含まれる構成を概略的に示すブロック図である。FIG. 3 is a block diagram schematically showing a configuration included in the data processing unit. 図4は、ログデータの構成の一例を示す概念図である。FIG. 4 is a conceptual diagram showing an example of the configuration of log data. 図5は、実施の形態1に係る評価支援システムにおけるログデータを生成する際の代表的な工程を示すフローチャートである。FIG. 5 is a flowchart showing a typical process when generating log data in the evaluation support system according to the first embodiment. 図6は、サーバーにおける評価支援データを出力する際の代表的な工程を示すフローチャートである。FIG. 6 is a flowchart showing a typical process when outputting evaluation support data on the server. 図7は、作業分類解析および個人業務タグの生成の際の代表的な工程を示すフローチャートである。FIG. 7 is a flowchart showing a typical process in the work classification analysis and the generation of the personal business tag. 図8は、個人業務タグの構成の一部を示す概念図である。FIG. 8 is a conceptual diagram showing a part of the structure of the personal business tag. 図9は、評価支援データを作成する際の代表的な工程を示すフローチャートである。FIG. 9 is a flowchart showing a typical process when creating evaluation support data. 図10は、評価支援データを作成する際の代表的な工程の一部を示すフローチャートである。FIG. 10 is a flowchart showing a part of a typical process when creating evaluation support data. 図11は、評価支援データを作成する際の代表的な工程の一部を示すフローチャートである。FIG. 11 is a flowchart showing a part of a typical process when creating evaluation support data. 図12は、出力された結果の一例を示す概略図である。FIG. 12 is a schematic view showing an example of the output result. 図13は、出力された結果の他の例を示す概略図である。FIG. 13 is a schematic view showing another example of the output result. 図14は、他の実施の形態における評価支援システムの構成を示すブロック図である。FIG. 14 is a block diagram showing a configuration of an evaluation support system according to another embodiment. 図15は、他の実施の形態における評価支援システムに含まれるデータ加工部に含まれる構成を概略的に示すブロック図である。FIG. 15 is a block diagram schematically showing a configuration included in a data processing unit included in the evaluation support system according to another embodiment. 図16は、他の実施の形態において、サーバーにおける評価支援データおよび予測データを出力する際の代表的な工程を示すフローチャートである。FIG. 16 is a flowchart showing a typical process when outputting evaluation support data and prediction data in the server in another embodiment. 図17は、さらに他の実施の形態における評価支援システムに含まれるデータ加工部に含まれる構成を概略的に示すブロック図である。FIG. 17 is a block diagram schematically showing a configuration included in a data processing unit included in the evaluation support system according to still another embodiment. 図18は、ディレクトリ生成部によりディレクトリを生成する際の代表的な工程を示すフローチャートである。FIG. 18 is a flowchart showing a typical process when a directory is generated by the directory generation unit.

[本開示の実施形態の説明]最初に本開示の実施態様を列記して説明する。本開示に係る評価支援システムは、管理サーバーと、管理サーバーに通信可能なコンピューターと、を含む。コンピューターは、コンピューターによって操作された電子ファイルのログデータを生成するログデータ生成部と、ログデータ生成部により生成されたログデータを管理サーバーに送信するよう制御する送信制御部と、を含む。管理サーバーは、電子ファイルのファイル名、電子ファイルが格納されているディレクトリのディレクトリ名、電子ファイルのアプリケーション名および電子ファイルを操作した作業者名を含む電子ファイルの作業履歴情報をログデータとして取得するログデータ取得部と、ログデータ取得部により取得されたログデータに含まれるファイル名、ディレクトリ名およびアプリケーション名のうちの少なくともいずれか一つからキーワードを抽出するキーワード抽出部と、ログデータ取得部により取得されたログデータに含まれる電子ファイルの作業者毎の作業履歴情報から作業を分類する作業分類部と、キーワード抽出部により抽出されたキーワードおよび作業分類部により分類された作業分類に基づいて、キーワードに紐付けられた作業者個人の業務に関連するタグである個人業務タグを生成する個人業務タグ生成部と、個人業務タグ生成部により生成された個人業務タグに基づいて評価の支援となる評価支援データを生成する評価支援データ生成部と、評価支援データ生成部により生成した評価支援データを出力するよう制御する出力制御部と、を備える。 [Explanation of Embodiments of the present disclosure] First, the embodiments of the present disclosure will be listed and described. The evaluation support system according to the present disclosure includes a management server and a computer capable of communicating with the management server. The computer includes a log data generation unit that generates log data of an electronic file operated by the computer, and a transmission control unit that controls the log data generated by the log data generation unit to be transmitted to the management server. The management server acquires the work history information of the electronic file including the file name of the electronic file, the directory name of the directory where the electronic file is stored, the application name of the electronic file, and the name of the worker who operated the electronic file as log data. By the log data acquisition unit, the keyword extraction unit that extracts keywords from at least one of the file name, directory name, and application name included in the log data acquired by the log data acquisition unit, and the log data acquisition unit. Based on the work classification unit that classifies work from the work history information of each worker in the electronic file included in the acquired log data, the keywords extracted by the keyword extraction unit, and the work classification classified by the work classification unit. Evaluation is supported based on the personal business tag generation unit that generates the personal business tag, which is a tag related to the worker's individual business linked to the keyword, and the personal business tag generated by the personal business tag generation department. It includes an evaluation support data generation unit that generates evaluation support data, and an output control unit that controls to output the evaluation support data generated by the evaluation support data generation unit.

本開示における評価支援システムでは、ログデータ生成部により生成されたログデータを評価支援データに利用している。このようなログデータは、作業者が改めて生成する必要は無いため、作業者の労力を軽減することができると共に、人為的な判断が介在しないため、客観性を担保することができる。また、電子ファイル名、ディレクトリ名およびアプリケーション名のうちの少なくともいずれかからキーワードを抽出して個人業務タグを生成している。よって、電子ファイルの内部、すなわち、電子ファイル内の文字や記号といった詳細な内容を全て解析するといった処理の複雑化を回避することができる。したがって、情報の整理を効率的に行うことができる。また、キーワードおよび作業分類に基づいて生成される個人業務タグに基づいて評価支援データを生成し、出力することとしている。よって、複数の人間に分担して行う人為的な分類ではないため、客観性を高く維持することができる。したがって、ある一定の基準に裏付けられた公平かつ正確な分類を行うことができる。以上より、上記評価支援システムによると、客観的な評価を行うことができ、効率的な評価支援を行うことができる。 In the evaluation support system in the present disclosure, the log data generated by the log data generation unit is used as the evaluation support data. Since it is not necessary for the worker to generate such log data again, the labor of the worker can be reduced, and since no human judgment is involved, the objectivity can be ensured. In addition, a keyword is extracted from at least one of an electronic file name, a directory name, and an application name to generate a personal business tag. Therefore, it is possible to avoid complication of processing such as analyzing all the detailed contents such as characters and symbols in the electronic file, that is, in the electronic file. Therefore, information can be organized efficiently. In addition, evaluation support data is generated and output based on personal business tags generated based on keywords and work classifications. Therefore, since it is not an artificial classification that is shared by a plurality of people, it is possible to maintain high objectivity. Therefore, fair and accurate classification supported by a certain standard can be performed. From the above, according to the above evaluation support system, objective evaluation can be performed and efficient evaluation support can be performed.

上記評価支援システムにおいて、作業分類部は、電子ファイルへのデータの入力作業を第一の分類として分類し、既に電子ファイルに入力されたデータを編集する編集作業を第二の分類として分類し、編集された電子ファイルのデータの照合作業または仮説の検証作業を第3の分類として分類してもよい。こうすることにより、作業分類部における分類をより的確にして、より効率的な評価支援を行うことができる。 In the above evaluation support system, the work classification unit classifies the data input work to the electronic file as the first classification, and the editing work for editing the data already input to the electronic file as the second classification. The work of collating the data of the edited electronic file or the work of verifying the hypothesis may be classified as a third category. By doing so, it is possible to make the classification in the work classification section more accurate and to provide more efficient evaluation support.

上記評価支援システムにおいて、評価支援データ生成部は、作業者、作業分類および電子ファイルのうちの少なくともいずれか一つに基づいて評価支援データを生成してもよい。このようにすることにより、より適切に求められる評価支援データを提供することができる。 In the evaluation support system, the evaluation support data generation unit may generate evaluation support data based on at least one of a worker, a work classification, and an electronic file. By doing so, it is possible to provide the evaluation support data that is required more appropriately.

上記評価支援システムにおいて、評価支援データ生成部は、予め付与されたキーワードの重要性の順位付けに応じて評価支援データを生成してもよい。このようにすることにより、より適切に求められる評価支援データを提供することができる。 In the evaluation support system, the evaluation support data generation unit may generate evaluation support data according to the ranking of the importance of the keywords given in advance. By doing so, it is possible to provide the evaluation support data that is required more appropriately.

上記評価支援システムにおいて、評価支援データ生成部は、電子ファイルの使用時間および電子ファイルの作業日に基づいて、日常的に行われる作業であるルーチン作業か非日常的で突発的に発生する作業であるスポット作業かに基づいて評価支援データを生成してもよい。このようにすることにより、より適切に求められる評価支援データを提供することができる。 In the above evaluation support system, the evaluation support data generation unit is a routine work that is a daily work or an extraordinary and sudden work that occurs based on the usage time of the electronic file and the work day of the electronic file. Evaluation support data may be generated based on a certain spot work. By doing so, it is possible to provide the evaluation support data that is required more appropriately.

上記評価支援システムにおいて、評価支援データ生成部は、電子ファイルへのデータの入力作業の複雑度に応じて、評価支援データを生成してもよい。このようにすることにより、より適切に求められる評価支援データを提供することができる。 In the evaluation support system, the evaluation support data generation unit may generate evaluation support data according to the complexity of the data input work to the electronic file. By doing so, it is possible to provide the evaluation support data that is required more appropriately.

上記評価支援システムにおいて、キーワード抽出部は、ログデータ取得部により取得された電子ファイル名にキーワードが含まれていないと判断すれば、ディレクトリ名にキーワードに含まれているか否かを判断し、ディレクトリ名にキーワードが含まれていないと判断すれば、アプリケーション名からキーワードを抽出してもよい。このようにすることにより、電子ファイルのファイル名、ディレクトリ名、アプリケーション名の優先順位に沿ってキーワードを抽出することができ、より適切な評価支援データを提供することができる。 In the above evaluation support system, if the keyword extraction unit determines that the electronic file name acquired by the log data acquisition unit does not include the keyword, it determines whether or not the directory name includes the keyword, and the directory. If it is determined that the name does not contain the keyword, the keyword may be extracted from the application name. By doing so, keywords can be extracted according to the priority of the file name, directory name, and application name of the electronic file, and more appropriate evaluation support data can be provided.

上記評価支援システムは、物理的な外部の状況を検知するセンサーをさらに備え、個人業務タグ生成部は、センサーにより検知された検知情報に基づいて、個人業務タグを生成してもよい。このようにすることにより、より実際の状況に応じた個人業務タグを生成ことができる。 The evaluation support system further includes a sensor that detects a physical external situation, and the personal business tag generation unit may generate a personal business tag based on the detection information detected by the sensor. By doing so, it is possible to generate a personal business tag according to the actual situation.

上記評価支援システムは、ディレクトリの情報を取得するディレクトリ情報取得部をさらに備え、作業分類部は、ディレクトリ情報取得部により取得されたディレクトリの情報に基づいて作業を分類してもよい。このようにすることにより、より適切に作業を分類することができる。 The evaluation support system further includes a directory information acquisition unit that acquires directory information, and the work classification unit may classify work based on the directory information acquired by the directory information acquisition unit. By doing so, the work can be classified more appropriately.

上記評価支援システムは、評価支援データ生成部は、個人業務タグ生成部により生成された個人業務タグに基づいて今後の業務を予測した予測データを生成してもよい。このようにすることにより、生成された予測データを用いて、業務の改善等、将来の予測も踏まえたより適切な評価支援を行うことができる。また、本評価支援システムについて、予測データに個人の習熟度を反映させることもできる。 In the evaluation support system, the evaluation support data generation unit may generate prediction data for predicting future business based on the personal business tag generated by the personal business tag generation unit. By doing so, it is possible to use the generated forecast data to provide more appropriate evaluation support based on future forecasts such as business improvement. In addition, regarding this evaluation support system, it is possible to reflect the proficiency level of an individual in the prediction data.

上記評価支援システムは、職務毎の役割を分配した職務分掌に関する職務分掌データを取得する職務分掌データ取得部と、職務分掌データ取得部により取得された職務分掌データに基づいて、ディレクトリを生成するディレクトリ生成部と、をさらに備えてもよい。このようにすることにより、例えば、企業の職務分掌の規定からディレクトリを生成し、企業の職務分掌の規定に沿った分類を行うことができる。 The above evaluation support system is a directory that generates a directory based on the job division data acquisition department that acquires the job division data related to the job division that distributes the roles for each job and the job division data acquired by the job division data acquisition department. It may further include a generation unit. By doing so, for example, a directory can be generated from the rules of division of duties of a company, and classification can be performed according to the rules of division of duties of a company.

本開示に係る評価支援方法は、電子ファイルのファイル名、電子ファイルが格納されているディレクトリのディレクトリ名、電子ファイルのアプリケーション名および電子ファイルを操作した作業者名を含む電子ファイルの作業履歴情報をログデータとして管理サーバーが取得する工程と、ログデータを取得する工程の後に、管理サーバーにより、取得されたログデータに含まれるファイル名、ディレクトリ名およびアプリケーション名のうちの少なくともいずれか一つからキーワードを抽出する工程と、個人業務タグを生成する工程の後に、管理サーバーにより、取得されたログデータに含まれる電子ファイルの作業者毎の作業履歴情報から作業を分類する工程と、キーワードを抽出する工程の後に、管理サーバーにより、抽出されたキーワードおよび作業分類部により分類された作業分類に基づいて、キーワードに紐付けられた作業者個人の業務に関連するタグである個人業務タグを生成する工程と、業務を分類する工程の後に、管理サーバーにより、生成された個人業務タグに基づいて評価の支援となる評価支援データを生成する工程と、評価支援データを生成する工程の後に、評価支援データを出力する工程と、を備える。 The evaluation support method according to the present disclosure includes work history information of an electronic file including the file name of the electronic file, the directory name of the directory in which the electronic file is stored, the application name of the electronic file, and the name of the worker who operated the electronic file. After the process of acquiring log data by the management server and the process of acquiring log data, keywords are selected from at least one of the file name, directory name, and application name included in the log data acquired by the management server. After the process of extracting the work and the process of generating the personal business tag, the management server extracts the work and the keyword from the work history information of each worker in the electronic file included in the acquired log data. After the process, the management server generates a personal business tag that is a tag related to the worker's individual business associated with the keyword based on the extracted keywords and the work classification classified by the work classification unit. After the process of classifying the business, the management server generates the evaluation support data that supports the evaluation based on the generated personal business tag, and after the process of generating the evaluation support data, the evaluation support data. It is provided with a process of outputting a file.

このような評価支援方法によれば、客観的な評価を行うことができ、効率的な評価支援を行うことができる。 According to such an evaluation support method, objective evaluation can be performed and efficient evaluation support can be performed.

本開示に係る評価支援プログラムは、コンピューターを、電子ファイルのファイル名、電子ファイルが格納されているディレクトリのディレクトリ名、電子ファイルのアプリケーション名および電子ファイルを操作した作業者名を含む電子ファイルの作業履歴情報をログデータとして取得するログデータ取得部、ログデータ取得部により取得されたログデータに含まれるファイル名、ディレクトリ名およびアプリケーション名のうちの少なくともいずれか一つからキーワードを抽出するキーワード抽出部、ログデータ取得部により取得されたログデータに含まれる電子ファイルの作業者毎の作業履歴情報から作業を分類する作業分類部、キーワード抽出部により抽出されたキーワードおよび作業分類部により分類された作業分類に基づいて、キーワードに紐付けられた作業者個人の業務に関連するタグである個人業務タグを生成する個人業務タグ生成部、個人業務タグ生成部により生成された個人業務タグに基づいて評価の支援となる評価支援データを生成する評価支援データ生成部および評価支援データ生成部により生成した評価支援データを出力するよう制御する出力制御部として機能させるための評価支援プログラムである。 The evaluation support program according to the present disclosure uses a computer to work on an electronic file including the file name of the electronic file, the directory name of the directory in which the electronic file is stored, the application name of the electronic file, and the name of the worker who operated the electronic file. Keyword extraction unit that extracts keywords from at least one of the file name, directory name, and application name included in the log data acquisition unit that acquires history information as log data and the log data acquisition unit. , Work classification unit that classifies work from the work history information of each worker in the electronic file included in the log data acquired by the log data acquisition unit, keywords extracted by the keyword extraction unit, and work classified by the work classification unit. Based on the classification, the personal business tag generation unit that generates the personal business tag, which is a tag related to the worker's individual business linked to the keyword, and the personal business tag generation unit generate the evaluation based on the personal business tag. This is an evaluation support program for functioning as an evaluation support data generation unit that generates evaluation support data and an output control unit that controls the output of evaluation support data generated by the evaluation support data generation unit.

このような評価支援プログラムによれば、客観的な評価を行うことができ、効率的な評価支援を行うことができる。 According to such an evaluation support program, objective evaluation can be performed and efficient evaluation support can be provided.

[本願発明の実施形態の詳細]
次に、本開示の評価支援システムの一実施形態を、図面を参照しつつ説明する。以下の図面において同一または相当する部分には同一の参照符号を付しその説明は繰り返さない。
[Details of Embodiments of the present invention]
Next, an embodiment of the evaluation support system of the present disclosure will be described with reference to the drawings. In the following drawings, the same or corresponding parts are designated by the same reference numerals, and the description thereof will not be repeated.

(実施の形態1)
本開示の実施の形態1における評価支援システムの構成について説明する。図1は、実施の形態1における評価支援システムの構成を示すブロック図である。図2は、図1に示す評価支援システムの外観を概略的に示す図である。図1および図2を参照して、実施の形態1における評価支援システム11は、会社内の人事の評価や会社内における業務の評価を支援する際に利用される。人事の評価とは、ある従業員(作業者)について、どの程度重要な業務を担っているか、どの程度専門的な業務をおこなっているか等に関する評価である。業務の評価とは、どの程度重要な業務であるか、会社内で発生する作業においてどの程度必要な業務であるか等に関する評価である。また、評価支援システム11は、業務に応じてアウトソースや自動化を推奨したり、業務の効率化を追求する場合にも利用される。
(Embodiment 1)
The configuration of the evaluation support system according to the first embodiment of the present disclosure will be described. FIG. 1 is a block diagram showing a configuration of an evaluation support system according to the first embodiment. FIG. 2 is a diagram schematically showing the appearance of the evaluation support system shown in FIG. With reference to FIGS. 1 and 2, the evaluation support system 11 in the first embodiment is used to support the evaluation of personnel in the company and the evaluation of business in the company. The evaluation of personnel is an evaluation of how important an employee (worker) is in charge of work, how much specialized work is being performed, and the like. The evaluation of work is an evaluation of how important the work is and how much work is necessary for the work that occurs in the company. The evaluation support system 11 is also used when outsourcing or automation is recommended according to the business, or when the efficiency of the business is pursued.

評価支援システム11は、管理装置としてのサーバー12と、各作業者(従業員)が電子ファイルを操作する際に利用するコンピューター21a,21bと、評価を行う管理者Dが所有する管理装置としてのコンピューター21cと、を含む。サーバー12、コンピューター21a,21b,21cはそれぞれ、ネットワーク22によって有線、無線を問わず接続されている。ネットワーク22は、インターネットおよび社内イントラネット等を含む。コンピューター21a,21bはそれぞれ、例えば会社に所属する作業者W,Wに割り当てられ、所有されるコンピューターである。The evaluation support system 11 is a management device owned by a server 12 as a management device, computers 21a and 21b used by each worker (employee) to operate electronic files, and an evaluation manager D. Includes computer 21c and. The server 12, the computers 21a, 21b, and 21c are each connected by the network 22 regardless of whether they are wired or wireless. The network 22 includes the Internet, an in-house intranet, and the like. Computer 21a, 21b, respectively, for example, assigned to the worker W 1, W 2 belonging to the company, a computer owned.

サーバー12は、サーバー12自身を制御するサーバー制御部13と、ネットワーク22と接続するためのサーバーネットワークインターフェース部14と、種々のデータを記憶するサーバー記憶部としてのサーバーハードディスク15と、を含む。サーバー12は、サーバーネットワークインターフェース部14により、ネットワーク22を経由してコンピューター21a,21b,21c等、他の電子機器と通信可能に構成されている。サーバーネットワークインターフェース部14は、コンピューター21a,21b,21cから送信されるデータ、例えば、コンピューター21aによって作業された電子ファイルのログデータを受信する。サーバーネットワークインターフェース部14は、コンピューター21a,21b,21cを含む他の電子機器から各種のデータを受信するサーバー受信部として機能する。 The server 12 includes a server control unit 13 that controls the server 12 itself, a server network interface unit 14 for connecting to the network 22, and a server hard disk 15 as a server storage unit that stores various data. The server 12 is configured to be able to communicate with other electronic devices such as computers 21a, 21b, and 21c via the network 22 by the server network interface unit 14. The server network interface unit 14 receives data transmitted from the computers 21a, 21b, 21c, for example, log data of an electronic file worked by the computer 21a. The server network interface unit 14 functions as a server receiving unit that receives various data from other electronic devices including computers 21a, 21b, and 21c.

サーバー12には、表示画面19を有するディスプレイ16と、キーボード17と、マウス18とが接続されている。ディスプレイ16により、サーバー12の情報およびサーバーハードディスク15に記憶された情報やデータが表示される。また、サーバー12を使用するユーザー、例えば管理者Dは、キーボード17およびマウス18を用いて、ディスプレイ16の表示画面19に表示される画面を確認しながら、サーバー12へのデータの入力等を行う。 A display 16 having a display screen 19, a keyboard 17, and a mouse 18 are connected to the server 12. The display 16 displays the information of the server 12 and the information and data stored in the server hard disk 15. Further, a user who uses the server 12, for example, an administrator D, uses the keyboard 17 and the mouse 18 to input data to the server 12 while checking the screen displayed on the display screen 19 of the display 16. ..

サーバー制御部13は、サーバー記憶制御部31と、サーバー送信制御部32と、データ加工部33と、出力制御部34と、を含む。サーバー記憶制御部31は、例えばサーバーネットワークインターフェース部14を介して受信したデータを、サーバーハードディスク15に記憶するよう制御する。サーバー送信制御部32は、サーバーネットワークインターフェース部14を介し、外部、例えば、ネットワーク22を経由してコンピューター21a,21b,21c等、他の電子機器に種々のデータを送信するよう制御する。データ加工部33は、サーバーハードディスク15に記憶されたデータ等を要求に応じて加工する。データ加工部33は、例えば管理者Dに要求される出力の形態に加工する。出力制御部34は、データ加工部33により加工されたデータを出力するよう制御する。出力制御部34は、要求に応じてサーバーハードディスク15に記憶されたデータも出力するよう制御する。出力制御部34による出力は、例えばサーバー12に接続されたディスプレイ16の表示画面19によるデータの表示により行う。 The server control unit 13 includes a server storage control unit 31, a server transmission control unit 32, a data processing unit 33, and an output control unit 34. The server storage control unit 31 controls to store the data received via, for example, the server network interface unit 14 in the server hard disk 15. The server transmission control unit 32 controls to transmit various data to other electronic devices such as computers 21a, 21b, and 21c via the server network interface unit 14, for example, via the network 22. The data processing unit 33 processes the data and the like stored in the server hard disk 15 as requested. The data processing unit 33 processes, for example, into the form of output required by the administrator D. The output control unit 34 controls to output the data processed by the data processing unit 33. The output control unit 34 controls to output the data stored in the server hard disk 15 as requested. The output by the output control unit 34 is performed, for example, by displaying data on the display screen 19 of the display 16 connected to the server 12.

図3は、データ加工部33に含まれる構成を概略的に示すブロック図である。図3を参照して、データ加工部33は、ログデータ取得部41と、キーワード抽出部42と、作業分類部43と、個人業務タグ生成部44と、評価支援データ生成部45と、を含む。ログデータ取得部41は、電子ファイルのファイル名、電子ファイルが格納されているディレクトリのディレクトリ名、電子ファイルのアプリケーション名および電子ファイルを操作した作業者名を含む電子ファイルの作業履歴情報をログデータとして取得する。キーワード抽出部42は、ログデータ取得部41により取得されたログデータに含まれるファイル名、ディレクトリ名およびアプリケーション名のうちの少なくともいずれか一つからキーワードを抽出する。作業分類部43は、ログデータ取得部41により取得されたログデータに含まれる電子ファイルの作業者毎の作業履歴情報から作業を分類する。個人業務タグ生成部44は、キーワード抽出部42により抽出されたキーワードおよび作業分類部43により分類された作業分類に基づいて、キーワードに紐付けられた作業者個人の業務に関連するタグである個人業務タグを生成する。評価支援データ生成部45は、個人業務タグ生成部44により生成された個人業務タグに基づいて評価の支援となる評価支援データを生成する。これらの構成については、後に詳述する。 FIG. 3 is a block diagram schematically showing a configuration included in the data processing unit 33. With reference to FIG. 3, the data processing unit 33 includes a log data acquisition unit 41, a keyword extraction unit 42, a work classification unit 43, a personal business tag generation unit 44, and an evaluation support data generation unit 45. .. The log data acquisition unit 41 logs the work history information of the electronic file including the file name of the electronic file, the directory name of the directory in which the electronic file is stored, the application name of the electronic file, and the name of the worker who operated the electronic file. Get as. The keyword extraction unit 42 extracts a keyword from at least one of a file name, a directory name, and an application name included in the log data acquired by the log data acquisition unit 41. The work classification unit 43 classifies the work from the work history information of each worker in the electronic file included in the log data acquired by the log data acquisition unit 41. The personal business tag generation unit 44 is an individual that is a tag related to the work of the individual worker associated with the keyword based on the keywords extracted by the keyword extraction unit 42 and the work classification classified by the work classification unit 43. Generate a business tag. The evaluation support data generation unit 45 generates evaluation support data that supports evaluation based on the personal business tag generated by the personal business tag generation unit 44. These configurations will be described in detail later.

次に、作業者Wに割り当てられたコンピューター21aの構成について説明する。コンピューター21aとしては、具体的には例えば、据え付きのデスクトップ型コンピューターが挙げられるが、他にタブレットPCやノートPCといった携帯可能な端末機器等であってもよい。なお、コンピューター21b,21cの構成については、コンピューター21aと基本的に同様であるため、それらの説明を省略する。Next, the configuration of the computer 21a assigned to the worker W 1 will be described. Specific examples of the computer 21a include a stationary desktop computer, but other computers may be portable terminal devices such as tablet PCs and notebook PCs. Since the configurations of the computers 21b and 21c are basically the same as those of the computer 21a, their description will be omitted.

再び図1および図2を参照して、コンピューター21aには、表示画面29aを有するディスプレイ26aと、キーボード27aと、マウス28aとが接続されている。ディスプレイ26aにより、コンピューター21aの情報およびコンピューターハードディスク25aに記憶された情報やデータが表示される。また、コンピューター21aを使用するユーザー、例えば作業者Wは、キーボード27aおよびマウス28aを用いて、ディスプレイ26aの表示画面29aに表示される画面を確認しながら、コンピューター21aへのデータの入力等を行う。コンピューター21b,21cにもそれぞれ、表示画面29b,29cをそれぞれ有するディスプレイ26b,26c、キーボード27b,27cおよびマウス28b,28cがそれぞれ接続されている。なお、図1において、ディスプレイ26b,26c、キーボード27b,27cおよびマウス28b,28cの図示を省略している。With reference to FIGS. 1 and 2 again, the computer 21a is connected to a display 26a having a display screen 29a, a keyboard 27a, and a mouse 28a. The display 26a displays the information of the computer 21a and the information and data stored in the computer hard disk 25a. Moreover, users who use the computer 21a, for example, the worker W 1 uses the keyboard 27a and the mouse 28a, while viewing the screen displayed on the display screen 29a of the display 26a, the input of data to the computer 21a Do. The computers 21b and 21c are also connected to the displays 26b and 26c, the keyboards 27b and 27c and the mice 28b and 28c, which have display screens 29b and 29c, respectively. In FIG. 1, the displays 26b and 26c, the keyboards 27b and 27c, and the mice 28b and 28c are not shown.

コンピューター21aには、コンピューター21a自身を特定するMACアドレスが付与されている。また、コンピューター21aを操作するには、ログイン認証が必要とされる。すなわち、コンピューター21aにおける操作の開始時には、IDとパスワードを入力させる入力画面がディスプレイ26aの表示画面29aに表示される。ログイン認証が成功すれば、コンピューター21aにおける入力等が可能となる。この時、ログインしたユーザーの名前、ログイン時間等が検出され、コンピューター21aに記憶される。 The computer 21a is assigned a MAC address that identifies the computer 21a itself. Further, in order to operate the computer 21a, login authentication is required. That is, at the start of the operation on the computer 21a, an input screen for inputting an ID and a password is displayed on the display screen 29a of the display 26a. If the login authentication is successful, input on the computer 21a can be performed. At this time, the name of the logged-in user, the login time, and the like are detected and stored in the computer 21a.

コンピューター21aは、コンピューター21a自身を制御するコンピューター制御部23aと、ネットワーク22と接続するためのコンピューターネットワークインターフェース部24aと、種々のデータを記憶するコンピューターハードディスク25aと、を含む。コンピューター21aは、コンピューターネットワークインターフェース部24aを介し、ネットワーク22を経由してサーバー12を含む他の電子機器と通信可能に構成されている。 The computer 21a includes a computer control unit 23a that controls the computer 21a itself, a computer network interface unit 24a for connecting to the network 22, and a computer hard disk 25a that stores various data. The computer 21a is configured to be able to communicate with other electronic devices including the server 12 via the computer network interface unit 24a and the network 22.

コンピューター制御部23aは、コンピューター21aで行った作業のログデータを生成するログデータ生成部36aと、生成されたログデータをサーバー12に送信するコンピューター送信制御部37aとを含む。ログデータ生成部36aは、例えば電子ファイルFについて作業が行われた際に、ログデータLを生成する。ログデータLは、作業を行った作業者、作業開始時間、作業終了時間、作業時に入力された文字やタイミング、作業に用いたアプリケーション等から構成されている。コンピューター送信制御部37aは、生成されたログデータLを所定のタイミングでサーバー12に送信する。所定のタイミングとは、ログデータLの生成が完了した時点や、サーバー12とコンピューター21aとの通信が確立したタイミング等である。The computer control unit 23a includes a log data generation unit 36a that generates log data of work performed by the computer 21a, and a computer transmission control unit 37a that transmits the generated log data to the server 12. The log data generation unit 36a generates log data L 1 when, for example, work is performed on the electronic file F 1 . The log data L 1 is composed of a worker who has performed the work, a work start time, a work end time, characters and timings input at the time of the work, an application used for the work, and the like. Computer transmission controller 37a transmits to the server 12 the generated log data L 1 at a predetermined timing. The predetermined timing is a time when the generation of the log data L 1 is completed, a timing when communication between the server 12 and the computer 21a is established, and the like.

ここで、ログデータLの構成の一例について説明する。図4は、ログデータの構成の一例を示す概念図である。図4を参照して、ログデータLは、例えばコンピューターハードディスク25aの格納領域46に記憶されている。ログデータLは、作業者を「W」とする作業者名データ51a,電子ファイル名を「予算管理2」とする電子ファイル名データ52a、作業開始時間を「13時25分」とする作業開始時間データ53a、作業終了時間を「14時37分」とする作業終了時間データ54a等を含む。ログデータLには、他にも電子ファイルのディレクトリ名のデータ、電子ファイルの作業に用いたアプリケーション名のデータ等が含まれている。ログデータLには、誰がいつからいつまでどのような名前の電子ファイルをどのように操作したかを把握することができる情報が含まれている。Here, an example of the log data L 1 configuration. FIG. 4 is a conceptual diagram showing an example of the configuration of log data. Referring to FIG. 4, the log data L 1 are stored, for example, in the storage area 46 of the computer hard disk 25a. The log data L 1 has worker name data 51a with the worker as "W 1 ", electronic file name data 52a with the electronic file name as "budget management 2", and work start time as "13:25". Includes work start time data 53a, work end time data 54a with the work end time set to "14:37", and the like. The log data L 1 also includes data on the directory name of the electronic file, data on the name of the application used for working on the electronic file, and the like. The log data L 1 contains information capable of grasping who operated an electronic file with what name and how from when to when.

次に、このような評価支援システム11を用いて評価支援を行う方法について説明する。まずログデータの生成について説明する。図5は、実施の形態1に係る評価支援システム11におけるログデータを生成する際の代表的な工程を示すフローチャートである。 Next, a method of performing evaluation support using such an evaluation support system 11 will be described. First, the generation of log data will be described. FIG. 5 is a flowchart showing a typical process when generating log data in the evaluation support system 11 according to the first embodiment.

図5を参照して、コンピューター21aを操作する作業者Wは、ログイン認証を行って作業を開始する(図5においてステップS11、以下「ステップを省略する。」)。具体的には、作業者Wは、自らに割り当てられたIDおよびパスワードをキーボード27aおよびマウス28aを用いて入力し、コンピューター21aの認証を経てから操作を開始する。この時、コンピューター21aは、ログインした作業者Wのデータ、すなわち、作業者Wの名前のデータを取得する。取得した名前のデータについては、ログデータ生成部36aによるログデータの生成に利用される。Referring to FIG. 5, the worker W 1 to operate the computer 21a starts working performs login authentication (step S11 in FIG. 5, the "omitted steps."). Specifically, the worker W 1 inputs the ID and password assigned to him / her using the keyboard 27a and the mouse 28a, and starts the operation after the computer 21a is authenticated. At this time, the computer 21a acquires the data of the logged-in worker W 1 , that is, the data of the name of the worker W 1. The acquired name data is used for log data generation by the log data generation unit 36a.

次に作業者Wは、電子ファイルFを開き、作業を開始する。そうすると、ログデータ生成部36aは、作業開始時間のデータを取得する(S12)。作業開始時間については、コンピューター21aに設けられた時計機能により取得する。また、開けられた電子ファイルF名のデータも取得する。次に、作業者Wは、データの入力作業を行う。Next, the worker W 1 opens the electronic file F 1 and starts the work. Then, the log data generation unit 36a acquires the data of the work start time (S12). The work start time is acquired by the clock function provided in the computer 21a. In addition, also acquires data of the electronic file F 1 person that has been opened. Next, the worker W 1 performs data input work.

ここで、データの入力作業については、例えばキーボード27a等を用いた新たな数値データや文字データ、記号データの入力数の多さがある基準よりも多いか否かに基づいて入力作業か否かが判断される。なお、データの編集作業については、例えば既に入力されている数値データや文字データ等の入れ替えや、既に入力済みのデータを用いた計算の数がある基準よりも多いか否かに基づいて編集作業か否かが判断される。また、データの照合・仮説検証作業については、例えば複数の電子ファイルが同時に開けられている時間、開けられている電子ファイルの数、データの入力数の多さがある基準よりも少ないか否か、既に入力されている数値データや文字データの等の入れ替えの数がある基準よりも少ないか否かに基づいて照合・仮説検証作業か否かを判断される。 Here, regarding the data input work, for example, whether or not the data input work is based on whether or not the number of new numerical data, character data, and symbol data input using the keyboard 27a or the like is larger than a certain standard. Is judged. Regarding the data editing work, for example, the editing work is based on whether or not the number of calculations using the already input data is larger than a certain standard, such as replacing the numerical data and character data that have already been input. Whether or not it is judged. Regarding data collation and hypothesis verification work, for example, whether or not the time when multiple electronic files are open at the same time, the number of open electronic files, and the number of data inputs are less than a certain standard. , It is judged whether or not it is a collation / hypothesis verification work based on whether or not the number of replacements of numerical data and character data that have already been input is less than a certain standard.

作業者Wは、作業を終了後、電子ファイルFを閉じ、作業を終了する(S13において、YES)。ここで、ログデータ生成部36aは、作業終了時間のデータを取得する(S14)。このようにして一連の作業が終了した後に、ログデータ生成部36aによりログデータが生成される(S15)。生成されたログデータは、所定のタイミングで、コンピューター送信制御部37aによりサーバー12に送信される(S16)。所定のタイミングとは、例えば、作業が終了した即時のタイミングである。このような作業が他のコンピューター21bや他の作業者W等により行われる。そうすると、多くのログデータが生成される。そして、多くのログデータがサーバー12に送信される。なお、ログデータ生成部36aは、サーバー12に含まれていてもよい。After finishing the work, the worker W 1 closes the electronic file F 1 and finishes the work (YES in S13). Here, the log data generation unit 36a acquires the data of the work end time (S14). After the series of operations is completed in this way, the log data is generated by the log data generation unit 36a (S15). The generated log data is transmitted to the server 12 by the computer transmission control unit 37a at a predetermined timing (S16). The predetermined timing is, for example, the immediate timing at which the work is completed. Such operation is performed by other computers 21b and another worker W 2 and the like. Then, a lot of log data is generated. Then, a lot of log data is transmitted to the server 12. The log data generation unit 36a may be included in the server 12.

次に、生成されたログデータを用いて評価支援データを出力する場合について説明する。図6は、サーバー12における評価支援データを出力する際の代表的な工程を示すフローチャートである。図6を参照して、まず、データ加工部33に含まれるログデータ取得部41は、各コンピューター21a,21bから送信されたログデータを受信し、取得する(S21)。取得したログデータについては、サーバーハードディスク15に記憶される(S22)。所定のタイミングに達した後(S23において、YES)、データ加工部33による加工を行う。具体的にはまず、ログデータを基に作業分類解析および個人業務タグの生成が行われる(S24)。 Next, a case where evaluation support data is output using the generated log data will be described. FIG. 6 is a flowchart showing a typical process when outputting the evaluation support data in the server 12. With reference to FIG. 6, first, the log data acquisition unit 41 included in the data processing unit 33 receives and acquires the log data transmitted from the computers 21a and 21b (S21). The acquired log data is stored in the server hard disk 15 (S22). After reaching a predetermined timing (YES in S23), processing is performed by the data processing unit 33. Specifically, first, work classification analysis and personal business tag generation are performed based on the log data (S24).

ここで、S24における作業分類解析および個人業務タグの生成の工程について説明する。図7は、作業分類解析および個人業務タグの生成の際の代表的な工程を示すフローチャートである。 Here, the steps of work classification analysis and generation of personal business tags in S24 will be described. FIG. 7 is a flowchart showing a typical process in the work classification analysis and the generation of the personal business tag.

図7を参照して、キーワード抽出部42は、取得されたログデータに含まれる電子ファイル名から、所定のキーワードを抽出する(S31)。この場合、ファイル名マスタを用い、ファイル名マスタに登録されているキーワードを抽出する。ファイル名マスタは、サーバーハードディスク15に記憶されており、「予算」や「売上」といったキーワードが登録されている。そして、抽出したキーワードを基にN(Name)タグが付与される(S32)。本実施形態においては、「予算」というキーワードが抽出され、Nタグとして「予算」が生成される。その後、他のログデータについても同様にキーワードが抽出され、他のNタグ、例えば、電子ファイルのファイル名に含まれ、ファイル名マスタに登録されている「売上」といったNタグが付与される。 With reference to FIG. 7, the keyword extraction unit 42 extracts a predetermined keyword from the electronic file name included in the acquired log data (S31). In this case, the file name master is used to extract the keywords registered in the file name master. The file name master is stored in the server hard disk 15, and keywords such as "budget" and "sales" are registered. Then, an N (Name) tag is added based on the extracted keyword (S32). In this embodiment, the keyword "budget" is extracted and "budget" is generated as an N tag. After that, keywords are similarly extracted for other log data, and other N tags, for example, N tags such as "sales" included in the file name of the electronic file and registered in the file name master are added.

その後、付与されたNタグ毎の使用時間と使用回数とが算出される。具体的には例えばNタグが付与された「予算」のキーワードが含まれる電子ファイル名を有する複数の電子ファイルにおいて、トータルの使用時間および使用回数が算出される。算出結果に基づいて、Nタグに順位が付けられる(S33)。具体的には例えば、使用回数が多い順、使用回数が同じ場合は使用時間が長い順にNタグの順位が付けられる。すなわち、Nタグ毎のNR(Name Rank)タグが導出される(S34)。 After that, the usage time and the number of times of use for each assigned N tag are calculated. Specifically, for example, the total usage time and the number of usages are calculated for a plurality of electronic files having electronic file names including the keyword "budget" with an N tag. The N tags are ranked based on the calculation result (S33). Specifically, for example, the N tags are ranked in descending order of the number of times of use, or in the order of longest use time when the number of times of use is the same. That is, the NR (Name Rank) tag for each N tag is derived (S34).

その後、NRタグを改めて各電子ファイルに付与する(S35)。具体的には例えば、「予算」というキーワードが電子ファイル名に含まれる各電子ファイルに対して、NRタグが付与される。 After that, the NR tag is attached to each electronic file again (S35). Specifically, for example, an NR tag is added to each electronic file in which the keyword "budget" is included in the electronic file name.

さらに、各電子ファイルに対して作業分類解析が行われる(S36)。すなわち、作業分類部43は、電子ファイルへのデータの入力作業を第一の分類として分類し、既に電子ファイルに入力されたデータを編集する編集作業を第二の分類として分類し、編集された電子ファイルのデータの照合作業または仮説の検証作業を第3の分類として分類する。作業分類については、具体的には例えば、作業を、数値や文字を入力するデータの入力作業、入力された数値や文字を編集するデータの編集作業、編集された内容を照合したり仮説の検証を行うデータの照合・仮説検証作業の三つに大別し、いずれに属するかを基に分類し、解析する。すなわち、作業分類部43は、電子ファイルへのデータの入力作業を第一の分類として分類し、既に電子ファイルに入力されたデータを編集する編集作業を第二の分類として分類し、編集された電子ファイルのデータの照合作業または仮説の検証作業を第三の分類として分類する。データの入力作業、データの編集作業およびデータの照合・仮説検証作業のいずれかに属するかは、例えば上記した基準に基づいて判断される。 Further, a work classification analysis is performed on each electronic file (S36). That is, the work classification unit 43 classifies the data input work to the electronic file as the first classification, and the editing work for editing the data already input to the electronic file as the second classification, and is edited. The work of collating data in electronic files or the work of verifying hypotheses is classified as a third category. Regarding work classification, specifically, for example, the work is the work of inputting data for inputting numerical values and characters, the work of editing data for editing input numerical values and characters, collating the edited contents, and verifying hypotheses. It is roughly divided into three types of data collation and hypothesis verification work, and it is classified and analyzed based on which one it belongs to. That is, the work classification unit 43 classifies the data input work to the electronic file as the first classification, and the editing work for editing the data already input to the electronic file as the second classification, and is edited. The work of collating data in electronic files or the work of verifying hypotheses is classified as a third category. Whether it belongs to the data input work, the data editing work, or the data collation / hypothesis verification work is determined based on, for example, the above-mentioned criteria.

その後、電子ファイルの使用時間の時系列より前後関係を類推する(S37)。具体的には、電子ファイルが作成された時間や作業に用いられた時間等を考慮し、電子ファイルの前後関係を類推する。類推結果を基にNRタグの共起ネットワークを作成する(S38)。共起ネットワークについては、具体的には例えば、同じタイミングで発生することの多いNタグを近さとしてまとめたネットワークを意味する。次に、グルーピングを行う(S39)。すなわち、作成した共起ネットワーク内において、グループに分ける。 After that, the context is inferred from the time series of the usage time of the electronic file (S37). Specifically, the context of the electronic file is inferred in consideration of the time when the electronic file was created and the time used for the work. A co-occurrence network of NR tags is created based on the analogy results (S38). The co-occurrence network specifically means, for example, a network in which N tags that often occur at the same timing are grouped together as closeness. Next, grouping is performed (S39). That is, they are divided into groups within the created co-occurrence network.

そして、NRタグと作業分類解析結果から個人業務タグを生成する(S40)。個人業務タグについては、各個人における業務の内容を示すタグとなる。作業分類は、各個人における作業内容がどのようなものかを示すものとなる。 Then, a personal business tag is generated from the NR tag and the work classification analysis result (S40). The personal business tag is a tag indicating the content of business in each individual. The work classification shows what the work content of each individual is like.

図8は、個人業務タグの構成の一部を示す概念図である。図8を参照して、個人業務タグ56は、作業者毎に生成される。図8は、作業者Wの場合を示し、データS、S等から構成されている。個人業務タグ56は、Nタグ名を示す項目57aと、作業分類を示す項目57bと、電子ファイル数を示す項目57cと、合計時間を示す項目57dとを含む。項目57aにより、作業者WがどのようなNタグを含む電子ファイルを取り扱ったかを把握できる。項目57bにより、各Nタグについて、どのような作業を行ったかを把握できる。項目57cにより、Nタグが含まれている電子ファイルの数が把握できる。項目57dにより、作業に要した合計時間が把握できる。FIG. 8 is a conceptual diagram showing a part of the structure of the personal business tag. With reference to FIG. 8, the personal business tag 56 is generated for each worker. FIG. 8 shows the case of the worker W 1 , which is composed of data S 1 , S 2, and the like. The personal business tag 56 includes an item 57a indicating an N tag name, an item 57b indicating a work classification, an item 57c indicating the number of electronic files, and an item 57d indicating the total time. By item 57a, it can be grasped or handled the electronic file that contains what N tag worker W 1. From item 57b, it is possible to grasp what kind of work has been performed for each N tag. From item 57c, the number of electronic files containing the N tag can be grasped. From item 57d, the total time required for the work can be grasped.

作業分類解析および個人業務タグの生成が終了すると、図6に戻って、評価支援データを生成する(S25)。出力制御部34は、評価支援データ生成部45により生成した評価支援データを出力するよう制御する(S26)。 When the work classification analysis and the generation of the personal business tag are completed, the process returns to FIG. 6 to generate the evaluation support data (S25). The output control unit 34 controls to output the evaluation support data generated by the evaluation support data generation unit 45 (S26).

次に、S25における評価支援データを生成する工程について説明する。図9は、評価支援データを作成する際の代表的な工程を示すフローチャートである。図10および図11はそれぞれ、評価支援データを作成する際の代表的な工程の一部を示すフローチャートである。 Next, the step of generating the evaluation support data in S25 will be described. FIG. 9 is a flowchart showing a typical process when creating evaluation support data. 10 and 11 are flowcharts showing a part of a typical process for creating evaluation support data, respectively.

図9を参照して、個人業務タグおよびログデータを取得した後(S51)、個人業務タグ毎の業務を分析する(S52)。次に、個人業務タグ毎の業務分析表を導出し(S53)、業務分析表に基づいて評価支援データを生成する(S54)。 With reference to FIG. 9, after acquiring the personal business tag and the log data (S51), the business for each personal business tag is analyzed (S52). Next, a business analysis table for each individual business tag is derived (S53), and evaluation support data is generated based on the business analysis table (S54).

ここで、S52において、個人業務タグ毎の業務を分析するに際し、図10を参照して、まず、作業分類がデータの入力作業およびデータの編集作業のいずれかであるか、またはデータの照合・仮説検証作業かを判断する(S61)。データの照合・仮説検証であると判断した場合には(S61において、NO)、効率化方針を策定しないと判断する(S62)。一方、作業分類がデータの入力作業およびデータの編集作業のいずれかであると判断した場合には(S61において、YES)、次に作業内容がルーチン作業であるか、またはスポット作業であるかを判断する(S63)。ルーチン作業であるかスポット作業であるかの判断については、例えばある一定の周期で発生する確率が高いものをルーチン作業として判断し、それ以外のものをスポット作業として判断する。すなわち、評価支援データ生成部45は、電子ファイルの使用時間および電子ファイルの作業日に基づいて、日常的に行われる作業であるルーチン作業か非日常的で突発的に発生する作業であるスポット作業かに基づいて評価支援データを生成する。スポット作業であると判断した場合には(S63において、NO)、効率化方針を策定しない(S62)。 Here, in S52, when analyzing the business for each personal business tag, first, referring to FIG. 10, whether the work classification is either a data input work or a data editing work, or data collation. It is determined whether it is a hypothesis verification work (S61). If it is determined that the data is collated and the hypothesis is verified (NO in S61), it is determined that the efficiency improvement policy is not formulated (S62). On the other hand, when it is determined that the work classification is either a data input work or a data editing work (YES in S61), then whether the work content is a routine work or a spot work is determined. Judgment (S63). Regarding the determination of whether the work is a routine work or a spot work, for example, a work having a high probability of occurring in a certain cycle is judged as a routine work, and other work is judged as a spot work. That is, the evaluation support data generation unit 45 is a routine work that is a daily work or a spot work that is an extraordinary and sudden work based on the usage time of the electronic file and the work day of the electronic file. Generate evaluation support data based on the data. If it is determined that the work is a spot work (NO in S63), the efficiency improvement policy is not formulated (S62).

一方、ルーチン作業であると判断した場合には(S63において、YES)、次に作業内容が複雑であるか否かを判断する(S64)。複雑であるか否かは、例えばある個人業務タグにおいてキー入力の内容やショートカットキーや記号の入力の数等を集計する。集計した数や内容について、所定の数よりも多ければ、作業内容が複雑であると判断する。所定の数以下であれば、作業内容が単純であると判断する。 On the other hand, if it is determined that the work is routine work (YES in S63), then it is determined whether or not the work content is complicated (S64). Whether or not it is complicated is determined by, for example, counting the contents of key inputs and the number of shortcut keys and symbol inputs in a certain personal business tag. If the total number and contents are larger than the predetermined number, it is judged that the work contents are complicated. If it is less than a predetermined number, it is judged that the work content is simple.

作業内容が複雑であると判断した場合には(S64において、YES)、次にアウトソース、すなわち、例えば外部委託を行うか否かに関する効率化方針策定へ移行する(S65)。そして、さらなる詳細分析を行う(S67)。一方、作業内容が複雑でない、すなわち、作業内容が単純であると判断した場合には(S64において、NO)、次に自動化、すなわち、例えばプログラミングの構築等による作業の自動化に関する効率化方針策定へ移行する(S66)。この場合も、さらなる詳細分析を行う(S67)。 If it is determined that the work content is complicated (YES in S64), then the process shifts to outsourcing, that is, for formulating an efficiency improvement policy regarding whether or not to outsource, for example (S65). Then, further detailed analysis is performed (S67). On the other hand, if it is judged that the work content is not complicated, that is, the work content is simple (NO in S64), then automation, that is, for example, to formulate an efficiency improvement policy regarding automation of work by constructing programming. Transition (S66). In this case as well, further detailed analysis is performed (S67).

詳細分析について説明すると以下の通りである。図11を参照して、アウトソースに関する効率化方針策定の場合において、作業内容の重要度を判断する(S71)。重要度については、例えばNタグが含まれている電子ファイルのNRタグの順位の度合いや、Nタグが付与されている電子ファイルの数等に基づいて判断される。作業内容の重要度が高ければ(S71において、YES)、作業時間の長短を判断する(S72)。作業時間が長ければ(S72において、YES)、この場合、優先度の高いアウトソースを推奨する(S73)。一方、作業時間が短ければ(S72において、NO)、優先度の低い現状維持を推奨する(S74)。作業内容の重要度が低ければ(S71において、NO)、作業時間の長短を判断し(S75)、作業時間が長ければ(S75において、YES)、優先度の高いアウトソースを推奨する(S76)。作業時間が短ければ(S75において、NO)、優先度の低い打ち切りを推奨する(S77)。 The detailed analysis is as follows. With reference to FIG. 11, the importance of the work content is determined in the case of formulating the efficiency improvement policy regarding outsourcing (S71). The importance is determined based on, for example, the degree of rank of the NR tag of the electronic file containing the N tag, the number of electronic files to which the N tag is attached, and the like. If the importance of the work content is high (YES in S71), the length of the work time is determined (S72). If the working time is long (YES in S72), in this case, outsourcing with high priority is recommended (S73). On the other hand, if the working time is short (NO in S72), it is recommended to maintain the status quo with a low priority (S74). If the importance of the work content is low (NO in S71), the length of the work time is judged (S75), and if the work time is long (YES in S75), high priority outsourcing is recommended (S76). .. If the working time is short (NO in S75), low priority censoring is recommended (S77).

自動化に関する効率化方針策定の場合において、作業内容の重要度を判断する(S71)。作業内容の重要度が高ければ(S71において、YES)、作業時間の長短を判断する(S72)。作業時間が長ければ(S72において、YES)、この場合、優先度の高い自動化を推奨する(S73)。一方、作業時間が短ければ(S72において、NO)、優先度の低い現状維持を推奨する(S74)。作業内容の重要度が低ければ(S71において、NO)、作業時間の長短を判断し(S75)、作業時間が長ければ(S75において、YES)、優先度の高い自動化を推奨する(S76)。作業時間が短ければ(S75において、NO)、優先度の低い打ち切りを推奨する(S77)。 In the case of formulating an efficiency improvement policy regarding automation, the importance of the work content is determined (S71). If the importance of the work content is high (YES in S71), the length of the work time is determined (S72). If the working time is long (YES in S72), in this case, high priority automation is recommended (S73). On the other hand, if the working time is short (NO in S72), it is recommended to maintain the status quo with a low priority (S74). If the importance of the work content is low (NO in S71), the length of the work time is determined (S75), and if the work time is long (YES in S75), high priority automation is recommended (S76). If the working time is short (NO in S75), low priority censoring is recommended (S77).

このような推奨や、各作業者における業務内容について、評価結果をコンピューター21cのディスプレイ26cの表示画面29cに表示する。図12は、出力された結果の一例を示す概略図である。図12は、データT、T、T等から構成されており、評価支援データに基づいて生成された個人業務タグ毎の業務分析表の一例の一部を示す。図12を参照して、結果の一例である業務分析表71aは、作業者名を示す項目72aと、作業分類を示す項目72bと、Nタグを示す項目72cと、合計時間(分)を示す項目72dと、ルーチン作業かスポット作業かを示す項目72eと、複雑性を示す項目72fと、重要性を示す項目72gと、電子ファイルを作成するスピードであるファイル作成スピードを示す項目72iと、10秒当たりのタイプの入力数からカウントされるタイプスピードを示す項目72jと、効率化方針を示す項目72hとを含む。重要性については、記号Aで重要性が高いものを示し、記号Bで重要性が低いものを示す。このような業務分析表71aを参照すると、どの作業者のどの作業分類に属するものがどのような効率化方針を推奨されているかが容易に把握できる。The evaluation results of such recommendations and the work contents of each worker are displayed on the display screen 29c of the display 26c of the computer 21c. FIG. 12 is a schematic view showing an example of the output result. FIG. 12 is composed of data T 1 , T 2 , T 3, etc., and shows a part of an example of a business analysis table for each personal business tag generated based on the evaluation support data. With reference to FIG. 12, the business analysis table 71a, which is an example of the results, shows the item 72a indicating the worker name, the item 72b indicating the work classification, the item 72c indicating the N tag, and the total time (minutes). Item 72d, item 72e indicating routine work or spot work, item 72f indicating complexity, item 72g indicating importance, item 72i indicating the file creation speed which is the speed of creating an electronic file, and 10 The item 72j indicating the type speed counted from the number of types input per second and the item 72h indicating the efficiency improvement policy are included. Regarding the importance, the symbol A indicates the one with high importance, and the symbol B indicates the one with low importance. By referring to such a business analysis table 71a, it is possible to easily grasp what kind of efficiency improvement policy is recommended for which work classification of which worker belongs to which work classification.

また、図13は、出力された結果の他の例を示す概略図である。図13を参照して、表示画面29cには、評価結果を示す2つの棒グラフ61a,61bが表示されている。棒グラフ61aは、作業者Wに対応するものであり、棒グラフ61bは、作業者Wに対応するものである。領域62a,62bは、第三の分類、すなわち、データの照合・仮説検証作業に対応する時間を示し、領域63a,63bは、第一の分類、すなわちデータの入力作業に対応する時間を示し、領域64a,64bは、第二の分類、すなわちデータの編集作業に対応する時間を示す。Further, FIG. 13 is a schematic view showing another example of the output result. With reference to FIG. 13, two bar graphs 61a and 61b showing the evaluation results are displayed on the display screen 29c. The bar graph 61a corresponds to the worker W 1 , and the bar graph 61b corresponds to the worker W 2. The regions 62a and 62b indicate the time corresponding to the third classification, that is, the data collation / hypothesis verification work, and the regions 63a and 63b indicate the time corresponding to the first classification, that is, the data input work. The regions 64a and 64b indicate the time corresponding to the second classification, that is, the data editing work.

図13を参照して、管理者Dは、このような棒グラフ61a,61bを見て、評価支援の参考とすることができる。具体的には、例えば、作業者Wに対して作業者Wの方が総作業時間は少ないが、よりレベルの高いと考えられるデータの照合・仮説検証業務が多いため、昇格や昇給の対象とするよう評価する参考とすることができる。また、作業者Wと作業者Wとが同じ部署であった場合、作業時間に差が生じているため、作業者Wの入力作業の自動化や作業の割り振り等を検討する参考とすることができる。With reference to FIG. 13, the administrator D can see such bar graphs 61a and 61b and use them as a reference for evaluation support. Specifically, for example, the total work time of the worker W 2 is shorter than that of the worker W 1 , but there are many data collation / hypothesis verification tasks that are considered to be of a higher level, so promotion or salary increase. It can be used as a reference for evaluation to be targeted. In addition, if the worker W 1 and the worker W 2 are in the same department, there is a difference in the work time. Therefore, it is used as a reference for considering the automation of the input work of the worker W 1 and the allocation of the work. be able to.

また、ファイル作成スピードを示す項目72iのデータおよびタイプの単位時間当たりの入力数を示す項目72jのデータを利用し、例えば月毎に各項目の平均値等を並べて、ファイル作成スピードやタイプスピードが上がったことを示す作業者の習熟度を検討する参考とすることができる。 Further, using the data of item 72i indicating the file creation speed and the data of item 72j indicating the number of inputs of the type per unit time, for example, the average value of each item is arranged every month, and the file creation speed and type speed can be adjusted. It can be used as a reference for examining the proficiency level of workers who indicate that they have improved.

以上より、上記評価支援システム11では、ログデータ生成部36aにより生成されたログデータを評価支援データに利用している。このようなログデータは、作業者が改めて生成する必要は無いため、作業者の労力を軽減することができると共に、人為的な判断が介在しないため、客観性を担保することができる。また、電子ファイル名、ディレクトリ名およびアプリケーション名のうちの少なくともいずれかからキーワードを抽出して個人業務タグを生成している。よって、電子ファイルの内部、すなわち、電子ファイル内の文字や記号といった詳細な内容を全て解析するといった処理の複雑化を回避することができる。したがって、情報の整理を効率的に行うことができる。また、キーワードおよび作業分類に基づいて生成される個人業務タグに基づいて評価支援データを生成し、出力することとしている。よって、複数の人間に分担して行う人為的な分類ではないため、客観性を高く維持することができる。したがって、ある一定の基準に裏付けられた公平かつ正確な分類を行うことができる。以上より、上記評価支援システム11によると、客観的な評価を行うことができ、効率的な評価支援を行うことができる。 From the above, the evaluation support system 11 uses the log data generated by the log data generation unit 36a as the evaluation support data. Since it is not necessary for the worker to generate such log data again, the labor of the worker can be reduced, and since no human judgment is involved, the objectivity can be ensured. In addition, a keyword is extracted from at least one of an electronic file name, a directory name, and an application name to generate a personal business tag. Therefore, it is possible to avoid complication of processing such as analyzing all the detailed contents such as characters and symbols in the electronic file, that is, in the electronic file. Therefore, information can be organized efficiently. In addition, evaluation support data is generated and output based on personal business tags generated based on keywords and work classifications. Therefore, since it is not an artificial classification that is shared by a plurality of people, it is possible to maintain high objectivity. Therefore, fair and accurate classification supported by a certain standard can be performed. From the above, according to the evaluation support system 11, objective evaluation can be performed and efficient evaluation support can be performed.

上記評価支援システム11では、作業分類部43は、電子ファイルへのデータの入力作業を第一の分類として分類し、既に電子ファイルに入力されたデータを編集する編集作業を第二の分類として分類し、編集された電子ファイルのデータの照合作業または仮説の検証作業を第3の分類として分類している。よって、作業分類部43における分類をより的確にして、より効率的な評価支援を行うことができる。 In the evaluation support system 11, the work classification unit 43 classifies the data input work to the electronic file as the first classification, and the editing work for editing the data already input to the electronic file as the second classification. However, the work of collating the data of the edited electronic file or the work of verifying the hypothesis is classified as the third classification. Therefore, the classification in the work classification unit 43 can be made more accurate, and more efficient evaluation support can be performed.

上記評価支援システム11では、評価支援データ生成部45は、作業者、作業分類および電子ファイルのうちの少なくともいずれか一つに基づいて評価支援データを生成している。よって、より適切に求められる評価支援データを提供することができる。 In the evaluation support system 11, the evaluation support data generation unit 45 generates evaluation support data based on at least one of a worker, a work classification, and an electronic file. Therefore, it is possible to provide the evaluation support data that is required more appropriately.

上記評価支援システム11では、評価支援データ生成部45は、予め付与されたキーワードの重要性の順位付けに応じて評価支援データを生成している。よって、より適切に求められる評価支援データを提供することができる。 In the evaluation support system 11, the evaluation support data generation unit 45 generates evaluation support data according to the ranking of the importance of the keywords given in advance. Therefore, it is possible to provide the evaluation support data that is required more appropriately.

上記評価支援システム11では、評価支援データ生成部45は、電子ファイルの使用時間および電子ファイルの作業日に基づいて、日常的に行われる作業であるルーチン作業か非日常的で突発的に発生する作業であるスポット作業かに基づいて評価支援データを生成している。よって、より適切に求められる評価支援データを提供することができる。 In the evaluation support system 11, the evaluation support data generation unit 45 generates routine work, which is a daily work, or extraordinary and sudden occurrence, based on the usage time of the electronic file and the work day of the electronic file. Evaluation support data is generated based on the spot work, which is the work. Therefore, it is possible to provide the evaluation support data that is required more appropriately.

上記評価支援システム11では、評価支援データ生成部45は、電子ファイルへのデータの入力作業の複雑度に応じて、評価支援データを生成している。よって、より適切に求められる評価支援データを提供することができる。 In the evaluation support system 11, the evaluation support data generation unit 45 generates evaluation support data according to the complexity of the data input work to the electronic file. Therefore, it is possible to provide the evaluation support data that is required more appropriately.

なお、本評価支援システム11は、教育の現場において採用することもできる。すなわち、例えば、教員や生徒を作業者として適用し、ファイル名マスタにおけるキーワードとして「実習」や「学習」、「カリキュラム」といった単語、また生徒の名前等を適用することにより、教育の現場における評価支援システム11として用いることができる。 The evaluation support system 11 can also be adopted in the field of education. That is, for example, by applying teachers and students as workers and applying words such as "practice", "learning", and "curriculum" as keywords in the file name master, and student names, etc., evaluation in the field of education It can be used as a support system 11.

また、上記の実施の形態においては、キーワード抽出部42は、電子ファイル名にキーワードが含まれているかどうかを判断することとしたが、これに限らず、キーワード抽出部42は、ディレクトリ名やアプリケーション名にキーワードが含まれているか否かを判断することにしてもよい。また、優先順位に沿ってキーワードが含まれているか否かを判断してもよい。すなわち、電子ファイル名にキーワードが含まれていない場合にはディレクトリ名にキーワードが含まれていないか判断し、ディレクトリ名にキーワードが含まれていない場合にはアプリケーション名にキーワードが含まれていないか判断することにしてもよい。すなわち、キーワード抽出部42は、ログデータ取得部41により取得された電子ファイル名にキーワードが含まれていないと判断すれば、ディレクトリ名にキーワードに含まれているか否かを判断し、ディレクトリ名にキーワードが含まれていないと判断すれば、アプリケーション名からキーワードを抽出してもよい。このようにすることにより、電子ファイルのファイル名、ディレクトリ名、アプリケーション名の優先順位に沿ってキーワードを抽出することができ、より適切な評価支援データを提供することができる。 Further, in the above embodiment, the keyword extraction unit 42 determines whether or not the electronic file name includes the keyword, but the keyword extraction unit 42 is not limited to this, and the keyword extraction unit 42 is limited to the directory name and the application. You may decide whether or not the name contains a keyword. In addition, it may be determined whether or not the keywords are included in order of priority. That is, if the electronic file name does not contain a keyword, it is determined whether the directory name contains a keyword, and if the directory name does not contain a keyword, the application name does not contain a keyword. You may decide. That is, if the keyword extraction unit 42 determines that the electronic file name acquired by the log data acquisition unit 41 does not include the keyword, the keyword extraction unit 42 determines whether or not the directory name includes the keyword, and sets the directory name in the directory name. If it is determined that the keyword is not included, the keyword may be extracted from the application name. By doing so, keywords can be extracted according to the priority of the file name, directory name, and application name of the electronic file, and more appropriate evaluation support data can be provided.

また、上記の実施の形態においては、作業分類部43は、第一の分類、第二の分類および第三の分類に分類することとしたが、これに限らず、さらに他の分類、例えば、照合作業と仮説検証作業を別の分類にしてもよいし、入力作業をさらに細分化して分類することにしてもよい。 Further, in the above embodiment, the work classification unit 43 is classified into the first classification, the second classification, and the third classification, but the present invention is not limited to this, and other classifications, for example, The collation work and the hypothesis verification work may be classified separately, or the input work may be further subdivided and classified.

また、評価支援システム11は、物理的な外部の状況を検知するセンサーをさらに備える構成としてもよい。個人業務タグ生成部44は、センサーにより検知された検知情報に基づいて、個人業務タグを生成してもよい。図14は、本開示の他の実施形態に係る評価支援システムの構成を示すブロック図である。図14を参照して、本実施の形態に係る評価支援システムは、実施の形態1における評価支援システム11とは、物理的な外部の状況を検知するセンサーとして、マイク81、カメラ82、センサー83をさらに備える点において異なる。マイク81は、物理的な外部の状況として、音声を検知する。具体的には、例えば、コンピューター21a等を用いて作業(デスクワーク)を行っている作業者の声や周辺の音を検知する。カメラ82は、物理的な外部の状況として、画像を検知する。具体的には、例えば、コンピューター21a等を用いて作業を行っている作業者の作業状況や顔の表情等を画像として検知する。センサー83としては、例えば、加速度を検知する加速度センサー、温度を検知する温度検知センサー、湿度を検知する湿度検知センサー、心拍を検知する心拍検知センサー、脳波を検知する脳波検知センサー、距離を検知する距離検知センサー等が挙げられる。個人業務タグ生成部44は、このようなマイク81により検知された音データやカメラ82により検知された画像データ、センサー83により検知されたデータに基づいて、個人業務タグを生成する。具体的には、例えば、このようにすることにより、より実際の状況に応じた個人業務タグを生成することができる。 Further, the evaluation support system 11 may be further provided with a sensor for detecting a physical external situation. The personal business tag generation unit 44 may generate a personal business tag based on the detection information detected by the sensor. FIG. 14 is a block diagram showing a configuration of an evaluation support system according to another embodiment of the present disclosure. With reference to FIG. 14, the evaluation support system according to the present embodiment is different from the evaluation support system 11 in the first embodiment as a sensor for detecting a physical external situation, such as a microphone 81, a camera 82, and a sensor 83. It differs in that it further provides. The microphone 81 detects voice as a physical external situation. Specifically, for example, the voice of a worker who is performing work (desk work) using a computer 21a or the like and the surrounding sounds are detected. The camera 82 detects an image as a physical external situation. Specifically, for example, the work status of a worker who is performing work using a computer 21a or the like, facial expressions, and the like are detected as images. Examples of the sensor 83 include an acceleration sensor that detects acceleration, a temperature detection sensor that detects temperature, a humidity detection sensor that detects humidity, a heartbeat detection sensor that detects heartbeat, a brain wave detection sensor that detects brain waves, and a distance detection. Examples include a distance detection sensor. The personal business tag generation unit 44 generates a personal business tag based on the sound data detected by the microphone 81, the image data detected by the camera 82, and the data detected by the sensor 83. Specifically, for example, by doing so, it is possible to generate a personal business tag more according to the actual situation.

また、データ加工部33は、ディレクトリの情報を取得するディレクトリ情報取得部をさらに含んでもよい。作業分類部43は、ディレクトリ情報取得部により取得されたディレクトリの情報に基づいて作業を分類してもよい。図15は、他の実施の形態における評価支援システムに含まれるデータ加工部に含まれる構成を概略的に示すブロック図である。図15を参照して、本実施の形態に係る評価支援システムは、実施の形態1における評価支援システム11とは、ディレクトリ情報取得部47をさらに備える点において異なる。ディレクトリ情報取得部47は、ディレクトリの情報、例えば、ディレクトリ名を取得する。作業分類部43は、取得されたディレクトリ名に基づいて作業を分類する。このようにすることにより、より適切に作業を分類することができる。 Further, the data processing unit 33 may further include a directory information acquisition unit for acquiring directory information. The work classification unit 43 may classify the work based on the directory information acquired by the directory information acquisition unit. FIG. 15 is a block diagram schematically showing a configuration included in a data processing unit included in the evaluation support system according to another embodiment. With reference to FIG. 15, the evaluation support system according to the present embodiment is different from the evaluation support system 11 in the first embodiment in that it further includes a directory information acquisition unit 47. The directory information acquisition unit 47 acquires directory information, for example, a directory name. The work classification unit 43 classifies the work based on the acquired directory name. By doing so, the work can be classified more appropriately.

また、評価支援データ生成部45は、個人業務タグ生成部44により生成された個人業務タグに基づいて今後の業務を予測した予測データを生成してもよい。図16は、他の実施の形態において、サーバーにおける評価支援データおよび予測データを出力する際の代表的な工程を示すフローチャートである。図16を参照して、本実施の形態に係る評価支援システムは、実施の形態1における評価支援システム11とは、予測データを生成し、表示する点において異なる。図16を参照して評価支援データ生成部45は、個人業務タグ生成部44により生成された個人業務タグに基づいて、予測データを生成する。具体的には、人別の予測データや、日別の予測データや業務別の予測データを生成する(図16におけるS27)。その後、生成した評価支援データおよび予測データを表示する(S28)。具体的には、例えば、各作業者は、個人業務タグから、入力作業に要する時間、編集作業に要する時間を類推できる。そして、類推された入力作業に要する時間等から、今後この作業者について、入力作業の業務が発生した場合、要する時間を予測することができる。また、各作業者のスポット作業が発生する頻度が高い周期が予測でき、スポット作業が多く発生する日等も予測することができる。このような予測データを生成し、表示する。このようにすることにより、生成された予測データを用いて、業務の改善等、将来の予測も踏まえたより適切な評価支援を行うことができる。また、本評価支援システムについて、予測データに個人の習熟度を反映させることもできる。 Further, the evaluation support data generation unit 45 may generate prediction data for predicting future business based on the personal business tag generated by the personal business tag generation unit 44. FIG. 16 is a flowchart showing a typical process when outputting evaluation support data and prediction data in the server in another embodiment. With reference to FIG. 16, the evaluation support system according to the present embodiment is different from the evaluation support system 11 in the first embodiment in that prediction data is generated and displayed. With reference to FIG. 16, the evaluation support data generation unit 45 generates prediction data based on the personal business tag generated by the personal business tag generation unit 44. Specifically, forecast data for each person, forecast data for each day, and forecast data for each business are generated (S27 in FIG. 16). After that, the generated evaluation support data and prediction data are displayed (S28). Specifically, for example, each worker can infer the time required for the input work and the time required for the editing work from the personal work tag. Then, from the estimated time required for the input work and the like, it is possible to predict the time required for this worker when the work of the input work occurs in the future. In addition, it is possible to predict the cycle in which the spot work of each worker occurs frequently, and it is possible to predict the day when the spot work occurs frequently. Generate and display such forecast data. By doing so, it is possible to use the generated forecast data to provide more appropriate evaluation support based on future forecasts such as business improvement. In addition, regarding this evaluation support system, it is also possible to reflect the proficiency level of an individual in the prediction data.

なお、評価支援システム11は、職務毎の役割を分配した職務分掌に関する職務分掌データを取得する職務分掌データ取得部と、職務分掌データ取得部により取得された職務分掌データに基づいて、ディレクトリを生成するディレクトリ生成部と、をさらに備えてもよい。図17は、本開示のさらに他の実施形態に係る評価支援システムの構成を示すブロック図である。図17を参照して、本実施の形態に係る評価支援システムは、図15に示す実施の形態における評価支援システム11に対して、職務分掌データ取得部48とディレクトリ生成部49と、をさらに備える点において異なる。職務分掌データ取得部48は、職務毎の役割を分配した職務分掌に関する職務分掌データを取得する。職務分掌データは、例えば、サーバーハードディスク15に登録され、記憶される。職務分掌データ取得部48は、サーバーハードディスク15に記憶された職務分掌データを取得する。ディレクトリ生成部49は、職務分掌データ取得部48により取得された職務分掌データに基づいて、ディレクトリを生成する。図18は、ディレクトリ生成部49によりディレクトリを生成する際の代表的な工程を示すフローチャートである。図18を参照して、本実施の形態に係る評価支援システムは、職務分掌データ取得部48により、サーバーハードディスク15から職務分掌に関するデータを取得する(S81)。その後、ディレクトリ生成部49は、職務分掌データ取得部48により取得された職務分掌データに基づいて、ディレクトリを生成する(S82)。このようにすることにより、例えば、企業の職務分掌の規定からディレクトリを生成し、企業の職務分掌の規定に沿った分類を行うことができる。なお、実施の形態1における評価支援システム11にさらに上記した職務分掌データ取得部およびディレクトリ生成部を備える構成としてもよい。 The evaluation support system 11 generates a directory based on the job division data acquisition unit that acquires the job division data related to the job division that distributes the roles for each job, and the job division data acquired by the job division data acquisition department. It may further be provided with a directory generation unit to be used. FIG. 17 is a block diagram showing a configuration of an evaluation support system according to still another embodiment of the present disclosure. With reference to FIG. 17, the evaluation support system according to the present embodiment further includes a division of duties data acquisition unit 48 and a directory generation unit 49 with respect to the evaluation support system 11 according to the embodiment shown in FIG. Different in that. The division of duties data acquisition unit 48 acquires the division of duties data relating to the division of duties in which the roles of each duties are distributed. The division of duties data is registered and stored in, for example, the server hard disk 15. The division of duties data acquisition unit 48 acquires the division of duties data stored in the server hard disk 15. The directory generation unit 49 generates a directory based on the division of duties data acquired by the division of duties data acquisition unit 48. FIG. 18 is a flowchart showing a typical process when a directory is generated by the directory generation unit 49. With reference to FIG. 18, the evaluation support system according to the present embodiment acquires the data related to the division of duties from the server hard disk 15 by the division of duties data acquisition unit 48 (S81). After that, the directory generation unit 49 generates a directory based on the job division data acquired by the job division data acquisition unit 48 (S82). By doing so, for example, a directory can be generated from the rules of division of duties of a company, and classification can be performed according to the rules of division of duties of a company. The evaluation support system 11 in the first embodiment may be further provided with the above-mentioned division of duties data acquisition unit and directory generation unit.

また、職務分掌データについて、作業が、職務分掌データ取得部48およびディレクトリ生成部49を用いて生成されたディレクトリにおける作業であるか否かを検知し、職務分掌データ取得部48およびディレクトリ生成部49を用いて生成されたディレクトリにおける作業ではないと判断した場合には、その作業のデータを蓄積し、新たに職務分掌データを生成してサーバーハードディスク15に記憶するようにしてもよい。すなわち、職務分掌データを新たに生成する職務分掌データ生成部をさらに備える構成としてもよい。このようにすることにより、自動的に職務分掌データを更新することができ、効率的な運用を図ることができる。 Further, regarding the division of duties data, it is detected whether or not the work is in the directory generated by using the division of duties data acquisition unit 48 and the directory generation unit 49, and the division of duties data acquisition unit 48 and the directory generation unit 49 are detected. If it is determined that the work is not in the directory generated by using the above, the data of the work may be accumulated, and new division of duties data may be generated and stored in the server hard disk 15. That is, the configuration may further include a division of duties data generation unit that newly generates division of duties data. By doing so, the division of duties data can be automatically updated, and efficient operation can be achieved.

なお、本開示における評価支援方法は、電子ファイルのファイル名、電子ファイルが格納されているディレクトリのディレクトリ名、電子ファイルのアプリケーション名および電子ファイルを操作した作業者名を含む電子ファイルの作業履歴情報をログデータとして管理サーバーが取得する工程と、ログデータを取得する工程の後に、管理サーバーにより、取得されたログデータに含まれるファイル名、ディレクトリ名およびアプリケーション名のうちの少なくともいずれか一つからキーワードを抽出する工程と、個人業務タグを生成する工程の後に、管理サーバーにより、取得されたログデータに含まれる電子ファイルの作業者毎の作業履歴情報から作業を分類する工程と、キーワードを抽出する工程の後に、管理サーバーにより、抽出されたキーワードおよび作業分類部により分類された作業分類に基づいて、キーワードに紐付けられた作業者個人の業務に関連するタグである個人業務タグを生成する工程と、業務を分類する工程の後に、管理サーバーにより、生成された個人業務タグに基づいて評価の支援となる評価支援データを生成する工程と、評価支援データを生成する工程の後に、評価支援データを出力する工程と、を備える。 The evaluation support method in the present disclosure includes work history information of an electronic file including the file name of the electronic file, the directory name of the directory in which the electronic file is stored, the application name of the electronic file, and the name of the worker who operated the electronic file. From at least one of the file name, directory name, and application name included in the log data acquired by the management server after the process of acquiring the log data as log data and the process of acquiring the log data. After the process of extracting keywords and the process of generating personal business tags, the process of classifying work from the work history information of each worker in the electronic file included in the acquired log data by the management server, and the process of extracting keywords. After the process, the management server generates a personal business tag, which is a tag related to the worker's personal business associated with the keyword, based on the extracted keywords and the work classification classified by the work classification unit. After the process and the process of classifying the business, the management server generates evaluation support data that supports evaluation based on the generated personal business tag, and after the process of generating evaluation support data, evaluation support It includes a process of outputting data.

このような評価支援方法によれば、客観的な評価を行うことができ、効率的な評価支援を行うことができる。 According to such an evaluation support method, objective evaluation can be performed and efficient evaluation support can be performed.

また、本開示に係る評価支援プログラムは、コンピューターを、電子ファイルのファイル名、電子ファイルが格納されているディレクトリのディレクトリ名、電子ファイルのアプリケーション名および電子ファイルを操作した作業者名を含む電子ファイルの作業履歴情報をログデータとして取得するログデータ取得部、ログデータ取得部により取得されたログデータに含まれるファイル名、ディレクトリ名およびアプリケーション名のうちの少なくともいずれか一つからキーワードを抽出するキーワード抽出部、ログデータ取得部により取得されたログデータに含まれる電子ファイルの作業者毎の作業履歴情報から作業を分類する作業分類部、キーワード抽出部により抽出されたキーワードおよび作業分類部により分類された作業分類に基づいて、キーワードに紐付けられた作業者個人の業務に関連するタグである個人業務タグを生成する個人業務タグ生成部、個人業務タグ生成部により生成された個人業務タグに基づいて評価の支援となる評価支援データを生成する評価支援データ生成部および評価支援データ生成部により生成した評価支援データを出力するよう制御する出力制御部として機能させるための評価支援プログラムである。 In addition, the evaluation support program according to the present disclosure uses the computer as an electronic file containing the file name of the electronic file, the directory name of the directory in which the electronic file is stored, the application name of the electronic file, and the name of the worker who operated the electronic file. Keywords that extract keywords from at least one of the file name, directory name, and application name included in the log data acquisition unit that acquires the work history information of Classified by the work classification unit that classifies work from the work history information of each worker in the electronic file included in the log data acquired by the extraction unit and the log data acquisition unit, the keywords extracted by the keyword extraction unit, and the work classification unit. Based on the personal business tag generation unit that generates the personal business tag, which is a tag related to the worker's individual business linked to the keyword, and the personal business tag generated by the personal business tag generation unit, based on the work classification. This is an evaluation support program for functioning as an evaluation support data generation unit that generates evaluation support data that supports evaluation and an output control unit that controls the output of evaluation support data generated by the evaluation support data generation unit.

このような評価支援プログラムによれば、客観的な評価を行うことができ、効率的な評価支援を行うことができる。 According to such an evaluation support program, objective evaluation can be performed and efficient evaluation support can be provided.

今回開示された実施の形態はすべての点で例示であって、どのような面からも制限的なものではないと理解されるべきである。本発明の範囲は上記した意味ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 It should be understood that the embodiments disclosed here are exemplary in all respects and are not restrictive in any way. The scope of the present invention is not defined as described above, but is indicated by the scope of claims, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims.

本開示の評価支援システム、評価支援方法および評価支援プログラムは、客観的な評価および効率的な評価支援が求められる場合において特に有利に適用される。 The evaluation support system, evaluation support method and evaluation support program of the present disclosure are particularly advantageously applied when objective evaluation and efficient evaluation support are required.

11 評価支援システム、12 サーバー、13 サーバー制御部、14 サーバーネットワークインターフェース部、15 サーバーハードディスク、16,26a,26b,26c ディスプレイ、17,27a,27b,27c キーボード、18,28a,28b,28c マウス、19,29a,29b,29c 表示画面、21a,21b,21c コンピューター、22 ネットワーク、23a コンピューター制御部、24a コンピューターネットワークインターフェース部、25a コンピューターハードディスク、31 サーバー記憶制御部、32 サーバー送信制御部、33 データ加工部、34 出力制御部、36a ログデータ生成部、37a コンピューター送信制御部、41 ログデータ取得部、42 キーワード抽出部、43 作業分類部、44 個人業務タグ生成部、45 評価支援データ生成部、46 格納領域、47 ディレクトリ情報取得部、48 職務分掌データ取得部、49 ディレクトリ生成部、51a 作業者名データ、52a 電子ファイル名データ、53a 作業開始時間データ、54a 作業終了時間データ、56 個人業務タグ、57a,57b,57c,57d,72a,72b,72c,72d,72e,72f,72g,72h,72i,72j 項目、61a,61b 棒グラフ、62a,62b,63a,63b,64a,64b 領域、71a 業務分析表、81 マイク、82 カメラ、83 センサー 11 Evaluation support system, 12 servers, 13 server control unit, 14 server network interface unit, 15 server hard disk, 16,26a, 26b, 26c display, 17,27a, 27b, 27c keyboard, 18,28a, 28b, 28c mouse, 19, 29a, 29b, 29c display screen, 21a, 21b, 21c computer, 22 network, 23a computer control unit, 24a computer network interface unit, 25a computer hard disk, 31 server storage control unit, 32 server transmission control unit, 33 data processing Unit, 34 Output control unit, 36a Log data generation unit, 37a Computer transmission control unit, 41 Log data acquisition unit, 42 Keyword extraction unit, 43 Work classification unit, 44 Personal business tag generation unit, 45 Evaluation support data generation unit, 46 Storage area, 47 directory information acquisition unit, 48 division of duties data acquisition unit, 49 directory generation unit, 51a worker name data, 52a electronic file name data, 53a work start time data, 54a work end time data, 56 personal work tag, 57a, 57b, 57c, 57d, 72a, 72b, 72c, 72d, 72e, 72f, 72g, 72h, 72i, 72j items, 61a, 61b bar graph, 62a, 62b, 63a, 63b, 64a, 64b area, 71a Business analysis Table, 81 microphones, 82 cameras, 83 sensors

Claims (13)

管理サーバーと、前記管理サーバーに通信可能なコンピューターと、を含む評価支援システムであって、
前記コンピューターは、
前記コンピューターによって操作された電子ファイルのログデータを生成するログデータ生成部と、
前記ログデータ生成部により生成された前記ログデータを前記管理サーバーに送信するよう制御する送信制御部と、を含み、
前記管理サーバーは、
前記電子ファイルのファイル名、前記電子ファイルが格納されているディレクトリのディレクトリ名、前記電子ファイルのアプリケーション名および前記電子ファイルを操作した作業者名を含む前記電子ファイルの作業履歴情報をログデータとして取得するログデータ取得部と、
前記ログデータ取得部により取得された前記ログデータに含まれる前記ファイル名、前記ディレクトリ名および前記アプリケーション名のうちの少なくともいずれか一つからキーワードを抽出するキーワード抽出部と、
前記ログデータ取得部により取得された前記ログデータに含まれる前記電子ファイルの前記作業者名毎の作業履歴情報から作業を分類する作業分類部と、
前記キーワード抽出部により抽出された前記キーワードおよび前記作業分類部により分類された作業分類に基づいて、前記キーワードに紐付けられた作業者個人の業務に関連するタグである個人業務タグを前記ログデータ取得部により取得された前記ログデータから生成する個人業務タグ生成部と、
前記個人業務タグ生成部により生成された前記個人業務タグに基づいて評価の支援となる評価支援データを生成する評価支援データ生成部と、
前記評価支援データ生成部により生成した前記評価支援データを出力するよう制御する出力制御部と、を備える、評価支援システム。
An evaluation support system that includes a management server and a computer that can communicate with the management server.
The computer
A log data generator that generates log data for electronic files operated by the computer,
A transmission control unit that controls transmission of the log data generated by the log data generation unit to the management server is included.
The management server
Acquires the work history information of the electronic file including the file name of the electronic file, the directory name of the directory in which the electronic file is stored, the application name of the electronic file, and the name of the worker who operated the electronic file as log data. Log data acquisition section and
A keyword extraction unit that extracts keywords from at least one of the file name, the directory name, and the application name included in the log data acquired by the log data acquisition unit.
A work classification unit that classifies work from work history information for each worker name of the electronic file included in the log data acquired by the log data acquisition unit, and a work classification unit.
Based on the keyword extracted by the keyword extraction unit and the work classification classified by the work classification unit, the log data is a personal business tag that is a tag related to the individual business of the worker associated with the keyword. The personal business tag generation unit generated from the log data acquired by the acquisition unit, and
An evaluation support data generation unit that generates evaluation support data that supports evaluation based on the personal business tag generated by the personal business tag generation unit, and an evaluation support data generation unit.
An evaluation support system including an output control unit that controls to output the evaluation support data generated by the evaluation support data generation unit.
前記作業分類部は、前記電子ファイルへのデータの入力作業を第一の分類として分類し、既に前記電子ファイルに入力されたデータを編集する編集作業を第二の分類として分類し、編集された前記電子ファイルのデータの照合作業または仮説の検証作業を第3の分類として分類する、請求項1に記載の評価支援システム。 The work classification unit classifies the work of inputting data into the electronic file as the first classification, and the editing work of editing the data already input to the electronic file as the second classification, and has been edited. The evaluation support system according to claim 1, wherein the data collation work or hypothesis verification work of the electronic file is classified as a third category. 前記評価支援データ生成部は、前記作業者名、前記作業分類および前記電子ファイルのうちの少なくともいずれか一つに基づいて前記評価支援データを生成する、請求項1または請求項2に記載の評価支援システム。 The evaluation according to claim 1 or 2, wherein the evaluation support data generation unit generates the evaluation support data based on at least one of the worker name, the work classification, and the electronic file. Support system. 前記評価支援データ生成部は、予め付与された前記キーワードの重要性の順位付けに応じて前記評価支援データを生成する、請求項1から請求項3のいずれか1項に記載の評価支援システム。 The evaluation support system according to any one of claims 1 to 3, wherein the evaluation support data generation unit generates the evaluation support data according to the ranking of the importance of the keywords given in advance. 前記評価支援データ生成部は、前記電子ファイルの使用時間および前記電子ファイルの作業日に基づいて、日常的に行われる作業であるルーチン作業か非日常的で突発的に発生する作業であるスポット作業かに基づいて前記評価支援データを生成する、請求項1から請求項4のいずれか1項に記載の評価支援システム。 The evaluation support data generation unit is a routine work that is a daily work or a spot work that is an extraordinary and sudden work based on the usage time of the electronic file and the work day of the electronic file. The evaluation support system according to any one of claims 1 to 4, which generates the evaluation support data based on the above. 前記評価支援データ生成部は、前記電子ファイルへのデータの入力作業の複雑度に応じて、前記評価支援データを生成する、請求項1から請求項5のいずれか1項に記載の評価支援システム。 The evaluation support system according to any one of claims 1 to 5, wherein the evaluation support data generation unit generates the evaluation support data according to the complexity of the data input work to the electronic file. .. 前記キーワード抽出部は、前記ログデータ取得部により取得された前記ファイル名に前記キーワードが含まれていないと判断すれば、前記ディレクトリ名にキーワードに含まれているか否かを判断し、前記ディレクトリ名に前記キーワードが含まれていないと判断すれば、前記アプリケーション名から前記キーワードを抽出する、請求項1から請求項6のいずれか1項に記載の評価支援システム。 If the keyword extraction unit determines that the file name acquired by the log data acquisition unit does not include the keyword, the keyword extraction unit determines whether or not the directory name is included in the keyword, and determines whether or not the directory name is included in the keyword. The evaluation support system according to any one of claims 1 to 6, which extracts the keyword from the application name if it is determined that the keyword is not included in the application name. 物理的な外部の状況を検知するセンサーをさらに備え、
前記個人業務タグ生成部は、前記センサーにより検知された検知情報に基づいて、前記個人業務タグを生成する、請求項1から請求項7のいずれか1項に記載の評価支援システム。
With additional sensors to detect physical external conditions
The evaluation support system according to any one of claims 1 to 7, wherein the personal business tag generation unit generates the personal business tag based on the detection information detected by the sensor.
前記ディレクトリの情報を取得するディレクトリ情報取得部をさらに備え、
前記作業分類部は、前記ディレクトリ情報取得部により取得された前記ディレクトリの情報に基づいて前記作業を分類する、請求項1から請求項8のいずれか1項に記載の評価支援システム。
Further equipped with a directory information acquisition unit for acquiring the information of the directory,
The evaluation support system according to any one of claims 1 to 8, wherein the work classification unit classifies the work based on the information of the directory acquired by the directory information acquisition unit.
前記評価支援データ生成部は、前記個人業務タグ生成部により生成された前記個人業務タグに基づいて今後の業務を予測した予測データを生成する、請求項1から請求項9のいずれか1項に記載の評価支援システム。 The evaluation support data generation unit generates forecast data for predicting future business based on the personal business tag generated by the personal business tag generation unit, according to any one of claims 1 to 9. Described evaluation support system. 職務毎の役割を分配した職務分掌に関する職務分掌データを取得する職務分掌データ取得部と、
前記職務分掌データ取得部により取得された前記職務分掌データに基づいて、前記ディレクトリを生成するディレクトリ生成部と、をさらに備える、請求項1から請求項9のいずれか1項に記載の評価支援システム。
The division of duties data acquisition department that acquires the division of duties data related to the division of duties that distributes the roles of each job,
The evaluation support system according to any one of claims 1 to 9, further comprising a directory generation unit that generates the directory based on the division of duties data acquired by the division of duties data acquisition unit. ..
電子ファイルのファイル名、前記電子ファイルが格納されているディレクトリのディレクトリ名、前記電子ファイルのアプリケーション名および前記電子ファイルを操作した作業者名を含む前記電子ファイルの作業履歴情報をログデータとして管理サーバーが取得する工程と、
前記ログデータを取得する工程の後に、前記管理サーバーにより、取得された前記ログデータに含まれる前記ファイル名、前記ディレクトリ名および前記アプリケーション名のうちの少なくともいずれか一つからキーワードを抽出する工程と、
前記ログデータを取得する工程の後に、前記管理サーバーにより、取得された前記ログデータに含まれる前記電子ファイルの前記作業者名毎の作業履歴情報から作業を分類する工程と、
前記キーワードを抽出する工程の後に、前記管理サーバーにより、抽出された前記キーワードおよび前記作業を分類する工程により分類された作業分類に基づいて、前記キーワードに紐付けられた作業者個人の業務に関連するタグである個人業務タグを前記ログデータを取得する工程により取得された前記ログデータから生成する工程と、
前記業務を分類する工程の後に、前記管理サーバーにより、生成された前記個人業務タグに基づいて評価の支援となる評価支援データを生成する工程と、
前記評価支援データを生成する工程の後に、前記評価支援データを出力する工程と、を備える、評価支援方法。
The management server manages the work history information of the electronic file including the file name of the electronic file, the directory name of the directory in which the electronic file is stored, the application name of the electronic file, and the name of the worker who operated the electronic file as log data. And the process to get
After the step of acquiring the log data, a step of extracting a keyword from at least one of the file name, the directory name, and the application name included in the acquired log data by the management server. ,
After the step of acquiring the log data, a step of classifying the work from the work history information for each worker name of the electronic file included in the acquired log data by the management server.
After the process of extracting the keyword, the management server is related to the work of the individual worker associated with the keyword based on the extracted keyword and the work classification classified by the process of classifying the work. A process of generating a personal business tag, which is a tag to be used, from the log data acquired by the process of acquiring the log data, and a process of generating the personal business tag.
After the process of classifying the business, a process of generating evaluation support data that supports evaluation based on the personal business tag generated by the management server, and a process of generating evaluation support data.
An evaluation support method comprising a step of generating the evaluation support data and a step of outputting the evaluation support data.
コンピューターを、
電子ファイルのファイル名、前記電子ファイルが格納されているディレクトリのディレクトリ名、前記電子ファイルのアプリケーション名および前記電子ファイルを操作した作業者名を含む前記電子ファイルの作業履歴情報をログデータとして取得するログデータ取得部、
前記ログデータ取得部により取得された前記ログデータに含まれる前記ファイル名、前記ディレクトリ名および前記アプリケーション名のうちの少なくともいずれか一つからキーワードを抽出するキーワード抽出部、
前記ログデータ取得部により取得された前記ログデータに含まれる前記電子ファイルの前記作業者名毎の作業履歴情報から作業を分類する作業分類部、
前記キーワード抽出部により抽出された前記キーワードおよび前記作業分類部により分類された作業分類に基づいて、前記キーワードに紐付けられた作業者個人の業務に関連するタグである個人業務タグを前記ログデータ取得部により取得された前記ログデータから生成する個人業務タグ生成部、
前記個人業務タグ生成部により生成された前記個人業務タグに基づいて評価の支援となる評価支援データを生成する評価支援データ生成部および
前記評価支援データ生成部により生成した前記評価支援データを出力するよう制御する出力制御部として機能させるための評価支援プログラム。
Computer,
Acquires the work history information of the electronic file including the file name of the electronic file, the directory name of the directory in which the electronic file is stored, the application name of the electronic file, and the name of the worker who operated the electronic file as log data. Log data acquisition department,
A keyword extraction unit that extracts keywords from at least one of the file name, the directory name, and the application name included in the log data acquired by the log data acquisition unit.
A work classification unit that classifies work from work history information for each worker name in the electronic file included in the log data acquired by the log data acquisition unit.
Based on the keyword extracted by the keyword extraction unit and the work classification classified by the work classification unit, the log data is a personal business tag that is a tag related to the individual business of the worker associated with the keyword. Personal business tag generation unit generated from the log data acquired by the acquisition unit,
The evaluation support data generation unit that generates evaluation support data that supports evaluation based on the personal business tag generated by the personal business tag generation unit and the evaluation support data generated by the evaluation support data generation unit are output. An evaluation support program for functioning as an output control unit.
JP2020553552A 2020-01-10 2020-02-19 Evaluation support system, evaluation support method and evaluation support program Active JP6888863B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPPCT/JP2020/000706 2020-01-10
PCT/JP2020/000706 WO2021140660A1 (en) 2020-01-10 2020-01-10 Evaluation assistance system, evaluation assistance method, and evaluation assistance program
PCT/JP2020/006529 WO2021140681A1 (en) 2020-01-10 2020-02-19 Evaluation support system, evaluation support method, and evaluation support program

Publications (2)

Publication Number Publication Date
JP6888863B1 true JP6888863B1 (en) 2021-06-16
JPWO2021140681A1 JPWO2021140681A1 (en) 2021-07-15

Family

ID=76313304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020553552A Active JP6888863B1 (en) 2020-01-10 2020-02-19 Evaluation support system, evaluation support method and evaluation support program

Country Status (1)

Country Link
JP (1) JP6888863B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114282908A (en) * 2021-12-29 2022-04-05 中国建设银行股份有限公司 Evaluation data processing method, apparatus, device, medium, and program product

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000293092A (en) * 1999-04-02 2000-10-20 Mitsubishi Electric Corp Simulation system
JP2004038234A (en) * 2002-06-28 2004-02-05 Canon Electronics Inc Information analysis supporting device and its control process, information analysis supporting system and program
JP2008276511A (en) * 2007-04-27 2008-11-13 Sap Ag Dynamic work center
JP2010287145A (en) * 2009-06-15 2010-12-24 Nec Corp Work recording support system, and work recording support method and program
JP2013003794A (en) * 2011-06-15 2013-01-07 Fujitsu Ltd Business analysis device, business analysis program, and business analysis method
US20140172478A1 (en) * 2012-12-13 2014-06-19 TCT Hungqary Kft. Methods and system for automatic work logging and tracking
JP2014229028A (en) * 2013-05-21 2014-12-08 Kddi株式会社 Step separation device, method and program for separating work history on terminal into step for every operation
JP2016031624A (en) * 2014-07-29 2016-03-07 株式会社日立製作所 Improvement effect evaluation support device and method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000293092A (en) * 1999-04-02 2000-10-20 Mitsubishi Electric Corp Simulation system
JP2004038234A (en) * 2002-06-28 2004-02-05 Canon Electronics Inc Information analysis supporting device and its control process, information analysis supporting system and program
JP2008276511A (en) * 2007-04-27 2008-11-13 Sap Ag Dynamic work center
JP2010287145A (en) * 2009-06-15 2010-12-24 Nec Corp Work recording support system, and work recording support method and program
JP2013003794A (en) * 2011-06-15 2013-01-07 Fujitsu Ltd Business analysis device, business analysis program, and business analysis method
US20140172478A1 (en) * 2012-12-13 2014-06-19 TCT Hungqary Kft. Methods and system for automatic work logging and tracking
JP2014229028A (en) * 2013-05-21 2014-12-08 Kddi株式会社 Step separation device, method and program for separating work history on terminal into step for every operation
JP2016031624A (en) * 2014-07-29 2016-03-07 株式会社日立製作所 Improvement effect evaluation support device and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114282908A (en) * 2021-12-29 2022-04-05 中国建设银行股份有限公司 Evaluation data processing method, apparatus, device, medium, and program product

Also Published As

Publication number Publication date
JPWO2021140681A1 (en) 2021-07-15

Similar Documents

Publication Publication Date Title
Shah et al. Early depression detection from social network using deep learning techniques
JP5878301B2 (en) Action identification using a hybrid user action model
Pentel Predicting age and gender by keystroke dynamics and mouse patterns
TWI420329B (en) Method for context-based community-driven suggestions for media annotation and apparatus, computer readable storage mediu, thereof
CN107533670B (en) Predictive trending of digital entities
JP6733920B2 (en) Information processing device, display method, and program
US20230370395A1 (en) Content suggestion system for real-time communication environments
JP2009500747A (en) Detect, store, index, and search means for leveraging data on user activity, attention, and interests
Alabduljabbar et al. A dynamic selection approach for quality control mechanisms in crowdsourcing
CN107548495A (en) Identify the expert in tissue and professional domain
Dutta et al. Benchmarking operational performance of buildings by text mining tenant surveys
JP6888863B1 (en) Evaluation support system, evaluation support method and evaluation support program
WO2020242449A1 (en) Determining observations about topics in meetings
CN108885637A (en) Personage is mild-natured related
CN115427992A (en) Scheduling tasks based on network-physics-social context
Allen An analysis of pressure-based keystroke dynamics algorithms
WO2021140681A1 (en) Evaluation support system, evaluation support method, and evaluation support program
JP6025487B2 (en) Forensic analysis system, forensic analysis method, and forensic analysis program
KR20230063442A (en) System for recommending similar document based on user's profile
US10599658B2 (en) Search device, search method, and non-transitory computer readable medium for performing a search for candidate experts and displaying results of the search
JP6746731B2 (en) Information processing apparatus, information processing method, and program
Kolakowska et al. Automatic recognition of males and females among web browser users based on behavioural patterns of peripherals usage
Devaurs et al. Exploiting the user interaction context for automatic task detection
KR20230063441A (en) System for recommending document using dynamic change of time-series pattern information
JP2020135598A (en) Information processing device, information processing method, and program

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200930

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200930

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200930

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20201203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210513

R150 Certificate of patent or registration of utility model

Ref document number: 6888863

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250