[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6875796B2 - Building ventilation system with underfloor space with air conditioning - Google Patents

Building ventilation system with underfloor space with air conditioning Download PDF

Info

Publication number
JP6875796B2
JP6875796B2 JP2016112824A JP2016112824A JP6875796B2 JP 6875796 B2 JP6875796 B2 JP 6875796B2 JP 2016112824 A JP2016112824 A JP 2016112824A JP 2016112824 A JP2016112824 A JP 2016112824A JP 6875796 B2 JP6875796 B2 JP 6875796B2
Authority
JP
Japan
Prior art keywords
outside air
heat
heat storage
storage layer
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016112824A
Other languages
Japanese (ja)
Other versions
JP2017219228A (en
Inventor
橋本 東光
東光 橋本
真成 橋本
真成 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GEO POWER SYSTEM CO.,LTD.
Original Assignee
GEO POWER SYSTEM CO.,LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GEO POWER SYSTEM CO.,LTD. filed Critical GEO POWER SYSTEM CO.,LTD.
Priority to JP2016112824A priority Critical patent/JP6875796B2/en
Publication of JP2017219228A publication Critical patent/JP2017219228A/en
Application granted granted Critical
Publication of JP6875796B2 publication Critical patent/JP6875796B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/24Structural elements or technologies for improving thermal insulation
    • Y02A30/244Structural elements or technologies for improving thermal insulation using natural or recycled building materials, e.g. straw, wool, clay or used tires
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/40Geothermal heat-pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Landscapes

  • Building Environments (AREA)
  • Central Air Conditioning (AREA)
  • Central Heating Systems (AREA)

Description

本発明は建物換気システムに関する。 The present invention relates to a building ventilation system.

従来より、例えば図8に示すように、建物の床下空間内に「グリ石などの地中熱を蓄熱する蓄熱材が集積・充填されて成る蓄熱層」を備え、戸外からの空気(外気)をこの蓄熱層で地中熱と熱交換すると共に、その前又は後において外気を地中パイプ中で地中熱と熱交換し、そのように熱交換された後の外気を室内に供給するようにした建物換気システムが提案又は実施されている(特許文献1参照)。 Conventionally, as shown in FIG. 8, for example, a "heat storage layer formed by accumulating and filling a heat storage material that stores geothermal heat such as grit stone" is provided in the space under the floor of the building, and the air from the outside (outside air). In this heat storage layer, heat is exchanged with the geothermal heat, and before or after that, the outside air is exchanged with the geothermal heat in the underground pipe, and the outside air after the heat exchange is supplied to the room. The building ventilation system has been proposed or implemented (see Patent Document 1).

なお、この図8に示す従来例では、前記地中パイプは、外管と内管との二重管構造に構成されている。そして、この従来例では、外気は、外管の上方に形成された通気口を介して外管と内管との間の隙間に導入されて前記隙間の中を下降し、その過程で地中熱と熱交換されながら、外管の底部に衝突し、その後に反転して内管内を上昇し、内管の上方から外部(室内など)に放出されるように構成されている。 In the conventional example shown in FIG. 8, the underground pipe has a double pipe structure consisting of an outer pipe and an inner pipe. Then, in this conventional example, the outside air is introduced into the gap between the outer pipe and the inner pipe through the vent formed above the outer pipe, descends in the gap, and is underground in the process. While exchanging heat with heat, it collides with the bottom of the outer pipe, then reverses and rises inside the inner pipe, and is discharged from above the inner pipe to the outside (indoors, etc.).

特許第3030022号公報Japanese Patent No. 3030022

前述のような従来の建物換気システムに使用される床下空間内の蓄熱層は、外気を地中熱などと熱交換するために極めて有効なものであるが、広い床下空間内の全体に蓄熱材を充填することは建築コストの増大化に繋がるという問題がある。 The heat storage layer in the underfloor space used in the conventional building ventilation system as described above is extremely effective for exchanging heat with the geothermal heat, etc., but the heat storage material is used throughout the large underfloor space. There is a problem that filling with water leads to an increase in construction cost.

しかし、他方、床下空間内の一部だけに蓄熱材を集積させるようにしたときは、建築コストは低減化されるが、外気を地中熱などと十分に熱交換させることが難しいという問題がある。 However, on the other hand, when the heat storage material is integrated only in a part of the underfloor space, the construction cost is reduced, but there is a problem that it is difficult to sufficiently exchange the outside air with the geothermal heat. is there.

本発明はこのような従来技術の問題点に着目して為されたものであって、外気を地中熱などと熱交換させるための蓄熱層を床下空間中の一部だけに構成するようにして建設コストを低減化させながら、床下空間内で外気を地中熱などと十分に熱交換させてから室内に供給することができる、空調機能付き床下空間を備えた建物換気システムを提供することを目的とする。 The present invention has been made by paying attention to such a problem of the prior art, and a heat storage layer for exchanging heat with geothermal heat or the like is formed only in a part of the underfloor space. To provide a building ventilation system with an underfloor space with an air-conditioning function that can sufficiently exchange the outside air with geothermal heat in the underfloor space and then supply it indoors while reducing the construction cost. With the goal.

以上のような課題を解決するための本発明による空調機能付き床下空間を備えた建物換気システムは、戸外からの外気を床下空間内に導入する外気導入部と、前記床下空間内を複数の各小空間に区画する複数の仕切り部であって、前記複数の各小空間を外気の流通方向に沿って形成するように配置されており、或る小空間から隣接する他の小空間へと外気を順次流通させるための各空気通過孔がそれぞれ形成されている複数の仕切り部であって、前記外気が後記蓄熱層の周囲(外周側)に沿って前記各小空間の中を順次流通してから後記蓄熱層内に流入するように、後記蓄熱層の周囲(外周側)を囲むように配置されている複数の各小空間を形成する、複数の仕切り部と、前記床下空間内の一部に又は前記複数の小空間中の一部の小空間内に配置された蓄熱層であって、多数のグリ石等の蓄熱材が集積、収容又は配置されて成り、前記各小空間を順次流通する過程で各小空間内の熱と熱交換され且つ地中に埋設された地中パイプ内を流通する過程で地中熱と熱交換された後の外気を、自ら(蓄熱層)の内部に受け入れ自らの内部で流通させてから室内に供給する蓄熱層であって、前記地中パイプは、前記各小空間中の前記蓄熱層が配置された小空間と隣接する小空間内から地中に埋設されている蓄熱層と、外気を戸外から導入して、前記蓄熱層へ送られる前又は送られた後の外気を前記複数の各小空間の内部を順次流通させて前記床下空間内の物体と熱交換させるように作動する換気用ファンと、を備えており、前記外気は各小空間の間を流通する方向において互いに小空間を介して対向する各空気通過孔は水平方向及び重力方向において互いにズレた位置で対向するように形成、配置されており、これにより、戸外から導入された外気は、まず、前記蓄熱層の周囲(外周側)に沿って配置された前記各小空間の中を、それぞれ蛇行しながら、或る1つの小空間から他の小空間へと順次流通しながら前記各小空間の物体と熱交換され、そのようにして熱交換された後に、前記蓄熱層が配置された小空間と隣接する小空間内の地中パイプ内に導入されて前記地中パイプ内を流通しながら地中熱と熱交換され、そのようにして地中熱と熱交換された後に、前記蓄熱層の内部に導入されて前記蓄熱層の内部で流通されながら熱交換され、そのようにした前記蓄熱層の内部で熱交換された後に、建物の室内に供給されるように構成されている、ことを特徴とするものである。
The building ventilation system provided with the underfloor space with an air conditioning function according to the present invention for solving the above problems includes an outside air introduction unit that introduces outside air from the outside into the underfloor space, and a plurality of each in the underfloor space. A plurality of partition portions for partitioning into small spaces, each of the plurality of small spaces being arranged so as to form along the flow direction of the outside air, and the outside air from one small space to another adjacent small space. It is a plurality of partition portions in which each air passage hole for sequentially circulating the air is formed, and the outside air sequentially flows in each of the small spaces along the periphery (outer peripheral side) of the heat storage layer described later. A plurality of partition portions and a part of the underfloor space forming a plurality of small spaces arranged so as to surround the periphery (outer peripheral side) of the heat storage layer described later so as to flow into the heat storage layer described later. It is a heat storage layer arranged in a part of the small spaces in the plurality of small spaces, and is formed by accumulating, accommodating or arranging a large number of heat storage materials such as grit stones, and sequentially distributes each of the small spaces. In the process of heat exchange with the heat in each small space and in the process of circulating in the underground pipe buried in the ground, the outside air after heat exchange with the underground heat is sent to the inside of itself (heat storage layer). It is a heat storage layer that receives and distributes it inside itself and then supplies it indoors, and the underground pipe is from within the small space adjacent to the small space in which the heat storage layer is arranged in each of the small spaces to the ground. The buried heat storage layer and the outside air are introduced from the outside, and the outside air before or after being sent to the heat storage layer is sequentially circulated inside each of the plurality of small spaces to sequentially circulate the object in the underfloor space. It is equipped with a ventilation fan that operates to exchange heat with each other, and the outside air flows between the small spaces, and the air passage holes facing each other through the small spaces are in the horizontal direction and the gravity direction. The outside air introduced from the outside is first formed and arranged so as to face each other at positions shifted from each other, and the outside air introduced from the outside is first in the small spaces arranged along the periphery (outer peripheral side) of the heat storage layer. The heat storage layer is arranged after heat exchange with the objects in each of the small spaces while sequentially circulating from one small space to another while meandering each other. After being introduced into the underground pipe in the small space adjacent to the created small space and exchanging heat with the underground heat while circulating in the underground pipe, and thus exchanging heat with the underground heat, the heat is exchanged with the underground heat. It is configured to be introduced into the heat storage layer, exchange heat while being circulated inside the heat storage layer, exchange heat inside the heat storage layer, and then be supplied to the interior of the building. It is characterized by being.

また、本発明に係る空調機能付き床下空間を備えた建物換気システムにおいては、前記の外気がそれらの中を順次流通させられる複数の各小空間は、前記外気が前記蓄熱層の周囲(外周側)に沿って前記各小空間の中を順次流通してから前記蓄熱層内に流入するように、前記蓄熱層の周囲(外周側)を囲むように配置されていてもよい。 Further, in the building ventilation system provided with the underfloor space with an air-conditioning function according to the present invention, in each of the plurality of small spaces through which the outside air is sequentially circulated, the outside air is around the heat storage layer (outer peripheral side). ) Sequentially circulates in each of the small spaces and then flows into the heat storage layer so as to surround the periphery (outer peripheral side) of the heat storage layer.

また、本発明に係る空調機能付き床下空間を備えた建物換気システムにおいては、前記複数の仕切り部中の少なくとも2つの各仕切り部であって外気の流通方向における後方及び前方にそれぞれ互いに対向するように配置された2つの各仕切り部同士は、その各空気通過部の位置が水平方向及び/又は重力方向において互いにズレた位置となるように構成されていてもよい。 Further, in the building ventilation system provided with the underfloor space with an air-conditioning function according to the present invention, at least two of the plurality of partitions are opposed to each other in the rear and front in the flow direction of the outside air. The two partition portions arranged in the above may be configured so that the positions of the respective air passage portions are displaced from each other in the horizontal direction and / or the gravitational direction.

また、本発明に係る空調機能付き床下空間を備えた建物換気システムにおいて、前記床下空間又は仕切り部中の前記流通する外気が接触する部材又は物質の表面には、外気の一部がその周辺で微小な渦流を形成するように、微小な突起、凸部、凹部又は凹凸が形成され又は備えられていてもよい。 Further, in the building ventilation system provided with the underfloor space with an air-conditioning function according to the present invention, a part of the outside air is in the vicinity of the surface of the member or substance that the circulating outside air contacts in the underfloor space or the partition portion. Minor protrusions, protrusions, recesses or irregularities may be formed or provided so as to form a minute vortex.

また、本発明に係る空調機能付き床下空間を備えた建物換気システムにおいて、前記蓄熱層は、前記各小空間を順次流通する過程で各小空間内の熱と熱交換され且つ地中に埋設された地中パイプ内を流通する過程で地中熱と熱交換された後の外気を、自ら(蓄熱層)の内部に受け入れ自らの内部を流通させてから室内に供給するものであってもよい。 Further, in the building ventilation system provided with the underfloor space with an air conditioning function according to the present invention, the heat storage layer is heat-exchanged with heat in each small space and buried in the ground in the process of sequentially circulating through each small space. The outside air after heat exchange with the geothermal heat in the process of circulating in the underground pipe may be received inside itself (heat storage layer), circulated inside itself, and then supplied indoors. ..

また、本発明に係る空調機能付き床下空間を備えた建物換気システムにおいて、前記蓄熱層は、熱伝導性の高い材料により構成された容器又は外気が容器の内外を流通可能なメッシュ構造又は多数の通気孔を有する容器であって複数の蓄熱材をその内部に収納した容器が、複数個、並べられ又は積層されて構成されていてもよい。 Further, in the building ventilation system provided with the underfloor space with an air conditioning function according to the present invention, the heat storage layer is a container made of a material having high thermal conductivity, a mesh structure capable of allowing outside air to flow inside and outside the container, or a large number. A plurality of containers having ventilation holes and containing a plurality of heat storage materials therein may be arranged or laminated.

さらに、本発明に係る空調機能付き床下空間を備えた建物換気システムにおいて、前記地中パイプは、前記各小空間中の前記蓄熱層が配置された小空間と隣接する小空間内から地中に埋設されているものであってもよい。 Further, in the building ventilation system provided with the underfloor space with an air-conditioning function according to the present invention, the underground pipe is placed in the ground from the small space adjacent to the small space in which the heat storage layer is arranged in each of the small spaces. It may be buried.

本発明による空調機能付き床下空間を備えた建物換気システムにおいては、前記換気用ファンにより、外気は、床下空間内に導入された後、(蓄熱層へ送られる前に又は送られた後に)前記複数の各小空間の内部を(或る1つの小空間から他の小空間へと)順次に流通、通過する過程で、床下空間内の基礎立ち上がり部等の物体が有する熱(前記床下空間内には予め蓄熱層の作用などにより地中熱などが伝導され蓄熱されている)と十分に熱交換される。よって、本発明によれば、外気を地中熱などと熱交換させるための蓄熱層を床下空間中の一部だけに構成することにより建設コストを低減化させながら、外気を床下空間全体でその内部の地中熱などと有効に熱交換させてから、外気を室内に供給することができるようになる。 In the building ventilation system provided with the underfloor space with an air conditioning function according to the present invention, the outside air is introduced into the underfloor space by the ventilation fan, and then (before or after being sent to the heat storage layer). In the process of sequentially circulating and passing through the inside of each of a plurality of small spaces (from one small space to another), the heat (inside the underfloor space) possessed by an object such as a foundation rising portion in the underfloor space. In advance, underground heat is conducted and stored by the action of the heat storage layer), and the heat is sufficiently exchanged. Therefore, according to the present invention, the outside air is used in the entire underfloor space while reducing the construction cost by forming the heat storage layer for exchanging heat with the geothermal heat or the like only in a part of the underfloor space. After effectively exchanging heat with the geothermal heat inside, the outside air can be supplied indoors.

また、本発明において、前記の外気が順次流通される複数の各小空間を前記蓄熱層の周囲(外周側)を囲むように配置し、前記外気が前記蓄熱層の周囲(外周側)に沿って前記各小空間の中を順次流通した後に前記蓄熱層内に流入するように構成したときは、前記外気は、前記蓄熱層の周囲(外周側)に沿って前記各小空間の中を(前記複数の各小空間の長い距離を)順次流通する過程で床下空間内の地中熱などと十分に熱交換されてから、前記蓄熱層に流入するようになる。 Further, in the present invention, each of the plurality of small spaces through which the outside air is sequentially circulated is arranged so as to surround the periphery (outer peripheral side) of the heat storage layer, and the outside air is along the periphery (outer peripheral side) of the heat storage layer. When it is configured to flow into the heat storage layer after being sequentially circulated in each of the small spaces, the outside air flows through the small spaces along the periphery (outer peripheral side) of the heat storage layer. In the process of sequentially circulating (a long distance of each of the plurality of small spaces), heat is sufficiently exchanged with the geothermal heat in the underfloor space, and then the heat flows into the heat storage layer.

また、本発明において、前記複数の仕切り部(例えば基礎立ち上がり部により構成される仕切り部)中の少なくとも一部(例えば2つ)の仕切り部であって外気の流通方向における後方及び前方にそれぞれ位置する各仕切り部同士を、その中の各空気通過部の位置が水平方向及び/又は重力方向において互いにズレた位置となるように形成又は構成したときは、前記外気が前記蓄熱層の周囲(外周側)に沿って前記各小空間の中を順次流通するとき、前記外気は前記各小空間内を蛇行しながら流通・通過する(前記蛇行により前記各小空間内での外気の滞留時間が増大化する)ようになるので、前記外気の床下空間内での地中熱などとの熱交換が、より効果的に行われるようになる。 Further, in the present invention, at least a part (for example, two) of the plurality of partition portions (for example, a partition portion composed of a foundation rising portion) is positioned rearward and forward in the flow direction of the outside air, respectively. When the partition portions are formed or configured so that the positions of the air passage portions in the partition portions are offset from each other in the horizontal direction and / or the gravity direction, the outside air is around the heat storage layer (outer circumference). When sequentially circulating in each of the small spaces along the side), the outside air circulates and passes through the small spaces while meandering (the meandering increases the residence time of the outside air in each of the small spaces). Therefore, heat exchange with the underground heat or the like in the underfloor space of the outside air can be performed more effectively.

また、本発明において、前記床下空間又は仕切り部中の前記流通する外気が接触する部材(物体)の表面を、外気の一部がその周辺で微小な渦流を形成するような微小な突起、凸部、凹部又は凹凸(例えば前記外気の流通を妨げる方向に延びる突起又は凸部など)を有するように形成又は構成したときは、前記外気の一部が前記部材(物体)の表面の近傍で微小な渦流となり、前記外気が前記部材(物体)の表面、すなわち前記の基礎立ち上がり部又は仕切り部(前記各仕切り部には予め前記蓄熱層の作用などにより地中熱などが伝導、蓄積されている)の表面と接触する時間及び面積が全体として増加するので、前記外気が前記蓄熱層の周囲(外周側)に沿って前記各小空間の中を順次流通する過程で為される前記外気の床下空間内の地中熱などとの熱交換が、より効果的に行われるようになる。 Further, in the present invention, on the surface of the member (object) with which the circulating outside air comes into contact in the underfloor space or the partition portion, minute protrusions or protrusions such that a part of the outside air forms a minute vortex around the surface. When formed or configured to have a portion, a concave portion or an unevenness (for example, a protrusion or a convex portion extending in a direction that obstructs the flow of the outside air), a part of the outside air is minute in the vicinity of the surface of the member (object). The outside air becomes a vortex, that is, the surface of the member (object), that is, the foundation rising portion or the partition portion (in each partition portion, geothermal heat or the like is previously conducted and accumulated by the action of the heat storage layer or the like. ) As a whole, the time and area of contact with the surface of the heat storage layer are increased, so that the outside air is under the floor of the outside air, which is formed in the process of sequentially circulating in each of the small spaces along the periphery (outer peripheral side) of the heat storage layer. Heat exchange with geothermal heat in the space will be performed more effectively.

また、本発明において、前記蓄熱層を、前記各小空間及び地中パイプ内を流通する過程で熱交換された後の外気を受け入れて室内に供給するものとして構成したときは、前記床下空間(各小空間)及び地中パイプ内で地中熱などと熱交換されその後さらに蓄熱層の内部で熱交換された快適な外気を、室内に供給できるようになる。 Further, in the present invention, when the heat storage layer is configured to receive the outside air after heat exchange in the process of circulating in each of the small spaces and the underground pipe and supply it into the room, the underfloor space ( Comfortable outside air that is heat-exchanged with geothermal heat in each small space) and in the underground pipe and then heat-exchanged inside the heat storage layer can be supplied to the room.

また、本発明において、前記蓄熱層を、熱伝導性の高い材料により構成された容器又は外気が容器の内外を流通可能なメッシュ構造又は多数の通気孔を有する容器であって複数の蓄熱材をその内部に収納した容器を複数個並べて又は積層して構成したときは、前記蓄熱層の施工を極めて効率的に行えるようになる。 Further, in the present invention, the heat storage layer is a container made of a material having high thermal conductivity, a mesh structure capable of allowing outside air to flow inside and outside the container, or a container having a large number of ventilation holes, and a plurality of heat storage materials are used. When a plurality of containers housed inside the container are arranged side by side or laminated, the heat storage layer can be constructed extremely efficiently.

さらに、本発明において、前記地中パイプを、前記床下空間内の各小空間中の前記蓄熱層が配置された小空間と隣接する小空間内から地中に埋設して構成するようにしたときは、前記地中パイプ内で熱交換された外気を前記蓄熱層に移送することが極めて円滑にできるようになる。 Further, in the present invention, when the underground pipe is buried in the ground from a small space adjacent to the small space in which the heat storage layer is arranged in each small space in the underfloor space. Allows the outside air, which has been heat-exchanged in the underground pipe, to be transferred to the heat storage layer extremely smoothly.

本発明の実施形態1に係る空調機能付き床下空間を備えた建物換気システムの一部を示す概略正断面図である。It is a schematic front sectional view which shows a part of the building ventilation system provided with the underfloor space with the air-conditioning function which concerns on Embodiment 1 of this invention. 本実施形態1における建物の床下空間及び基礎立ち上がり部を上方から示す平断面図である。It is a plan sectional view which shows the underfloor space and the foundation rising part of the building in Embodiment 1 from above. 本実施形態1における建物の床下空間及び基礎を側方から示す側断面図である。It is a side sectional view which shows the underfloor space and the foundation of the building in Embodiment 1 from the side. 本実施形態1における建物の床下空間及び基礎を側方から示す側断面図である。It is a side sectional view which shows the underfloor space and the foundation of the building in Embodiment 1 from the side. 本実施形態1において床下空間内で外気が接触する部材又は物体に微小な突起又は凸部が形成されていることを説明するための概略図である。It is a schematic diagram for demonstrating that a minute protrusion or a convex portion is formed in the member or the object which the outside air comes into contact with in the underfloor space in the first embodiment. 本実施形態1において蓄熱層内に配置された各容器を説明するための概略斜視図である。It is a schematic perspective view for demonstrating each container arranged in a heat storage layer in Embodiment 1. 本発明の実施形態2に係る空調機能付き床下空間を備えた建物換気システムにおける建物の床下空間及び基礎立ち上がり部を上方から示す平断面図である。FIG. 5 is a plan sectional view showing the underfloor space of a building and the rising portion of a foundation in a building ventilation system provided with an underfloor space with an air conditioning function according to a second embodiment of the present invention from above. 従来の床下空間を備えた建物換気システムを示す概略図である。It is a schematic diagram which shows the building ventilation system with the conventional underfloor space.

〔第1の実施形態〕
以下、本発明の実施の形態を図面を用いて説明する。図1は、本発明の実施形態1に係る空調機能付き床下空間を備えた建物換気システムの一部を示す概略正断面図、図2は本実施形態1における建物の床下空間及び基礎立ち上がり部を上方から示す平断面図、図3及び図4は本実施形態1における建物の床下空間及び基礎を側方から示す側断面図である。
[First Embodiment]
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic front sectional view showing a part of a building ventilation system provided with an underfloor space with an air conditioner according to the first embodiment of the present invention, and FIG. 2 shows an underfloor space and a foundation rising portion of the building according to the first embodiment. The plan view, FIG. 3 and FIG. 4 shown from above are side sectional views showing the underfloor space and the foundation of the building in the first embodiment from the side.

図1において、1は建物の外周に沿って配置される外壁、1aは外壁1の下方に配置される土台、2は外壁1及び土台1aの下方の地中に配置される基礎(建物の外周に沿って配置される基礎)、3は間仕切壁、3aは間仕切壁3の下方に配置される土台、4は間仕切壁3及び土台3aの下方の地中に配置される基礎、2aは前記外壁1及び土台1aを支持するための基礎2の立ち上がり部、4’は前記間仕切壁3及び土台3aを支持するための基礎4の立ち上がり部、5は前記各土台1a,3aなどに支持される床、6は前記各基礎立ち上がり部2a,4’の間の地盤面上に施工された土間コンクリート、10は室内である。 In FIG. 1, 1 is an outer wall arranged along the outer periphery of the building, 1a is a foundation arranged below the outer wall 1, and 2 is a foundation arranged in the ground below the outer wall 1 and the foundation 1a (outer circumference of the building). 3 is a partition wall, 3a is a foundation placed below the partition wall 3, 4 is a foundation placed in the ground below the partition wall 3 and the base 3a, and 2a is the outer wall. 1 and the rising portion of the foundation 2 for supporting the foundation 1a, 4'is the rising portion of the foundation 4 for supporting the partition wall 3 and the foundation 3a, and 5 is the floor supported by the foundations 1a, 3a and the like. , 6 are soil concrete constructed on the ground surface between the above-mentioned foundation rising portions 2a, 4', and 10 is an indoor.

また、図1において、5aは前記床5内に形成された外気流通層、1bは前記外壁1の室内10側に形成された外気流通層であって前記床5内の外気流通層5aと連通する外気流通層、3bは前記間仕切壁3の室内10側に形成された外気流通層であって前記床5内の外気流通層5aと連通する外気流通層である。前記の外壁1側の外気流通層1b中に流入された外気は、室内10側の内壁面1c中に形成された通気口1dから室内10に供給される。また、前記の間仕切壁3側の外気流通層3b中に流入された外気は、室内10側の内壁面3c中に形成された通気口3dから室内10に供給される。 Further, in FIG. 1, 5a is an outside air distribution layer formed in the floor 5, and 1b is an outside air distribution layer formed on the indoor 10 side of the outer wall 1 and communicates with the outside air distribution layer 5a in the floor 5. The outside air distribution layer 3b is an outside air distribution layer formed on the indoor 10 side of the partition wall 3 and communicates with the outside air distribution layer 5a in the floor 5. The outside air that has flowed into the outside air flow layer 1b on the outer wall 1 side is supplied to the room 10 from the vent 1d formed in the inner wall surface 1c on the room 10 side. Further, the outside air that has flowed into the outside air flow layer 3b on the partition wall 3 side is supplied to the room 10 from the vent 3d formed in the inner wall surface 3c on the room 10 side.

本実施形態1においては、図1に示すように、外壁1の下方の基礎立ち上がり部2aにより床下空間7が形成されている。また、各間仕切壁3の下方の基礎立ち上がり部4’から成る仕切り部(図2の符号4a〜4kなど参照)により、前記床下空間7内が、複数の小空間(図2の符号8a〜8hなど参照)に区画・分割されている。 In the first embodiment, as shown in FIG. 1, the underfloor space 7 is formed by the foundation rising portion 2a below the outer wall 1. Further, the underfloor space 7 is filled with a plurality of small spaces (reference numerals 8a to 8h in FIG. 2) by the partition portion (see reference numerals 4a to 4k in FIG. 2) formed of the foundation rising portion 4'below each partition wall 3. Etc.)).

前記外壁1の下方の基礎立ち上がり部2aの一部には、外気(戸外からの空気)を床下空間7内に導入するための床下換気口2b(図1,2参照)が形成されている。また、前記各仕切り部(図2の符号4a〜4kなど参照。間仕切壁3の下方の基礎立ち上がり部4’により構成される各仕切り部)中の計7個の仕切り部4a〜4gには、蓄熱層21の周囲に配置された計8個の各小空間8a〜8h(図2参照)の相互間での外気の流通を可能にするための通気口(図2〜4の符号9a〜9g参照)がそれぞれ形成されている。 An underfloor ventilation port 2b (see FIGS. 1 and 2) for introducing outside air (air from the outside) into the underfloor space 7 is formed in a part of the foundation rising portion 2a below the outer wall 1. Further, a total of seven partition portions 4a to 4g in each of the partition portions (see reference numerals 4a to 4k in FIG. 2; each partition portion formed by the foundation rising portion 4'below the partition wall 3) are provided. Vents (reference numerals 9a to 9g in FIGS. 2 to 4) for enabling the flow of outside air between each of the eight small spaces 8a to 8h (see FIG. 2) arranged around the heat storage layer 21. See) are formed respectively.

このように、本実施形態1における床下空間7内では、図2の図示中央の小空間(蓄熱層21を構成する部分)の周囲に計8個の各小空間8a〜8h(図2参照)が配置されている。そして、前記床下空間7内の図示中央の小空間(前記計8個の各小空間8a〜8hに囲まれた小空間)の内部には、多数のグリ石が集積され配置されることにより蓄熱層21が形成されている(詳細は後述する)。 As described above, in the underfloor space 7 in the first embodiment, a total of eight small spaces 8a to 8h around the small space (the portion constituting the heat storage layer 21) in the center of FIG. 2 (see FIG. 2). Is placed. Then, heat is stored by accumulating and arranging a large number of grit stones inside the small space in the center of the illustration in the underfloor space 7 (the small space surrounded by the eight small spaces 8a to 8h in total). Layer 21 is formed (details will be described later).

また本実施形態1では、図1,図2などに示すように、図示中央の小空間を囲むように配置された他の小空間(図2の符号8a〜8h)の中の1つの小空間8h内において、地中パイプ11が、小空間8h内の地中の例えば約1〜10mの深さ(より望ましくは約4〜6mの深さ)に、埋設されている。この地中パイプ11は、例えば前記特許文献1に開示された地中パイプと同じように、外管12の中に内管13が挿入された二重管構造のパイプである。図4に示すように、外気は、前記地中パイプ11を構成する外管12の上方部分の通気口から、外管12と内管13との間の隙間11a(図2参照)内に導入されてその隙間11a内を下降し、その過程で地中熱と熱交換される。前記隙間11a内を下降した外気は、外管12の底部に衝突して反転して内管13内を上昇し、その後、横管14を通って、蓄熱層21内に供給される。 Further, in the first embodiment, as shown in FIGS. 1 and 2, one small space among other small spaces (reference numerals 8a to 8h in FIG. 2) arranged so as to surround the small space in the center of the drawing. Within 8h, the underground pipe 11 is buried in the ground within the small space 8h, for example, at a depth of about 1-10 m (more preferably about 4-6 m). The underground pipe 11 is a pipe having a double pipe structure in which the inner pipe 13 is inserted into the outer pipe 12, for example, like the underground pipe disclosed in Patent Document 1. As shown in FIG. 4, the outside air is introduced into the gap 11a (see FIG. 2) between the outer pipe 12 and the inner pipe 13 from the vent in the upper portion of the outer pipe 12 constituting the underground pipe 11. Then, it descends in the gap 11a and exchanges heat with geothermal heat in the process. The outside air that has descended in the gap 11a collides with the bottom of the outer pipe 12, reverses, rises in the inner pipe 13, and is then supplied into the heat storage layer 21 through the horizontal pipe 14.

また、図2,4に示すように、前記内管13の上方部分には、その先端部が前記中央の小空間内の蓄熱層21の内部に延びる横管14が、接続されている。この横管14の内部には換気用ファン15が配置されている。前記横管14の蓄熱層21内に配置された部分14aは、前記換気用ファン15によりその内部の外気が蓄熱層21内に供給されるように、多数の開口部を有するメッシュ状に形成されている(なお前記横管14内の外気が前記蓄熱層21内に供給されるように、前記横管14の前記部分14aをメッシュ状に構成することに代えて、前記横管14の前記部分14aに多数の通気孔を形成するようにしてもよい)。 Further, as shown in FIGS. 2 and 4, a horizontal pipe 14 whose tip portion extends inside the heat storage layer 21 in the central small space is connected to the upper portion of the inner pipe 13. A ventilation fan 15 is arranged inside the horizontal pipe 14. The portion 14a arranged in the heat storage layer 21 of the horizontal pipe 14 is formed in a mesh shape having a large number of openings so that the outside air inside the portion 14a is supplied into the heat storage layer 21 by the ventilation fan 15. (Instead of forming the portion 14a of the horizontal pipe 14 in a mesh shape so that the outside air in the horizontal pipe 14 is supplied into the heat storage layer 21, the portion of the horizontal pipe 14 is formed. A large number of ventilation holes may be formed in 14a).

また、本実施形態1においては、図2〜4に示すように、前記各仕切り部4a〜4g(本実施形態1では、各仕切り部は、間仕切壁3の下方の基礎立ち上がり部4’により構成されている)には、各小空間の相互間での外気の流通を可能にするための通気口9a〜9gがそれぞれ形成されている。そして、前記の互いに隣り合う又は対向する各仕切り部にそれぞれ形成された各通気口は、図2及び図3に示すように、互いに水平方向及び重力方向にズレた状態で隣り合う又は対向するような位置に、それぞれ形成されている。 Further, in the first embodiment, as shown in FIGS. 2 to 4, each of the partition portions 4a to 4g (in the present embodiment 1, each partition portion is composed of a foundation rising portion 4'below the partition wall 3). Vents 9a to 9g are formed in each of the small spaces to enable the flow of outside air between the small spaces. Then, as shown in FIGS. 2 and 3, the vents formed in the respective partition portions adjacent to each other or facing each other are adjacent to each other or facing each other in a state of being displaced in the horizontal direction and the gravitational direction. It is formed at various positions.

また本実施形態1では、前記床下空間7内で外気が前記各小空間8a〜8g内を流通するときに前記外気が接触する部材又は物体、例えば前記外壁1の下方に位置する基礎立ち上がり部2aの内壁面、及び前記各小空間8a〜8fの側壁面となる仕切り部(基礎立ち上がり部4’により構成される部分)4i,4j,及び4k(図2参照)の内壁面には、図5に示すような微小な突起又は凸部、例えば外気の流通を妨げるような方向に突出する微小な突起又は凸部25が形成されている。この微小な突起又は凸部25により、前記各小空間8a〜8g内を流通する外気の一部は、前記微小な突起又は凸部25の周辺で微小な渦流となる(図5のKを参照)。 Further, in the first embodiment, when the outside air circulates in the small spaces 8a to 8g in the underfloor space 7, the member or object with which the outside air comes into contact, for example, the foundation rising portion 2a located below the outer wall 1. On the inner wall surface of the partition portions (parts composed of the foundation rising portion 4') 4i, 4j, and 4k (see FIG. 2), which are the side wall surfaces of the small spaces 8a to 8f, FIG. The minute protrusions or protrusions 25 as shown in the above are formed, for example, the minute protrusions or protrusions 25 protruding in a direction that hinders the flow of outside air. Due to the minute protrusions or protrusions 25, a part of the outside air circulating in each of the small spaces 8a to 8g becomes a minute vortex around the minute protrusions or protrusions 25 (see K in FIG. 5). ).

よって、本実施形態1では、前述のような微小な突起又は凸部25の各周辺で前記微小な渦流が生じるようになる結果、外気の一部が前記微小な突起又は凸部25の周辺で滞留し、外気の前記各小空間8a〜8g内での滞留時間が全体として増大化するので、前記各小空間8a〜8g内での外気の熱交換が、より効果的に行われるようになる。なお、本発明においては、前記内壁面に突起又は凸部25を形成することに代えて、前記内壁面に凹部(外気の流通方向と交差する方向に窪む凹部)又は凹凸を形成するようにしてもよい。 Therefore, in the first embodiment, as a result of the minute vortex flowing around each of the minute protrusions or the convex portion 25 as described above, a part of the outside air is around the minute protrusion or the convex portion 25. Since it stays and the residence time of the outside air in each of the small spaces 8a to 8g increases as a whole, the heat exchange of the outside air in each of the small spaces 8a to 8g becomes more effective. .. In the present invention, instead of forming the protrusion or the convex portion 25 on the inner wall surface, a concave portion (a concave portion recessed in a direction intersecting the flow direction of the outside air) or an unevenness is formed on the inner wall surface. You may.

また本実施形態1では、前記蓄熱層21を構成する多数のグリ石などの蓄熱材は、複数個が容器に入れられた状態で、前記蓄熱層21内に配置されている。図6はこのような容器の一例を示す図である。図6において、31は多数のグリ石30を収容する例えば金属製(木製、プラスチック製やセラミック製でもよい)の網により形成された容器、32a,32bは前記容器31を開いたときの各端部、33は前記各端部32a,32bを互いに近接又は当接させた状態で固定する公知の構造の固定金具、34は前記容器31の上面側の各端部32a,32bの近傍に取り付けられた取っ手である。なお、前記容器31の外形寸法は、例えば縦300mm、横500mm、高さ400mmである。 Further, in the first embodiment, a large number of heat storage materials such as gritty stones constituting the heat storage layer 21 are arranged in the heat storage layer 21 in a state where a plurality of heat storage materials are contained in a container. FIG. 6 is a diagram showing an example of such a container. In FIG. 6, 31 is a container formed of, for example, a metal (wooden, plastic, or ceramic) net accommodating a large number of grit stones 30, and 32a and 32b are the ends when the container 31 is opened. The portions and 33 are fixed fittings having a known structure for fixing the ends 32a and 32b in close contact with each other or in contact with each other, and 34 is attached in the vicinity of the ends 32a and 32b on the upper surface side of the container 31. It is a handle. The external dimensions of the container 31 are, for example, 300 mm in length, 500 mm in width, and 400 mm in height.

本実施形態1では、例えば前記容器31の上面側の各端部32a,32bを互いに離反させて開き、その開いた部分から多数のグリ石30を入れた後に前記各端部32a,32bを前記固定金具33により互いに固定する。そして、このようにして内部に多数のグリ石30を収容した容器31を多数個、前記床下空間7の中央の小空間(図2参照)の中に配置し敷き詰めることにより蓄熱層21を形成する。このように、本実施形態1では、前述のような複数のグリ石30を収容した容器31を多数個、小空間内に配置し敷き詰めることにより蓄熱層21を形成するようにしたので、蓄熱層21の施工をより効率的に行えるようになる。なお、前記容器31は、網を使用しないで、多数の通気孔が形成されたシートなどを使用して製造するようにしてもよい。 In the first embodiment, for example, the end portions 32a, 32b on the upper surface side of the container 31 are opened apart from each other, and a large number of grit stones 30 are inserted from the opened portion, and then the end portions 32a, 32b are opened. They are fixed to each other by the fixing bracket 33. Then, in this way, a large number of containers 31 containing a large number of grit stones 30 are arranged and spread in a small space (see FIG. 2) in the center of the underfloor space 7 to form the heat storage layer 21. .. As described above, in the first embodiment, the heat storage layer 21 is formed by arranging and laying a large number of containers 31 containing a plurality of grit stones 30 as described above in a small space. The construction of 21 can be performed more efficiently. The container 31 may be manufactured by using a sheet or the like having a large number of ventilation holes formed without using a net.

次に本実施形態1の全体の動作を説明する。図2に示すように、戸外からの外気は、前記換気用ファン15の作用により、基礎立ち上がり部2aの床下換気口2bから小空間8a内に順次流入する。すると、この流入した外気は、前記小空間8a内を、次の小空間8bとの仕切り部4a中の通気口9aに向かって流通する。ここで、前記仕切り部4aの通気口9aは、前記基礎立ち上がり部2a中の前記仕切り部4aと対向する部分における床下換気口2bの位置に対して水平方向(図示左右方向)において図示右方向にズレた位置に形成されている。また、図示省略しているが、前記仕切り部4a中の通気口9aは、前記基礎立ち上がり部2a中の床下換気口2bに対して、重力方向(図2において紙面と直交する方向)においてもズレた位置に形成されている。よって、前記外気は、前記小空間8a内において、矢印α1のように水平方向及び重力方向に蛇行しながら流通する。 Next, the overall operation of the first embodiment will be described. As shown in FIG. 2, the outside air from the outside sequentially flows into the small space 8a from the underfloor ventilation port 2b of the foundation rising portion 2a by the action of the ventilation fan 15. Then, the inflowing outside air circulates in the small space 8a toward the vent 9a in the partition portion 4a with the next small space 8b. Here, the ventilation port 9a of the partition portion 4a is in the horizontal direction (horizontal direction in the drawing) in the horizontal direction (horizontal direction in the drawing) with respect to the position of the ventilation port 2b in the portion facing the partition portion 4a in the foundation rising portion 2a. It is formed in a misaligned position. Further, although not shown, the ventilation port 9a in the partition portion 4a is displaced from the underfloor ventilation port 2b in the foundation rising portion 2a in the direction of gravity (direction orthogonal to the paper surface in FIG. 2). It is formed in a vertical position. Therefore, the outside air circulates in the small space 8a while meandering in the horizontal direction and the gravity direction as shown by the arrow α1.

このようにして、前記小空間8a内を蛇行しつつ流通した外気は、仕切り部4aの通気口9aを通過して次の小空間8b内に流入し、この小空間8b内を、次の小空間8cとの仕切り部4b中の通気口9bに向かって流通する。ここで、図2に示すように、前記仕切り部4b中の通気口9bは、前記仕切り部4a中における通気口9aの位置(図2において図示右寄りの位置)に対して水平方向において図示左方向にズレた位置に形成されている。また、図示省略しているが、前記仕切り部4b中の通気口9bは、前記仕切り部4a中の通気口9aに対して、重力方向(図示上下方向)においてもズレた位置に形成されている。よって、前記外気は、前記小空間8b内において、矢印α2のように水平方向及び重力方向に蛇行しながら流通する。 In this way, the outside air meandering in the small space 8a passes through the vent 9a of the partition portion 4a and flows into the next small space 8b, and the next small space 8b is passed through the small space 8b. It circulates toward the vent 9b in the partition 4b with the space 8c. Here, as shown in FIG. 2, the vent 9b in the partition 4b is in the left direction in the horizontal direction with respect to the position of the vent 9a in the partition 4a (the position on the right side in the drawing 2). It is formed in a position shifted to. Further, although not shown, the vent 9b in the partition 4b is formed at a position deviated from the vent 9a in the partition 4a even in the gravity direction (vertical direction in the drawing). .. Therefore, the outside air circulates in the small space 8b while meandering in the horizontal direction and the gravity direction as shown by the arrow α2.

次に、このようにして、前記小空間8b内を蛇行しつつ流通した外気は、仕切り部4b中の通気口9bを通過して次の小空間8c内に流入し、この小空間8c内を、次の小空間8dとの仕切り部4c中の通気口9cに向かって流通する。ここで、図2に示すように、前記仕切り部4c中の通気口9cは、前記仕切り部4b中における通気口9bの位置(図2において図示左寄りの位置)に対して水平方向において右方向(=図示上方向)にズレた位置に形成されている。また、図3に示すように、前記仕切り部4c中の通気口9cは、前記仕切り部4b中の通気口9bの位置(重力方向において下方の位置)に対して、重力方向においてもズレた位置(重力方向において上方の位置)に形成されている。よって、前記外気は、図2及び図3に示すように、前記小空間8c内において、矢印α3のように水平方向及び重力方向に蛇行しながら流通する。 Next, the outside air meandering in the small space 8b in this way passes through the vent 9b in the partition portion 4b and flows into the next small space 8c, and flows into the small space 8c. , It circulates toward the vent 9c in the partition 4c with the next small space 8d. Here, as shown in FIG. 2, the vent 9c in the partition 4c is located in the right direction (leftward in the drawing in FIG. 2) in the horizontal direction with respect to the position of the vent 9b in the partition 4b. = It is formed at a position shifted in the upward direction in the figure). Further, as shown in FIG. 3, the ventilation port 9c in the partition portion 4c is located at a position deviated from the position of the ventilation port 9b in the partition portion 4b (position lower in the gravity direction) also in the gravity direction. It is formed (upper position in the direction of gravity). Therefore, as shown in FIGS. 2 and 3, the outside air circulates in the small space 8c while meandering in the horizontal direction and the gravity direction as shown by the arrow α3.

次に、このようにして、前記小空間8c内を蛇行しつつ流通した外気は、仕切り部4c中の通気口9cを通過して次の小空間8d内に流入し、この小空間8d内を、次の小空間8eとの仕切り部4d中の通気口9dに向かって流通する。ここで、前記仕切り部4d中の通気口9dは、前記仕切り部4c中における通気口9cの位置(図2において図示上方の位置)に対して水平方向(図示上下方向)において図示下方向にズレた位置に形成されている。また、図3に示すように、前記仕切り部4d中の通気口9dは、前記仕切り部4c中の通気口9cの位置(重力方向において上方の位置)に対して、重力方向においてもズレた位置(重力方向において下方の位置)に形成されている。よって、前記外気は、図2及び図3に示すように、前記小空間8d内において、矢印α4のように水平方向及び重力方向において蛇行しながら流通する。 Next, the outside air meandering in the small space 8c in this way passes through the vent 9c in the partition 4c and flows into the next small space 8d, and flows through the small space 8d. , It circulates toward the vent 9d in the partition 4d with the next small space 8e. Here, the ventilation port 9d in the partition portion 4d is displaced downward in the drawing in the horizontal direction (upper and lower direction in the drawing) with respect to the position of the ventilation port 9c in the partition portion 4c (upper position in the drawing). It is formed in a vertical position. Further, as shown in FIG. 3, the vent 9d in the partition 4d is displaced from the position of the vent 9c in the partition 4c (upper position in the gravity direction) in the gravity direction. It is formed (at a lower position in the direction of gravity). Therefore, as shown in FIGS. 2 and 3, the outside air circulates in the small space 8d while meandering in the horizontal direction and the gravity direction as shown by the arrow α4.

次に、このようにして、前記小空間8d内を蛇行しつつ流通した外気は、仕切り部4dの通気口9dを通過して次の小空間8e内に流入し、この小空間8e内を、次の小空間8fとの仕切り部4e中の通気口9eに向かって流通する。ここで、図2に示すように、前記仕切り部4e中の通気口9eは、前記仕切り部4d中の水平方向における通気口9dの位置(図2において図示下方の位置)に対して、水平方向においてはズレていない位置(図2において図示右方の位置)に形成されている。しかし、図3に示すように、前記仕切り部4e中の通気口9eは、前記仕切り部4d中における通気口9dの位置(重力方向において下方の位置)と重力方向においてズレた位置(重力方向において上方の位置)に形成されている。よって、前記外気は、図3に示すように、前記小空間8e内において、矢印α5のように重力方向において蛇行(図3参照)しながら流通する。 Next, the outside air that meanders and circulates in the small space 8d in this way passes through the vent 9d of the partition portion 4d and flows into the next small space 8e, and the inside of the small space 8e is introduced. It circulates toward the vent 9e in the partition 4e with the next small space 8f. Here, as shown in FIG. 2, the vent 9e in the partition 4e is in the horizontal direction with respect to the position of the vent 9d in the partition 4d in the horizontal direction (the position shown below in FIG. 2). Is formed at a position that is not displaced (the position on the right side of the drawing in FIG. 2). However, as shown in FIG. 3, the vent 9e in the partition 4e is displaced from the position of the vent 9d in the partition 4d (lower position in the direction of gravity) in the direction of gravity (in the direction of gravity). It is formed in the upper position). Therefore, as shown in FIG. 3, the outside air circulates in the small space 8e while meandering (see FIG. 3) in the direction of gravity as shown by the arrow α5.

次に、このようにして、前記小空間8e内を重力方向において蛇行(図3参照)しつつ流通した外気は、仕切り部4eの通気口9eを通過して次の小空間8f内に流入し、この小空間8f内を、次の小空間8gとの仕切り部4f中の通気口9fに向かって流通する。ここで、前記仕切り部4f中の通気口9fは、前記仕切り部4e中における通気口9eの位置(図2において図示右寄りの位置)に対して水平方向においてズレた位置(図2において図示左寄りの位置)に形成されている。また、図示省略しているが、前記仕切り部4f中の通気口9fは、前記仕切り部4e中の通気口9eの重力方向における位置に対して、重力方向においてもズレた位置に形成されている。よって、前記外気は、前記小空間8f内において、矢印α6のように水平方向及び重力方向において蛇行しながら流通する。 Next, the outside air that circulates in the small space 8e while meandering in the direction of gravity (see FIG. 3) passes through the ventilation port 9e of the partition portion 4e and flows into the next small space 8f. , The inside of this small space 8f is circulated toward the vent 9f in the partition portion 4f with the next small space 8g. Here, the ventilation port 9f in the partition portion 4f is displaced in the horizontal direction from the position of the ventilation port 9e in the partition portion 4e (the position on the right side in the drawing 2) (the position on the left side in the drawing 2). Position) is formed. Further, although not shown, the ventilation port 9f in the partition portion 4f is formed at a position deviated from the position of the ventilation port 9e in the partition portion 4e in the gravity direction also in the gravity direction. .. Therefore, the outside air circulates in the small space 8f while meandering in the horizontal direction and the gravity direction as shown by the arrow α6.

次に、このようにして、前記小空間8f内を蛇行しつつ流通した外気は、仕切り部4fの通気口9fを通過して次の小空間8g内に流入し、この小空間8g内を、次の小空間8hとの仕切り部4g中の通気口9gに向かって流通する。ここで、前記仕切り部4g中の通気口9gは、前記仕切り部4f中における通気口9fの位置(図2において図示左側の位置)に対して水平方向においてズレた位置(図2において図示上側の位置)に形成されている。また、図示省略しているが、前記仕切り部4g中の通気口9gは、前記仕切り部4f中の通気口9fの重力方向における位置に対して、重力方向においてもズレた位置に形成されている。よって、前記外気は、前記小空間8g内において、矢印α7のように水平方向及び重力方向において蛇行しながら流通する。 Next, the outside air meandering in the small space 8f in this way passes through the vent 9f of the partition portion 4f and flows into the next small space 8g, and the inside of the small space 8g is filled with the outside air. It circulates toward the vent 9g in the partition 4g with the next small space 8h. Here, the ventilation port 9g in the partition portion 4g is displaced in the horizontal direction from the position of the ventilation port 9f in the partition portion 4f (the position on the left side in the drawing in FIG. 2) (the upper side in the drawing in FIG. 2). Position) is formed. Further, although not shown, the vent 9g in the partition 4g is formed at a position deviated in the gravity direction from the position of the vent 9f in the partition 4f in the gravity direction. .. Therefore, the outside air circulates in the small space 8 g while meandering in the horizontal direction and the gravitational direction as shown by the arrow α7.

次に、このようにして、前記小空間8g内を蛇行しつつ流通した外気は、仕切り部4gの通気口9gを通過して次の小空間8h内に流入する。この小空間8h内には、外管12と内管13とから成る二重構造の地中パイプ11が、その上方部分だけが地盤面上に露出された状態で地中に埋設されている。前記小空間8h内に流入した外気は、前記換気用ファン15の作用により、地中パイプ11を構成する外管12と内管13との間の隙間11a中に流入し(図2の矢印α8参照)、前記隙間11a内を下降する(図1の矢印A参照)。この過程で、前記外気は地中熱と熱交換される。その後、前記隙間11a内を下降した外気は、図1,図4に示すように、外管12の底部に衝突した後、内管13の内部に入り、その中を上昇する(図1の矢印Bを参照)。 Next, the outside air meandering in the small space 8g in this way passes through the ventilation port 9g of the partition portion 4g and flows into the next small space 8h. In this small space 8h, a double-structured underground pipe 11 composed of an outer pipe 12 and an inner pipe 13 is buried in the ground with only the upper portion exposed on the ground surface. The outside air flowing into the small space 8h flows into the gap 11a between the outer pipe 12 and the inner pipe 13 constituting the underground pipe 11 by the action of the ventilation fan 15 (arrow α8 in FIG. 2). (See), descending in the gap 11a (see arrow A in FIG. 1). In this process, the outside air is heat-exchanged with geothermal heat. After that, as shown in FIGS. 1 and 4, the outside air descending in the gap 11a enters the inside of the inner pipe 13 after colliding with the bottom of the outer pipe 12, and rises in the inside (arrow in FIG. 1). See B).

前記内管13中を上昇した外気は、図4に示すように、内管13の上方部分と接続された横管14内に流入する。図2に示すように、横管14は、小空間8hとそれと隣り合う蓄熱層21が配置された小空間(図2において床下空間7内の中央に位置する小空間)との間を区画する仕切り部4h中の開口部を介して、小空間8hから次の小空間内の蓄熱層21内に延びるように配置されている。前述のようにして横管14内に流入した外気は、換気用ファン15の作用により、横管14の前記蓄熱層21内の先端近傍部分14aの方に移動し、横管14内部から、その先端近傍部分14a(外周部分が金網などのメッシュ構造により構成されることなどにより、外周部分に多数の通気孔が形成されている部分)を介して、外部(蓄熱層21)に排出される(図2の矢印α9参照。また図1の矢印Cも参照)。 As shown in FIG. 4, the outside air that has risen in the inner pipe 13 flows into the horizontal pipe 14 connected to the upper portion of the inner pipe 13. As shown in FIG. 2, the horizontal pipe 14 partitions between the small space 8h and the small space in which the heat storage layer 21 adjacent to the small space 8h is arranged (the small space located in the center of the underfloor space 7 in FIG. 2). It is arranged so as to extend from the small space 8h into the heat storage layer 21 in the next small space through the opening in the partition portion 4h. The outside air that has flowed into the horizontal pipe 14 as described above moves toward the tip vicinity portion 14a in the heat storage layer 21 of the horizontal pipe 14 by the action of the ventilation fan 15, and from the inside of the horizontal pipe 14, the outside air is moved. It is discharged to the outside (heat storage layer 21) via a portion near the tip 14a (a portion in which a large number of ventilation holes are formed in the outer peripheral portion due to the outer peripheral portion being formed of a mesh structure such as a wire mesh) (a portion in which a large number of ventilation holes are formed in the outer peripheral portion). See arrow α9 in FIG. 2; also see arrow C in FIG. 1).

前記横管14の先端近傍部分14aから排出された外気は、多数の蓄熱材(本実施形態1ではグリ石)が集積された蓄熱層21内に流入される(図1の矢印Cを参照)。前記地中パイプ11から蓄熱層21内に流入した外気は、前記各蓄熱材(グリ石)30の間の隙間を流通・通過する過程で、前記各蓄熱材(グリ石)30と熱交換され、その後、床5内の外気流通層5a内に流入する(図1の矢印D参照)。その後、前記外気は、間仕切壁3の室内側の外気流通層3b及び外壁1の室内側の外気流通層1b内に流入され(図1の矢印E参照)た後、内壁面3c,1c中に形成された通気口3d,1dからそれぞれ各室内10に供給される(図1の矢印F参照)。 The outside air discharged from the portion near the tip of the horizontal pipe 14 flows into the heat storage layer 21 in which a large number of heat storage materials (grind stones in the first embodiment) are accumulated (see arrow C in FIG. 1). .. The outside air that has flowed into the heat storage layer 21 from the underground pipe 11 is heat-exchanged with each of the heat storage materials (grind stones) 30 in the process of flowing and passing through the gaps between the heat storage materials (grind stones) 30. After that, it flows into the outside air flow layer 5a in the floor 5 (see arrow D in FIG. 1). After that, the outside air flows into the outside air flow layer 3b on the indoor side of the partition wall 3 and the outside air flow layer 1b on the indoor side of the outer wall 1 (see arrow E in FIG. 1), and then enters the inner walls 3c and 1c. It is supplied to each room 10 from the formed vents 3d and 1d, respectively (see arrow F in FIG. 1).

なお、本実施形態1では、前記地中パイプ11から蓄熱層21内に流入した外気は、前記各蓄熱材(グリ石)30の間の隙間を流通・通過する過程で、前記各蓄熱材(グリ石)30と熱交換されるだけでなく、前記各蓄熱材(グリ石)30の表面に付着している水分(又は前記各蓄熱材(グリ石)30の水分が付着しないで乾燥している表面)との間で外気が含む湿気が調湿される(乾燥した外気に蓄熱材表面に水分が供給されたり、それとは逆に、外気に多く含まれている湿気が蓄熱材の表面に付着して外気の湿気が減少させられることなどによる、前記各蓄熱材による外気調湿作用)と共に、外気が含む粉塵が前記各蓄熱材(グリ石)30の表面(特に水分が付着した表面)に付着されて外気が清浄化され(前記各蓄熱材による外気清浄化作用)、そのような地中熱と熱交換され、調湿され、及び清浄化された外気が、室内10に供給される。 In the first embodiment, the outside air flowing into the heat storage layer 21 from the underground pipe 11 flows and passes through the gaps between the heat storage materials (grind stones) 30. Not only is it heat-exchanged with the heat storage material (grid stone) 30, but it is dried without the water adhering to the surface of each of the heat storage materials (grid stone) 30 (or the water content of each heat storage material (grid stone) 30 adhering to it. Moisture contained in the outside air is controlled between the surface and the surface of the heat storage material (moisture is supplied to the surface of the heat storage material in the dry outside air, and conversely, moisture contained in a large amount of the outside air is applied to the surface of the heat storage material. Along with the outside air humidity control action by each of the heat storage materials due to adhesion and reduction of the humidity of the outside air, dust contained in the outside air is present on the surface of each of the heat storage materials (grind stones) 30 (particularly the surface to which moisture is attached). The outside air is purified (outside air cleaning action by each of the above-mentioned heat storage materials), and the outside air that is heat-exchanged with such underground heat, humidity-controlled, and purified is supplied to the room 10. ..

以上のように、本実施形態1においては、外気は、前記換気用ファン15により、床下空間7内に導入された後、前記蓄熱層21へ送られる前に、前記複数の各小空間8a〜8gの内部を順次に流通、通過する過程で、床下空間7内の基礎立ち上がり部2a等の物体が有する熱(前記床下空間7内には予め前記蓄熱層21の作用などにより地中熱などが伝導され蓄熱されている)と熱交換されるようになる。よって、本実施形態1によれば、外気を地中熱などと熱交換させるための蓄熱層21を床下空間7中の一部だけに構成することにより建設コストを低減化させながら、外気を床下空間7全体でその内部の地中熱などと有効に熱交換させてから、外気を室内10に供給することができるようになる。 As described above, in the first embodiment, the outside air is introduced into the underfloor space 7 by the ventilation fan 15, and before being sent to the heat storage layer 21, the plurality of small spaces 8a to 8a. In the process of sequentially circulating and passing through the inside of 8 g, the heat possessed by an object such as the foundation rising portion 2a in the underfloor space 7 (in the underfloor space 7, geothermal heat or the like is generated in advance by the action of the heat storage layer 21 or the like. It will be heat exchanged with (conducted and stored heat). Therefore, according to the first embodiment, the heat storage layer 21 for exchanging heat with the geothermal heat or the like is formed only in a part of the underfloor space 7, thereby reducing the construction cost and allowing the outside air to be underfloor. After effectively exchanging heat with the geothermal heat inside the space 7 as a whole, the outside air can be supplied to the room 10.

また、本実施形態1では、前記複数の各小空間8a〜8gを前記蓄熱層21(床下空間7内の略中央に位置する小空間内の蓄熱層21)の周囲(外周側)を囲むように配置し、前記外気が、前記蓄熱層21の周囲(外周側)に沿って前記各小空間8a〜8gの中を順次流通した後に前記小空間8h内の地中パイプ11を介して前記蓄熱層21内に流入するように、構成されている。よって、本実施形態1によれば、前記外気は、前記蓄熱層21の周囲(外周側)に沿って前記各小空間8a〜8gの中を順次流通する過程で床下空間7内の地中熱などと十分に熱交換されてから、前記蓄熱層21に流入するようになる。 Further, in the first embodiment, the plurality of small spaces 8a to 8g are surrounded by the periphery (outer peripheral side) of the heat storage layer 21 (heat storage layer 21 in the small space located substantially in the center of the underfloor space 7). The outside air sequentially circulates in each of the small spaces 8a to 8g along the periphery (outer peripheral side) of the heat storage layer 21, and then the heat storage is passed through the underground pipe 11 in the small space 8h. It is configured to flow into layer 21. Therefore, according to the first embodiment, the outside air is the geothermal heat in the underfloor space 7 in the process of sequentially circulating in each of the small spaces 8a to 8g along the periphery (outer peripheral side) of the heat storage layer 21. After sufficiently exchanging heat with the heat storage layer 21, the heat flows into the heat storage layer 21.

また、本実施形態1において、前記複数の仕切り部(例えば基礎立ち上がり部4’により構成される仕切り部)は、外気の流通方向における後方及び前方にそれぞれ位置する各仕切り部同士の各通気口の各位置が水平方向及び/又は重力方向において互いにズレた位置となるように形成又は構成されている。すなわち、本実施形態1では、図2に示すように、外気の流通方向における後方及び前方にそれぞれ位置する基礎立ち上がり部2aの床下換気口2bと仕切り部4aの通気口9a、同各仕切り部4aと4bの各通気口9aと9b、同各仕切り部4bと4cの各通気口9bと9c、同各仕切り部4cと4dの各通気口9cと9d、同各仕切り部4dと4eの各通気口9dと9e、同各仕切り部4eと4fの各通気口9eと9f、及び、同各仕切り部4fと4gの各通気口9fと9gの各位置が、水平方向及び/又は重力方向において互いにズレた位置となるように形成又は構成されている。よって、本実施形態1によれば、前記外気が前記蓄熱層21の周囲(外周側)に沿って前記各小空間8a〜8gの中を順次流通するとき、前記外気は前記各小空間8a〜8g内を水平方向及び/又は重力方向に蛇行しながら流通・通過する(前記蛇行により前記各小空間8a〜8g内での外気の滞留時間が増大化する)ようになる。よって、本実施形態1によれば、前記外気の床下空間7内での地中熱などとの熱交換が、より効果的に行われるようになる。 Further, in the first embodiment, the plurality of partition portions (for example, the partition portion composed of the foundation rising portion 4') are the vents of the partition portions located rearward and front in the flow direction of the outside air. Each position is formed or configured so as to be displaced from each other in the horizontal direction and / or the gravitational direction. That is, in the first embodiment, as shown in FIG. 2, the underfloor ventilation port 2b of the foundation rising portion 2a and the ventilation port 9a of the partition portion 4a, and the respective partition portions 4a of the foundation rising portion 2a located rearward and front in the flow direction of the outside air, respectively. And 4b vents 9a and 9b, each partition 4b and 4c vents 9b and 9c, each partition 4c and 4d vents 9c and 9d, and each partition 4d and 4e vent. The positions of the vents 9d and 9e, the vents 9e and 9f of the partitions 4e and 4f, and the vents 9f and 9g of the partitions 4f and 4g are located in the horizontal direction and / or the gravity direction. It is formed or configured so as to be in a misaligned position. Therefore, according to the first embodiment, when the outside air sequentially circulates in each of the small spaces 8a to 8g along the periphery (outer peripheral side) of the heat storage layer 21, the outside air is said to be in each of the small spaces 8a to 8a. It flows and passes through 8 g while meandering in the horizontal direction and / or the gravitational direction (the meandering increases the residence time of the outside air in each of the small spaces 8a to 8g). Therefore, according to the first embodiment, heat exchange with the underground heat or the like in the underfloor space 7 of the outside air can be performed more effectively.

また、本実施形態1では、前記各小空間8a〜8g内を流通する過程で前記外気が接触する部材又は物体の表面(例えば、基礎2の立ち上がり部2aの内壁面、基礎4の立ち上がり部4’により構成される各仕切り部4i,4j.4kの内壁面など)を、図5に示すように、外気の一部がその周辺で微小な渦流を形成するような微小な突起又は凸部(外気の流通を妨げる方向に延びる突起又は凸部)25を有するように、形成した。よって、本実施形態1によれば、外気の一部が前記表面の近傍で微小な渦流となる結果、外気が前記表面と接触する時間及び面積が全体として増加するので、前記外気が前記蓄熱層21の周囲(外周側)に沿って前記各小空間8a〜8gの中を順次流通する過程における前記外気の床下空間7内の地中熱などとの熱交換が、より効果的に行われるようになる。 Further, in the first embodiment, the surface of a member or an object (for example, the inner wall surface of the rising portion 2a of the foundation 2 and the rising portion 4 of the foundation 4) that the outside air comes into contact with in the process of circulating in each of the small spaces 8a to 8g. As shown in FIG. 5, the inner wall surface of each partition portion 4i, 4j.4k composed of'is formed with a minute protrusion or a convex portion (such as a minute vortex) in which a part of the outside air forms a minute vortex. It was formed so as to have a protrusion (or convex portion) 25 extending in a direction obstructing the flow of outside air. Therefore, according to the first embodiment, as a result of a part of the outside air forming a minute vortex in the vicinity of the surface, the time and area where the outside air comes into contact with the surface increases as a whole, so that the outside air becomes the heat storage layer. Heat exchange with the geothermal heat in the underfloor space 7 of the outside air in the process of sequentially circulating in each of the small spaces 8a to 8g along the periphery (outer peripheral side) of the 21 is performed more effectively. become.

また、本実施形態1では、前記蓄熱層21は、前記各小空間8a〜8g及び地中パイプ11内を流通する過程で熱交換された後の外気を受け入れて室内10に供給するようにしている。よって、本実施形態1によれば、前記床下空間7(各小空間8a〜8g)及び地中パイプ11内で地中熱などと熱交換されその後さらに蓄熱層21の内部で熱交換された快適な外気を、室内10に供給できるようになる。 Further, in the first embodiment, the heat storage layer 21 receives the outside air after heat exchange in the process of circulating in each of the small spaces 8a to 8g and the underground pipe 11 and supplies the outside air to the room 10. There is. Therefore, according to the first embodiment, the underfloor space 7 (each small space 8a to 8g) and the underground pipe 11 are heat-exchanged with geothermal heat and the like, and then the heat is further exchanged inside the heat storage layer 21. The outside air can be supplied to the room 10.

また、本実施形態1では、前記蓄熱層21を、金属などの熱伝導性の高い材料により構成された容器又は外気が容器の内外を流通可能なメッシュ構造又は多数の通気孔を有する容器31であって複数の蓄熱材30をその内部に収納した容器31を多数個並べ積層することにより構成するようにしたので、前記蓄熱層21の施工を極めて効率的に行えるようになる。 Further, in the first embodiment, the heat storage layer 21 is formed of a container made of a material having high thermal conductivity such as metal, a container 31 having a mesh structure capable of allowing outside air to flow inside and outside the container, or a container 31 having a large number of ventilation holes. Therefore, since a large number of containers 31 in which a plurality of heat storage materials 30 are housed are arranged and laminated, the heat storage layer 21 can be constructed extremely efficiently.

さらに、本実施形態1では、前記地中パイプ11を、前記床下空間7内の各小空間中の前記蓄熱層21が配置された小空間と隣接する小空間8h内から地中に埋設して構成するようにしたので、前記地中パイプ11内で熱交換された外気を前記蓄熱層21に移送することが極めて円滑にできるようになる。 Further, in the first embodiment, the underground pipe 11 is buried in the ground from the small space 8h adjacent to the small space in which the heat storage layer 21 is arranged in each small space in the underfloor space 7. Since the structure is configured, the outside air heat exchanged in the underground pipe 11 can be transferred to the heat storage layer 21 extremely smoothly.

〔第2の実施形態〕
次に本発明の実施形態2に係る空調機能付き床下空間を備えた建物換気システムを、図7の概略正断面図を参照して説明する。本実施形態2は前記実施形態1と基本的構成が同一であるので、以下では異なる部分についてのみ説明する。
[Second Embodiment]
Next, the building ventilation system provided with the underfloor space with an air-conditioning function according to the second embodiment of the present invention will be described with reference to the schematic front sectional view of FIG. 7. Since the basic configuration of the second embodiment is the same as that of the first embodiment, only different parts will be described below.

本実施形態2では、図7に示すとおり、前記実施形態1と同様に、床下空間7内の複数の各小空間8a〜8gを、蓄熱層21(床下空間7内の略中央に位置する小空間内の蓄熱層21)の周囲(外周側)を、ほぼ一週分、囲むように配置し、床下換気口2bからの外気が、前記蓄熱層21の周囲(外周側)に沿って前記各小空間8a〜8gの中を順次流通した後に前記小空間8h内の地中パイプ11を介して前記蓄熱層21内に流入するように、構成されている。よって、本実施形態2においても、前記実施形態1と同様に、前記外気は、前記蓄熱層21の周囲(外周側)に沿って前記各小空間8a〜8gの中を順次流通する過程で床下空間7内の地中熱などと十分に熱交換されてから、前記蓄熱層21に流入するようになっている。 In the second embodiment, as shown in FIG. 7, similarly to the first embodiment, each of the plurality of small spaces 8a to 8g in the underfloor space 7 is formed into a small heat storage layer 21 (small located substantially in the center of the underfloor space 7). The perimeter (outer peripheral side) of the heat storage layer 21) in the space is arranged so as to surround it for about one week, and the outside air from the underfloor ventilation port 2b flows along the perimeter (outer peripheral side) of the heat storage layer 21. It is configured so that it flows into the heat storage layer 21 through the underground pipe 11 in the small space 8h after being sequentially circulated in the spaces 8a to 8g. Therefore, also in the second embodiment, as in the first embodiment, the outside air is under the floor in the process of sequentially circulating in each of the small spaces 8a to 8g along the periphery (outer peripheral side) of the heat storage layer 21. After sufficiently exchanging heat with the geothermal heat in the space 7, the heat flows into the heat storage layer 21.

しかし、本実施形態2では、前記実施形態1と異なって、床下空間7内を複数の各小空間8a〜8gに区分する各仕切り部4a〜4gの各通気口9a’〜9g’の位置について、前記実施形態1のように外気の流通方向における後方及び前方にそれぞれ位置する各仕切り部同士の各通気口の位置が水平方向及び/又は重力方向において互いにズレた位置となるように形成又するのではなく、前記各通気口9a’〜9g’の各位置が水平方向及び重力方向において互いにズレないような位置に形成するようにしている。よって、本実施形態2においては、前記実施形態1と異なって、外気が前記蓄熱層21の周囲(外周側)に沿って前記各小空間8a〜8gの中を順次流通するとき、前記外気は前記各小空間8a〜8g内を水平方向及び/又は重力方向において蛇行しながら流通・通過する(前記蛇行により前記各小空間8a〜8g内での外気の滞留時間が増大化する)という作用効果は生じない。 However, in the second embodiment, unlike the first embodiment, the positions of the vents 9a'to 9g'of the partition portions 4a to 4g that divide the underfloor space 7 into a plurality of small spaces 8a to 8g. , As in the first embodiment, the positions of the vents of the partitions located in the rear and front in the flow direction of the outside air are formed so as to be offset from each other in the horizontal direction and / or the gravity direction. Instead, the positions of the vents 9a'to 9g'are formed so as not to be displaced from each other in the horizontal direction and the gravity direction. Therefore, in the second embodiment, unlike the first embodiment, when the outside air sequentially circulates in each of the small spaces 8a to 8g along the periphery (outer peripheral side) of the heat storage layer 21, the outside air is generated. The effect of flowing and passing through each of the small spaces 8a to 8g while meandering in the horizontal direction and / or the direction of gravity (the meandering increases the residence time of the outside air in each of the small spaces 8a to 8g). Does not occur.

しかしながら、上記の構成以外は本実施形態2の構成は前記実施形態1と同様である。よって、本実施形態2によっても、上記の「前記外気は前記各小空間8a〜8g内を水平方向及び/又は重力方向において蛇行しながら流通・通過する(前記蛇行により前記各小空間8a〜8g内での外気の滞留時間が増大化する)という作用効果」を除き、前記実施形態1と同様の作用効果を、奏することができる。 However, the configuration of the second embodiment is the same as that of the first embodiment except for the above configuration. Therefore, also in the second embodiment, the above-mentioned "the outside air flows and passes through the small spaces 8a to 8g while meandering in the horizontal direction and / or the gravity direction (the meandering causes the small spaces 8a to 8g). It is possible to achieve the same effect as that of the first embodiment, except for the effect of increasing the residence time of the outside air inside.

以上、本発明の各実施形態1,2について説明したが、本発明は前記の各実施形態1,2として述べたものに限定されるものではなく、様々な修正及び変更が可能である。例えば、前記実施形態1,2では、(a)戸外からの外気を床下空間7中の各小空間8a〜8g内8a〜8g内において順次流通させて熱交換させた後に地中パイプ11内で流通させて熱交換させその後に蓄熱層21内で流通させて熱交換させる(その後に室内10に供給する)ようにしたが、本発明ではこれらに限られるものではなく、例えば、(b)戸外からの外気を床下空間7中の各小空間8a〜8g内において順次流通させて熱交換させた後に蓄熱層21内で流通させて熱交換させその後に地中パイプ11内で流通させて熱交換させる(その後に室内10に供給する)、(c)戸外からの外気を床下空間7中の蓄熱層21内で流通させて熱交換させその後に地中パイプ11内で流通させて熱交換させその後に床下空間7中の各小空間8a〜8g内において順次流通させて熱交換させる(その後に室内10に供給する)、(d)戸外からの外気を床下空間7中の蓄熱層21内で流通させて熱交換させその後に床下空間7中の各小空間8a〜8g内において順次流通させて熱交換させその後に地中パイプ11内で流通させて熱交換させる(その後に室内10に供給する)、(e)戸外からの外気を地中パイプ(例えば建物外の敷地中に埋設した地中パイプ)内で流通させて熱交換させその後に床下空間7中の各小空間8a〜8g内において順次流通させて熱交換させその後に床下空間7中の蓄熱層21内内で流通させて熱交換させる(その後に室内10に供給する)、又は(f)戸外からの外気を地中パイプ(例えば建物外の敷地中に埋設した地中パイプ)内で流通させて熱交換させその後に床下空間7中の蓄熱層21内で流通させて熱交換させその後に床下空間7中の各小空間8a〜8g内において順次流通させて熱交換させる(その後に室内10に供給する)、などの様々な方法が可能である。 Although the first and second embodiments of the present invention have been described above, the present invention is not limited to those described as the first and second embodiments described above, and various modifications and modifications can be made. For example, in the first and second embodiments, (a) outside air from the outside is sequentially circulated in each of the small spaces 8a to 8g in the underfloor space 7 to exchange heat, and then in the underground pipe 11. It was circulated to exchange heat, and then circulated in the heat storage layer 21 to exchange heat (subsequently supplied to the room 10), but the present invention is not limited to these, and for example, (b) outdoors. The outside air from the above floors is sequentially circulated in each of the small spaces 8a to 8g in the underfloor space 7 to exchange heat, and then circulated in the heat storage layer 21 to exchange heat, and then circulated in the underground pipe 11 to exchange heat. (After that, it is supplied to the room 10), (c) The outside air from the outside is circulated in the heat storage layer 21 in the underfloor space 7 for heat exchange, and then circulated in the underground pipe 11 for heat exchange. In each of the small spaces 8a to 8g in the underfloor space 7, heat is exchanged (subsequently supplied to the room 10), and (d) the outside air from the outside is distributed in the heat storage layer 21 in the underfloor space 7. After that, they are sequentially circulated in each of the small spaces 8a to 8g in the underfloor space 7 to exchange heat, and then circulated in the underground pipe 11 to exchange heat (then supplied to the room 10). , (E) The outside air from the outside is circulated in the underground pipe (for example, the underground pipe buried in the site outside the building) to exchange heat, and then sequentially in each small space 8a to 8g in the underfloor space 7. It is circulated to exchange heat, and then circulated in the heat storage layer 21 in the underfloor space 7 to exchange heat (then supplied to the room 10), or (f) the outside air from the outside is sent to an underground pipe (for example, a building). It is circulated in the underground pipe buried in the outside site) to exchange heat, and then it is circulated in the heat storage layer 21 in the underfloor space 7 to exchange heat, and then each small space 8a to 8 g in the underfloor space 7. Various methods are possible, such as sequentially distributing them in the room to exchange heat (then supplying them to the room 10).

また、前記実施形態1においては、前記外気の流通方向における後方及び前方に位置する各仕切り部同士を、その各通気口の位置が水平方向及び重力方向において互いにズレた位置となるように形成するようにしたが、本発明ではこれに限られるものではなく、例えばその各通気口の位置が水平方向及び重力方向のいずれか一方の方向においてのみ互いにズレた位置となるように形成するようにしてもよい。 Further, in the first embodiment, the partition portions located at the rear and the front in the flow direction of the outside air are formed so that the positions of the vents are displaced from each other in the horizontal direction and the gravity direction. However, the present invention is not limited to this, and for example, the positions of the vents are formed so as to be displaced from each other only in either the horizontal direction or the gravity direction. May be good.

さらに、前記実施形態1又は2においては、外気を床下空間7中の各小空間8a〜8g内において順次流通させるために形成される各仕切り部4a〜4g中の通気口9a〜9g又は9a’〜9g’を、各仕切り部4a〜4g中の孔として形成したが、本発明では各仕切り部4a〜4g中の端部の切欠きとして形成するようにしてもよい。 Further, in the first or second embodiment, the vents 9a to 9g or 9a'in each of the partition portions 4a to 4g formed to sequentially circulate the outside air in each of the small spaces 8a to 8g in the underfloor space 7. ~ 9g'is formed as a hole in each of the partition portions 4a to 4g, but in the present invention, it may be formed as a notch at the end portion in each of the partition portions 4a to 4g.

1 外壁
1a,3a 土台
1b,3b,5a 外気流通層
1c,3c 内壁面
1d,3d,9a〜9g 通気口
2,4 基礎
2a,4’ 基礎立ち上がり部
2b 床下換気口
3 間仕切壁
4a〜4k 仕切り部
5 床
6 土間コンクリート
7 床下空間
8a〜8h 小空間
25 凸部
30 蓄熱材(グリ石)
31 容器
32a,32b 容器の各端部
33 固定金具
34 取っ手
1 Outer wall 1a, 3a Base 1b, 3b, 5a Outside air flow layer 1c, 3c Inner wall surface 1d, 3d, 9a-9g Vents 2,4 Foundation 2a, 4'Foundation rising part 2b Underfloor ventilation port 3 Partition wall 4a-4k Partition Part 5 Floor 6 Soil concrete 7 Underfloor space 8a-8h Small space 25 Convex part 30 Heat storage material (grind stone)
31 Containers 32a, 32b Each end of the container 33 Fixing bracket 34 Handle

Claims (3)

戸外からの外気を床下空間内に導入する外気導入部と、
前記床下空間内を複数の各小空間に区画する複数の仕切り部であって、前記複数の各小空間を外気の流通方向に沿って形成するように配置されており、或る小空間から隣接する他の小空間へと外気を順次流通させるための各空気通過孔がそれぞれ形成されている複数の仕切り部であって、前記外気が後記蓄熱層の周囲(外周側)に沿って前記各小空間の中を順次流通してから後記蓄熱層内に流入するように、後記蓄熱層の周囲(外周側)を囲むように配置されている複数の各小空間を形成する複数の仕切り部と、
前記床下空間内の一部に又は前記複数の小空間中の一部の小空間内に配置された蓄熱層であって、多数のグリ石等の蓄熱材が集積、収容又は配置されて成り、前記各小空間を順次流通する過程で各小空間内の熱と熱交換され且つ地中に埋設された地中パイプ内を流通する過程で地中熱と熱交換された後の外気を、自ら(蓄熱層)の内部に受け入れ自らの内部で流通させてから室内に供給する蓄熱層であって、前記地中パイプは、前記各小空間中の前記蓄熱層が配置された小空間と隣接する小空間内から地中に埋設されている蓄熱層と、
外気を戸外から導入して、前記蓄熱層へ送られる前又は送られた後の外気を前記複数の各小空間の内部を順次流通させて前記床下空間内の物体と熱交換させるように作動する換気用ファンと、を備えており、
前記外気は各小空間の間を流通する方向において互いに小空間を介して対向する各空気通過孔は水平方向及び重力方向において互いにズレた位置で対向するように形成、配置されており、これにより、戸外から導入された外気は、まず前記蓄熱層の周囲(外周側)に沿って配置された前記各小空間の中を、それぞれ蛇行しながら、或る1つの小空間から隣接する他の小空間へと順次流通しながら前記各小空間内の物体と熱交換され、そのようにして各小空間内で熱交換された後に、前記蓄熱層が配置された小空間と隣接する小空間内の地中パイプ内に流入されて前記地中パイプ内を流通しながら地中熱と熱交換され、そのようにして地中熱と熱交換された後に、前記蓄熱層の内部に流入されて前記蓄熱層内で流通されながら熱交換され、そのようにして前記蓄熱層内で熱交換された後に、建物の室内に供給されるように構成されている、ことを特徴とする空調機能付き床下空間を備えた建物換気システム。
The outside air introduction part that introduces the outside air from the outside into the underfloor space,
It is a plurality of partition portions that divide the underfloor space into a plurality of small spaces, and is arranged so as to form the plurality of small spaces along the flow direction of the outside air, and is adjacent to the small space. It is a plurality of partition portions in which each air passage hole for sequentially flowing the outside air to other small spaces is formed, and the outside air is described later along the periphery (outer peripheral side) of the heat storage layer. A plurality of partitions forming each of a plurality of small spaces arranged so as to surround the periphery (outer peripheral side) of the heat storage layer described later so as to flow through the space in sequence and then flow into the heat storage layer described later.
A heat storage layer arranged in a part of the underfloor space or in a part of the small spaces in the plurality of small spaces, wherein a large number of heat storage materials such as grit stones are accumulated, accommodated or arranged. In the process of sequentially circulating each of the small spaces, heat is exchanged with the heat in each small space, and in the process of circulating in the underground pipe buried in the ground, the outside air after heat exchange with the geothermal heat is carried out by itself. It is a heat storage layer that is received inside the (heat storage layer) and circulated inside itself and then supplied to the room, and the underground pipe is adjacent to the small space in which the heat storage layer is arranged in each of the small spaces. The heat storage layer buried in the ground from within the small space,
The outside air is introduced from the outside, and the outside air before or after being sent to the heat storage layer is sequentially circulated inside each of the plurality of small spaces to exchange heat with an object in the underfloor space. Equipped with a ventilation fan,
The outside air is formed and arranged so that the air passage holes facing each other in the direction of flowing between the small spaces face each other at positions deviated from each other in the horizontal direction and the gravity direction. The outside air introduced from the outside first meanders in each of the small spaces arranged along the periphery (outer peripheral side) of the heat storage layer, and from one small space to another small space adjacent to the small space. The heat is exchanged with the objects in each of the small spaces while sequentially flowing to the space, and after the heat is exchanged in each of the small spaces in this way, in the small space adjacent to the small space in which the heat storage layer is arranged. It flows into the underground pipe and exchanges heat with the underground heat while flowing through the underground pipe, and after heat exchange with the underground heat in this way, it flows into the inside of the heat storage layer and the heat storage. An air-conditioned underfloor space characterized in that heat is exchanged while being circulated in the layer, and after heat exchange in the heat storage layer, the heat is supplied to the interior of the building. Equipped with building ventilation system.
前記床下空間又は仕切り部中の前記流通する外気が接触する部材の表面には、外気の一部がその周辺で微小な渦流を形成するように、微小な突起、凸部、凹部又は凹凸が形成され又は備えられている、請求項1に記載の空調機能付き床下空間を備えた建物換気システム。 On the surface of the member in the underfloor space or the partition portion to which the circulating outside air comes into contact, minute protrusions, protrusions, recesses or irregularities are formed so that a part of the outside air forms a minute vortex around the surface. A building ventilation system with an air-conditioned underfloor space according to claim 1, which is provided or provided. 前記蓄熱層は、熱伝導性の高い材料により構成された容器又は外気が容器の内外を流通可能なメッシュ構造又は多数の通気孔を有する容器であって複数の蓄熱材をその内部に収納した容器が、複数個、並べられ又は積層されて構成されている、請求項1又は2に記載の空調機能付き床下空間を備えた建物換気システム。
The heat storage layer is a container made of a material having high thermal conductivity, a container having a mesh structure capable of allowing outside air to flow inside and outside the container, or a container having a large number of ventilation holes, and a container in which a plurality of heat storage materials are stored. However, the building ventilation system provided with the underfloor space with an air-conditioning function according to claim 1 or 2, which is configured by arranging or stacking a plurality of the same.
JP2016112824A 2016-06-06 2016-06-06 Building ventilation system with underfloor space with air conditioning Active JP6875796B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016112824A JP6875796B2 (en) 2016-06-06 2016-06-06 Building ventilation system with underfloor space with air conditioning

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016112824A JP6875796B2 (en) 2016-06-06 2016-06-06 Building ventilation system with underfloor space with air conditioning

Publications (2)

Publication Number Publication Date
JP2017219228A JP2017219228A (en) 2017-12-14
JP6875796B2 true JP6875796B2 (en) 2021-05-26

Family

ID=60656961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016112824A Active JP6875796B2 (en) 2016-06-06 2016-06-06 Building ventilation system with underfloor space with air conditioning

Country Status (1)

Country Link
JP (1) JP6875796B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS588937A (en) * 1981-07-06 1983-01-19 Natl House Ind Co Ltd Air conditioner under floor
JPS61235622A (en) * 1985-04-08 1986-10-20 Sato Kogyo Kk Open air taking-in method making use of geothermal energy
JPH1062083A (en) * 1996-08-23 1998-03-06 Sagara Kogyosho:Kk Improvement of method for forming heat-insulating waterproof film of communication pipe type water tank to be heat storage tank in air conditioning equipment
JP3030022B2 (en) * 1998-04-10 2000-04-10 株式会社東光工業 Air conditioning system using natural power of building
JP4012870B2 (en) * 2003-10-21 2007-11-21 積水ハウス株式会社 Underfloor heat storage structure
JP4223467B2 (en) * 2004-11-29 2009-02-12 パナホーム株式会社 Temperature control structure and temperature control method for buildings
JP5578594B2 (en) * 2007-10-09 2014-08-27 株式会社 エコファクトリー Building with energy-saving ventilation system
JP6219215B2 (en) * 2014-03-31 2017-10-25 パナホーム株式会社 Housing structure

Also Published As

Publication number Publication date
JP2017219228A (en) 2017-12-14

Similar Documents

Publication Publication Date Title
JP6875796B2 (en) Building ventilation system with underfloor space with air conditioning
RU2215858C2 (en) Floor member for fabrication of floors with hollows for pipes of room heating and cooling system, connecting plate for floor members and group of floor members with this connecting plate
EP1798509A2 (en) Ground heat exchanger
KR20200048175A (en) Structure for decreasing noise between building floors and ONDOL comprising the same
JP7519118B2 (en) Sauna System
US20120241988A1 (en) String-Thick-Plates Pack for Use in Cooling Tower and Fabrication Thereof
US8840093B2 (en) Natural evaporation humidifier
KR101222157B1 (en) Panels for floor heating system and the method of floor heating construction using the same
JP2006153351A (en) Temperature control structure and method for building
JP4863850B2 (en) Clean room equipment
KR20200130278A (en) Device for collecting and removing slurry
JP3178888U (en) Dehumidifier for tank type dehumidifier
JP4469509B2 (en) Basement
JP6196542B2 (en) Thermal storage structure and housing using the same
JP6148473B2 (en) Building solar collector
KR102584805B1 (en) Floor heating system having modularized floor pannels made of tempered glass for floor heating
US20090084521A1 (en) Temperature and vapour pressure regulation device for a structure
JP6434342B2 (en) Geothermal heat utilization system for base-isolated structures
JP5780878B2 (en) Mobile air conditioner
US20240245579A1 (en) Sauna system
JP2023528177A (en) Composite building structure support structures and uses of these composite building structure support structures
JP2005036504A (en) Air-conditioning building wall structure
JP5358326B2 (en) Conduit guide device for hot water panels for floor heating
JP7278183B2 (en) building air conditioning system
KR100703039B1 (en) regenerative heating system using hot water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210423

R150 Certificate of patent or registration of utility model

Ref document number: 6875796

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE

Ref document number: 6875796

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250