JP6879236B2 - 炭化珪素単結晶の製造方法 - Google Patents
炭化珪素単結晶の製造方法 Download PDFInfo
- Publication number
- JP6879236B2 JP6879236B2 JP2018045227A JP2018045227A JP6879236B2 JP 6879236 B2 JP6879236 B2 JP 6879236B2 JP 2018045227 A JP2018045227 A JP 2018045227A JP 2018045227 A JP2018045227 A JP 2018045227A JP 6879236 B2 JP6879236 B2 JP 6879236B2
- Authority
- JP
- Japan
- Prior art keywords
- crystal substrate
- seed crystal
- silicon carbide
- center
- single crystal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000013078 crystal Substances 0.000 title claims description 172
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 title claims description 89
- 229910010271 silicon carbide Inorganic materials 0.000 title claims description 89
- 238000004519 manufacturing process Methods 0.000 title claims description 19
- 238000000034 method Methods 0.000 title description 9
- 239000000758 substrate Substances 0.000 claims description 102
- 238000009529 body temperature measurement Methods 0.000 claims description 31
- 239000011810 insulating material Substances 0.000 claims description 22
- 239000002994 raw material Substances 0.000 claims description 15
- 230000002093 peripheral effect Effects 0.000 claims description 13
- 230000006866 deterioration Effects 0.000 description 9
- 238000009826 distribution Methods 0.000 description 7
- 238000000859 sublimation Methods 0.000 description 6
- 230000008022 sublimation Effects 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 230000007547 defect Effects 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 230000035515 penetration Effects 0.000 description 4
- 238000005498 polishing Methods 0.000 description 4
- 238000005092 sublimation method Methods 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000005485 electric heating Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 239000012774 insulation material Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B23/00—Single-crystal growth by condensing evaporated or sublimed materials
- C30B23/02—Epitaxial-layer growth
- C30B23/06—Heating of the deposition chamber, the substrate or the materials to be evaporated
- C30B23/063—Heating of the substrate
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B23/00—Single-crystal growth by condensing evaporated or sublimed materials
- C30B23/002—Controlling or regulating
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B23/00—Single-crystal growth by condensing evaporated or sublimed materials
- C30B23/02—Epitaxial-layer growth
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B23/00—Single-crystal growth by condensing evaporated or sublimed materials
- C30B23/02—Epitaxial-layer growth
- C30B23/025—Epitaxial-layer growth characterised by the substrate
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/36—Carbides
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Description
しかしながら、SiCの結晶成長は、昇華させるために高温が必要で、成長装置は高温での温度制御が必要とされる。また、昇華した物質の圧力を安定させるために、容器内の圧力の安定した制御が必要とされる。またSiCの結晶成長は、昇華速度によるものであり、Siのチョクラルスキー法やGaAsなどのLPE製法などと比較して、相対的にかなり成長速度が遅い。したがって、長い時間をかけて成長する。幸いに、昨今の制御機器の発達、コンピュータ、パソコン等の発達で、圧力、温度の調節を長期間安定して行うことが可能である。
成長容器104は、真空の石英管内か真空のチャンバー内に配置されて、一度、活性の低いガスで満たされており、その雰囲気は、SiCの昇華速度を上げるために、大気圧より低い。
この穴は種結晶基板102の中心部に対応する位置にあり、図8に示すように種結晶基板102の面内温度分布は中心部が最も低くなり、単結晶は中心から外側に螺旋状に成長するため貫通転位(螺旋転位)が多く発生する。
このような結晶性の劣化が存在する基板を用いた素子では、その性能が著しく低下する。例えば、発光ダイオードを製作した場合にリーク電流の増加および光度の低下が起こる。また、高出力素子では、耐圧が保たれないことが報告されている。したがって、SiC単結晶基板を用いた素子の性能を向上させたり、ウェーハ内の歩留りを上げるためには、この中央部の結晶性の劣化を低減することが重要となる。
前記断熱材の温度測定用の穴の中心の位置と前記成長容器内に配置する前記種結晶基板の中心の位置がずれるように、前記温度測定用の穴を、前記成長容器内に配置する前記種結晶基板の中心に対して外周側の位置にずらして設け、
前記種結晶基板として、基底面である{0001}面からオフ角だけ傾斜した主面を有する炭化珪素単結晶基板を用い、
前記成長容器内の前記種結晶基板の中心と前記断熱材の前記温度測定用の穴の中心を含む断面視において、前記種結晶基板の基底面の法線ベクトルの前記種結晶基板の主面と平行な成分の方向と、前記温度測定用の穴の中心の前記種結晶基板の中心に対する偏芯方向とが、同方向になるように前記種結晶基板を前記成長容器内に配置して、前記炭化珪素単結晶を成長させることを特徴とする炭化珪素単結晶の製造方法を提供する。
前記断熱材の温度測定用の穴の中心の位置と前記成長容器内に配置する前記種結晶基板の中心の位置がずれるように、前記温度測定用の穴を、前記成長容器内に配置する前記種結晶基板の中心に対して外周側の位置にずらして設け、
前記種結晶基板として、基底面である{0001}面からオフ角だけ傾斜した主面を有する炭化珪素単結晶基板を用い、
前記成長容器内の前記種結晶基板の中心と前記断熱材の前記温度測定用の穴の中心を含む断面視において、前記種結晶基板の基底面の法線ベクトルの前記種結晶基板の主面と平行な成分の方向と、前記温度測定用の穴の中心の前記種結晶基板の中心に対する偏芯方向とが、同方向になるように前記種結晶基板を前記成長容器内に配置して、前記炭化珪素単結晶を成長させることでウェーハ中央部の結晶性の劣化が減少することを見出し、本発明を完成させた。
本発明では、種結晶基板は成長容器内に配置されており、より詳しくは、図1に示すように成長容器内の上部の中心に配置されている。
また、温度測定用の穴は断熱材の上部に設けられている。より詳しくは、図1に示すように穴の中心の位置C2と、成長容器内の成長容器内の上記種結晶基板の中心の位置C1(成長容器上部の中心位置とも言い換えられる)がずれるように、種結晶基板の中心C1に対して外周側の位置にずらして穴が設けられている。
なお、断熱材上部に設けられた断熱材の外側と内側を結ぶ貫通孔である、この温度測定用の穴の中心の位置C2は、ここでは、断熱材の内側(種結晶基板側)の断面における中心位置を指す。
まず、図1のような、温度測定用の穴6の位置がずれているSiC成長装置1を用意する(工程1)。すなわち、温度測定用の穴6の中心位置C2と、後に配置する種結晶基板2の中心の位置C1(成長容器上部の中心位置)がずれるように、穴6を、種結晶基板2の中心位置C1に対して外周側の位置にずらして設けた装置を用意する。
ところで、温度測定用の穴の中心の位置C2について考えると、前述したように種結晶基板の中心の位置C1からずれており、このずれの方向をここでは偏芯方向Dと定義する。この例では、偏芯方向Dは左向きである。
本発明においては、図4に示すように、上記のNp(ここでは左向き)とD(ここでは左向き)とが同方向になるように、種結晶基板の向きを調整して配設する。
このとき、図4に冷却点と記載しているように、種結晶基板2において、温度測定用の穴6の位置に対応する箇所が最も低温となり、該最も低温となる位置が炭化珪素単結晶の成長の起点となる。図4の場合、冷却点よりも右側の範囲の方が、冷却点よりも左側の範囲よりも広くなっており、この広い範囲では、主面に平行な方向において、ステップフロー方向に結晶が成長していくことになる。
そして、このような本発明の製造方法によって、ウェーハ中央部において貫通欠陥が低減化され結晶性の劣化が低減化された良好な炭化珪素単結晶を製造することができる。また、従来法では製造した炭化珪素単結晶の面内で生じていた歪みを抑制することができる。
(実施例)
<条件>
種結晶基板…主面が{0001}面から<11−20>方向に4°傾いた直径4インチ(100mm)のSiC単結晶基板
成長温度…2200℃
圧力…10Torr(1.3×10hPa)
雰囲気…アルゴンガス、窒素ガス
(比較例)
また、表1から、実施例における各座標の半値幅は、比較例よりも顕著に小さい値となり、実施例のウェーハは比較例に比べて平坦な面を有し、結晶性が改善されているのが判る。
2a、102a…炭化珪素単結晶、 3、103…炭化珪素原材料、
4、104…成長容器、 5、105…断熱材、 6、106…温度測定用の穴、
7、107…温度測定器、 8、108…ヒーター、 9…成長室、 10…昇華室、
C1…種結晶基板の中心の位置、 C2…温度測定用の穴の中心の位置、
N…種結晶基板の基底面の法線ベクトル、
Nv…法線ベクトルの主面と垂直な方向の成分、
Np…法線ベクトルの主面と平行な方向の成分、
D…温度測定用の穴の偏芯方向。
Claims (3)
- 温度測定用の穴を上部に設けた断熱材によって成長容器を囲い、該成長容器内の上部の中心に種結晶基板を配置し、前記成長容器の下部に炭化珪素原材料を配置し、前記炭化珪素原材料を昇華させて前記種結晶基板上に炭化珪素単結晶を成長させる炭化珪素単結晶の製造方法であって、
前記断熱材の温度測定用の穴の中心の位置と前記成長容器内に配置する前記種結晶基板の中心の位置がずれるように、前記温度測定用の穴を、前記成長容器内に配置する前記種結晶基板の中心に対して外周側の位置にずらして設け、
前記種結晶基板として、基底面である{0001}面からオフ角だけ傾斜した主面を有する炭化珪素単結晶基板を用い、
前記成長容器内の前記種結晶基板の中心と前記断熱材の前記温度測定用の穴の中心を含む断面視において、前記種結晶基板の基底面の法線ベクトルの前記種結晶基板の主面と平行な成分の方向と、前記温度測定用の穴の中心の前記種結晶基板の中心に対する偏芯方向とが、同方向になるように前記種結晶基板を前記成長容器内に配置して、前記炭化珪素単結晶を成長させることを特徴とする炭化珪素単結晶の製造方法。 - 前記種結晶基板のオフ角を、0.5〜10度とすることを特徴とする請求項1に記載の炭化珪素単結晶の製造方法。
- 前記断熱材の温度測定用の穴を、該穴の中心が、前記成長容器内に配置する前記種結晶基板の中心から、該種結晶基板の半径の1/3の位置よりも外周側に位置するように設けることを特徴とする請求項1または請求項2に記載の炭化珪素単結晶の製造方法。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018045227A JP6879236B2 (ja) | 2018-03-13 | 2018-03-13 | 炭化珪素単結晶の製造方法 |
CN201980018916.0A CN111868310B (zh) | 2018-03-13 | 2019-02-15 | 碳化硅单晶的制造方法 |
US16/980,144 US11225729B2 (en) | 2018-03-13 | 2019-02-15 | Method for manufacturing a silicon carbide single crystal by adjusting the position of a hole in a top of the growth container relative to the off angle of the silicon carbide substrate |
EP19768426.9A EP3767016A4 (en) | 2018-03-13 | 2019-02-15 | PROCESS FOR THE PRODUCTION OF A SINGLE CRYSTAL OF SILICON CARBIDE |
KR1020207026353A KR102631661B1 (ko) | 2018-03-13 | 2019-02-15 | 탄화규소 단결정의 제조방법 |
PCT/JP2019/005690 WO2019176444A1 (ja) | 2018-03-13 | 2019-02-15 | 炭化珪素単結晶の製造方法 |
TW108105919A TWI815863B (zh) | 2018-03-13 | 2019-02-22 | 碳化矽單晶的製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018045227A JP6879236B2 (ja) | 2018-03-13 | 2018-03-13 | 炭化珪素単結晶の製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019156679A JP2019156679A (ja) | 2019-09-19 |
JP6879236B2 true JP6879236B2 (ja) | 2021-06-02 |
Family
ID=67907649
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018045227A Active JP6879236B2 (ja) | 2018-03-13 | 2018-03-13 | 炭化珪素単結晶の製造方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US11225729B2 (ja) |
EP (1) | EP3767016A4 (ja) |
JP (1) | JP6879236B2 (ja) |
KR (1) | KR102631661B1 (ja) |
CN (1) | CN111868310B (ja) |
TW (1) | TWI815863B (ja) |
WO (1) | WO2019176444A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102284879B1 (ko) | 2019-10-29 | 2021-07-30 | 에스케이씨 주식회사 | 탄화규소 웨이퍼 및 탄화규소 웨이퍼의 제조방법 |
CN111958070B (zh) * | 2020-10-22 | 2021-02-02 | 中电化合物半导体有限公司 | 一种低缺陷密度碳化硅单晶衬底的制备方法 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4230035B2 (ja) | 1998-12-25 | 2009-02-25 | 昭和電工株式会社 | 炭化珪素単結晶およびその製造方法 |
US7601441B2 (en) * | 2002-06-24 | 2009-10-13 | Cree, Inc. | One hundred millimeter high purity semi-insulating single crystal silicon carbide wafer |
JP2005239465A (ja) | 2004-02-25 | 2005-09-08 | Matsushita Electric Ind Co Ltd | 炭化珪素単結晶製造装置 |
US7192482B2 (en) | 2004-08-10 | 2007-03-20 | Cree, Inc. | Seed and seedholder combinations for high quality growth of large silicon carbide single crystals |
JP4926556B2 (ja) | 2006-06-20 | 2012-05-09 | 新日本製鐵株式会社 | 炭化珪素単結晶インゴットの製造方法及び炭化珪素単結晶基板 |
JP5482643B2 (ja) * | 2010-12-24 | 2014-05-07 | 新日鐵住金株式会社 | 炭化珪素単結晶インゴットの製造装置 |
JP6226959B2 (ja) * | 2012-04-20 | 2017-11-08 | トゥー‐シックス・インコーポレイテッド | 大口径高品質SiC単結晶、方法、及び装置 |
JP6183010B2 (ja) * | 2013-07-03 | 2017-08-23 | 住友電気工業株式会社 | 炭化珪素単結晶基板およびその製造方法 |
WO2015182246A1 (ja) * | 2014-05-29 | 2015-12-03 | 住友電気工業株式会社 | 炭化珪素インゴットの製造方法、炭化珪素種基板および炭化珪素基板 |
US9279192B2 (en) * | 2014-07-29 | 2016-03-08 | Dow Corning Corporation | Method for manufacturing SiC wafer fit for integration with power device manufacturing technology |
JP6259740B2 (ja) * | 2014-09-11 | 2018-01-10 | 国立大学法人名古屋大学 | 炭化ケイ素の結晶の製造方法及び結晶製造装置 |
US20160138185A1 (en) * | 2014-11-18 | 2016-05-19 | Sumitomo Electric Industries, Ltd. | Method of manufacturing silicon carbide single crystal |
CN107002281B (zh) * | 2014-12-05 | 2019-06-04 | 昭和电工株式会社 | 碳化硅单晶的制造方法及碳化硅单晶基板 |
JP6584007B2 (ja) * | 2015-12-10 | 2019-10-02 | 昭和電工株式会社 | 単結晶の製造方法および単結晶製造装置 |
JP6915526B2 (ja) * | 2017-12-27 | 2021-08-04 | 信越半導体株式会社 | 炭化珪素単結晶の製造方法 |
-
2018
- 2018-03-13 JP JP2018045227A patent/JP6879236B2/ja active Active
-
2019
- 2019-02-15 US US16/980,144 patent/US11225729B2/en active Active
- 2019-02-15 KR KR1020207026353A patent/KR102631661B1/ko active IP Right Grant
- 2019-02-15 CN CN201980018916.0A patent/CN111868310B/zh active Active
- 2019-02-15 WO PCT/JP2019/005690 patent/WO2019176444A1/ja unknown
- 2019-02-15 EP EP19768426.9A patent/EP3767016A4/en active Pending
- 2019-02-22 TW TW108105919A patent/TWI815863B/zh active
Also Published As
Publication number | Publication date |
---|---|
KR20200128680A (ko) | 2020-11-16 |
TWI815863B (zh) | 2023-09-21 |
CN111868310A (zh) | 2020-10-30 |
EP3767016A4 (en) | 2021-11-24 |
KR102631661B1 (ko) | 2024-02-01 |
CN111868310B (zh) | 2021-12-24 |
US20210010157A1 (en) | 2021-01-14 |
JP2019156679A (ja) | 2019-09-19 |
WO2019176444A1 (ja) | 2019-09-19 |
TW201938853A (zh) | 2019-10-01 |
US11225729B2 (en) | 2022-01-18 |
EP3767016A1 (en) | 2021-01-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102284879B1 (ko) | 탄화규소 웨이퍼 및 탄화규소 웨이퍼의 제조방법 | |
US11131038B2 (en) | Furnace for seeded sublimation of wide band gap crystals | |
JP6183010B2 (ja) | 炭化珪素単結晶基板およびその製造方法 | |
US10837123B2 (en) | Method of manufacturing SiC ingot | |
JP6879236B2 (ja) | 炭化珪素単結晶の製造方法 | |
JP6915526B2 (ja) | 炭化珪素単結晶の製造方法 | |
WO2019176446A1 (ja) | 炭化珪素単結晶の製造方法 | |
JP6748613B2 (ja) | 炭化珪素単結晶基板 | |
JP4552516B2 (ja) | AlN単結晶の製造方法 | |
CN118272915A (zh) | 一种适用于低应力4H-SiC单晶生长的籽晶 | |
KR20070036653A (ko) | 반절연 탄화규소 단결정 성장방법 | |
JP2024522507A (ja) | シリコンカーバイド結晶性材料のための光吸収の低減 | |
CN116411339A (zh) | 一种高质量碳化硅单晶生长方法 | |
JP2018118873A (ja) | 窒化物半導体基板の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190215 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200220 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210330 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210412 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6879236 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |