[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6886271B2 - Belt transmission device - Google Patents

Belt transmission device Download PDF

Info

Publication number
JP6886271B2
JP6886271B2 JP2016215538A JP2016215538A JP6886271B2 JP 6886271 B2 JP6886271 B2 JP 6886271B2 JP 2016215538 A JP2016215538 A JP 2016215538A JP 2016215538 A JP2016215538 A JP 2016215538A JP 6886271 B2 JP6886271 B2 JP 6886271B2
Authority
JP
Japan
Prior art keywords
belt
metal particles
cloth
rubber
pulley
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016215538A
Other languages
Japanese (ja)
Other versions
JP2017137994A (en
Inventor
博樹 武市
博樹 武市
長谷川 新
新 長谷川
康一 中川
康一 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsuboshi Belting Ltd
Original Assignee
Mitsuboshi Belting Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsuboshi Belting Ltd filed Critical Mitsuboshi Belting Ltd
Publication of JP2017137994A publication Critical patent/JP2017137994A/en
Application granted granted Critical
Publication of JP6886271B2 publication Critical patent/JP6886271B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、ベルト本体の表面を被覆する補強布を備えた摩擦伝動ベルト(Vベルト、Vリブドベルト、平ベルトなど)を備えたベルト伝動装置に関する。 The present invention relates to a belt transmission device including a friction transmission belt (V belt, V ribbed belt, flat belt, etc.) provided with a reinforcing cloth covering the surface of the belt body.

動力を伝達する伝動ベルトとしてVベルト、Vリブドベルト、平ベルトなどの摩擦伝動ベルトが広く知られている。Vベルトには、摩擦伝動側面にゴム層が露出したローエッジ(Raw−Edge)タイプと、ベルトが外被布で覆われたラップド(Wrapped)タイプがあり、要求品質の違いから必要に応じて使い分けられている。なかでも、ラップドVベルトは、コンプレッサー、発電機、ポンプなどの一般産業用機械やコンバイン、田植え機、草刈り機などの農業機械に広く使われている。ラップドVベルトは、摩擦伝動面(V側面)がプーリ表面(V溝側面)と接触して摩擦することにより動力を伝達するベルトであり、ベルト内周側の圧縮ゴム層と、外周側の伸張ゴム層との間に心線を埋没した無端状のベルト本体の周囲をベルト周方向の全長に亘って外被布(カバー布)で被覆した構造を有している。ラップドVベルトの特徴としては、走行時の適度な滑りで機構に無理な負担をかけない点や、全長を被覆している外被布の効果により発音が小さい点などが挙げられる。 Friction transmission belts such as V-belts, V-ribbed belts, and flat belts are widely known as transmission belts for transmitting power. There are two types of V-belts: a low-edge type with a rubber layer exposed on the side surface of friction transmission, and a wrapped type with the belt covered with an outer cover. ing. Among them, the wrapped V-belt is widely used in general industrial machines such as compressors, generators and pumps, and in agricultural machines such as combines, rice transplanters and mowers. The wrapped V-belt is a belt that transmits power by contacting and rubbing the friction transmission surface (V side surface) with the pulley surface (V groove side surface). It has a structure in which the circumference of an endless belt body in which a core wire is embedded between the rubber layer and the rubber layer is covered with an outer cover cloth (cover cloth) over the entire length in the circumferential direction of the belt. The features of the wrapped V-belt are that it does not put an unreasonable burden on the mechanism due to moderate slippage during running, and that the sound is small due to the effect of the outer cover covering the entire length.

ラップドVベルトには、耐久性(耐摩耗性、耐屈曲疲労性、耐熱性、耐寒性)、動力伝達性などが要求されるが、農業機械には更に耐衝撃性、耐逆曲げ性、耐スリップ性も要求される。さらに、近年、屋外での稼動が多い農業機械は、海外市場向けに高出力化されており、降雨量が多く湿度の高い熱帯地域での稼動によりベルトやプーリの使用環境条件は厳しくなっているにも拘わらず、このような過酷な条件下でも1シーズンの耐久性を要求されている。また、熱帯地域では、農業機械の1シーズンの稼働時間は、日本国内と比較にならないくらい長く、過酷な条件下でベルトやプーリが使われている。さらに、レイアウトも、エンジンのコンパクト化に伴うプーリの小径化、多機能化に伴って多軸化され、逆曲げを含めて屈曲回数が増加している。これらの厳しい走行条件により、ベルトの側面摩耗は、加速される傾向にあるが、摩耗はプーリに発生した錆によりさらに助長され、このような傾向は、農業機械で顕著である。すなわち、シーズンを終えた農業機械は、十分な整備をされないまま来シーズンまで納屋等に放置されて保管される場合が多く、そのような状態で保管されて次期シーズンにベルトを稼動させると、プーリのV溝に発生した錆がベルトの側面(摩擦伝動面)を強制摩耗させる。 Wrapped V-belts are required to have durability (wear resistance, bending fatigue resistance, heat resistance, cold resistance), power transmission, etc., but agricultural machinery is further impact resistant, reverse bending resistant, and cold resistant. Slipperiness is also required. Furthermore, in recent years, agricultural machinery, which is often operated outdoors, has been increased in output for overseas markets, and the operating environment conditions for belts and pulleys have become stricter due to operation in tropical regions with high rainfall and high humidity. Nevertheless, durability for one season is required even under such harsh conditions. In the tropics, the operating time of agricultural machinery in one season is incomparably longer than in Japan, and belts and pulleys are used under harsh conditions. Furthermore, the layout has also been increased in number as the diameter of the pulley has become smaller and the number of functions has increased as the engine has become more compact, and the number of times of bending has increased, including reverse bending. Due to these severe running conditions, the side wear of the belt tends to be accelerated, but the wear is further promoted by the rust generated on the pulley, and such a tendency is remarkable in agricultural machinery. In other words, agricultural machinery that has finished the season is often left in a barn or the like until next season without being sufficiently maintained, and if it is stored in such a state and the belt is operated in the next season, the pulley will be used. The rust generated in the V-groove forcibly wears the side surface (friction transmission surface) of the belt.

ラップドVベルト側面の摩耗が早期に進行すると、ベルトの幅が規定より狭くなって張力が低下し、スリップを引き起こし、伝達能力が大きく低下する。また、スリップによる発熱が、熱劣化によるゴムの硬度を上昇させ、一次故障のクラックが早期に発生して、二次故障であるラップドVベルトの破壊へ短期に移行して寿命までの走行時間が短くなる。さらに、伝達能力の低下は、従動側プーリの作業能力を低下させる。そのため、ラップドVベルトでは早期の側面摩耗防止が要求されている。 If the side surface of the wrapped V-belt is worn early, the width of the belt becomes narrower than specified, the tension decreases, slippage occurs, and the transmission capacity is greatly reduced. In addition, the heat generated by slipping increases the hardness of the rubber due to thermal deterioration, cracks in the primary failure occur early, and the traveling time until the end of life shifts to the destruction of the wrapped V-belt, which is the secondary failure, in a short period of time. It gets shorter. Further, the decrease in transmission capacity reduces the working capacity of the driven pulley. Therefore, the wrapped V-belt is required to prevent side wear at an early stage.

ラップドVベルトについて、特開平6−137381号公報(特許文献1)には、ベルト本体の表面に、仕上げ用ゴムが施された帆布層を備えたベルトであって、前記帆布層に施された仕上げ用ゴム中にチアベンダゾールを主成分とする混合物からなる防かび剤が配合されたベルトが開示されている。このベルトは、かびの発生を長期間に亘り安定して防止できる。 Regarding the wrapped V-belt, Japanese Patent Application Laid-Open No. 6-137381 (Patent Document 1) states that the belt is provided with a canvas layer on which a finishing rubber is applied on the surface of the belt body, and is applied to the canvas layer. A belt in which a fungicide composed of a mixture containing thiabendazole as a main component is blended in a finishing rubber is disclosed. This belt can stably prevent the generation of mold for a long period of time.

WO2015/104778号パンフレット(特許文献2)には、ベルト本体と、このベルト本体を被覆する内被布及びこの内被布を更に被覆する外被布を含む補強布とを備え、前記内被布と前記外被布との間に、フッ素樹脂からなる被膜が形成されている伝動ベルトが開示されている。このベルトは、フッ素樹脂からなる被膜によってベルト本体に対する油剤の進入を抑制できるため、耐油性に優れている。 The WO2015 / 104778 pamphlet (Patent Document 2) includes a belt body, an inner cloth covering the belt body, and a reinforcing cloth including an outer cloth further covering the inner cloth, and the inner cloth and the outer cloth are provided. A transmission belt in which a film made of a fluororesin is formed is disclosed between the two. This belt has excellent oil resistance because the film made of fluororesin can prevent the oil agent from entering the belt body.

しかし、これらの文献には、ベルトの摩耗については記載されておらず、近年の農業機械に要求される過酷な条件では、ベルトの摩擦伝動面などのプーリとの接触面が早期に摩耗する。 However, these documents do not describe the wear of the belt, and under the harsh conditions required for agricultural machinery in recent years, the contact surface with the pulley such as the friction transmission surface of the belt wears at an early stage.

特開平6−137381号公報(請求項1、段落[0026])Japanese Unexamined Patent Publication No. 6-137381 (Claim 1, paragraph [0026]) WO2015/104778号パンフレット(請求項1、段落[0008])WO2015 / 104778 Pamphlet (Claim 1, paragraph [0008])

従って、本発明の目的は、プーリに錆が発生しても、プーリとの接触面においてベルトが早期に摩耗するのを抑制できるベルト伝動装置を提供することにある。 Therefore, an object of the present invention is to provide a belt transmission device capable of suppressing early wear of the belt on the contact surface with the pulley even if the pulley is rusted.

本発明の他の目的は、ベルトに要求される諸特性(動力伝達性、耐衝撃性、耐逆曲げ性、耐スリップ性)を備えるとともに、高温多湿の過酷な条件で長期間走行しても、ベルトを破損せずに運転できるベルト伝動装置を提供することにある。 Another object of the present invention is to have various characteristics (power transmission, impact resistance, reverse bending resistance, slip resistance) required for a belt, and to run for a long period of time under harsh conditions of high temperature and humidity. The purpose of the present invention is to provide a belt transmission device that can be operated without damaging the belt.

本発明のさらに他の目的は、ベルトの屈曲による自己発熱やプーリとの接触による摩擦熱などをベルトから放熱するのを促進し、ベルトの温度上昇を抑制できるベルト伝動装置を提供することにある。 Still another object of the present invention is to provide a belt transmission device capable of promoting heat dissipation from the belt such as self-heat generation due to bending of the belt and frictional heat due to contact with a pulley, and suppressing a temperature rise of the belt. ..

本発明者らは、前記課題を達成するため鋭意検討した結果、摩擦伝動ベルトのプーリとの接触面の少なくとも一部を金属粒子、バインダー及び布帛を含む補強布で被覆することにより、プーリに錆が発生しても、プーリとの接触面においてベルトが早期に摩耗するのを抑制できることを見いだし、本発明を完成した。 As a result of diligent studies to achieve the above problems, the present inventors have rusted the pulley by covering at least a part of the contact surface of the friction transmission belt with the pulley with a reinforcing cloth containing metal particles, a binder and a cloth. The present invention has been completed by finding that it is possible to prevent the belt from being worn at an early stage on the contact surface with the pulley even if the above occurs.

すなわち、本発明のベルト伝動装置は、プーリと、このプーリとの接触面の少なくとも一部が、金属粒子、バインダー及び布帛を含む補強布で被覆されている摩擦伝動ベルトとを備えている。前記補強布は、布帛のプーリとの接触面側の表面に、金属粒子及びバインダーを含む耐摩耗層を有していてもよい。前記金属粒子のビッカース硬さは20HV以上であってもよい。前記金属粒子の平均粒径は1〜100μm程度である。前記金属粒子の形状は略球状であってもよい。前記金属粒子の熱伝導率は200W/m・K以上であってもよい。前記バインダーは加硫ゴムであってもよい。前記金属粒子の割合は、布帛100質量部に対して10〜120質量部程度である。前記金属粒子の割合は、バインダー100質量部に対して10〜1000質量部程度である。前記布帛はセルロース繊維を含む織布であってもよい。前記耐摩耗層の平均厚みは100〜2000μm程度である。前記摩擦伝動ベルトにおいて、摩擦伝動面が金属粒子、バインダー及び布帛を含む補強布で被覆されていてもよい。前記摩擦伝動ベルトは、外被布として補強布を有するラップドVベルトであってもよい。 That is, the belt transmission device of the present invention includes a pulley and a friction transmission belt in which at least a part of a contact surface with the pulley is covered with a reinforcing cloth containing metal particles, a binder and a cloth. The reinforcing cloth may have an abrasion-resistant layer containing metal particles and a binder on the surface of the cloth on the contact surface side with the pulley. The Vickers hardness of the metal particles may be 20 HV or more. The average particle size of the metal particles is about 1 to 100 μm. The shape of the metal particles may be substantially spherical. The thermal conductivity of the metal particles may be 200 W / m · K or more. The binder may be vulcanized rubber. The ratio of the metal particles is about 10 to 120 parts by mass with respect to 100 parts by mass of the fabric. The ratio of the metal particles is about 10 to 1000 parts by mass with respect to 100 parts by mass of the binder. The fabric may be a woven fabric containing cellulose fibers. The average thickness of the wear-resistant layer is about 100 to 2000 μm. In the friction transmission belt, the friction transmission surface may be covered with a reinforcing cloth containing metal particles, a binder and a cloth. The friction transmission belt may be a wrapped V-belt having a reinforcing cloth as an outer cover cloth.

本発明では、摩擦伝動ベルトのプーリとの接触面の少なくとも一部を金属粒子、バインダー及び布帛を含む補強布で被覆することにより、プーリに錆が発生しても、プーリと接触する面(特にベルトの摩擦伝動面)においてベルトが早期に摩耗するのを抑制できる。そのため、ベルトがスリップしてベルトの伝達能力が低下し、ベルトが破損するのを抑制できる。特に、小粒径の金属粒子を用いると、ベルトに要求される諸特性(動力伝達性、耐衝撃性、耐逆曲げ性、耐スリップ性)を備えるとともに、高温多湿の過酷な条件で長期間走行しても、ベルトを破損せずに運転できる。さらに、金属粒子として熱伝導性金属粒子を用いると、ベルトの屈曲による自己発熱やプーリとの接触による摩擦熱などをベルトから放熱するのを促進し、ベルトの温度上昇を抑制できる。そのため、近年、農業機械用途などにおいて、過酷な条件で使用されるラッブドVベルトを備えたベルト伝動装置としても適している。 In the present invention, by covering at least a part of the contact surface of the friction transmission belt with the pulley with a reinforcing cloth containing metal particles, a binder and a cloth, the surface that comes into contact with the pulley even if the pulley is rusted (particularly). It is possible to prevent the belt from being worn prematurely on the friction transmission surface of the belt). Therefore, it is possible to prevent the belt from slipping, reducing the transmission capacity of the belt, and damaging the belt. In particular, when metal particles having a small particle size are used, they have various characteristics (power transmission, impact resistance, reverse bending resistance, slip resistance) required for a belt, and for a long period of time under harsh conditions of high temperature and humidity. Even if you drive, you can drive without damaging the belt. Further, when the thermally conductive metal particles are used as the metal particles, it is possible to promote heat dissipation from the belt such as self-heat generation due to bending of the belt and frictional heat due to contact with the pulley, and it is possible to suppress a temperature rise of the belt. Therefore, in recent years, it is also suitable as a belt transmission device equipped with a rubbed V-belt used under harsh conditions in agricultural machinery applications and the like.

図1は、切断したラップドVベルトの概略部分断面斜視図である。FIG. 1 is a schematic partial cross-sectional perspective view of the cut wrapped V-belt. 図2は、錆が発生したプーリに対する耐摩耗層の挙動を説明するための模式図である。FIG. 2 is a schematic view for explaining the behavior of the wear-resistant layer with respect to the rusted pulley. 図3は、実施例及び比較例で得られたラップドVベルトのタテ型デッドウエイト走行試験を説明するための概略図である。FIG. 3 is a schematic view for explaining a vertical dead weight running test of the wrapped V-belt obtained in Examples and Comparative Examples. 図4は、実施例及び比較例で得られたラップドVベルトの寸法変化を説明するための概略図である。FIG. 4 is a schematic view for explaining the dimensional change of the wrapped V-belt obtained in Examples and Comparative Examples.

以下に、必要により添付図面を参照しつつ、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail with reference to the accompanying drawings, if necessary.

本発明のベルト伝動装置は、プーリと、このプーリと接触する面(特に摩擦伝動面)の少なくとも一部が、金属粒子、バインダー及び布帛を含む補強布で被覆されている摩擦伝動ベルトとを備えている。さらに、前記摩擦伝動ベルトは、プーリと接触する面(特に摩擦伝動面)の少なくとも一部が、金属粒子、バインダー及び布帛を含む補強布で被覆されていれば特に限定されず、Vベルト、Vリブドベルト、平ベルトなどであってもよい。また、摩擦伝動ベルトは、摩擦伝動部(リブなど)が形成されたベルトであってもよく、例えば、近年、熱劣化し易い過酷な条件で使用されることの多いラップドVベルトであってもよい。 The belt transmission device of the present invention includes a pulley and a friction transmission belt in which at least a part of a surface (particularly a friction transmission surface) in contact with the pulley is covered with a reinforcing cloth containing metal particles, a binder and a cloth. ing. Further, the friction transmission belt is not particularly limited as long as at least a part of the surface in contact with the pulley (particularly the friction transmission surface) is covered with a reinforcing cloth containing metal particles, a binder and a cloth, and the V belt and V It may be a ribbed belt, a flat belt, or the like. Further, the friction transmission belt may be a belt on which a friction transmission portion (rib or the like) is formed. For example, even if it is a wrapped V belt that is often used under harsh conditions that are easily deteriorated by heat in recent years. Good.

図1に示すように、ラップドVベルト1は、ベルト外周側の伸張層(伸張ゴム層又は上芯ゴム層)2、ベルト内周側の圧縮層(圧縮ゴム層又はV芯ゴム層)4、及び前記伸張層2と圧縮層4との間にベルト長手方向(周長方向、図中のA方向)に沿って埋設された芯体3で形成された無端状のベルト本体と、このベルト本体の周囲をベルト周方向の全長に亘って被覆している外被布5(織物、編物、不織布など)とで形成されている。この例では、芯体3は、ベルト幅方向(図中のB方向)に所定間隔で配列した心線(撚りコード)であり、伸張層2と圧縮層4とに接して、両層の間に介在している。ラップドVベルトは、この構造に限定されず、例えば、圧縮層4と伸張層2との間には、芯体3と伸張層2又は圧縮層4との接着性を向上させるため、接着層を介在させてもよい。芯体3は、伸張層2と圧縮層4との間に埋設されていればよく、例えば、圧縮層4に埋設されていてもよく、伸張層2に接触させつつ圧縮層4に埋設させてもよい。さらに、芯体3は、前記接着層に埋設されていてもよく、圧縮層4と接着層との間又は接着層と伸張層2との間に埋設されていてもよい。 As shown in FIG. 1, the wrapped V-belt 1 has an stretch layer (stretch rubber layer or upper core rubber layer) 2 on the outer peripheral side of the belt, a compression layer (compression rubber layer or V-core rubber layer) 4 on the inner circumference side of the belt. An endless belt body formed of a core body 3 embedded along the longitudinal direction of the belt (circumferential length direction, A direction in the drawing) between the stretch layer 2 and the compression layer 4, and the belt body. It is formed of an outer cover cloth 5 (woven fabric, knitted fabric, non-woven fabric, etc.) that covers the circumference of the belt over the entire length in the circumferential direction of the belt. In this example, the core body 3 is a core wire (twisted cord) arranged at predetermined intervals in the belt width direction (B direction in the drawing), is in contact with the extension layer 2 and the compression layer 4, and is between the two layers. Is intervening in. The wrapped V-belt is not limited to this structure, and for example, an adhesive layer is provided between the compression layer 4 and the extension layer 2 in order to improve the adhesiveness between the core 3 and the extension layer 2 or the compression layer 4. It may be intervened. The core body 3 may be embedded between the extension layer 2 and the compression layer 4, for example, may be embedded in the compression layer 4, and may be embedded in the compression layer 4 while being in contact with the extension layer 2. May be good. Further, the core body 3 may be embedded in the adhesive layer, or may be embedded between the compression layer 4 and the adhesive layer or between the adhesive layer and the stretch layer 2.

なお、本発明は、プーリとの摩擦伝動面(又は摩擦伝動部)が形成された伝動ベルトに好適に適用される。前記構造を有するラップドVベルトも、断面形状が逆台形状(V字状)であり、V字状に傾斜する両側面の外被布がプーリのV溝の内壁と接触する摩擦伝動面を形成する。そのため、金属粒子を含む補強布は、摩擦伝動面の少なくとも一部の領域(例えば、摩擦伝動面全体)に形成されてもよいが、生産性などの点から、外被布全体が補強布で形成されているのが好ましい。なお、摩擦伝動ベルトにおいて、補強布は、摩擦伝動面に限定されず、プーリとの接触面を被覆すればよい。プーリとの接触面は、例えば、ラップドVベルト、ローエッジVベルト、Vリブドベルトなどの摩擦伝動ベルトにおける伸張層(背面布)などの非伝動面であってもよいが、耐摩耗性の向上効果が大きい点から、伝動面が好ましく、平ベルトの上面又は下面やラップドVベルトの側面などの摩擦伝動面が特に好ましい。 The present invention is suitably applied to a transmission belt in which a friction transmission surface (or friction transmission portion) with a pulley is formed. The wrapped V-belt having the above structure also has an inverted trapezoidal cross-sectional shape (V-shape), and the outer coverings on both side surfaces inclined in the V-shape form a friction transmission surface in contact with the inner wall of the V groove of the pulley. .. Therefore, the reinforcing cloth containing the metal particles may be formed in at least a part of the friction transmission surface (for example, the entire friction transmission surface), but from the viewpoint of productivity and the like, the entire outer cover is formed of the reinforcing cloth. It is preferable that it is. In the friction transmission belt, the reinforcing cloth is not limited to the friction transmission surface, and may cover the contact surface with the pulley. The contact surface with the pulley may be a non-transmission surface such as an extension layer (back cloth) in a friction transmission belt such as a wrapped V-belt, a low-edge V-belt, or a V-ribbed belt, but it has an effect of improving wear resistance. From a large point, the transmission surface is preferable, and the friction transmission surface such as the upper surface or the lower surface of the flat belt or the side surface of the wrapped V-belt is particularly preferable.

以下に、ベルトを構成する補強布及びベルト本体並びにベルトの製造方法の詳細を説明する。なお、プーリとしては、慣用のプーリを利用でき、Vベルトの場合、ベルトの摩擦伝動面のV形状に対応したV溝を備えたプーリを利用できる。 The details of the reinforcing cloth and the belt main body constituting the belt and the manufacturing method of the belt will be described below. As the pulley, a conventional pulley can be used, and in the case of a V-belt, a pulley having a V-groove corresponding to the V-shape of the friction transmission surface of the belt can be used.

[補強布]
補強布は、金属粒子、バインダー及び布帛を含み、プーリとの接触面[特に摩擦伝動面]の少なくとも一部を被覆することにより、プーリ[特に摩擦伝動面(V溝側面又は内壁面)]に発生した錆の除去効果を発現し、走行中における摩擦伝動ベルトのプーリとの接触面の摩耗を抑制できる。
[Reinforcing cloth]
The reinforcing cloth contains metal particles, a binder and a cloth, and covers at least a part of the contact surface with the pulley [particularly the friction transmission surface] to cover the pulley [especially the friction transmission surface (V-groove side surface or inner wall surface)]. The effect of removing the generated rust can be exhibited, and the wear of the contact surface of the friction transmission belt with the pulley during traveling can be suppressed.

(金属粒子)
金属粒子を構成する金属としては、例えば、アルカリ金属(例えば、ナトリウム、カリウムなど)、アルカリ土類金属(例えば、ベリリウム、マグネシウムなど)、遷移金属(例えば、チタンなどの周期表第4A族金属;タンタルなどの周期表第5A族金属;クロム、モリブデン、タングステンなどの周期表第6A族金属;レニウムなどの周期表第7A族金属;ニッケル、鉄、コバルト、ロジウム、パラジウム、イリジウム、白金などの周期表第8族金属;銅、銀、金などの周期表第1B族金属など)、周期表第2B族金属(例えば、亜鉛、カドミウムなど)、周期表第3B族金属(例えば、アルミニウム、ガリウム、インジウムなど)、周期表第4B族金属(例えば、スズ、鉛など)、周期表第5B族金属(例えば、アンチモンなど)などが挙げられる。これらの金属は、単独で又は二種以上組み合わせて使用できる。さらに、二種以上の金属単体を組み合わせた合金としては、例えば、チタン合金、モネル、アルミニウム青銅、青銅、黄銅、ジュラルミン、真鍮、高炭素鋼、ニッケル鋼などが挙げられる。
(Metal particles)
Examples of the metal constituting the metal particles include an alkali metal (for example, sodium, potassium, etc.), an alkaline earth metal (for example, beryllium, magnesium, etc.), a transition metal (for example, a Group 4A metal of the periodic table such as titanium; Periodic Table Group 5A metals such as tantalum; Periodic Table Group 6A metals such as chromium, molybdenum and tungsten; Periodic Table Group 7A metals such as renium; Periodic tables such as nickel, iron, cobalt, rhodium, palladium, iridium and platinum Table 8 metals; Periodic Table Group 1B metals such as copper, silver and gold), Periodic Table Group 2B metals (eg zinc, cadmium, etc.), Periodic Table Group 3B metals (eg aluminum, gallium, etc.) Indium and the like), Group 4B metal of the Periodic Table (eg, tin, lead, etc.), Group 5B Metal of the Periodic Table (eg, Antimon, etc.) and the like. These metals can be used alone or in combination of two or more. Further, examples of alloys in which two or more kinds of metals are combined include titanium alloys, monel, aluminum bronze, bronze, brass, duralumin, brass, high carbon steel, nickel steel and the like.

金属粒子は、錆を削り落とす力を向上できる点から、高い硬度を有するのが好ましい。金属粒子(粒子を構成する金属単体又は金属合金)のビッカース硬さは10HV以上(特に20HV以上)であってもよく、好ましくは50HV以上、さらに好ましくは100HV以上(特に100〜500HV程度)であってもよい。 The metal particles preferably have a high hardness because they can improve the ability to scrape off rust. The Vickers hardness of the metal particles (elemental metal or metal alloy constituting the particles) may be 10 HV or more (particularly 20 HV or more), preferably 50 HV or more, and more preferably 100 HV or more (particularly about 100 to 500 HV). You may.

金属粒子は、さらにベルトで発生した熱を放熱できる点から、熱伝導性にも優れるのが好ましい。金属粒子(粒子を構成する金属単体又は合金)の100℃での熱伝導率は10W/m・K以上(特に20W/m・K以上)であってもよく、好ましくは100W/m・K以上、さらに好ましくは200W/m・K以上(特に300〜500W/m・K)であってもよい。 The metal particles are preferably excellent in thermal conductivity because they can dissipate heat generated by the belt. The thermal conductivity of the metal particles (elemental metal or alloy constituting the particles) at 100 ° C. may be 10 W / m · K or more (particularly 20 W / m · K or more), preferably 100 W / m · K or more. More preferably, it may be 200 W / m · K or more (particularly 300 to 500 W / m · K).

これらの金属粒子のうち、ビッカース硬度が高い金属、例えば、チタン(120HV)、モリブデン(147HV)、タングステン(100〜350HV)、コバルト(124〜130HV)、チタン合金(310HV)、モネル(140〜185HV)、アルミニウム青銅(120HV)、ジュラルミン(115〜128HV)、高炭素鋼(180〜280HV)などが好ましく、熱伝導性にも優れる点から、モリブデン、タングステンが特に好ましい。 Among these metal particles, metals having high Vickers hardness, such as titanium (120HV), molybdenum (147HV), tungsten (100 to 350HV), cobalt (124 to 130HV), titanium alloy (310HV), and monel (140 to 185HV). ), Aluminum bronze (120 HV), duralmin (115-128 HV), high carbon steel (180 to 280 HV) and the like, and molybdenum and tungsten are particularly preferable because they are also excellent in thermal conductivity.

また、錆発生及び熱劣化の抑制に関し、両特性のバランスに優れる点から、金属粒子は、ビッカース硬さが20HV以上(例えば20〜100HV程度)であり、かつ熱伝導率が300W/m・K以上(例えば350〜450W/m・K)の金属で形成された粒子(例えば、銅粒子など)であってもよい。 Further, regarding the suppression of rust generation and thermal deterioration, the metal particles have a Vickers hardness of 20 HV or more (for example, about 20 to 100 HV) and a thermal conductivity of 300 W / m · K from the viewpoint of excellent balance of both characteristics. The particles (for example, copper particles) formed of the above (for example, 350 to 450 W / m · K) metal may be used.

金属粒子の形状としては、例えば、球状(真球状又は略球状)、楕円体(楕円球)状、多角体状(多角錘状、正方体状や直方体状など多角方形状など)、板状(扁平状、鱗片状、薄片状など)、ロッド状又は棒状、繊維状、樹針状、不定形状などが挙げられる。金属粒子の形状は、通常、球状、楕円体状、多角体状、不定形状などである。これらの形状のうち、バインダー中に容易に均一分散かつ高充填でき、ベルトの耐摩耗性を向上できる点から、略球状が好ましい。 The shapes of the metal particles include, for example, a spherical shape (true sphere or substantially spherical shape), an ellipsoidal shape (elliptical sphere), a polygonal shape (polygonal pyramid shape, a rectangular parallelepiped shape such as a rectangular parallelepiped shape, etc.), and a plate shape (flat). Shape, scale shape, flaky shape, etc.), rod shape or rod shape, fibrous shape, dendritic shape, irregular shape and the like. The shape of the metal particles is usually spherical, ellipsoidal, polygonal, indefinite, or the like. Of these shapes, a substantially spherical shape is preferable because it can be easily uniformly dispersed and highly filled in the binder and the wear resistance of the belt can be improved.

金属粒子の中心粒径又は平均粒径(D50)は、例えば1〜100μm(例えば2〜50μm)、好ましくは3〜30μm、さらに好ましくは5〜25μm(特に10〜20μm)程度である。最大粒径は、例えば100μm以下、好ましくは50μm以下、さらに好ましくは30μm以下であってもよい。最小粒径は、例えば0.5μm以上、好ましくは1μm以上、さらに好ましくは2μm以上であってもよい。粒径が小さすぎると、バインダー中での均一な分散が困難となり、ベルトの耐摩耗性が低下する虞があり、大きすぎると、ベルト本体への固着性が低下する虞がある。 The central particle size or average particle size (D50) of the metal particles is, for example, about 1 to 100 μm (for example, 2 to 50 μm), preferably 3 to 30 μm, and more preferably 5 to 25 μm (particularly 10 to 20 μm). The maximum particle size may be, for example, 100 μm or less, preferably 50 μm or less, and more preferably 30 μm or less. The minimum particle size may be, for example, 0.5 μm or more, preferably 1 μm or more, and more preferably 2 μm or more. If the particle size is too small, uniform dispersion in the binder becomes difficult, and the wear resistance of the belt may decrease. If the particle size is too large, the adhesiveness to the belt body may decrease.

なお、本明細書及び特許請求の範囲では、中心粒径及び最大粒径は、レーザー回折散乱式粒度分布測定装置を用いて測定された平均粒径を意味する。 In the present specification and claims, the central particle size and the maximum particle size mean the average particle size measured by using a laser diffraction / scattering type particle size distribution measuring device.

金属粒子の割合は、布帛100質量部に対して、例えば10〜120質量部、好ましくは10〜100質量部(例えば20〜90質量部)、さらに好ましくは20〜80質量部(特に30〜50質量部)程度である。金属粒子の割合が少なすぎると、ベルトの耐摩耗性が低下する虞があり、多すぎると、布帛に対する固着性が低下する虞がある。 The ratio of the metal particles is, for example, 10 to 120 parts by mass, preferably 10 to 100 parts by mass (for example, 20 to 90 parts by mass), and more preferably 20 to 80 parts by mass (particularly 30 to 50 parts by mass) with respect to 100 parts by mass of the fabric. (Mass part). If the proportion of the metal particles is too small, the abrasion resistance of the belt may decrease, and if it is too large, the adhesiveness to the fabric may decrease.

金属粒子の割合は、バインダー100質量部に対して、例えば10〜1000質量部、好ましくは15〜800質量部(例えば20〜400質量部)、さらに好ましくは25〜200質量部(特に50〜100質量部)程度である。金属粒子の割合が少なすぎると、ベルトの耐摩耗性が低下する虞があり、多すぎると、布帛に対する固着性が低下する虞がある。 The ratio of the metal particles is, for example, 10 to 1000 parts by mass, preferably 15 to 800 parts by mass (for example, 20 to 400 parts by mass), and more preferably 25 to 200 parts by mass (particularly 50 to 100 parts by mass) with respect to 100 parts by mass of the binder. (Mass part). If the proportion of the metal particles is too small, the abrasion resistance of the belt may decrease, and if it is too large, the adhesiveness to the fabric may decrease.

金属粒子は、補強布に含まれていればよいが、ベルトの耐摩耗性を向上できる点から、少なくとも布帛の外側表面(摩擦伝動面など)に金属粒子が存在するのが好ましく、耐久性にも優れる点から、布帛の表面及び内部(繊維間)に存在(特に、内部に均質に存在することにより表面においても均一に存在)するのが特に好ましい。 The metal particles may be contained in the reinforcing cloth, but from the viewpoint of improving the wear resistance of the belt, it is preferable that the metal particles are present at least on the outer surface (friction transmission surface, etc.) of the cloth, and the durability is improved. It is particularly preferable that the fabric is present on the surface and inside (between fibers) of the fabric (particularly, it is uniformly present on the surface because it is uniformly present inside).

補強布表面において、金属粒子はバインダーの薄膜で被覆されている場合が多く、補強布が摩擦伝動面を被覆する場合、金属粒子は、ベルト走行後、プーリとの接触により補強布表面に露出する。この場合、補強布の表面(ベルト本体と接しない外側の表面)全体に対して金属粒子が占める面積割合は、表面全体に対して5%以上であればよく、例えば5〜95%、好ましくは20〜90%、さらに好ましくは40〜85%(特に60〜80%)程度である。金属粒子の面積割合が小さすぎると、ベルトの耐摩耗性が低下する虞がある。なお、本発明では、金属粒子の面積割合は、画像処理機能を備えたカメラ(スマートカメラ)を用いて、補強布表面の画像をコンピュータで画像処理する方法で測定できる。 On the surface of the reinforcing cloth, the metal particles are often coated with a thin film of the binder, and when the reinforcing cloth covers the friction transmission surface, the metal particles are exposed on the surface of the reinforcing cloth by contact with the pulley after running on the belt. .. In this case, the area ratio of the metal particles to the entire surface of the reinforcing cloth (outer surface not in contact with the belt body) may be 5% or more with respect to the entire surface, for example, 5 to 95%, preferably 5 to 95%. It is about 20 to 90%, more preferably 40 to 85% (particularly 60 to 80%). If the area ratio of the metal particles is too small, the wear resistance of the belt may decrease. In the present invention, the area ratio of the metal particles can be measured by a method of performing image processing on the surface of the reinforcing cloth by a computer using a camera (smart camera) having an image processing function.

(バインダー)
前記金属粒子は、バインダーを介して、布帛の表面及び/又は繊維間(内部)に固定されていてもよく、特に、ベルトの耐摩耗性に優れる点から、少なくとも外側表面(摩擦伝動面などのプーリとの接触面)に固定されているのが好ましく、耐久性に優れる点から、外側表面及び繊維間に固定されているのが特に好ましい。そのため、バインダーは、少なくとも布帛の表面に付着するのが好ましく、布帛の表面及び内部(繊維間)に付着(特に、内部に均質に付着することにより表面においても均一に付着)するのが特に好ましい。
(binder)
The metal particles may be fixed to the surface of the fabric and / or between the fibers (inside) via a binder, and in particular, from the viewpoint of excellent wear resistance of the belt, at least the outer surface (friction transmission surface, etc.) It is preferably fixed to the contact surface with the pulley), and is particularly preferably fixed to the outer surface and between the fibers from the viewpoint of excellent durability. Therefore, the binder preferably adheres to at least the surface of the fabric, and particularly preferably adheres to the surface and the inside (between fibers) of the fabric (particularly, by uniformly adhering to the inside, the binder also adheres uniformly to the surface). ..

バインダーは、接着性樹脂などのポリマー成分であってもよいが、ベルト本体との密着性に優れる点から、加硫ゴムであるのが好ましく、ベルト本体を形成する加硫ゴム(通常、圧縮層の加硫ゴム)と同一又は同種(特に同一)の加硫ゴムが特に好ましい。例えば、加硫ゴムを摩擦伝動面に用いると、金属粒子が水に流されて摩擦伝動面から脱離したり、プーリとの接触摩耗により走行初期で欠落したりして、早期に放熱の効果が消失するのを抑制でき、ベルトのプーリとの接触側表面層に金属粒子を長期にわたって保持できる。 The binder may be a polymer component such as an adhesive resin, but is preferably vulcanized rubber because of its excellent adhesion to the belt body, and the vulcanized rubber (usually a compression layer) forming the belt body. Vulcanized rubber of the same type or the same type (particularly the same) as the vulcanized rubber) is particularly preferable. For example, when vulcanized rubber is used for the friction transmission surface, metal particles are washed away by water and detached from the friction transmission surface, or are chipped at the initial stage of running due to contact wear with the pulley, resulting in an early heat dissipation effect. It can be suppressed from disappearing, and metal particles can be retained for a long period of time on the surface layer on the contact side with the pulley of the belt.

このような加硫ゴムを含む補強布は、金属粒子が加硫ゴムと一体化した状態で固着されており、補強布で摩擦伝動面を形成した場合、ベルトの走行初期で摩擦伝動面のゴム薄膜が飛散されると金属粒子が露出する。その状態で連続してプーリに接触して走行を続けた場合、ベルトの加硫後に摩擦伝動面に金属粒子を付着させた場合に比べ、金属粒子が水に流されて摩擦伝動面から脱離したり、プーリとの接触摩擦により走行初期で欠落して、金属粒子の効果が消失するリスクは大きく低減される。そのため、摩擦伝動面と一体化した状態で固着された金属粒子は、走行経緯の中でも消失することなく保持されて、ベルトの耐摩耗性を向上できる。さらに、金属粒子が長時間ベルトに保持されることにより効果の持続が可能になる。 In the reinforcing cloth containing such vulcanized rubber, the metal particles are fixed in a state of being integrated with the vulcanized rubber, and when the friction transmission surface is formed by the reinforcing cloth, the rubber on the friction transmission surface at the initial stage of running of the belt. When the thin film is scattered, the metal particles are exposed. When the metal particles are continuously contacted with the pulley in that state and continue to run, the metal particles are washed away by water and separated from the friction transmission surface as compared with the case where the metal particles are attached to the friction transmission surface after vulcanization of the belt. Or, the risk that the effect of the metal particles will be lost due to the contact friction with the pulley and the loss at the initial stage of running is greatly reduced. Therefore, the metal particles fixed in a state of being integrated with the friction transmission surface are held without disappearing even in the traveling process, and the wear resistance of the belt can be improved. Furthermore, the effect can be sustained by holding the metal particles on the belt for a long time.

加硫ゴムのゴム成分としては、ベルトの種類に応じて、耐摩耗性、耐熱性、耐発音性、伝達性能、接着力、粘着性、金属粒子の分散性などを考慮し、公知のゴム成分及び/又はエラストマーから選択でき、例えば、ジエン系ゴム(天然ゴム、イソプレンゴム、ブタジエンゴム、クロロプレンゴム、スチレンブタジエンゴム(SBR)、アクリロニトリルブタジエンゴム(ニトリルゴム)、水素化ニトリルゴム(水素化ニトリルゴムと不飽和カルボン酸金属塩との混合ポリマーを含む)など)、エチレン−α−オレフィンエラストマー、クロロスルホン化ポリエチレンゴム、アルキル化クロロスルホン化ポリエチレンゴム、エピクロルヒドリンゴム、アクリル系ゴム、シリコーンゴム、ウレタンゴム、フッ素ゴムなどが例示できる。これらの成分は単独又は組み合わせて使用できる。これらのゴム成分のうち、ジエン系ゴム(天然ゴム、クロロプレンゴム、水素化ニトリルゴムなど)、エチレン−α−オレフィンエラストマー(エチレン−プロピレンゴム(EPR)、エチレン−プロピレン−ジエンゴム(EPDMなど)などのエチレン−α−オレフィン系ゴム)などが好ましい。 As the rubber component of sulfide rubber, a known rubber component is considered in consideration of wear resistance, heat resistance, sound resistance, transmission performance, adhesive strength, adhesiveness, dispersibility of metal particles, etc., depending on the type of belt. And / or elastomer can be selected, for example, diene rubber (natural rubber, isoprene rubber, butadiene rubber, chloroprene rubber, styrene butadiene rubber (SBR), acrylonitrile butadiene rubber (nitrile rubber), hydride nitrile rubber (hydride nitrile rubber). (Including mixed polymer of unsaturated carboxylic acid metal salt), ethylene-α-olefin elastomer, chlorosulfonated polyethylene rubber, alkylated chlorosulfonated polyethylene rubber, epichlorohydrin rubber, acrylic rubber, silicone rubber, urethane rubber , Fluorine rubber and the like can be exemplified. These ingredients can be used alone or in combination. Among these rubber components, diene rubber (natural rubber, chloroprene rubber, hydride nitrile rubber, etc.), ethylene-α-olefin elastomer (ethylene-propylene rubber (EPR), ethylene-propylene-diene rubber (EPDM, etc.), etc.) Ethylene-α-olefin rubber) and the like are preferable.

(布帛)
布帛としては、例えば、織布、編布(緯編布、経編布)、不織布などの布材などが挙げられる。これらのうち、平織、綾織、朱子織などの形態で製織した織布、経糸と緯糸との交差角が90°を超え120°以下程度の広角度で製織した織布、編布などが好ましく、一般産業用や農業機械用の伝動ベルトのカバー布として汎用されている織布[経糸と緯糸との交差角が直角である平織布、経糸と緯糸との交差角が90°を超え120°以下程度の広角度である平織布(広角度帆布)]が特に好ましい。
(Fabric)
Examples of the cloth include woven cloth, knitted cloth (weft knitted cloth, warp knitted cloth), and cloth materials such as non-woven fabric. Of these, woven fabrics woven in the form of plain weave, twill weave, red weave, etc., woven fabrics and knitted fabrics woven at a wide angle of more than 90 ° and 120 ° or less at the intersection angle of warp and weft are preferable. Woven cloth that is widely used as a cover cloth for transmission belts for general industry and agricultural machinery [plain woven cloth in which the crossing angle between the warp and weft is perpendicular, and the crossing angle between the warp and weft exceeds 90 ° and 120 °. A plain woven cloth (wide-angle canvas) having a wide angle of the following degree is particularly preferable.

布帛を構成する繊維としては、例えば、ポリオレフィン系繊維(ポリエチレン繊維、ポリプロピレン繊維など)、ポリアミド系繊維(ポリアミド6繊維、ポリアミド66繊維、ポリアミド46繊維、アラミド繊維など)、ポリアルキレンアリレート系繊維[ポリエチレンテレフタレート(PET)繊維、ポリエチレンナフタレート(PEN)繊維などのポリC2−4アルキレンC8−14アリレート系繊維など]、ビニルアルコール系繊維(ポリビニルアルコール、エチレン−ビニルアルコール共重合体の繊維、ビニロン繊維など)、ポリパラフェニレンベンゾビスオキサゾール(PBO)繊維などの合成繊維;セルロース系繊維、羊毛などの天然繊維;炭素繊維などの無機繊維が汎用される。これらの繊維は、単独で使用した単独糸であってもよく、二種以上を組み合わせた混紡糸であってもよい。 Examples of the fibers constituting the fabric include polyolefin fibers (polyethylene fibers, polypropylene fibers, etc.), polyamide fibers (polyamide 6 fibers, polyamide 66 fibers, polyamide 46 fibers, aramid fibers, etc.), and polyalkylene allylate fibers [polyethylene]. Poly C 2-4alkylene C 8-14 allylate fiber such as terephthalate (PET) fiber, polyethylene naphthalate (PEN) fiber], vinyl alcohol fiber (polyvinyl alcohol, ethylene-vinyl alcohol copolymer fiber, vinylon) Fibers, etc.), synthetic fibers such as polyparaphenylene benzobisoxazole (PBO) fibers; natural fibers such as cellulose-based fibers and wool; inorganic fibers such as carbon fibers are widely used. These fibers may be single yarns used alone, or may be blended yarns in which two or more kinds are combined.

これらの繊維のうち、金属粒子を担持し易く、経済性にも優れる点から、セルロース系繊維を含むのが好ましい。セルロース系繊維の割合は、繊維全体に対して50質量%以上であってもよく、好ましくは80質量%以上、さらに好ましくは90質量%以上であり、100質量%であってもよい。 Among these fibers, it is preferable to include cellulosic fibers from the viewpoint of easily supporting metal particles and being excellent in economy. The ratio of the cellulosic fiber may be 50% by mass or more, preferably 80% by mass or more, more preferably 90% by mass or more, and 100% by mass with respect to the entire fiber.

セルロース系繊維には、セルロース繊維(植物、動物又はバクテリアなどに由来するセルロース繊維)、セルロース誘導体の繊維が含まれる。セルロース繊維としては、例えば、木材パルプ(針葉樹、広葉樹パルプなど)、竹繊維、サトウキビ繊維、種子毛繊維(綿繊維(コットンリンター)、カポックなど)、ジン皮繊維(麻、コウゾ、ミツマタなど)、葉繊維(マニラ麻、ニュージーランド麻など)などの天然植物由来のセルロース繊維(パルプ繊維);ホヤセルロースなどの動物由来のセルロース繊維;バクテリアセルロース繊維;藻類のセルロースなどが例示できる。セルロース誘導体の繊維としては、例えば、セルロースエステル繊維;再生セルロース繊維(レーヨン、キュプラ、リヨセルなど)などが挙げられる。 Cellulose-based fibers include cellulosic fibers (cellulosic fibers derived from plants, animals, bacteria, etc.) and fibers of cellulose derivatives. Examples of cellulose fibers include wood pulp (coniferous tree, broadleaf tree pulp, etc.), bamboo fiber, sugar cane fiber, seed hair fiber (cotton fiber (cotton linter), capoc, etc.), ginseng fiber (hemp, kozo, mitsumata, etc.), Examples include natural plant-derived cellulose fibers (pulp fibers) such as leaf fibers (Manila hemp, New Zealand hemp, etc.); animal-derived cellulose fibers such as squirrel cellulose; bacterial cellulose fibers; and algae cellulose. Examples of the fibers of the cellulose derivative include cellulose ester fibers; regenerated cellulose fibers (rayon, cupra, lyocell, etc.).

布帛を構成する繊維の平均繊度は、例えば5〜30番手、好ましくは10〜25番手、さらに好ましくは10〜20番手程度である。繊度(番手)が小さすぎると、金属粒子の保持力や均一な分散が困難となるとともに、ベルトの屈曲性も低下する虞があり、大きすぎると、補強布の機械的強度が低下する虞がある。 The average fineness of the fibers constituting the fabric is, for example, 5 to 30 counts, preferably 10 to 25 counts, and more preferably 10 to 20 counts. If the fineness (count) is too small, it becomes difficult to hold the metal particles and evenly disperse them, and the flexibility of the belt may decrease. If the fineness (count) is too large, the mechanical strength of the reinforcing cloth may decrease. is there.

布帛(原料布帛)の目付は、例えば100〜500g/m、好ましくは200〜400g/m、さらに好ましくは250〜350g/m程度である。目付が大きすぎると、ベルトの屈曲性が低下する虞があり、小さすぎると、金属粒子の担持量が低下し、補強布による補強効果も低下する虞がある。 The basis weight of the cloth (raw material cloth) is, for example, 100 to 500 g / m 2 , preferably 200 to 400 g / m 2 , and more preferably about 250 to 350 g / m 2. If the basis weight is too large, the flexibility of the belt may decrease, and if it is too small, the amount of metal particles supported may decrease, and the reinforcing effect of the reinforcing cloth may also decrease.

布帛(原料布帛)が織布の場合、布帛の糸密度(経糸及び緯糸の密度)は、例えば60〜100本/50mm、好ましくは70〜90本/50mm、さらに好ましくは75〜85本/50mm程度である。密度が高すぎると、金属粒子を含んだバインダーの付着量が少なくなり、金属粒子の効果が減少する虞がある。また、密度が低すぎると、金属粒子を含んだバインダーの付着量が多くなり、ベルト走行時に粘着等の不具合を生じ易くなる。 When the cloth (raw material cloth) is a woven cloth, the thread density (density of warp and weft) of the cloth is, for example, 60 to 100 threads / 50 mm, preferably 70 to 90 threads / 50 mm, and more preferably 75 to 85 threads / 50 mm. Degree. If the density is too high, the amount of the binder containing the metal particles adhered will be small, and the effect of the metal particles may be reduced. On the other hand, if the density is too low, the amount of adhesion of the binder containing metal particles increases, and problems such as adhesion are likely to occur during belt running.

布帛には、接着処理[例えば、レゾルシン−ホルマリン−ラテックス液(RFL液)への浸漬処理などの接着処理]を施してもよい。 The fabric may be subjected to an adhesive treatment [for example, an adhesive treatment such as a dipping treatment in a resorcin-formalin-latex liquid (RFL liquid)].

(他の添加剤)
補強布は、金属粒子、バインダー及び布帛に加えて、必要に応じて、例えば、バインダーがゴム成分である場合、ゴム成分の種類に応じて選択された加硫剤又は架橋剤[例えば、硫黄系加硫剤(硫黄、塩化硫黄など)、オキシム類(キノンジオキシムなど)、グアニジン類(ジフェニルグアニジンなど)、有機過酸化物(ジアシルパーオキサイド、パーオキシエステル、ジアルキルパーオキサイドなど)、金属酸化物(酸化マグネシウム、酸化亜鉛など)など]、加硫助剤、加硫促進剤、加硫遅延剤などを含んでいてもよい。加硫剤又は架橋剤の割合は、ゴム成分100質量部に対して1〜20質量部(特に2〜15質量部)程度である。加硫助剤の割合は、ゴム成分100質量部に対して0.01〜10質量部(特に0.1〜5質量部)程度である。加硫促進剤の割合は、ゴム成分100質量部に対して0.1〜15質量部(特に0.3〜10質量部)程度である。補強布は、後述するベルト本体(圧縮層及び伸張層)の項で例示された添加剤及び/又は短繊維をさらに含んでいてもよい。
(Other additives)
In addition to the metal particles, the binder and the cloth, the reinforcing cloth may be a vulcanizing agent or a cross-linking agent [for example, sulfur-based] selected according to the type of the rubber component, if necessary, for example, when the binder is a rubber component. Vulcanizers (sulfur, sulfur chloride, etc.), oximes (quinonedioximes, etc.), guanidines (diphenylguanidine, etc.), organic peroxides (diacyl peroxide, peroxyester, dialkyl peroxide, etc.), metal oxides (Magnetic oxide, zinc oxide, etc.)], vulcanization aids, vulcanization accelerators, vulcanization retarders, etc. may be included. The ratio of the vulcanizing agent or the cross-linking agent is about 1 to 20 parts by mass (particularly 2 to 15 parts by mass) with respect to 100 parts by mass of the rubber component. The ratio of the vulcanization aid is about 0.01 to 10 parts by mass (particularly 0.1 to 5 parts by mass) with respect to 100 parts by mass of the rubber component. The ratio of the vulcanization accelerator is about 0.1 to 15 parts by mass (particularly 0.3 to 10 parts by mass) with respect to 100 parts by mass of the rubber component. The reinforcing cloth may further contain the additives and / or short fibers exemplified in the section of the belt body (compression layer and extension layer) described later.

(補強布の構造)
補強布は、金属粒子が、布帛の表面及び/又は繊維間に、バインダーを介して固定されていればよいが、プーリとの接触面、特に、摩擦伝動面(V溝側面)に錆が発生したプーリ(又はV溝の内壁面が錆で覆われたプーリ)に対する耐摩耗性を向上できる点から、布帛の摩擦伝動面側の表面に、金属粒子及びバインダーを含む耐摩耗層を有するのが好ましい。耐摩耗層によりベルトの耐摩耗性が向上する理由は以下のように推定できる。
(Structure of reinforcing cloth)
In the reinforcing cloth, metal particles may be fixed between the surface and / or fibers of the cloth via a binder, but rust is generated on the contact surface with the pulley, particularly on the friction transmission surface (V-groove side surface). It is preferable to have an abrasion-resistant layer containing metal particles and a binder on the surface of the fabric on the friction transmission surface side from the viewpoint of improving the abrasion resistance against the pulley (or the pulley whose inner wall surface of the V groove is covered with rust). preferable. The reason why the wear resistance of the belt is improved by the wear resistance layer can be estimated as follows.

すなわち、図2は、ラップドVベルトなどの摩擦伝動ベルトにおいて、錆が発生したプーリに対する耐摩耗層の挙動を説明するための模式図であるが、図2の態様(a)は、走行前の状態を示しており、布帛と耐摩耗層との境界14の上に、金属粒子11及びバインダー12で形成された耐摩耗層が形成されており、耐摩耗層の表面13は、金属粒子11の表面を覆う薄膜で形成されている。図2の態様(b)は、走行直後の状態を示しており、前記薄膜は、プーリのV溝側面との接触により飛散して、金属粒子11の一部が少しだけ露出する。図2の(c)は、走行初期(5分後)の状態を示し、走行が進むと、金属粒子11を囲い込んでいるバインダー12が大きく削り取られ、大きく露出した金属粒子11が錆の除去効果を向上させる。図2の態様(d)及び(e)は、さらに走行が進んだ状態(1時間後)の状態を示し、態様(d)で示すように、プーリのV溝側面を覆っている錆を削り落とす作業の過程で、表面層から露出していた金属粒子11の多くが摩擦で飛散し、態様(e)で示すように、表面(ベルト側面)のバインダー12も走行摩耗で飛散して新たな金属粒子11が少しだけ露出した状態となる。 That is, FIG. 2 is a schematic view for explaining the behavior of the wear-resistant layer with respect to the rusted pulley in a friction transmission belt such as a wrapped V-belt, but the aspect (a) of FIG. 2 is a schematic view before traveling. The state is shown, an abrasion-resistant layer formed of the metal particles 11 and the binder 12 is formed on the boundary 14 between the fabric and the abrasion-resistant layer, and the surface 13 of the abrasion-resistant layer is the metal particles 11. It is made of a thin film that covers the surface. Aspect (b) of FIG. 2 shows a state immediately after traveling, and the thin film is scattered by contact with the V-groove side surface of the pulley, and a part of the metal particles 11 is slightly exposed. FIG. 2 (c) shows the state at the initial stage of running (after 5 minutes), and as the running progresses, the binder 12 surrounding the metal particles 11 is largely scraped off, and the greatly exposed metal particles 11 remove rust. Improve the effect. Aspects (d) and (e) of FIG. 2 show a state in which the traveling is further advanced (after 1 hour), and as shown in the aspect (d), the rust covering the V-groove side surface of the pulley is scraped off. In the process of dropping, most of the metal particles 11 exposed from the surface layer are scattered by friction, and as shown in aspect (e), the binder 12 on the surface (side surface of the belt) is also scattered by running wear and is new. The metal particles 11 are slightly exposed.

なお、被われた錆が十分に削り取られなかった場合は、このような過程の繰り返しになるが、通常、最大2回の削り落とし作業で目的の錆落としは完了する。その結果、プーリのV溝側面に発生していた錆は、金属粒子による摩耗でほぼ削り落とされ、金属粒子の多くが摩擦で飛散した後は、プーリのV溝側面から錆が削り落とされているため、ベルト側面の摩耗は少なく伝達能力の低下も極めて小さい。錆が取り除かれた後の耐摩耗層の表面状態[態様(e)]は、金属粒子の一部が少しだけ露出した状態[態様(b)]に相当する。 If the covered rust is not sufficiently scraped off, such a process is repeated, but usually, the desired rust removal is completed by scraping off at a maximum of two times. As a result, the rust generated on the V-groove side surface of the pulley is almost scraped off by the wear caused by the metal particles, and after most of the metal particles are scattered by friction, the rust is scraped off from the V-groove side surface of the pulley. Therefore, the wear on the side surface of the belt is small and the decrease in transmission capacity is extremely small. The surface state [aspect (e)] of the wear-resistant layer after the rust is removed corresponds to a state [aspect (b)] in which a part of the metal particles is slightly exposed.

このように、摩擦伝動ベルトの耐摩耗層によってプーリに発生した錆を除去する場合、耐摩耗層の摩耗によって、ベルト側面が痩せ細る。そのため、摩擦伝動ベルトをプーリの錆を削り落とすために利用する場合は、表面の摩耗により断面寸法(特に幅寸法)が小さくなった場合でも、適正張力を保ち伝達効率を下げないために、張力について、(1)初期の張力設定は適正(推奨)張力より高めに設定する方法や、(2)適正(推奨)張力に設定して、走行後1時間後に適正(推奨)張力に張り直す方法などを採用してもよい。 In this way, when the rust generated on the pulley by the wear-resistant layer of the friction transmission belt is removed, the side surface of the belt becomes thin due to the wear of the wear-resistant layer. Therefore, when the friction transmission belt is used to scrape off the rust on the pulley, even if the cross-sectional dimension (especially the width dimension) becomes small due to surface wear, the proper tension is maintained and the transmission efficiency is not lowered. Regarding (1) the initial tension setting is set higher than the appropriate (recommended) tension, or (2) the appropriate (recommended) tension is set and the tension is re-tensioned to the appropriate (recommended) tension one hour after running. Etc. may be adopted.

一方、プーリのV溝側面に錆が発生していないプーリや殆ど発生していないプーリでは、走行直後はベルト表面のゴム薄膜が飛散して金属粒子の一部が少しだけ露出するが、錆によるゴムの摩耗が微小であるため、金属粒子の露出に進捗が認められない。そのため、図2の態様(b)の状態で安定し、伝達機能に支障は発生しない。 On the other hand, in a pulley with no rust on the side surface of the V-groove of the pulley or a pulley with almost no rust, the rubber thin film on the belt surface scatters immediately after running and a part of the metal particles is exposed, but due to rust. Since the rubber wear is very small, no progress is observed in the exposure of the metal particles. Therefore, it is stable in the state of the aspect (b) of FIG. 2, and the transmission function is not hindered.

耐摩耗層の平均厚みは50μm以上であってもよく、例えば100〜2000μm、好ましくは100〜1500μm(例えば300〜1200μm)、さらに好ましくは400〜1000μm(特に400〜800μm)程度である。耐摩耗層の厚みが薄すぎると、耐摩耗性が低下する虞がある。 The average thickness of the wear-resistant layer may be 50 μm or more, for example, 100 to 2000 μm, preferably 100 to 1500 μm (for example, 300 to 1200 μm), and more preferably 400 to 1000 μm (particularly 400 to 800 μm). If the thickness of the wear-resistant layer is too thin, the wear resistance may decrease.

耐摩耗層を有する補強布は、耐摩耗層を布帛に強固に保持でき、かつ長期間に亘って耐摩耗性を発現できる点から、耐摩耗層の下層として、布帛にバインダーが含浸した含浸層を有するのが好ましい。含浸層の厚みは、布帛全体の厚みに対して10%以上であってもよく、好ましくは30%以上、さらに好ましくは50%以上(特に80%以上)であってもよく、布帛全体が含浸層であってもよい。含浸層は、金属粒子を含んでいてもよく、含んでいなくてもよい。 A reinforcing cloth having an abrasion-resistant layer is an impregnated layer in which the fabric is impregnated with a binder as a lower layer of the abrasion-resistant layer because the abrasion-resistant layer can be firmly held on the fabric and the abrasion resistance can be exhibited for a long period of time. It is preferable to have. The thickness of the impregnated layer may be 10% or more, preferably 30% or more, more preferably 50% or more (particularly 80% or more) with respect to the thickness of the entire fabric, and the entire fabric is impregnated. It may be a layer. The impregnating layer may or may not contain metal particles.

補強布の平均厚みは、ベルトの種類などに応じて適宜選択できるが、例えば0.4〜2mm、好ましくは0.5〜1.4mm、さらに好ましくは0.6〜1.2mm程度であってもよい。補強布の厚みが薄すぎると、耐摩耗性が低下する虞があり、厚すぎると、ベルトの耐屈曲性が低下する虞がある。なお、本明細書及び特許請求の範囲では、補強布の平均厚みは、走査型電子顕微鏡写真(SEM)に基づいて測定でき、任意の5箇所以上の平均値として求める。詳細は、後述する実施例に記載の方法で測定できる。 The average thickness of the reinforcing cloth can be appropriately selected depending on the type of belt and the like, but is, for example, 0.4 to 2 mm, preferably 0.5 to 1.4 mm, and more preferably about 0.6 to 1.2 mm. May be good. If the thickness of the reinforcing cloth is too thin, the wear resistance may decrease, and if it is too thick, the bending resistance of the belt may decrease. In the present specification and claims, the average thickness of the reinforcing cloth can be measured based on a scanning electron micrograph (SEM), and is obtained as an average value of any five or more points. Details can be measured by the method described in Examples described later.

[ベルト本体]
圧縮層及び伸張層を形成する加硫ゴムとしては、前記補強布の項で例示されたゴム成分を例示できる。圧縮層又は伸張層全体(又はゴム組成物全量)に対するゴム成分の割合は、例えば20質量%以上(例えば25〜80質量%)、好ましくは30質量%以上(例えば35〜75質量%)、さらに好ましくは40質量%以上(特に45〜70質量%)であってもよい。
[Belt body]
As the vulcanized rubber forming the compression layer and the stretch layer, the rubber components exemplified in the section of the reinforcing cloth can be exemplified. The ratio of the rubber component to the entire compressed layer or stretched layer (or the total amount of the rubber composition) is, for example, 20% by mass or more (for example, 25 to 80% by mass), preferably 30% by mass or more (for example, 35 to 75% by mass), and further. It may be preferably 40% by mass or more (particularly 45 to 70% by mass).

圧縮層又は伸張層(又はこれらの層を形成するゴム組成物)は、必要に応じて、前記補強布の項で例示された加硫剤又は架橋剤、加硫助剤、加硫促進剤、加硫遅延剤の他、各種添加剤や短繊維を含んでいてもよい。 The compressed layer or the stretched layer (or the rubber composition forming these layers) may be, if necessary, a vulcanizing agent or a cross-linking agent exemplified in the section of the reinforcing cloth, a vulcanization aid, a vulcanization accelerator, and the like. In addition to the vulcanization retarder, various additives and short fibers may be contained.

添加剤(配合剤)としては、公知の添加剤、例えば、補強剤(カーボンブラック、含水シリカなどの酸化ケイ素など)、金属酸化物(例えば、酸化亜鉛、酸化マグネシウム、酸化カルシウム、酸化バリウム、酸化鉄、酸化銅、酸化チタン、酸化アルミニウムなど)、充填剤(クレー、炭酸カルシウム、タルク、マイカなど)、可塑剤、軟化剤(パラフィンオイル、ナフテン系オイルなどのオイル類など)、加工剤又は加工助剤(ステアリン酸、ステアリン酸金属塩、ワックス、パラフィンなど)、老化防止剤(芳香族アミン系老化防止剤、ベンズイミダゾール系老化防止剤など)、接着性改善剤[レゾルシン−ホルムアルデヒド共縮合物、ヘキサメトキシメチルメラミンなどのメラミン樹脂、これらの共縮合物(レゾルシン−メラミン−ホルムアルデヒド共縮合物など)など]、着色剤、粘着付与剤、カップリング剤(シランカップリング剤など)、安定剤(酸化防止剤、紫外線吸収剤、熱安定剤など)、潤滑剤、難燃剤、帯電防止剤などが例示できる。これらの添加剤は単独で又は組み合わせて使用でき、これらの添加剤はゴムの種類や用途、性能などに応じて選択できる。 Examples of the additive (blending agent) include known additives such as reinforcing agents (carbon black, silicon oxide such as hydrous silica), metal oxides (for example, zinc oxide, magnesium oxide, calcium oxide, barium oxide, and oxidation). Iron, copper oxide, titanium oxide, aluminum oxide, etc.), fillers (clay, calcium carbonate, talc, mica, etc.), plasticizers, softeners (oils such as paraffin oil, naphthenic oil, etc.), processing agents or processing Auxiliary agents (stearic acid, metal stearate, wax, paraffin, etc.), anti-aging agents (aromatic amine-based anti-aging agents, benzimidazole-based anti-aging agents, etc.), adhesion improvers [resorcin-formaldehyde cocondensate, Melamine resins such as hexamethoxymethylmelamine, cocondensates of these (resorcin-melamine-formaldehyde cocondensate, etc.), colorants, tackifiers, coupling agents (silane coupling agents, etc.), stabilizers (oxidation) (Inhibitors, ultraviolet absorbers, heat stabilizers, etc.), lubricants, flame retardants, antistatic agents, etc. can be exemplified. These additives can be used alone or in combination, and these additives can be selected according to the type, application, performance and the like of the rubber.

添加剤の割合は、ゴム成分の種類などに応じて適宜選択できる。例えば、補強剤(カーボンブラックなど)割合は、ゴム100質量部に対して、10質量部以上(例えば20〜150質量部)、好ましくは20質量部以上(例えば25〜120質量部)、さらに好ましくは30質量部以上(例えば35〜100質量部)、特に40質量部以上(例えば50〜80質量部)であってもよい。 The ratio of the additive can be appropriately selected according to the type of rubber component and the like. For example, the ratio of the reinforcing agent (carbon black or the like) is 10 parts by mass or more (for example, 20 to 150 parts by mass), preferably 20 parts by mass or more (for example, 25 to 120 parts by mass), more preferably, with respect to 100 parts by mass of rubber. May be 30 parts by mass or more (for example, 35 to 100 parts by mass), particularly 40 parts by mass or more (for example, 50 to 80 parts by mass).

短繊維としては、例えば、綿やレーヨンなどのセルロース系繊維、ポリエステル系繊維(PET繊維など)、ポリアミド系繊維(ポリアミド6などの脂肪族ポリアミド繊維、アラミド繊維など)などが挙げられる。なお、短繊維は、吸水性繊維であってもよい。短繊維は単独で又は2種以上組み合わせてもよい。 Examples of the short fibers include cellulose-based fibers such as cotton and rayon, polyester-based fibers (PET fibers and the like), polyamide-based fibers (aliphatic polyamide fibers such as polyamide 6 and aramid fibers and the like). The short fiber may be a water-absorbent fiber. The short fibers may be used alone or in combination of two or more.

短繊維の平均繊維長は、例えば0.1〜30mm、好ましくは0.2〜20mm、さらに好ましくは0.3〜15mm(特に0.5〜5mm)程度であってもよい。 The average fiber length of the short fibers may be, for example, 0.1 to 30 mm, preferably 0.2 to 20 mm, more preferably 0.3 to 15 mm (particularly 0.5 to 5 mm).

これらの短繊維は、必要に応じて、界面活性剤、シランカップリング剤、エポキシ化合物、イソシアネート化合物などで表面処理してもよい。 If necessary, these short fibers may be surface-treated with a surfactant, a silane coupling agent, an epoxy compound, an isocyanate compound, or the like.

短繊維の割合は、ゴム成分100質量部に対して、例えば0.5〜50質量部(例えば1〜40質量部)、好ましくは3〜30質量部(特に5〜25質量部)程度であってもよい。 The ratio of the short fibers is, for example, about 0.5 to 50 parts by mass (for example, 1 to 40 parts by mass), preferably about 3 to 30 parts by mass (particularly 5 to 25 parts by mass) with respect to 100 parts by mass of the rubber component. You may.

圧縮層の厚みは、ベルトの種類などに応じて適宜選択でき、例えば1〜30mm、好ましくは1.5〜25mm、さらに好ましくは2〜20mm程度であってもよい。 The thickness of the compression layer can be appropriately selected depending on the type of belt and the like, and may be, for example, 1 to 30 mm, preferably 1.5 to 25 mm, and more preferably 2 to 20 mm.

伸張層の厚みは、ベルトの種類などに応じて適宜選択できるが、例えば0.5〜10mm、好ましくは0.7〜8mm、さらに好ましくは1〜5mm程度であってもよい。 The thickness of the stretch layer can be appropriately selected depending on the type of belt and the like, but may be, for example, 0.5 to 10 mm, preferably 0.7 to 8 mm, and more preferably about 1 to 5 mm.

接着層は、前記の通り、必ずしも必要ではない。接着層(接着ゴム層)は、例えば、前記圧縮層と同様のゴム組成物(エチレン−α−オレフィンエラストマーなどのゴム成分を含むゴム組成物)で構成できる。接着層のゴム組成物は、さらに接着性改善剤(レゾルシン−ホルムアルデヒド共縮合物、アミノ樹脂など)を含んでいてもよい。 The adhesive layer is not always necessary, as described above. The adhesive layer (adhesive rubber layer) can be composed of, for example, a rubber composition similar to the compression layer (a rubber composition containing a rubber component such as an ethylene-α-olefin elastomer). The rubber composition of the adhesive layer may further contain an adhesiveness improving agent (resorcin-formaldehyde cocondensate, amino resin, etc.).

接着層の厚みは、ベルトの種類などに応じて適宜選択できるが、例えば0.2〜5mm、好ましくは0.3〜3mm、さらに好ましくは0.5〜2mm程度であってもよい。 The thickness of the adhesive layer can be appropriately selected depending on the type of belt and the like, but may be, for example, 0.2 to 5 mm, preferably 0.3 to 3 mm, and more preferably about 0.5 to 2 mm.

なお、前記圧縮層、伸張層及び接着層のゴム組成物において、ゴム成分は同系統又は同種のゴムを使用する場合が多い。 In the rubber composition of the compression layer, the stretch layer, and the adhesive layer, rubber of the same type or the same type is often used as the rubber component.

芯体としては、特に限定されないが、通常、ベルト幅方向に所定間隔で配列した心線(撚りコード)を使用できる。心線は、特に限定されず、例えば、ポリエステル系繊維(ポリアルキレンアリレート系繊維)、ポリアミド系繊維(アラミド繊維など)などの合成繊維、炭素繊維などの無機繊維などを含んでいてもよい。 The core body is not particularly limited, but usually, core wires (twisted cords) arranged at predetermined intervals in the belt width direction can be used. The core wire is not particularly limited, and may include, for example, synthetic fibers such as polyester fibers (polyalkylene allylate fibers), polyamide fibers (aramid fibers and the like), and inorganic fibers such as carbon fibers.

心線としては、通常、マルチフィラメント糸を使用した撚りコード(例えば、諸撚り、片撚り、ラング撚りなど)を使用できる。心線の平均線径(撚りコードの繊維径)は、例えば0.5〜3mm、好ましくは0.6〜2mm、さらに好ましくは0.7〜1.5mm程度であってもよい。心線は、ベルトの長手方向に埋設されていてもよく、さらにベルトの長手方向に平行に所定のピッチで並列的に埋設されていてもよい。 As the core wire, a twisted cord using a multifilament yarn (for example, various twists, single twist, rung twist, etc.) can be usually used. The average wire diameter of the core wire (fiber diameter of the twisted cord) may be, for example, 0.5 to 3 mm, preferably 0.6 to 2 mm, and more preferably about 0.7 to 1.5 mm. The core wire may be embedded in the longitudinal direction of the belt, or may be embedded in parallel at a predetermined pitch parallel to the longitudinal direction of the belt.

ゴム成分との接着性を改善するため、心線には、前記短繊維と同様に、エポキシ化合物、イソシアネート化合物などによる種々の接着処理を施してもよい。 In order to improve the adhesiveness with the rubber component, the core wire may be subjected to various adhesive treatments such as an epoxy compound and an isocyanate compound in the same manner as the short fibers.

[摩擦伝動ベルトの製造方法]
本発明のベルト伝動装置を構成する摩擦伝動ベルトは、バインダー前駆体を介して金属粒子を布帛に固定して補強布前駆体を形成する補強布前駆体形成工程を経て得られる。
[Manufacturing method of friction transmission belt]
The friction transmission belt constituting the belt transmission device of the present invention is obtained through a reinforcing cloth precursor forming step of fixing metal particles to the cloth via a binder precursor to form a reinforcing cloth precursor.

補強布前駆体形成工程は、金属粒子及びバインダー前駆体を含む液状組成物(金属粒子が分散している組成物)を布帛に含浸させた後、乾燥する方法(液状組成物を用いる方法)であってもよく、金属粒子及びバインダー前駆体を含む固形状組成物(金属粒子がバインダー中に混練りされて分散している組成物)を布帛と一体化する方法(固形状組成物を用いる方法)であってもよい。 The reinforcing cloth precursor forming step is a method of impregnating the cloth with a liquid composition containing metal particles and a binder precursor (a composition in which metal particles are dispersed) and then drying the cloth (a method using a liquid composition). A method of integrating a solid composition containing metal particles and a binder precursor (a composition in which metal particles are kneaded and dispersed in a binder) with a cloth (a method of using a solid composition). ) May be.

液状組成物を用いる方法において、液状組成物は溶媒を含んでいてもよい。溶媒としては、バインダーの種類に応じて、例えば、炭化水素類(例えば、トルエン、キシレンなどの芳香族炭化水素類)、ハロゲン化炭化水素類(例えば、塩化メチレン、クロロホルムなどのハロアルカン類)、アルコール類(エタノール、プロパノール、イソプロパノールなどのアルカノール類)、エーテル類(例えば、ジオキサン、テトラヒドロフランなどの環状エーテル類)、エステル類(例えば、酢酸エチルなど)、ケトン類(例えば、アセトン、メチルエチルケトンなどの鎖状ケトン、シクロヘキサノンなどの環状ケトン)、セロソルブ類、カルビトール類などが例示できる。溶媒は、単独で又は混合溶媒として使用してもよい。溶媒の割合は、ゴム1質量部に対して、例えば0.5〜50質量部、好ましくは1〜20質量部程度であってもよい。 In the method using the liquid composition, the liquid composition may contain a solvent. As the solvent, for example, hydrocarbons (for example, aromatic hydrocarbons such as toluene and xylene), halogenated hydrocarbons (for example, haloalkanes such as methylene chloride and chloroform), and alcohols, depending on the type of binder. Classes (alkanols such as ethanol, propanol and isopropanol), ethers (eg cyclic ethers such as dioxane and tetrahydrofuran), esters (eg ethyl acetate), ketones (eg acetone, methyl ethyl ketone and the like chain). (Cyclic ketones such as ketones and cyclohexanones), cellosolves, hydrocarbons and the like can be exemplified. The solvent may be used alone or as a mixed solvent. The ratio of the solvent may be, for example, about 0.5 to 50 parts by mass, preferably about 1 to 20 parts by mass with respect to 1 part by mass of the rubber.

液状組成物を布帛に含浸させる方法としては、例えば、液状組成物に布帛を浸漬させるソーキング方法や、液状組成物を布帛の表面に塗布する表面コーティング方法などが挙げられる。これらの方法のうち、簡便な方法で摩擦伝動面などのプーリとの接触面に金属粒子を固定(特に耐摩耗層を形成)できる点から、表面コーティング方法が好ましい。 Examples of the method of impregnating the cloth with the liquid composition include a soaking method of immersing the cloth in the liquid composition and a surface coating method of applying the liquid composition to the surface of the cloth. Of these methods, the surface coating method is preferable because metal particles can be fixed (particularly, a wear-resistant layer is formed) on a contact surface with a pulley such as a friction transmission surface by a simple method.

表面コーティング方法では、例えば、液状組成物(未加硫のゴム組成物を溶剤に溶解したゴム糊など)を布帛の片面(摩擦伝動面)に塗布した後、乾燥して溶媒を除去し、液状組成物の少なくとも一部を布帛の表面側領域に浸透させてもよい。表面コーティング方法では、圧着することなく、布帛の片面に金属粒子を含むバインダーで形成された塗膜が形成され、塗膜の一部が布帛表面(摩擦伝動面)に含浸した補強布前駆体及び補強布が得られる。 In the surface coating method, for example, a liquid composition (rubber paste obtained by dissolving an unvulcanized rubber composition in a solvent) is applied to one side (rubbing transmission surface) of the cloth, and then dried to remove the solvent and then liquid. At least a part of the composition may be infiltrated into the surface side region of the fabric. In the surface coating method, a coating film formed of a binder containing metal particles is formed on one side of the fabric without crimping, and a reinforcing cloth precursor in which a part of the coating film is impregnated on the cloth surface (friction transmission surface) and a reinforcing cloth precursor. Reinforcing cloth is obtained.

表面コーティング方法における乾燥温度は、溶媒の種類に応じて選択でき、例えば60〜100℃(特に70〜90℃)程度である。 The drying temperature in the surface coating method can be selected depending on the type of solvent, and is, for example, about 60 to 100 ° C. (particularly 70 to 90 ° C.).

固形状組成物を用いる方法としては、例えば、固形状組成物を布帛に擦り込むフリクショニング方法(フリクション)、シート状組成物と布帛とを積層して被着させる方法(シート状組成物の被着方法)、両者を組み合わせる方法などが挙げられる。 Examples of the method using the solid composition include a friction method in which the solid composition is rubbed into the cloth, and a method in which the sheet composition and the cloth are laminated and adhered (the coating of the sheet composition). How to wear), how to combine both, etc.

フリクショニング方法では、例えば、カレンダーロールを用いて回転速度の異なるロール間に固形状組成物(未加硫ゴム組成物など)と布帛とを同時に通過させて加圧(圧搾)することにより、布帛の繊維間にまで固形状組成物を擦り込んでもよい。固形状組成物の形状は、特に限定されないが、布帛に対して均質に刷り込める点から、シート状であってもよい。フリクションの処理回数は、表面と裏面について各1回ずつ行ってもよく、表面(摩擦伝動面などのプーリとの接触面)に金属粒子及びバインダーを含む固形状組成物を刷り込み、かつ裏面にバインダーを擦り込む方法であってもよい。 In the friction method, for example, a calender roll is used to simultaneously pass a solid composition (such as an unvulcanized rubber composition) and a cloth between rolls having different rotation speeds to pressurize (squeeze) the cloth. The solid composition may be rubbed between the fibers of the above. The shape of the solid composition is not particularly limited, but it may be in the form of a sheet from the viewpoint that it can be imprinted uniformly on the cloth. The friction treatment may be performed once for each of the front surface and the back surface, and a solid composition containing metal particles and a binder is imprinted on the front surface (contact surface with a pulley such as a friction transmission surface) and on the back surface. It may be a method of rubbing a binder.

シート状組成物の被着方法では、例えば、シート状組成物(所定の厚みを有するシート状未加硫ゴム組成物など)と布帛とを、布帛のプーリとの接触面(摩擦伝動面など)を接触させて積層した状態で同一の回転速度で回転するロール間に通して両者を界面で接着させることにより、シート状組成物を布帛に被着して一体化する。シート状組成物の被着方法では、布帛の片面に金属粒子を含むバインダーで形成されたシート状組成物(耐摩耗層前駆体)が被着した補強布前駆体及び補強布が得られる。前記シート状組成物の一部は布帛表面を含む領域に含浸していてもよいが、通常、布帛全体に均一に含浸していない。 In the method of adhering the sheet-like composition, for example, the sheet-like composition (such as a sheet-like unvulcanized rubber composition having a predetermined thickness) and the cloth are brought into contact with the pulley of the cloth (such as a friction transmission surface). The sheet-like composition is adhered to the cloth and integrated by passing the two in contact with each other and adhering them at the interface by passing them between rolls rotating at the same rotation speed. In the method of adhering the sheet-like composition, a reinforcing cloth precursor and a reinforcing cloth to which the sheet-like composition (wear-resistant layer precursor) formed of a binder containing metal particles on one side of the cloth is adhered can be obtained. A part of the sheet-like composition may be impregnated in the region including the surface of the fabric, but usually, the entire fabric is not uniformly impregnated.

フリクショニング方法とシート状組成物の被着方法とを組み合わせた方法では、フリクショニングにより得られた補強布前駆体のプーリとの接触面(摩擦伝動面など)に、さらにシート状組成物を積層した状態で同一の表面速度で回転するロール間に通して加圧(圧搾)するシート状組成物の被着方法を適用してもよい。 In the method that combines the friction method and the method of adhering the sheet-like composition, the sheet-like composition is further laminated on the contact surface (friction transmission surface, etc.) of the reinforcing cloth precursor obtained by the friction with the pulley. A method of adhering a sheet-like composition in which the sheet-like composition is pressed (squeezed) by passing it between rolls rotating at the same surface speed may be applied.

これらの方法のうち、簡便な方法で摩擦伝動面などのプーリとの接触面に金属粒子を強固に固定(特に耐摩耗層を形成)できる点から、フリクショニング方法を含む方法が好ましい。バインダー前駆体が未加硫ゴムである場合、得られた補強布前駆体は、加硫工程に供される。加硫工程では、ベルト本体前駆体表面の少なくとも一部を前記補強布前駆体で被覆して加硫することにより、ベルト本体と補強布とを強固に一体化できればよく、補強布を用いる以外は公知又は慣用の方法で行うことができる。加硫温度は、ゴム成分の種類に応じて選択でき、例えば120〜200℃、好ましくは150〜180℃程度である。 Among these methods, a method including a friction method is preferable because metal particles can be firmly fixed (particularly, a wear-resistant layer is formed) on a contact surface with a pulley such as a friction transmission surface by a simple method. When the binder precursor is unvulcanized rubber, the obtained reinforcing cloth precursor is subjected to a vulcanization step. In the vulcanization step, it is sufficient that at least a part of the surface of the belt main body precursor is covered with the reinforcing cloth precursor and vulcanized so that the belt main body and the reinforcing cloth can be firmly integrated, except that the reinforcing cloth is used. It can be carried out by a known or conventional method. The vulcanization temperature can be selected according to the type of rubber component, and is, for example, 120 to 200 ° C, preferably about 150 to 180 ° C.

ベルト本体前駆体の製造方法は、ベルトの種類に応じて慣用の方法を利用でき、例えば、ラップドVベルトの場合、圧延処理して得られた未加硫の圧縮層用シートを裁断してマントルにセッティングした後、芯体を巻き付け、巻き付けた芯体の上にさらに未加硫の伸張用シートを巻き付ける巻付け工程、得られた環状の積層体をマントル上で切断(輪切り)する切断工程、切断した環状積層体を一対のプーリに架け渡し、回転させながらV形状に切削加工するスカイビング工程を経て得ることができる。さらに、得られたベルト本体前駆体は、前記補強前駆体によってラッピングし、加硫工程に供されてもよい。このようなラップドVベルトの製造方法としては、例えば、特開平6−137381号公報、WO2015/104778号パンフレットに記載の方法なども利用できる。 As a method for producing the belt body precursor, a conventional method can be used depending on the type of belt. For example, in the case of a wrapped V-belt, the unvulcanized compression layer sheet obtained by rolling is cut into a mantle. After setting to, the core body is wound, and the unvulcanized stretching sheet is further wound on the wound core body, and the obtained annular laminate is cut (round sliced) on the mantle. It can be obtained through a skiving step in which the cut annular laminate is bridged over a pair of pulleys and cut into a V shape while rotating. Further, the obtained belt body precursor may be wrapped with the reinforcing precursor and subjected to a vulcanization step. As a method for producing such a wrapped V-belt, for example, the methods described in JP-A-6-137381 and WO2015 / 104778 pamphlets can also be used.

以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。なお、以下に、使用原料、ゴム組成物の調製方法、各物性の測定方法又は評価方法などを示す。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples. The raw materials used, the method for preparing the rubber composition, the method for measuring or evaluating each physical property, and the like are shown below.

[使用原料]
クロロプレンゴム:DENKA(株)製「PM−40」
酸化マグネシウム:協和化学工業(株)製「キョーワマグ30」
ステアリン酸:日油(株)製「ステアリン酸つばき」
老化防止剤:精工化学(株)製「ノンフレックスOD−3」
カーボンブラック:東海カーボン(株)製「シースト3」
可塑剤:ADEKA(株)製「RS−700」
加硫促進剤:大内新興化学工業(株)製「ノクセラーTT」
酸化亜鉛:正同化学工業(株)製「酸化亜鉛3種」
アルミニウム粉:東洋アルミニウム(株)製「TFH―A20P」、粒度(D50)20μm、球状
銅粉:福田金属箔工業(株)製「アトマイズ銅粉 Cu−At−350」、粒度(D50)29.8μm
モリブデン粉:日本新金属(株)製「記号Mo−1」、粒度1.00〜1.99μm
心線:ポリエステル繊維の撚りコード(平均線径0.89mm)
布帛:綿の織布(平織り、繊度は20番手の経糸と20番手の緯糸とで構成、経糸及び緯糸の糸密度75本/50mm、目付け280g/m)。
[Raw materials used]
Chloroprene rubber: "PM-40" manufactured by DENKA Co., Ltd.
Magnesium oxide: "Kyowa Mag 30" manufactured by Kyowa Chemical Industry Co., Ltd.
Stearic acid: NOF CORPORATION "Stearic acid camellia"
Anti-aging agent: "Non-flex OD-3" manufactured by Seiko Chemical Co., Ltd.
Carbon Black: "Seast 3" manufactured by Tokai Carbon Co., Ltd.
Plasticizer: "RS-700" manufactured by ADEKA Corporation
Vulcanization accelerator: "Noxeller TT" manufactured by Ouchi Shinko Kagaku Kogyo Co., Ltd.
Zinc oxide: "Zinc oxide 3 types" manufactured by Shodo Chemical Industry Co., Ltd.
Aluminum powder: Toyo Aluminum Co., Ltd. "TFH-A20P", particle size (D 50 ) 20 μm, spherical copper powder: Fukuda Metal Leaf Industry Co., Ltd. "Atomize copper powder Cu-At-350", particle size (D 50 ) 29.8 μm
Molybdenum powder: "Symbol Mo-1" manufactured by Nippon Shinkinzoku Co., Ltd., particle size 1.00 to 1.99 μm
Core wire: Polyester fiber twisted cord (average wire diameter 0.89 mm)
Cloth: Cotton woven fabric (plain weave, fineness composed of 20th warp and 20th weft, warp and weft density 75 / 50mm, basis weight 280g / m 2 ).

[圧縮層又は伸張層用シート状ゴム組成物]
表1に示すゴム組成物Aをバンバリーミキサーでゴム練りし、この練りゴムをカレンダーロールに通して所定厚みの未加硫圧延ゴムシート(圧縮層用シート)を作製した。また、表1に示すゴム組成物Aを用い、上記と同様にして、伸張層用シートを作製した。
[Sheet-shaped rubber composition for compression layer or stretch layer]
The rubber composition A shown in Table 1 was kneaded with a Banbury mixer, and the kneaded rubber was passed through a calendar roll to prepare an unvulcanized rolled rubber sheet (sheet for compression layer) having a predetermined thickness. Further, using the rubber composition A shown in Table 1, a stretch layer sheet was prepared in the same manner as described above.

Figure 0006886271
Figure 0006886271

[フリクション用塊状ゴム組成物]
表2〜5に示すゴム組成物B1〜B4をバンバリーミキサーでゴム練りし、フリクション用の塊状未加硫ゴム組成物B1〜B4を調製した。
[Friction lump rubber composition]
The rubber compositions B1 to B4 shown in Tables 2 to 5 were rubber-kneaded with a Banbury mixer to prepare massive unvulcanized rubber compositions B1 to B4 for friction.

Figure 0006886271
Figure 0006886271

Figure 0006886271
Figure 0006886271

Figure 0006886271
Figure 0006886271

Figure 0006886271
Figure 0006886271

[補強布の平均厚み]
補強布の平均厚みは、走査型電子顕微鏡写真(SEM)を用いて、任意の5箇所以上の厚みを測定し、平均して求めた。
[Average thickness of reinforcing cloth]
The average thickness of the reinforcing cloth was determined by measuring the thicknesses of five or more arbitrary points using a scanning electron micrograph (SEM) and averaging them.

[タテ型デッドウエイト(Dead Weight)走行試験]
図3に示すように、直径60mmの駆動プーリ(Dr.)、直径60mmの従動プーリ(Dn.)をタテ型に配置した試験機を用い、表6に示す条件で1時間走行した後、プーリの表面状態、ベルトの側面温度、側面状態、寸法変化について以下の基準で評価した。
[Vertical Dead Weight Running Test]
As shown in FIG. 3, a tester in which a drive pulley (Dr.) having a diameter of 60 mm and a driven pulley (Dn.) With a diameter of 60 mm are arranged vertically is used, and after traveling for 1 hour under the conditions shown in Table 6, the pulleys are used. The surface condition, side temperature of the belt, side condition, and dimensional change were evaluated according to the following criteria.

Figure 0006886271
Figure 0006886271

(プーリの表面状態)
プーリのV溝側面の状態を目視で観察し、以下の基準で評価した。なお、プーリとしては、V溝側面が錆で腐食したプーリとして、駆動プーリ及び従動プーリを1シーズン(5ヶ月)屋外に放置したプーリを使用した。また、1シーズンとは稲作の刈り取り(機種:コンバイン)期間(6〜10月)を想定した。
(Surface condition of pulley)
The state of the side surface of the V-groove of the pulley was visually observed and evaluated according to the following criteria. As the pulley, a pulley in which the drive pulley and the driven pulley were left outdoors for one season (5 months) was used as the pulley whose V-groove side surface was corroded by rust. In addition, one season is assumed to be the rice harvesting (model: combine) period (June to October).

○:錆特有の変色は残っていたものの、錆の腐食による凹凸は削り取られて平滑に戻った
×:錆特有の変色も残ったままであり、錆の腐食による凹凸が少し残り平滑にはならなかった。
◯: Although the discoloration peculiar to rust remained, the unevenness due to the corrosion of rust was scraped off and returned to smoothness. ×: The discoloration peculiar to rust remained, and the unevenness due to the corrosion of rust remained a little and did not become smooth. It was.

(ベルトの側面温度)
走行3分間後及び1時間後のベルト側面温度を測定した。
(Belt side temperature)
The belt side temperature was measured after 3 minutes and 1 hour of running.

(ベルトの側面状態)
ベルトの側面状態を目視で観察し、以下の基準で評価した。
(Side condition of belt)
The side surface condition of the belt was visually observed and evaluated according to the following criteria.

○:表面の耐摩耗層を荒く削った状態で、布帛の露出が一部見られた
×:側面の布帛も錆の摩耗で削り取られ圧縮ゴム層の露出も一部見られた。
◯: A part of the cloth was exposed when the wear-resistant layer on the surface was roughly scraped. ×: The cloth on the side surface was also scraped off by the wear of rust, and a part of the compressed rubber layer was also exposed.

(ベルトの寸法変化)
図4に、プーリに装着された走行前のベルトAと、走行後のベルトBとを示すが、ベルトの落ち込み変化量は、図中の矢印の方向への落ち込み量を示し、ベルト幅の変化量は、走行前の上幅Aから走行後の上幅Bを減じた変化量(上幅A−上幅B)を示す。
(Change in belt dimensions)
FIG. 4 shows the belt A before running and the belt B after running attached to the pulley. The amount of change in the belt depression indicates the amount of depression in the direction of the arrow in the figure, and the amount of change in the belt width is shown. The amount indicates the amount of change (upper width A-upper width B) obtained by subtracting the upper width B after running from the upper width A before running.

実施例1
(フリクショニングによる補強布前駆体の作製)
3本のロール(トップロール、センターロール、ボトムロール)が縦に配列されたカレンダーロールを用い、アルミニウム粉を含むフリクション用塊状ゴム組成物B1をトップロールとセンターロールとのロール間を通過させて圧延したシート状ゴム組成物を、そのまま連続的に、回転速度の異なるセンターロールとボトムロールとのロールの間に、布帛と同時に通過させ、布帛の繊維間にまで前記ゴム組成物を擦り込んで補強布前駆体[前駆体中アルミニウム粉19質量%、ゴム組成物(アルミニウムを含まないゴム組成物B)38質量%]を得た。
Example 1
(Preparation of reinforcing cloth precursor by friction)
Using a calendar roll in which three rolls (top roll, center roll, bottom roll) are vertically arranged, a bulk rubber composition B1 for friction containing aluminum powder is passed between the rolls of the top roll and the center roll. The rolled sheet-shaped rubber composition is continuously passed as it is between the rolls of the center roll and the bottom roll having different rotation speeds at the same time as the cloth, and the rubber composition is rubbed between the fibers of the cloth. A reinforcing cloth precursor [19% by mass of aluminum powder in the precursor, 38% by mass of a rubber composition (rubber composition B containing no aluminum)] was obtained.

(ラップドVベルトの作製)
円筒状ドラムの外周面に、圧縮層用シート、心線、及び伸張層用シートを、順次積層して貼着し、未加硫ゴム層と心線とが積層した筒状の未加硫スリーブを形成した。得られた未加硫スリーブを、円筒状ドラムの外周に配置された状態で、周方向に切断し、環状の未加硫ゴムベルトを形成した。
(Making a wrapped V-belt)
A tubular unvulcanized sleeve in which a compression layer sheet, a core wire, and an extension layer sheet are sequentially laminated and attached to the outer peripheral surface of a cylindrical drum, and the unvulcanized rubber layer and the core wire are laminated. Was formed. The obtained unvulcanized sleeve was cut in the circumferential direction while being arranged on the outer circumference of the cylindrical drum to form an annular unvulcanized rubber belt.

次に、未加硫ゴムベルトをドラムから取り外し、未加硫ゴムベルトの両側面を所定の角度で切削(スカイブ)し、未加硫ゴムベルトの断面形状を、V字状断面に形成した。V字状断面の未加硫ゴムベルトに対して、その周囲を前記補強布前駆体で覆うカバー巻き処理を施し、未加硫ベルト成形体を形成した。 Next, the unvulcanized rubber belt was removed from the drum, and both side surfaces of the unvulcanized rubber belt were cut (skived) at a predetermined angle to form a V-shaped cross section of the unvulcanized rubber belt. An unvulcanized rubber belt having a V-shaped cross section was subjected to a cover winding treatment in which the periphery thereof was covered with the reinforcing cloth precursor to form an unvulcanized belt molded product.

得られた未加硫ベルト成形体を、リングモールドの凹溝に挿入した。さらに、リングモールド及び未加硫ベルト成形体の外周面に円筒状のゴムスリーブを嵌め込んだ状態で、それらを加硫缶に収納し、所定の温度等の条件で加硫を行い、加硫ベルトを得た。得られた加硫ベルトを、リングモールドから取り外してA39型のラップドVベルト(JIS A形、断面寸法:幅12.5mm×厚み9.0mm、ベルト長さ39インチ、補強布の平均厚み0.8mm、耐摩耗層の平均厚み200μm)を得た。 The obtained unvulcanized belt molded body was inserted into the concave groove of the ring mold. Further, in a state where a cylindrical rubber sleeve is fitted on the outer peripheral surface of the ring mold and the unvulcanized belt molded body, they are stored in a vulcanization can, vulcanized under conditions such as a predetermined temperature, and vulcanized. I got a belt. The obtained vulcanization belt was removed from the ring mold, and the A39 type wrapped V-belt (JIS A type, cross-sectional dimensions: width 12.5 mm x thickness 9.0 mm, belt length 39 inches, average thickness of reinforcing cloth 0. 8 mm and an average thickness of the wear-resistant layer of 200 μm) were obtained.

実施例2
フリクショニングによる補強布前駆体の作製において、銅粉を含むフリクション用塊状ゴム組成物B2を用いる以外は実施例1と同様にしてA39型のラップドVベルトを得た。
Example 2
In the preparation of the reinforcing cloth precursor by friction, an A39 type wrapped V-belt was obtained in the same manner as in Example 1 except that the friction mass rubber composition B2 containing copper powder was used.

実施例3
フリクショニングによる補強布前駆体の作製において、モリブデン粉を含むフリクション用塊状ゴム組成物B3を用いる以外は実施例1と同様にしてA39型のラップドVベルトを得た。
Example 3
In the preparation of the reinforcing cloth precursor by friction, an A39 type wrapped V-belt was obtained in the same manner as in Example 1 except that the friction mass rubber composition B3 containing molybdenum powder was used.

比較例1
フリクショニングによる補強布前駆体の作製において、金属粉を含まないフリクション用塊状ゴム組成物B4を用いる以外は実施例1と同様にしてA39型のラップドVベルトを得た。
Comparative Example 1
In the preparation of the reinforcing cloth precursor by friction, an A39 type wrapped V-belt was obtained in the same manner as in Example 1 except that the friction lump rubber composition B4 containing no metal powder was used.

実施例1〜3及び比較例1で得られたラップドVベルトのタテ型デッドウエイト走行試験後の評価結果を表7に示す。 Table 7 shows the evaluation results of the wrapped V-belts obtained in Examples 1 to 3 and Comparative Example 1 after the vertical dead weight running test.

Figure 0006886271
Figure 0006886271

表7の結果から明らかなように、実施例1〜3のベルト伝動装置では、比較例1のベルト伝動装置に比べて、ベルト側面温度が低く、耐摩耗性に優れていた。 As is clear from the results in Table 7, the belt transmission devices of Examples 1 to 3 had a lower belt side temperature and excellent wear resistance as compared with the belt transmission devices of Comparative Example 1.

詳しくは、実施例1のベルト装置では、走行3分後のベルト側面温度が98℃である原因は、アルミニウム粒子による錆の削り取り作業で摩擦熱が発生したためであり、走行1時間後のベルト側面温度が84℃である原因は、初期の錆取り作業後は平常に近い走行に戻ったためである。さらに、ベルトの寸法変化も小さいため、ベルトの残余寿命は十分に残されていた。 Specifically, in the belt device of the first embodiment, the reason why the belt side surface temperature after 3 minutes of traveling is 98 ° C. is that frictional heat is generated in the work of scraping off rust by aluminum particles, and the side surface of the belt after 1 hour of traveling. The reason why the temperature is 84 ° C. is that after the initial rust removal work, the running has returned to near normal. Further, since the dimensional change of the belt is small, the remaining life of the belt is sufficiently left.

さらに、実施例2のベルト装置では、研磨性の高い銅粒子が摩擦伝動ベルトの補強布に含まれることにより、プーリに発生した錆の腐食による凹凸は削り取られてプーリ側面は平滑に戻った。プーリの錆を削り落とした後のベルト側面状態は布帛が露出したが、ゴムの露出は見られなかった。また、熱伝導性の高い銅粒子が含まれることにより、ベルト表面の放熱性が高まって走行時の発熱を抑えることが可能になった。その結果、ベルトの熱劣化による寿命を向上させることが可能となったが、さらなる長寿命化も期待できる。 Further, in the belt device of the second embodiment, the highly abrasive copper particles were contained in the reinforcing cloth of the friction transmission belt, so that the unevenness due to the corrosion of rust generated on the pulley was scraped off and the side surface of the pulley returned to smoothness. The fabric was exposed on the side surface of the belt after the rust on the pulley was scraped off, but the rubber was not exposed. In addition, the inclusion of copper particles with high thermal conductivity enhances the heat dissipation of the belt surface and makes it possible to suppress heat generation during traveling. As a result, it has become possible to improve the life of the belt due to thermal deterioration, but further extension of the life can be expected.

また、実施例3のベルト装置では、アルミニウム粉及び銅粉に比べて硬度(ピッカース硬さ:Hv)が高いモリブデン粉が摩擦伝動ベルトの補強布に含まれることにより、プーリに発生した錆の腐食による凹凸は削り取られてプーリ側面は平滑に戻った。プーリの錆を削り落とした後のベルト側面状態は布帛が露出したが、ゴムの露出は見られなかった。また、熱伝導性の高いモリブデンではあるが、実施例1及び2の金属粉に比べると、熱伝導性が低いため、走行中のベルト表面温度は高めであるが、比較例に比べると低い。従って、熱劣化を抑止して寿命を向上させることが可能となる。 Further, in the belt device of Example 3, molybdenum powder having a higher hardness (Vickers hardness: Hv) than aluminum powder and copper powder is contained in the reinforcing cloth of the friction transmission belt, so that rust on the pulley is corroded. The unevenness caused by this was scraped off and the side surface of the pulley returned to smoothness. The fabric was exposed on the side surface of the belt after the rust on the pulley was scraped off, but the rubber was not exposed. Further, although molybdenum has high thermal conductivity, the surface temperature of the belt during running is higher than that of the metal powders of Examples 1 and 2 because of its lower thermal conductivity, but it is lower than that of Comparative Example. Therefore, it is possible to suppress thermal deterioration and improve the life.

これに対して、比較例1のベルト装置では、走行3分後のベルト側面温度が114℃と高い原因は、走行初期のベルトの強制摩耗による発熱で高温になったためであり、走行1時間後のベルト側面温度が110℃と高い原因は、側面摩耗によるベルトのヤセ細りでプーリに落ち込み、屈曲疲労の大きい小プーリ径状態で走行して自己発熱が大きくなったためである。さらに、ベルトの寸法変化が大きいため、ベルトの寿命が近く残余寿命は僅かであった。 On the other hand, in the belt device of Comparative Example 1, the reason why the belt side surface temperature after 3 minutes of running was as high as 114 ° C. was that the temperature became high due to the heat generated by the forced wear of the belt at the initial stage of running, and 1 hour after running. The reason why the belt side temperature is as high as 110 ° C. is that the belt is thinned due to side wear and falls into the pulley, and the belt runs in a small pulley diameter state with a large bending fatigue and self-heating becomes large. Further, since the dimensional change of the belt is large, the life of the belt is short and the remaining life is short.

本発明のベルト伝動装置は、平ベルト、Vベルト、Vリブドベルトなどの摩擦伝動ベルトを備えたベルト伝動装置として利用でき、例えば、プーリに錆が発生しても、プーリとの接触面においてベルトが早期に摩耗するのを抑制できるため、プーリとの接触面に補強布が配設されるラップドVベルト、ローエッジVベルト、Vリブドベルト、平ベルトなどの伝動ベルトを備えたベルト伝動装置として好ましく利用できる。特に、本発明のベルト伝動装置は、プーリの摩擦伝動面に錆が発生しても、プーリと接触するベルトの摩擦伝動面が早期に摩耗するのを抑制できるため、コンプレッサー、発電機、ポンプなどの一般産業用機械やコンバイン、田植え機、草刈り機などの農業機械などに好適に利用でき、熱劣化し易い過酷な条件であっても、長寿命化できるため、屋外での稼働が多い農業機械に用いられるラップドVベルトを備えたベルト伝動装置に特に好適に利用できる。 The belt transmission device of the present invention can be used as a belt transmission device provided with a friction transmission belt such as a flat belt, a V-belt, and a V-ribbed belt. Since it can suppress premature wear, it can be preferably used as a belt transmission device provided with a transmission belt such as a wrapped V-belt, a low-edge V-belt, a V-ribbed belt, or a flat belt in which a reinforcing cloth is arranged on a contact surface with a pulley. .. In particular, the belt transmission device of the present invention can prevent the friction transmission surface of the belt in contact with the pulley from being worn at an early stage even if the friction transmission surface of the pulley is rusted. It can be suitably used for general industrial machinery, combiners, rice planting machines, agricultural machines such as mowing machines, etc., and can extend the life even under harsh conditions where heat deterioration is likely to occur, making it suitable for agricultural machines that are often operated outdoors. It can be particularly suitably used for a belt transmission device provided with a wrapped V-belt to be used.

1…ラップドVベルト
2…伸張層
3…芯体
4…圧縮層
5…外被布
1 ... Wrapped V-belt 2 ... Stretch layer 3 ... Core body 4 ... Compression layer 5 ... Outer cloth

Claims (5)

プーリと、平均粒径1〜100μmの金属粒子、バインダー及び布帛を含み、かつ前記金属粒子のビッカース硬さが20HV以上である外被布で被覆されているラップドVベルトとを備えたベルト伝動装置であって、
前記金属粒子の割合が、前記バインダー100質量部に対して50〜1000質量部であり、かつ前記布帛100質量部に対して10〜120質量部であるとともに、
前記外被布が、前記布帛のプーリとの接触面側の表面に、前記金属粒子及び前記バインダーを含む耐摩耗層を有し、かつこの耐摩耗層の平均厚みが100〜2000μmであるベルト伝動装置
A pulley, the average particle size 1~100μm of the metal particles, comprising a binder and the fabric, and the Vickers hardness of the metal particles in the belt drive system that includes a Wrapped V belt which is covered with an outer skin is at least 20HV There,
The ratio of the metal particles is 50 to 1000 parts by mass with respect to 100 parts by mass of the binder, and 10 to 120 parts by mass with respect to 100 parts by mass of the fabric.
A belt transmission device in which the outer cover has an abrasion-resistant layer containing the metal particles and the binder on the surface of the fabric on the contact surface side with the pulley, and the average thickness of the abrasion-resistant layer is 100 to 2000 μm. ..
金属粒子の形状が略球状である請求項1記載のベルト伝動装置。 The shape of the metal particles are substantially spherical claim 1 Symbol placement of belt drive. 金属粒子の熱伝導率が200W/m・K以上である請求項1又は2記載のベルト伝動装置。 The belt transmission device according to claim 1 or 2 , wherein the thermal conductivity of the metal particles is 200 W / m · K or more. バインダーが加硫ゴムである請求項1〜のいずれかに記載のベルト伝動装置。 The belt transmission device according to any one of claims 1 to 3 , wherein the binder is vulcanized rubber. 布帛がセルロース繊維を含む織布である請求項1〜のいずれかに記載のベルト伝動装置。 The belt transmission device according to any one of claims 1 to 4 , wherein the cloth is a woven cloth containing cellulose fibers.
JP2016215538A 2016-01-29 2016-11-02 Belt transmission device Active JP6886271B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016015968 2016-01-29
JP2016015968 2016-01-29

Publications (2)

Publication Number Publication Date
JP2017137994A JP2017137994A (en) 2017-08-10
JP6886271B2 true JP6886271B2 (en) 2021-06-16

Family

ID=59564862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016215538A Active JP6886271B2 (en) 2016-01-29 2016-11-02 Belt transmission device

Country Status (1)

Country Link
JP (1) JP6886271B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6676741B2 (en) * 2018-01-10 2020-04-08 三ツ星ベルト株式会社 Friction transmission belt and method of manufacturing the same
WO2020220062A1 (en) * 2019-04-29 2020-11-05 Berndorf Innovations Und Technologie Gmbh Method for producing a continuous belt with a belt body

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0538266Y2 (en) * 1986-10-03 1993-09-28
JP3457017B2 (en) * 1992-10-23 2003-10-14 バンドー化学株式会社 belt
JPH09280321A (en) * 1996-04-12 1997-10-28 Toyota Motor Corp Toothed belt
JPH10184812A (en) * 1996-12-26 1998-07-14 Mitsuboshi Belting Ltd V-ribbed belt
JP2008111518A (en) * 2006-10-31 2008-05-15 Mitsuboshi Belting Ltd Transmission belt
CN105308510B (en) * 2013-06-19 2020-05-05 信越化学工业株式会社 Silicone rubber composition for heat-conductive silicone-developed rubber member and heat-conductive silicone-developed rubber member
WO2015104778A1 (en) * 2014-01-07 2015-07-16 バンドー化学株式会社 Oil-resistant transmission belt

Also Published As

Publication number Publication date
JP2017137994A (en) 2017-08-10

Similar Documents

Publication Publication Date Title
JP6395857B2 (en) Conductive power transmission belt
JP5997712B2 (en) Friction transmission belt
CN106715960B (en) Friction transmission belt and method for manufacturing same
WO2014157593A1 (en) V-ribbed belt
JP6886271B2 (en) Belt transmission device
WO2020079917A1 (en) Toothed belt
JP2008100365A (en) Manufacturing method of transmission belt
JP6795466B2 (en) Transmission belt and its manufacturing method
JP6577157B1 (en) Wrapped joint V-belt
JP2011064257A (en) Transmission belt
JP6912180B2 (en) Friction transmission belt and its manufacturing method
EP3604855B1 (en) Method for producing a friction transmission belt
TWI695132B (en) Winding V-belt
JP2023001240A (en) friction transmission belt
JP2005098470A (en) Toothed belt
JP6797647B2 (en) Friction transmission belt and its manufacturing method
JP6764047B1 (en) Wrapped V-belt
JP2020176718A (en) V-ribbed belt, method of manufacturing the same, and rubber composition
JP6943787B2 (en) Wrapped V-belt and its manufacturing method
JP7436731B2 (en) Combined V-belt and its manufacturing method
JP6652688B1 (en) Toothed belt
JP6949784B2 (en) V-ribbed belt and its manufacturing method
JP6747945B2 (en) Friction transmission belt and manufacturing method thereof
JP2010276081A (en) Toothed belt
WO2016047781A1 (en) Power-transmitting friction belt and method for manufacturing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200710

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210128

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210128

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210205

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210514

R150 Certificate of patent or registration of utility model

Ref document number: 6886271

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250