[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6880396B2 - 形状測定装置および形状測定方法 - Google Patents

形状測定装置および形状測定方法 Download PDF

Info

Publication number
JP6880396B2
JP6880396B2 JP2017009840A JP2017009840A JP6880396B2 JP 6880396 B2 JP6880396 B2 JP 6880396B2 JP 2017009840 A JP2017009840 A JP 2017009840A JP 2017009840 A JP2017009840 A JP 2017009840A JP 6880396 B2 JP6880396 B2 JP 6880396B2
Authority
JP
Japan
Prior art keywords
surface shape
measured
measurement
correction
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017009840A
Other languages
English (en)
Other versions
JP2018119817A (ja
Inventor
森井 秀樹
秀樹 森井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Seimitsu Co Ltd
Original Assignee
Tokyo Seimitsu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Seimitsu Co Ltd filed Critical Tokyo Seimitsu Co Ltd
Priority to JP2017009840A priority Critical patent/JP6880396B2/ja
Publication of JP2018119817A publication Critical patent/JP2018119817A/ja
Application granted granted Critical
Publication of JP6880396B2 publication Critical patent/JP6880396B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

本発明は、形状測定装置および形状測定方法に係り、特に、走査型白色干渉計を用いて非接触で測定対象物の表面の形状を測定する形状測定装置および形状測定方法に関する。
光を用いた非接触形状測定機においては、使用する対物レンズの視野等の制限により、一回の測定で測定可能な範囲に制限が多い。この制限を回避する手法として、測定対象物を水平移動可能なステージ上に設置し、一定の割合で測定範囲が重なるように複数の測定を行い、後でそれらの測定データを接続する手法(スティッチング)が知られている。
このような手法を用いた場合、複数データを接続する際の相対位置誤差が課題となっており、例えば、下記の特許文献1には、測定データの高さ方向のずれ量をオーバーラップ領域の高さ方向から求めて、測定データを高さ方向に平行移動させることで、光学的歪みに起因する累積的誤差を抑制することが記載されている。
特許第5698963号
特許文献1に記載されている表面形状測定方法においては、高さを測定するため、別途高さ測定機を追加する必要があった。また、測定対象物が重い場合、あるいは、偏荷重が掛かる場合にステージ真直度が悪化し、空間的な回転を含む補正を実施できていなかった。また、光を用いた非接触形状測定機は、測定対象物が平面物である方が、高感度で測定することができ、また、高うねり形状の場合、対物レンズと衝突するなどの課題があり、一般的に平面に近い形状の測定を得意としていた。近年、長い作動距離を有する非接触形状測定機が開発されており、高うねり形状を有する、あるいは、大型の測定対象物への応用が期待されている。
本発明はこのような事情に鑑みてなされたものであり、複数データの接続を高精度に実施し、測定対象物の全体形状を高精度に取得することができる形状測定装置および形状測定方法を提供することを目的とする。
上記目的を達成するために、本発明に係る形状測定装置は、測定対象物を支持する支持部と、白色光を出射する光源部と、光源部からの白色光を測定光と参照光とに分割して測定光を測定対象物の被測定面に照射するとともに、参照光を参照面に照射し、被測定面から戻る測定光と参照面から戻る参照光とを干渉させた干渉光を生成する干渉部と、被測定面の各点に照射された測定光と参照光との干渉光の輝度情報から測定対象物の表面形状データを取得する表面形状取得部と、を有する光学部と、支持部と、光学部と、の位置を相対的に移動させるXY方向移動手段と、支持部に掛かっている荷重の分布を測定するセンサーと、センサーで測定した荷重の分布に基づいて、支持部のベースラインの補正値を求め、補正値に基づいて、複数の前記表面形状データを結合し、前記測定対象物の全表面形状データを取得する処理部と、を備える。
本発明の形状測定装置によれば、センサーを設け、測定対象物により支持部に掛かっている荷重の分布に基づいて、支持部のベースラインの補正値を求める。そして、測定対象物の複数の表面形状データを接続する際、支持部のベースラインの補正値で補正を行うことで、測定対象物の荷重による支持部のベースラインを補正することができ、高い精度で測定対象物の表面形状を測定することができる。
本発明に係る形状測定装置の一態様は、センサーは、支持部に掛かっている荷重を測定する力センサーであり、ベースラインの補正方向および補正量は、各荷重条件における基準ワークを測定することで求めることが好ましい。
この態様によれば、センサーとして力センサーを用い、力センサーで測定した荷重条件において、基準ワークを測定することで、当該荷重条件における支持部の変位量を求めることができる。したがって、この変位量から当該荷重条件における補正方向および補正方法を求めることができ、複数の荷重条件において基準ワークを用いて測定することで、様々な荷重条件における補正データを作成することができる。
本発明に係る形状測定装置の一態様は、センサーは、支持部の変位を測定する変位センサーであることが好ましい。
この態様は、センサーの別の具体例を規定したものであり、変位センサーを用い、支持部の変位を測定することで、当該荷重条件における支持部の変位量を求めることができ、補正方向および補正方法を求めることができる。
本発明に係る形状測定装置の一態様は、基準ワークがオプティカルフラットおよびグリッドチャートの少なくともいずれか一つであることが好ましい。
この態様は、基準ワークの具体例を示したものであり、オプティカルフラットを用いることで、高さ方向の補正量を、グリッドチャートを用いることで、面内方向の補正量を求めることができる。
本発明に係る形状測定装置の一態様は、ベースラインの補正方向および補正量は、ルックアップテーブルまたは関数モデルであることが好ましい。
この態様によれば、補正データ部で求めた、ベースラインの補正方向および補正量を、ルックアップテーブルの作成、または、関数モデル化を行うことで、補正を容易に行うことができ、計算コストを削減することができる。
上記目的を達成するために、本発明に係る形状測定方法は、力センサーで測定した荷重の分布を用いて、支持部のベースラインの補正量を求める補正量取得工程と、支持部上に、測定対象物を載置し、測定対象物の表面形状を測定し、表面形状データを取得するとともに、力センサーにより荷重の分布の測定、支持部の位置を記録する表面形状測定工程と、表面形状測定工程で測定した表面形状データを、支持部のベースラインの補正量を用いて補正する補正工程と、表面形状測定工程、および、補正工程を、測定対象物の測定範囲で、支持部の移動を行い、複数の表面形状データを作成する繰り返し工程と、複数の表面形状データを接続し、測定対象物の広範囲表面形状データを取得する接続工程と、を有する。
本発明の形状測定方法によれば、まず、測定対象物の荷重が掛かる範囲、重心位置の範囲において、力センサーを用いて測定した荷重条件で支持部のベースラインの補正量を求める。そして、測定対象物の表面形状データを取得した後、この求めた支持部のベースラインの補正量を用いて、表面形状データを補正している。このように、測定対象物の荷重条件により、補正を行っているので、高い精度で測定対象物の表面形状を測定することができる。
本発明に係る形状測定方法の一態様は、補正量取得工程は、支持部上に測定対象物の荷重が掛かる範囲、および、重心位置の範囲内で、重量物を載置し、力センサーにて、荷重の分布を測定する荷重測定工程と、支持部上に、基準ワークを載置し、荷重測定工程で測定した荷重条件で、支持部のベースラインの変位を求める変位取得工程と、測定対象物の荷重がかかる範囲、および、重心位置の範囲内で、荷重測定工程および変位取得工程を繰り返す補正量取得繰り返し工程と、測定対象物の荷重がかかる範囲、および、重心位置の範囲内の条件における支持部の位置、および、変位の相関から補正データを作成する補正データ作成工程と、を有することが好ましい。
この態様は、補正量取得工程の一例を示したものであり、測定対象物の荷重が掛かる範囲、および、重心位置の範囲内の複数の荷重条件における基準ワークの変位から、補正データを作成することで、測定対象物の荷重条件における補正量を容易に求めることができる。
本発明に係る形状測定方法の一態様は、変位取得工程は、基準ワークにオプティカルフラットを用い、高さ方向の補正量を取得する高さ方向補正量取得工程と、基準ワークにグリッドチャートを用い、面内方向の補正量を取得する面内方向補正量取得工程と、を有することが好ましい。
この態様によれば、変位取得工程において、オプティカルフラットと、グリッドチャートを用いて、別々に補正量を求めることで、高さ方向と面内方向の補正量を取得することができる。
上記目的を達成するために、本発明に係る形状測定方法は、支持部上に測定対象物を載置し、測定対象物の表面形状を測定し、表面形状データを取得する表面形状測定工程と、表面形状測定工程において、測定対象物の支持部に掛かる荷重による変位を変位センサーで測定する変位測定工程と、測定対象物の表面形状を測定する範囲内で、表面形状測定工程と、変位測定工程を繰り返し、複数の表面形状データを取得する繰り返し工程と、変位測定工程で測定した、支持部の変位を用いて、補正データを作成する補正データ作成工程と、複数の表面形状データを、補正データで補正する補正工程と、補正工程後の複数の表面形状データを接続し、測定対象物の広範囲表面形状データを取得する接続工程と、を有する。
本発明の形状測定方法によれば、変位センサーを用いて測定対処物の荷重により変位した支持部の変位を測定し、取得した表面形状データを補正しているので、測定対象物の荷重条件による支持部の変位を補正することができ、高い精度で測定対象物の表面形状を測定することができる。また、測定した表面形状を結合した際の誤差を抑えることができる。
本発明の形状測定装置および形状測定方法によれば、測定前に、測定対象物の重量による支持部の変位を測定し、測定対象物の表面を測定した後、支持部の変位を補正することで、測定対象物の全体形状を高精度に取得することができる。
本発明の実施の形態の表面形状測定装置(走査型白色干渉計)の全体構成図である。 撮像素子の撮像面のxy座標上における干渉縞の画素配列を示した図である。 干渉部のz位置と輝度値との関係および干渉縞曲線を例示した図である。 被測定面の異なる点の異なるz座標値と干渉縞曲線との関係を例示した図である。 測定する撮像面の重なり部分を説明する図である。 ステージに掛かる荷重を説明する図である。 補正実施例の例を説明する図である。 補正データを作成するフローチャートを示す図である。 オプティカルフラット測定のフローチャートを示す図である。 グリッドチャート測定のフローチャートを示す図である。 測定した表面形状データの補正実施のフローチャートを示す図である。 他の実施形態に係る形状測定装置のステージ付近の概略図である。
以下、添付図面に従って本発明の形状測定装置および形状測定方法の好ましい実施の形態について詳説する。
図1は、本発明が適用される形状測定装置の全体構成を示した構成図である。
同図における表面形状測定装置1は、ミロー型の干渉計を用いて測定対象物の表面形状等を非接触により3次元測定する所謂、ミロー型の走査型白色干渉計(顕微鏡)であり、測定対象物Pの干渉画像を取得する光学部2と、測定対象物Pが載置されるステージ10と、光学部2の各種制御や光学部2により取得された干渉画像に基づいて各種演算処理を行うパーソナルコンピュータ等の演算処理装置からなる処理部18等を備える。
なお、測定対象物Pが配置される測定空間において、互いに直交する水平方向の2つの座標軸をx軸(紙面に直交する軸)とy軸(紙面に平行する軸)とし、x軸およびy軸に直交する鉛直方向の座標軸をz軸とする。
ステージ10は、x軸およびy軸に略平行する平坦な上面であって測定対象物Pを支持する支持部であって、測定対象物Pを載置するステージ面10Sを有する。
ステージ10のステージ面10Sの反対側には、力センサー11を有し、ステージ10に掛かっている荷重、重心位置、および、荷重の分布を測定する。この力センサー11を用いて測定したデータに基づいて、ベースラインの補正を行うことで、高い精度で測定対象物Pの表面形状を測定することができる。ベースラインを補正するための補正データの作成、および、補正の方法については後述する。
ステージ面10Sに対向する位置、即ち、ステージ10の上側には、不図示の筐体により一体的に収容保持された光学部2が配置される。
光学部2は、x軸に平行な光軸Z−1を有する光源部12と、z軸に平行な光軸Z−0(以下、「測定光軸Z−0」と言う)を有する干渉部14および撮影部16とを有する。光源部12の光軸Z−1は、干渉部14および撮影部16の光軸Z−0に対して直交し、干渉部14と撮影部16との間において光軸Z−0と交差する。なお、光軸Z−1は、必ずしもx軸と平行でなくてもよい。
光源部12は、測定対象物Pを照明する照明光として波長幅が広い白色光(可干渉性の少ない低コヒーレンス光)を出射する光源40と、光源40から拡散して出射された照明光を略平行な光束に変換するコレクタレンズ42とを有する。光源40およびコレクタレンズ42の各々の中心とする軸は光源部12の光軸Z−1として同軸上に配置される。
また、光源40としては、発光ダイオード、半導体レーザ、ハロゲンランプ、高輝度放電ランプなど、任意の種類の発光体を用いることができる。
この光源部12から出射された照明光は、干渉部14と撮影部16との間に配置され、光軸Z−1と測定光軸Z−0とが交差する位置に配置されたハーフミラー等のビームスプリッタ44に入射する。そして、ビームスプリッタ44(ビームスプリッタ44の平坦な光分割面(反射面))で反射した照明光が測定光軸Z−0に沿って進行して干渉部14に入射する。
干渉部14は、マイケルソン型干渉計により構成され、光源部12から入射した照明光を測定光と参照光とに分割する。そして、測定光を測定対象物Pに照射するとともに、参照光を参照ミラー52に照射し、測定対象物Pから戻る測定光と参照ミラー52から戻る参照光とを干渉させた干渉光を生成する。
干渉部14は、集光作用を有する対物レンズ50と、光を反射する参照面であって平坦な反射面を有する参照ミラー52と、光を分割する平坦なビームスプリッタ54と、を有する。対物レンズ50、参照ミラー52、およびビームスプリッタ54の各々の中心とする軸は干渉部14の光軸Z−0として同軸上に配置される。参照ミラー52の反射面は、ビームスプリッタ54の側方位置に、測定光軸Z−0と平行に配置される。
光源部12から干渉部14に入射した照明光は、対物レンズ50により集光作用を
受けた後、ビームスプリッタ54に入射する。
ビームスプリッタ54は、例えばハーフミラーであり、ビームスプリッタ54に入射した照明光は、ビームスプリッタ54を透過する測定光と、ビームスプリッタ54の光分割面で反射する参照光とに分割される。
ビームスプリッタ54を透過した測定光は、測定対象物Pの被測定面Sに照射された後、被測定面Sから干渉部14へと戻り、再度、ビームスプリッタ54に入射する。そして、ビームスプリッタ54を透過した測定光が対物レンズ50に入射する。
一方、ビームスプリッタ54で反射した参照光は、参照ミラー52の光反射面で反射した後、再度、ビームスプリッタ54に入射する。そして、ビームスプリッタ54で反射した参照光が対物レンズ50に入射する。
これによって、干渉部14から測定対象物Pの被測定面Sに照射されて干渉部14に戻る測定光と、参照ミラー52で反射した参照光とが重ね合わされた干渉光が生成され、その干渉光が対物レンズ50により集光作用を受けた後、干渉部14から撮影部16に向けて出射される。
また、照明光が測定光と参照光とに分割された後、測定光と参照光とが重ね合わされるまでの測定光と参照光の各々が通過した光路の光学的距離を、測定光の光路長および参照光の光路長といい、それらの差を測定光と参照光の光路長差というものとする。
また、干渉部14は、光学部2においてz軸方向に直線移動可能に設けられる。そして、干渉部アクチュエータ56の駆動により対物レンズ50、およびビームスプリッタ54がz軸方向に移動する。これにより、対物レンズ50の焦点面の位置(高さ)がz軸方向に移動すると共に、被測定面Sとビームスプリッタ54との距離が変化することで測定光の光路長が変化し、測定光と参照光との光路長差が変化する。
撮影部16は、被測定面Sの各点に照射された測定光と参照光との干渉光の輝度情報から測定対象物Pの表面形状データを取得する表面形状取得部であり、例えばCCD(Charge Coupled Device)カメラに相当し、CCD型の撮像素子60と、結像レンズ62とを有する。撮像素子60と結像レンズ62の各々の中心とする軸は撮影部16の光軸Z−0として同軸上に配置される。なお、撮像素子60は、CMOS(Complementary Metal Oxide Semiconductor)型の撮像素子等、任意の撮像手段を用いることができる。
干渉部14から出射された干渉光は、上述のビームスプリッタ44に入射し、ビームスプリッタ44を透過した干渉光が撮影部16に入射する。
撮影部16に入射した干渉光は、結像レンズ62により撮像素子60の撮像面60Sに干渉像を結像する。ここで、結像レンズ62は、測定対象物Pの被測定面Sの光軸Z−0周辺の領域に対する干渉像を高倍率に拡大して撮像素子60の撮像面60Sに結像する。
また、結像レンズ62は、干渉部14の対物レンズ50の焦点面上における点を、撮像素子60の撮像面上の像点として結像する。即ち、撮影部16は、対物レンズ50の焦点面の位置にピントが合うように(合焦するように)設計されている。
なお、以下において、測定対象物Pの焦点面のz軸方向の位置を単に「ピント位置」、または、「撮影部16のピント位置」というものとする。
撮像素子60の撮像面60Sに結像された干渉像は、撮像素子60により電気信号に変換されて干渉画像として取得される。そして、その干渉画像は、処理部18に与えられる。
以上のように光源部12、干渉部14、および撮影部16等により構成される光学部2は、全体が一体的としてz軸方向に直進移動可能に設けられる。例えば、光学部2は、z軸方向に沿って立設された不図示のz軸ガイド部に直進移動可能に支持される。そして、zアクチュエータ70の駆動により光学部2全体がz軸方向に直進移動する。これにより、干渉部14をz軸方向に移動させる場合よりも、撮影部16のピント位置をz軸方向に大きく移動させることができ、例えば、測定対象物Pの厚さ等に応じて撮影部16のピント位置を適切な位置に調整することができる。
光学部2またはステージ10には、光学部2およびステージ10の位置を相対的に移動させるXY方向移動手段(不図示)を備える。光学部2およびステージ10の位置を相対的に移動させることで、測定対象物Pの測定位置を変化させ、複数の表面形状データを取得する。
処理部18は、測定対象物Pの被測定面Sの表面形状を測定する際に、干渉部アクチュエータ56を制御して光学部2の干渉部14をz軸方向に移動させながら撮影部16の撮像素子60から干渉画像を順次取得する。そして、取得した干渉画像に基づいて被測定面Sの3次元形状データを被測定面Sの表面形状を示すデータとして取得する。
ここで、処理部18が干渉縞に基づいて被測定面Sの3次元形状データを取得する処理について説明する。
撮影部16の撮像素子60は、x軸およびy軸からなるxy平面(水平面)に沿って2次元的に配列された多数の受光素子(画素)からなり、各画素において受光される干渉像の輝度値、即ち、撮像素子60により取得される干渉画像の各画素の輝度値は、各画素に対応する被測定面Sの各点で反射した測定光と参照光との光路長差に応じた干渉光の強度(輝度情報)を示す。
ここで、図2に示すように、干渉画像(撮像素子60の撮像面)のm列目、n列目の画素を(m、n)と表すものとする。そして、画素(m、n)のx軸方向に関する位置(以下、x軸方向に関する位置を「x位置」という)を示すx座標値をx(m、n)と表し、y軸方向に関する位置(以下、y軸方向に関する位置を「y位置」という)を示すy座標値をy(m、n)と表すものとする。
また、画素(m、n)に対応する測定対象物Pの被測定面S上の点のx位置を示すx座標値をX(m,n)と表し、y位置を示すy座標値をY(m,n)と表すものとし、また、その点をxy座標値により(X(m,n),Y(m,n))と表すものとする。なお、画素(m,n)に対応する被測定面S上の点とは、ピントが合っている状態において画素(m,n)の位置に像点が結像される被測定面S上の点を意味する。
このとき、撮像素子60により取得される干渉画像の画素(m,n)の輝度値は、画素(m,n)に対応する被測定面S上の点(X(m,n),Y(m,n))に照射された測定光と参照光との光路長差に応じた大きさを示す。
即ち、図1の干渉部アクチュエータ56により干渉部14をz軸方向に移動させて光学部2(撮影部16)に対する干渉部14の相対的なz軸方向の位置(以下、「z位置」という)を変位させると、撮影部16のピント位置(対物レンズ50の焦点面)もz軸方向に移動し、ピント位置も干渉部14と同じ変位量で変位する。また、ピント位置が変位すると、被測定面Sの各点に照射される測定光の光路長も変化する。
そして、干渉部14をz軸方向に移動させてピント位置を変位させながら、即ち、測定光の光路長を変化させながら、撮像素子60から干渉画像を順次取得して干渉画像の任意の画素(m,n)の輝度値を検出する。
ここで、処理部18は、干渉部14の所定の基準位置からの変位量(干渉部14のz位置)を、ポテンショメータやエンコーダなどの不図示の位置検出手段からの検出信号により検出することができる。または、位置検出手段を使用することなく干渉部14のz位置を制御する場合、例えば、干渉部アクチュエータ56に与える駆動信号により一定変位量ずつ干渉部14を移動させる場合には、その総変位量により検出することができる。
そして、干渉部14が基準位置のときのピント位置のz位置を測定空間におけるz座標の基準位置(原点位置)として、かつ、干渉部14の基準位置からの変位量をピント位置のz座標値として取得することができる。なお、z座標値は、原点位置よりも高い位置(撮影部16に近づく位置)を正側、低い位置(ステージ面10Sに近づく位置)を負側とする。また、干渉部14の基準位置、即ち、z座標の原点位置は任意のz位置に設定、変更することができる。
図3の(A)〜(C)は、干渉部14の測定対象物Pの被測定面Sに近接した位置からz軸方向に上昇させながら撮影部16の撮像素子60から画像を取得したときの干渉部14のz位置と輝度値との関係を示した図である。
図3の(A)のように、測定光の光路長L1が参照光の光路長L2より小さいと干渉は小さく、輝度値は略一定となる。そして、図3の(B)のように、測定光の光路長L1と参照光の光路長L2とが同じ、即ち光路長差が0となる場合に干渉が大きくなり、最も大きな輝度値を示す。さらに、図3(C)のように、測定光の光路長L1が参照光の光路長L2よりも大きいと再び干渉は小さくなり、輝度値は略一定となる。これにより、図3の(D)に示す干渉縞曲線Qに沿った輝度値が得られる。
即ち、任意の画素(m,n)における干渉縞曲線Qは、その画素(m,n)に対応する被測定面S上の点(X(m,n),Y(m,n))に照射された測定光と参照光との光路長差が所定値より大きい場合には略一定の輝度値を示し、光路長差がその所定値より小さいときには、光路長差が減少するにつれて輝度値が振動すると共にその振幅が大きくなる。
したがって、図3の(D)に示すように、干渉縞曲線Qは、測定光と参照光との光路長が一致したときに(光路長差が0のときに)、最大値を示すと共に、その干渉縞曲線Qの包絡線における最大値を示す。
また、被測定面S上の点(X(m,n),Y(m,n))に照射された測定光と参照光との光路長は、撮影部16のピント位置が被測定面S上の点(X(m,n),Y(m,n))のz位置に一致したときに一致する。
したがって、干渉縞曲線Qが最大値を示すとき(または干渉縞曲線Qの包絡線が最大値を示すとき)のピント位置は、被測定面S上の点(X(m,n),Y(m,n))のz位置に一致しており、そのときのピント位置のz座標値は、被測定面S上の点(X(m,n),Y(m,n))のz座標値を示す。
以上のことから、処理部18は、干渉部アクチュエータ56により干渉部14をz軸方向に移動させてピント位置をz軸方向に移動させながら(測定光の光路長を変化させながら)、撮像素子60から干渉画像を順次取得し、各画素(m,n)の輝度値をピント位置のz座標値に対応付けて取得する。即ち、ピント位置をz軸方向に走査しながら干渉画像の各画素(m,n)の輝度値を取得する。そして、各画素(m,n)について、図3(D)のような干渉縞曲線Qの輝度値が最大値を示すときのピント位置のz座標値を、各画素(m,n)に対応する被測定面S上の点(X(m,n),Y(m,n))のz座標値Z(m,n)として検出する。
なお、Z(m,n)は、画素(m,n)に対応する被測定面S上の点(X(m,n),Y(m,n))のz座標値を示す。
また、干渉縞曲線Qの輝度値が最大値を示すときのピント位置のz座標値を検出する方法は周知であり、どのような方法を採用してもよい。例えば、ピント位置の微小間隔ごとのz座標値において干渉画像を取得することで、各画素(m,n)について、図3(D)のような干渉縞曲線Qを実際に描画することができる程度に輝度値を取得することができ、取得した輝度値が最大値を示すときのピント位置のz座標値を検出することで、干渉縞曲線Qの輝度値が最大値を示すときのピント位置のz座標値を検出することができる。
または、ピント位置の各z座標値において取得した輝度値に基づいて最小二乗法等により干渉縞曲線Qを推測し、または、干渉縞曲線Qの包絡線を推測し、その推測した干渉縞曲線Qまたは包絡線に基づいて輝度値が最大値を示すときのピント位置のz座標値を検出することで、干渉縞曲線Qの輝度値が最大値を示すときのピント位置のz座標値を検出することができる。
以上のようにして、処理部18は、干渉画像(撮像素子60の撮像面60S)の各画素(m,n)に対応する被測定面S上の各点(X(m,n),Y(m,n))のz座標値Z(m,n)を検出することで、被測定面S上の各点(X(m,n),Y(m,n))の相対的な高さを検出することができる。
そして、被測定面S上の各点のx座標値X(m,n)、y座標値Y(m,n)、およびz座標値Z(m,n)を被測定面Sの3次元形状データ(表面形状を示すデータ)として取得することができる。
例えば、図4に示すようにx軸方向に並ぶ3つの画素に対応する被測定面S上の3点におけるz座標値Z1、Z2、Z3が相違する場合に、ピント位置をz軸方向に走査しながら干渉画像のそれらの画素の輝度値を取得すると、それらの画素の各々に関してピント位置がz座標値Z1、Z2、Z3のときに輝度値が最大値を示す干渉縞曲線Q1、Q2、Q3が取得される。したがって、それらの干渉縞曲線Q1、Q2、Q3の輝度値が最大値を示すときのピント位置のz座標値を検出することで、それらの画素に対応する被測定面S上の3点におけるz座標値Z1、Z2、Z3を検出することができる。このようにして、被測定面Sの3次元形状データを取得することにより、測定対象物Pの表面形状測定を行う。
また、処理部18は、補正データ部18A、および、計算部18Bを備える。補正データ部18Aは、力センサー11から取得したステージ10に掛かる荷重、荷重の分布および重心位置、および、ステージ10の位置情報、撮影部16で撮像した基準ワークの形状データを基に、測定対象物の形状データを接続する際の補正データを作成する。補正データは、接続の際に必要となる補正方向(並進、回転および歪み)と補正量を、複数の荷重条件で測定し、ルックアップテーブルまたは関数モデルとして保存する。計算部18Bは、補正データ部18Aで作成した補正データを用いて、撮影部16で撮像した測定対象物Pの表面形状データを補正し、複数の表面形状データの接続計算を行う。
次に、表面形状測定装置を用いて、スティッチングにより、測定対象物の表面形状を測定する方法について説明する。
非接触形状の測定で広範囲を測定する場合、図5(A)に示すように、撮像面60Sにおいて、一定の割合で測定範囲が重なる重なり部分60Aを設けて表面形状を測定する。そして、図5(B)に示すように、隣り合う表面形状データ同士の重なり部分60Aが重なるように接続し、測定対象物の全体の表面形状を測定する。この時、図6(A)に示すように、ステージ10に荷重が掛かり、ステージ10がz軸方向に変動する場合がある。また、図6(B)に示すように、ステージ10上で荷重が均等に掛からず、一方にのみ、大きな荷重が掛かる偏荷重の場合がある。これらを単に、測定した各表面形状データをz軸方向に平行移動することで、接続を行うと、接続する表面形状データが多くなると誤差が積層されるため、求めた表面形状の一方の端部側と他方の端部側とで誤差が大きくなる。また、偏荷重の場合は、ステージ10が傾き、測定対象物も傾くことになるが、z軸方向に平行移動するのみでは、測定対象物が傾いているとして処理される可能性があり、正確な表面形状を測定できていない。本実施形態においては、測定対象物によりステージに掛かる荷重、重心位置および、荷重の分布を測定し、あらかじめ荷重を掛けた条件で、ステージ上に基準ワークを載置し、各荷重条件における補正値を取得し、この補正値を用いて、測定対象物の表面形状データを補正することで、高い精度で複数の測定データの接続を行うことができ、表面形状を測定することができる。
まず、図7を用いて補正実施の例について説明する。図7の(A)は、特定の荷重条件におけるステージのステージ位置と、高さ方向の変化の一例を示す図である。ステージ10に測定対象物Pを載置すると、測定対象物Pによりステージ10に荷重が掛かり、ステージ10を移動させると、例えば、図7の(A)に示すように、移動の途中で、ステージ10にうねりが生じる場合がある。
図7の(B)は、測定対象物Pをステージ10上に載置して測定する際の状態を示した図である、図7の(A)に示すようなうねりが生じた場合、図7の(B)に示すように、うねりにより、本来は平坦な形状であるのに対し、水平面に対して斜めの形状として認識される。また、高さ方向に差が生じる。水平方向に対して斜めの形状として認識されると、測定対象物Pを平面視で見た時に、実際の幅より短く認識されることになる。図7の(C)は、図7の(B)で測定した形状を、補正を行わずにプロットした図である。補正を行わずにプロットを行うと、高さ方向で位置が異なるため、隣り合う測定面同士の接続ができない。また、単に接続するのみでは、形状が斜めであるため、正確な形状を測定できていない。本実施形態においては、高さ方向の補正量からz方向の補正量を求め、面内方向の補正量からxy方向の補正量を求め、荷重条件およびステージの位置から補正データを作成する。この補正データを用いて、補正を行うことで、正確な表面形状を取得することができる。
図7の(D)は、同荷重条件での補正モデルである。図7の(A)に示す荷重条件または、その荷重条件に近い条件における補正モデルを後述する図8に示すフローチャートに沿って、測定対象物Pの表面形状の測定前に求めておく。求めた補正モデルを、補正データとして、モデル関数の作成、あるいは、ルックアップテーブルの作成をしておき、図1に示す処理部18内の補正データ部18Aに保存しておく。この補正データを用いて、図7の(A)に示す荷重条件での補正量を計算により求めると、図7の(E)に示す補正量となる。
補正を行わずにプロットした図7の(C)を、計算により求めた補正量である図7の(E)により補正し、各測定データを結合することで、図7の(F)に示す表面形状を得ることができる。本実施形態によれば、ステージ10に掛かる荷重を考慮して、測定した表面形状のデータの補正を行っているので、高精度で測定対象物Pの表面形状を測定することができる。
図8から図10は、補正データを作成するフローチャートを示す図である。
補正データは、補正を実施する範囲内の荷重、および、重心位置条件の範囲内(以下、「補正すべき荷重の範囲内」ともいう)、すなわち、測定対象物Pをステージ10上に載置した際に掛かる荷重、および、重心位置の範囲内を補正できるように、作成する。
まず、図8のステップS10の工程として、補正すべき荷重の範囲内にある重量物をステージ10上に載置し、力センサー11にて、荷重と重心位置を測定する(ステップS12:荷重測定工程)。
次に、ステップS12で測定した荷重条件をステージ10に掛けた状態で、基準ワークを載置し、この荷重条件におけるステージ10の変位を求める変位取得工程を行う、変位取得工程は、基準ワークを用いて行い、例えば、まず、ステップS14の工程として、オプティカルフラット測定(高さ方向補正量取得工程)を行う。ステップS14の工程のオプティカルフラット測定については、図9で説明する。
オプティカルフラット測定は、ステージ10上にオプティカルフラットを載置し、ステージ10を移動させながらオプティカルフラットの表面形状を測定することで、高さ方向の補正量を決定する工程である。オプティカルフラット測定は、まず、ステップS30の工程として、ステージ10上にオプティカルフラットを設置する。次に、ステージ10を移動させ(ステップS32)、ステージ10上のオプティカルフラットの位置情報を測定する(ステップS34)。また、オプティカルフラットの表面形状を取得する(ステップS36)。なお、ステージ10の位置情報の測定、および、オプティカルフラットの表面形状を取得する際、ステップS12の工程で測定した荷重をステージ10に掛け、重心位置についても、同じ位置になるように、荷重条件を設定する。ステージ10に掛かる荷重の分布により、ステージ10に傾きが生じる場合があり、荷重を掛けた状態でオプティカルフラットの表面形状を測定することで、高さ方向の変化を測定することができる。
ステップS36で、オプティカルフラットの表面形状を測定した後、ステージ10の移動可能な範囲、または、測定対象物Pが載置される範囲の全面の表面形状が取得していない場合(ステップS38)、ステップS32に戻り、ステージ10を移動させ、ステージ10の位置情報の測定(ステップS34)、オプティカルフラットの表面形状の取得(ステップS36)を行う。ステップS32のステージ10の移動は、ステージ10の移動可能な範囲において、あるいは、測定対象物Pが載置される範囲において、これらの範囲を覆うように移動を繰り返し、ステップS32からステップS36の工程を行う。これらの範囲におけるオプティカルフラットの表面形状の測定が終了したら(ステップS38)、ステップS12で測定した荷重条件における、各ステージ10の位置に対応する高さ方向の補正量を決定し(ステップS40)、オプティカルフラット測定を終了する。
図8に戻り、ステップS14の工程で、オプティカルフラット測定をした後、ステップS16の工程として、グリッドチャート測定(面内方向補正量取得工程)を行う。ステップS16の工程のグリッドチャート測定については、図10で説明する。
グリッドチャート測定は、ステージ10上にグリッドチャートを載置し、ステージ10を移動させながらグリッドチャートを測定することで、面内方向の補正量を決定する工程である。グリッドチャート測定は、まず、ステップS50の工程として、ステージ10上にグリッドチャートを設置する。次に、ステージ10を移動させ(ステップS54)、グリッドチャートの位置情報を測定する(ステップS54)。また、グリッドチャートの表面形状を取得する(ステップS56)。なお、グリッドチャートの表面形状を測定する際も、ステップS12の工程で測定した荷重をステージ10に掛け、重心位置についても、同じ位置になるように、荷重条件を設定する。ステージ10に掛かる荷重の分布により、ステージ10に傾きが生じる場合があり、荷重を掛けた状態でグリッドチャートの表面形状を測定することで、面内方向の変化を測定することができる。
ステップS56で、グリッドチャートの表面形状を測定した後、ステージ10の移動可能な範囲、または、測定対象物Pが載置される範囲の全面の表面形状が取得していない場合(ステップS58)、ステップS52に戻り、ステージ10を移動させ、ステージ10の位置情報の測定(ステップS54)、グリッドチャートの表面形状の取得(ステップS56)を行う。ステップS52のステージ10移動についても、オプティカルフラット測定と同様に、ステージ10の移動可能な範囲において、あるいは、測定対象物Pが載置される範囲において、これらの範囲を覆うように移動を繰り返し、ステップS52からステップS56の工程を行う。これらの範囲におけるグリッドチャートの表面形状の測定が終了したら(ステップS58)、ステップS12で測定した荷重条件における、各ステージ10の位置に対応する面内方向の補正量を決定し(ステップS60)、グリッドチャート測定を終了する。
図8に戻り、ステップS14の工程で高さ方向の補正量の決定、ステップS16の工程で、面内方向の補正量の決定を行った後、ステップS18の工程で、これらのデータを組み合わせることで、ステップS12で測定した荷重条件における3次元的な補正量(並進、回転、歪み)を決定する(ステップS18)。
ステップS18で、ステップS12で測定した荷重条件における補正量を決定した後、
補正データの作成に十分な荷重条件で測定を行っていない場合(ステップS20)、ステップS10に戻り、重量物のステージ10上の設置位置を変更し、補正すべき荷重の範囲内において、荷重および重心位置の変更を行う(ステップS12)。以下、同様に、ステップS12〜ステップS18を繰り返すことで、ステップS12で測定した荷重条件における3次元補正量を決定する(補正量取得繰り返し工程)。ステップS10の重量物の移動による荷重、重心位置の変更は、補正すべき荷重の範囲内において、離散的に複数回行うことで、様々な荷重条件における3次元補正量を求めることが好ましい。
ステップS10〜ステップS18を繰り返すことで、複数の荷重条件における3次元補正量を決定した後、ステップS22の工程として、各荷重条件(荷重、重心位置)、各ステージ位置、対応する3次元補正量の相関から、モデル関数、あるいは、ルックアップテーブルを作成し、終了する(補正データ作成工程)。ステップS22で作成したモデル関数、または、ルックアップテーブルを用いることで、測定対象物Pの荷重条件(力センサー11の数値)、および、ステージ位置から3次元補正量を求めることができ、高い精度で表面形状を測定することができる。
[補正方法]
図11は、作成した補正データ(モデル関数、または、ルックアップテーブル)を用いて、測定した表面形状データを補正するフローチャートを示す図である。
まず、ステップS70の工程として、ステージ10上に、測定対象物Pを載置する。次に、ステージ10を移動させながら(ステップS72)、力センサー11で、測定対象物Pのステージ10に掛かる荷重の測定(ステップS74)、ステージ10の位置情報の記録(ステップS76)、測定対象物Pの表面形状を測定する(ステップS78:表面形状測定工程)。
次に、ステップS80の工程として、ステップS74の工程で測定した荷重、および、ステップS76の工程で測定した、ステージの位置情報、および、モデル関数またはルックアップテーブルを用いて、3次元的な補正量を計算する(補正工程)。この3次元的な補正量を、ステップS78の工程で測定した表面形状に適用する。これにより、測定対象物の荷重、および、重心位置の影響を受けず、精度の高い表面形状を測定することができる。
当該ステージ位置において表面形状を測定した後、測定対象物Pの全面の表面形状を取得していない場合(ステップS82)、ステップS72に戻り、ステップS72〜ステップS80の工程を、測定する範囲をすべて覆うように、ステージ10の移動を繰り返し、測定対象物の全領域を測定する(繰り返し工程)。ステップS72の工程におけるステージ10の移動は、図5に示すように、一定の割合で測定範囲が重なるように、移動させる。
測定対象物Pの全領域を測定した後(ステップS82)、ステップS84の工程として、補正された形状の、測定範囲が重なる領域を接続することで、広範囲表面形状データを出力する(接続工程)。本実施形態によれば、測定対象物を測定する前に、補正データを作成し、測定対象物の表面形状を測定した後のデータを補正することで、高精度に各々の画像を取得することができる。したがって、画像を接続しても、それぞれの画像の誤差が小さいので、全体として誤差を小さくすることができるので、測定対象物の表面形状を高精度に測定することができる。
≪他の実施形態≫
図12は、他の実施形態に係る形状測定装置のステージ付近を拡大した概略図である。図12に示す形状測定装置は、ステージ10に変位センサー111を設け、変位センサー111により、ステージ10に掛かる荷重による変位を補正している点が、図1に示す形状測定装置と異なっている。
図12に示す形状測定装置においては、ステージ10を平面度の高い定盤120上に設け、ステージ10の定盤側に設けられた変位センサーにより、測定対象物Pの表面形状の測定時にステージ10の変位を測定する。
本実施形態においては、図1に示す表面形状測定装置1と同様に、測定対象物Pの表面形状を測定する(表面形状測定工程)。この表面形状を測定する際に、変位センサー111を用いて、ステージ10の変位を測定する(変位測定工程)。この測定対象物Pの表面形状の測定と、変位センサーの測定を繰り返すことで、測定対象物P全面の表面形状を測定する。
変位センサー111で測定したステージ10の変位を用いて、ベースラインの計算を行い、補正方法および補正量を決定し、補正データを作成する(補正データ作成工程)。測定対象物Pの表面形状データから、補正データにより補正を行うこと(補正工程)で、高い精度で、測定対象物Pの表面形状を測定することができる。また、接続工程で、複数の表面形状データの接続を精度良く行うことができ、高い精度で、広範囲表面形状データを取得することができる。
1…表面形状測定装置、2…光学部、10…ステージ、10S…ステージ面、11…力センサー、12…光源部、14…干渉部、16…撮影部、18…処理部、18A…補正データ部、18B…計算部、40…光源、42…コレクトレンズ、44、54…ビームスプリッタ、50…対物レンズ、52…参照ミラー、56…干渉部アクチュエータ、60…撮像素子、60A…重なり部分、60S…撮像面、62…結像レンズ、70…zアクチュエータ、111…変位センサー、120…定盤、L1、L2…光路長、P…測定対象物、Q…干渉縞曲線、S…被測定面、Z−0、Z−1…光軸

Claims (9)

  1. 測定対象物を支持する支持部と、
    白色光を出射する光源部と、前記光源部からの白色光を測定光と参照光とに分割して前記測定光を前記測定対象物の被測定面に照射するとともに、前記参照光を参照面に照射し、前記被測定面から戻る測定光と前記参照面から戻る前記参照光とを干渉させた干渉光を生成する干渉部と、前記被測定面の各点に照射された前記測定光と前記参照光との干渉光の輝度情報から前記測定対象物の表面形状データを取得する表面形状取得部と、を有する光学部と、
    前記支持部と、前記光学部と、の位置を相対的に移動させるXY方向移動手段と、
    前記支持部に掛かっている荷重の分布を表す物理量を測定するセンサーと、
    前記センサーで測定した荷重の分布を表す物理量に基づいて、前記測定対象物の表面形状データを接続する際の高さ方向及び面内方向の補正値を求め、前記補正値に基づいて、複数の前記表面形状データを結合し、前記測定対象物の全表面形状データを取得する処理部と、を備える形状測定装置。
  2. 前記センサーは、前記支持部に掛かっている荷重を測定する力センサーであり、前記補正値は、各荷重条件における基準ワークを測定することで求める請求項1に記載の形状測定装置。
  3. 前記センサーは、前記支持部の変位を測定する変位センサーである請求項1に記載の形状測定装置。
  4. 前記基準ワークがオプティカルフラットおよびグリッドチャートの少なくともいずれか一つである請求項2に記載の形状測定装置。
  5. 前記補正値は、ルックアップテーブルまたは関数モデルである請求項1から4のいずれか1項に記載の形状測定装置。
  6. 力センサーで測定した荷重の分布を用いて、測定対象物の表面形状データを接続する際の高さ方向及び面内方向の補正値を求める補正量取得工程と、
    持部上に、前記測定対象物を載置し、前記測定対象物の表面形状を測定し、表面形状データを取得するとともに、前記力センサーにより荷重の分布の測定、前記支持部の位置を記録する表面形状測定工程と、
    前記表面形状測定工程で測定した前記表面形状データを、前記補正値を用いて補正する補正工程と、
    前記表面形状測定工程、および、前記補正工程を、前記測定対象物の測定範囲で、前記支持部の移動を行い、複数の表面形状データを作成する繰り返し工程と、
    前記複数の表面形状データを接続し、前記測定対象物の広範囲表面形状データを取得する接続工程と、を有する形状測定方法。
  7. 前記補正量取得工程は、前記支持部上に前記測定対象物の荷重が掛かる範囲、および、重心位置の範囲内で、重量物を載置し、前記力センサーにて、荷重の分布を測定する荷重測定工程と、
    前記支持部上に、基準ワークを載置し、前記荷重測定工程で測定した荷重条件で、前記支持部の変位を求める変位取得工程と、
    前記測定対象物の荷重がかかる範囲、および、重心位置の範囲内で、荷重測定工程および変位取得工程を繰り返す補正量取得繰り返し工程と、
    前記測定対象物の荷重がかかる範囲、および、重心位置の範囲内の条件における前記支持部の位置、および、変位の相関から補正データを作成する補正データ作成工程と、を有する請求項6に記載の形状測定方法。
  8. 前記変位取得工程は、
    前記基準ワークにオプティカルフラットを用い、高さ方向の補正量を取得する高さ方向補正量取得工程と、
    前記基準ワークにグリッドチャートを用い、面内方向の補正量を取得する面内方向補正量取得工程と、を有する請求項7に記載の形状測定方法。
  9. 支持部上に測定対象物を載置し、前記測定対象物の表面形状を測定し、表面形状データを取得する表面形状測定工程と、
    前記表面形状測定工程において、前記測定対象物の前記支持部に掛かる荷重による変位を変位センサーで測定する変位測定工程と、
    前記測定対象物の表面形状を測定する範囲内で、前記表面形状測定工程と、前記変位測定工程を繰り返し、複数の表面形状データを取得する繰り返し工程と、
    前記変位測定工程で測定した、前記支持部の変位を用いて、前記測定対象物の表面形状データを接続する際の高さ方向及び面内方向の補正値を作成する補正データ作成工程と、
    前記複数の表面形状データを、前記補正値で補正する補正工程と、
    前記補正工程後の複数の表面形状データを接続し、前記測定対象物の広範囲表面形状データを取得する接続工程と、を有する形状測定方法。
JP2017009840A 2017-01-23 2017-01-23 形状測定装置および形状測定方法 Active JP6880396B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017009840A JP6880396B2 (ja) 2017-01-23 2017-01-23 形状測定装置および形状測定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017009840A JP6880396B2 (ja) 2017-01-23 2017-01-23 形状測定装置および形状測定方法

Publications (2)

Publication Number Publication Date
JP2018119817A JP2018119817A (ja) 2018-08-02
JP6880396B2 true JP6880396B2 (ja) 2021-06-02

Family

ID=63045087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017009840A Active JP6880396B2 (ja) 2017-01-23 2017-01-23 形状測定装置および形状測定方法

Country Status (1)

Country Link
JP (1) JP6880396B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7213465B2 (ja) * 2019-03-25 2023-01-27 株式会社東京精密 画像処理方法及び測定装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5987189A (en) * 1996-12-20 1999-11-16 Wyko Corporation Method of combining multiple sets of overlapping surface-profile interferometric data to produce a continuous composite map
JP2000131047A (ja) * 1998-10-21 2000-05-12 Nkk Corp 板状物品の形状測定方法
JP3835505B2 (ja) * 1998-11-13 2006-10-18 株式会社東京精密 非接触表面形状測定装置
EP1717845A4 (en) * 2004-02-19 2010-06-23 Nikon Corp EXPOSURE DEVICE AND EXPOSURE METHOD AND COMPONENT MANUFACTURING METHOD
JP2009166136A (ja) * 2008-01-10 2009-07-30 Nano-Optonics Research Institute 光学素子を製造するための研削装置、光学素子の製造方法、及び光学素子を製造するための金型または光学素子の形状・寸法を精密に測定する精密測定装置
JP5649926B2 (ja) * 2010-11-22 2015-01-07 株式会社小坂研究所 表面形状測定装置及び表面形状測定方法
EP2977720B1 (en) * 2014-07-25 2019-06-05 Mitutoyo Corporation A method for measuring a high accuracy height map of a test surface

Also Published As

Publication number Publication date
JP2018119817A (ja) 2018-08-02

Similar Documents

Publication Publication Date Title
JP6604769B2 (ja) テスト表面の高精度高さマップを測定する方法
JP6417645B2 (ja) 表面形状測定装置のアライメント方法
US8810799B2 (en) Height-measuring method and height-measuring device
JP2021182011A (ja) 表面形状測定装置及びそのスティッチング測定方法
JPWO2010134343A1 (ja) 形状測定装置、観察装置および画像処理方法
JP2015200578A (ja) 光干渉測定装置
JP7093915B2 (ja) 表面形状測定方法
JP6037254B2 (ja) 表面形状測定装置及び表面形状測定方法
JP2012042260A (ja) 形状測定方法及び形状測定装置
JP7085725B2 (ja) 表面形状測定装置及び表面形状測定方法
JP2009288162A (ja) 3次元測定装置
JP6880396B2 (ja) 形状測定装置および形状測定方法
JP6820516B2 (ja) 表面形状測定方法
JP2023176026A (ja) 走査範囲決定方法
JP6047764B2 (ja) 白色干渉計、画像処理方法及び画像処理プログラム
JP2012112706A (ja) 表面形状測定装置及び表面形状測定方法
JP6604514B2 (ja) 表面形状測定装置及び表面形状測定方法
JP5604967B2 (ja) 欠陥検出方法および欠陥検出装置
JP2018146391A (ja) 表面形状測定装置及び表面形状測定方法
JP2018115988A (ja) 表面形状測定装置の測定準備アライメント方法及び表面形状測定装置
JP5086655B2 (ja) 三次元形状測定装置及び三次元形状測定方法
JP7304513B2 (ja) 表面形状測定装置及び表面形状測定方法
JP2021124429A (ja) 走査測定方法及び走査測定装置
JP2023176100A (ja) 撮像装置及びフォーカス調整方法
JP2023114760A (ja) 表面形状測定装置及び表面形状測定方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210412

R150 Certificate of patent or registration of utility model

Ref document number: 6880396

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250