[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6874359B2 - Epoxy resin, epoxy resin composition and cured product thereof - Google Patents

Epoxy resin, epoxy resin composition and cured product thereof Download PDF

Info

Publication number
JP6874359B2
JP6874359B2 JP2016247853A JP2016247853A JP6874359B2 JP 6874359 B2 JP6874359 B2 JP 6874359B2 JP 2016247853 A JP2016247853 A JP 2016247853A JP 2016247853 A JP2016247853 A JP 2016247853A JP 6874359 B2 JP6874359 B2 JP 6874359B2
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
structural formula
resin
cured product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016247853A
Other languages
Japanese (ja)
Other versions
JP2018100362A (en
Inventor
陽祐 広田
陽祐 広田
翔太 谷井
翔太 谷井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp filed Critical DIC Corp
Priority to JP2016247853A priority Critical patent/JP6874359B2/en
Publication of JP2018100362A publication Critical patent/JP2018100362A/en
Application granted granted Critical
Publication of JP6874359B2 publication Critical patent/JP6874359B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Description

本発明は、加熱硬化時の低収縮率、熱時弾性率のバランスに優れ、半導体封止材料等に好適に用いることができるエポキシ樹脂、および当該エポキシ樹脂を含有するエポキシ樹脂組成物とその硬化物に関する。 The present invention has an excellent balance between low shrinkage rate during heat curing and elastic modulus during heat, and an epoxy resin that can be suitably used as a semiconductor encapsulating material, an epoxy resin composition containing the epoxy resin, and curing thereof. Regarding things.

エポキシ樹脂と各種硬化剤とを用いる硬化性樹脂組成物は、接着剤、成形材料、塗料、フォトレジスト材料、顕色材料等に用いられるほか、得られる硬化物の優れた耐熱性や耐湿性などに優れる点から半導体封止材やプリント配線板用絶縁材料等の電気・電子分野で幅広く用いられている。 A curable resin composition using an epoxy resin and various curing agents is used as an adhesive, a molding material, a paint, a photoresist material, a coloring material, etc., and also has excellent heat resistance and moisture resistance of the obtained cured product. It is widely used in the electrical and electronic fields such as semiconductor encapsulants and insulating materials for printed wiring boards because of its excellent properties.

これらの各種用途のうち、電子機器の小型化・軽量化の流れに伴い、半導体装置の配線ピッチの狭小化による高密度化の傾向が著しく、これに対応した半導体実装方法として、はんだボールにより半導体装置と基板とを接合させるフリップチップ接続方式が広く用いられている。このフリップチップ接続方式では、配線板と半導体との間にはんだボールを配置、全体を加熱して溶融接合させる所謂リフロー方式による半導体実装方式であるため、はんだリフロー時に配線版自体が高熱環境に晒され、配線板の熱収縮により反りが発生し、配線板と半導体を接続するはんだボールに大きな応力が発生し、配線の接続不良を起こす場合があった。即ち配線板の反りを抑える目的で、封止樹脂に対しても低収縮率、低弾性率が要求されている。 Among these various applications, with the trend toward miniaturization and weight reduction of electronic devices, there is a remarkable tendency for the density to increase due to the narrowing of the wiring pitch of semiconductor devices. A flip-chip connection method for joining a device and a substrate is widely used. This flip-chip connection method is a semiconductor mounting method based on the so-called reflow method in which solder balls are placed between the wiring board and the semiconductor, and the entire surface is heated for fusion bonding. Therefore, the wiring plate itself is exposed to a high thermal environment during solder reflow. As a result, warpage occurs due to heat shrinkage of the wiring board, and a large stress is generated in the solder balls connecting the wiring board and the semiconductor, which may cause a poor connection of the wiring. That is, in order to suppress the warp of the wiring board, the sealing resin is also required to have a low shrinkage rate and a low elastic modulus.

半導体封止材として好適に用いることができるエポキシ樹脂として、ビスフェノール骨格の芳香環上にアリル基を置換基として有するエポキシ樹脂が提供されている(例えば、特許文献1参照)。或いは、芳香環上に置換基を有していてもよいナフチレンエーテル骨格含有エポキシ樹脂が半導体封止材として好適に用いることも知られている(例えば、特許文献2参照)。 As an epoxy resin that can be suitably used as a semiconductor encapsulant, an epoxy resin having an allyl group as a substituent on the aromatic ring of the bisphenol skeleton is provided (see, for example, Patent Document 1). Alternatively, it is also known that a naphthylene ether skeleton-containing epoxy resin which may have a substituent on the aromatic ring is preferably used as a semiconductor encapsulant (see, for example, Patent Document 2).

前述のように、芳香環上に置換基を有するエポキシ樹脂を硬化性樹脂組成物の主剤として用いることにより、一般的なビスフェノール型エポキシ樹脂を用いる場合よりも、組成物の流動性や硬化物の強度に一定の効果が得られるものの、近年要求される樹脂組成物の加熱硬化時の成形収縮率、熱時弾性率のバランスレベルを十分満足できるものではなく、さらなる改良が求められている。 As described above, by using an epoxy resin having a substituent on the aromatic ring as the main agent of the curable resin composition, the fluidity of the composition and the cured product are higher than those in the case of using a general bisphenol type epoxy resin. Although a certain effect on the strength can be obtained, the balance level of the molding shrinkage rate and the thermal elastic modulus during heat curing of the resin composition required in recent years cannot be sufficiently satisfied, and further improvement is required.

特開2015−000952号公報JP 2015-000952 特開2016−89096号公報Japanese Unexamined Patent Publication No. 2016-89096

従って、本発明が解決しようとする課題は、エポキシ樹脂を含有する組成物の加熱硬化時の成形収縮率、熱時弾性率のバランスに優れるエポキシ樹脂、組成物、およびその硬化物を提供することにある。 Therefore, the problem to be solved by the present invention is to provide an epoxy resin, a composition, and a cured product thereof, which have an excellent balance between a molding shrinkage rate during heat curing and a thermal elastic modulus of a composition containing an epoxy resin. It is in.

本発明者らは、前記課題を解決するため、鋭意検討した結果、芳香環上の置換基として炭素数4〜8のアルキル基を有するアルキルフェノールのノボラック樹脂のエポキシ化物とそのモノマーを硬化性組成物の1成分として用いると、加熱硬化時の成形収縮率、熱時弾性率のバランスに優れることを見出し、本発明を完成するに至った。 As a result of diligent studies to solve the above problems, the present inventors have made a curable composition of an epoxidized product of a novolak resin of an alkylphenol having an alkyl group having 4 to 8 carbon atoms as a substituent on the aromatic ring and a monomer thereof. When used as one component of the above, it was found that the balance between the molding shrinkage rate at the time of heat curing and the elastic modulus at the time of heat was excellent, and the present invention was completed.

即ち、本発明は、下記構造式(1) That is, the present invention has the following structural formula (1).

Figure 0006874359
〔構造式(1)中、R、R、Rはそれぞれ独立して水素原子又は炭素数4〜8のアルキル基であり、少なくともいずれか1つは炭素数4〜8のアルキル基である。Gはグリシジル基であり、nは繰り返す数を示し、平均値で0.01〜2.0であり、繰り返し毎にR、R、Rは同一でも異なっていてもよい。〕と下記構造式(2)
Figure 0006874359
[In the structural formula (1), R 1 , R 2 , and R 3 are independently hydrogen atoms or alkyl groups having 4 to 8 carbon atoms, and at least one of them is an alkyl group having 4 to 8 carbon atoms. is there. G is a glycidyl group, n indicates the number of repetitions, and the average value is 0.01 to 2.0, and R 1 , R 2 , and R 3 may be the same or different for each repetition. ] And the following structural formula (2)

Figure 0006874359
〔構造式(2)中、R、R、Rはそれぞれ独立して水素原子又は炭素数4〜8のアルキル基であり、少なくともいずれか1つは炭素数4〜8のアルキル基であり、Gはグリシジル基である。〕を必須成分として含み、前記構造式(2)の含有率がGPC測定における面積比率で0.1〜2.0%であり、且つそのエポキシ当量が245〜330g/eqの範囲であることを特徴とするエポキシ樹脂、およびこれ含むエポキシ樹脂組成物とその硬化物を提供するものである。
Figure 0006874359
[In structural formula (2), R 1 , R 2 , and R 3 are independently hydrogen atoms or alkyl groups having 4 to 8 carbon atoms, and at least one of them is an alkyl group having 4 to 8 carbon atoms. Yes, G is a glycidyl group. ] As an essential component, the content of the structural formula (2) is 0.1 to 2.0% in terms of area ratio in GPC measurement, and its epoxy equivalent is in the range of 245 to 330 g / eq. The present invention provides a characteristic epoxy resin, an epoxy resin composition containing the same, and a cured product thereof.

本発明によれば、樹脂組成物の加熱硬化時の成形収縮率、熱時弾性率のバランスに優れ、半導体封止材料等に好適に用いることができるエポキシ樹脂、エポキシ樹脂組成物、前記性能を兼備した硬化物、半導体封止材料、半導体装置、プリプレグ、回路基板、ビルドアップフィルム、ビルドアップ基板、繊維強化複合材料、及び繊維強化成形品を提供できる。 According to the present invention, an epoxy resin, an epoxy resin composition, and the above-mentioned performance, which are excellent in the balance between the molding shrinkage rate at the time of heat curing and the hot elasticity rate of the resin composition and can be suitably used for semiconductor encapsulation materials and the like. It is possible to provide a cured product, a semiconductor encapsulating material, a semiconductor device, a prepreg, a circuit board, a build-up film, a build-up board, a fiber-reinforced composite material, and a fiber-reinforced molded product.

図1は合成例1で合成したエポキシ樹脂のGPCチャートである。FIG. 1 is a GPC chart of the epoxy resin synthesized in Synthesis Example 1. 図2は合成例2で合成したエポキシ樹脂のGPCチャートである。FIG. 2 is a GPC chart of the epoxy resin synthesized in Synthesis Example 2.

<エポキシ樹脂>
以下、本発明を詳細に説明する。
本発明のエポキシ樹脂は、下記構造式(1)
<Epoxy resin>
Hereinafter, the present invention will be described in detail.
The epoxy resin of the present invention has the following structural formula (1).

Figure 0006874359
〔構造式(1)中、R、R、Rはそれぞれ独立して水素原子又は炭素数4〜8のアルキル基であり、少なくともいずれか1つは炭素数4〜8のアルキル基である。Gはグリシジル基であり、nは繰り返す数を示し、平均値で0.01〜2.0であり、繰り返し毎にR、R、Rは同一でも異なっていてもよい。〕と下記構造式(2)
Figure 0006874359
[In the structural formula (1), R 1 , R 2 , and R 3 are independently hydrogen atoms or alkyl groups having 4 to 8 carbon atoms, and at least one of them is an alkyl group having 4 to 8 carbon atoms. is there. G is a glycidyl group, n indicates the number of repetitions, and the average value is 0.01 to 2.0, and R 1 , R 2 , and R 3 may be the same or different for each repetition. ] And the following structural formula (2)

Figure 0006874359
〔構造式(2)中、R、R、Rはそれぞれ独立して水素原子又は炭素数4〜8のアルキル基であり、少なくともいずれか1つは炭素数4〜8のアルキル基であり、Gはグリシジル基である。〕を必須成分として含み、前記構造式(2)の含有率がGPC測定における面積比率で0.1〜2.0%であり、且つそのエポキシ当量が245〜330g/eqの範囲であることを特徴とする。
Figure 0006874359
[In structural formula (2), R 1 , R 2 , and R 3 are independently hydrogen atoms or alkyl groups having 4 to 8 carbon atoms, and at least one of them is an alkyl group having 4 to 8 carbon atoms. Yes, G is a glycidyl group. ] As an essential component, the content of the structural formula (2) is 0.1 to 2.0% in terms of area ratio in GPC measurement, and its epoxy equivalent is in the range of 245 to 330 g / eq. It is a feature.

構造式(1)におけるnが0.01〜2.0の範囲を外れる場合、具体的には0.01未満の場合には、架橋密度が低いことにより耐熱性が低下し、結果として成形収縮率が大きくなる。nが2.0を超えると、原料フェノールノボラック中の水酸基のエポキシ化反応がうまく進行しないことに依り、エポキシ当量が大きくなる結果、熱時弾性率と成形収縮率とのバランスがとりにくくなる傾向がある。 When n in the structural formula (1) is out of the range of 0.01 to 2.0, specifically, when it is less than 0.01 , the heat resistance is lowered due to the low crosslink density, resulting in molding shrinkage. The rate increases. When n exceeds 2.0 , the epoxidation reaction of the hydroxyl groups in the raw material phenol novolac does not proceed well, and as a result, the epoxy equivalent increases, and as a result, it tends to be difficult to balance the thermal elastic modulus and the molding shrinkage. There is.

本発明のエポキシ樹脂中の構造式(2)の含有率は、加熱硬化時の熱時弾性率を大幅に低下させつつ、成形収縮率を小さくできる点から、GPC測定における面積比率で0.1〜2.0%であることが好ましい。0.1%未満の場合には、熱時弾性率の低下が不十分であり、2.0%を超える場合は架橋密度が著しく低下してしまい、加熱硬化後の冷却時の収縮が大きいものとなってしまう結果、成形時の収縮率が大きくなってしまう。 The content of the structural formula (2) in the epoxy resin of the present invention is 0.1 in terms of the area ratio in GPC measurement because the molding shrinkage can be reduced while significantly reducing the thermal elastic modulus during heat curing. It is preferably ~ 2.0%. If it is less than 0.1%, the decrease in elastic modulus during heat is insufficient, and if it exceeds 2.0%, the crosslink density is significantly decreased, and the shrinkage during cooling after heat curing is large. As a result, the shrinkage rate during molding becomes large.

本発明のエポキシ樹脂は、芳香環上の置換基として炭素数4〜8のアルキル基を有することに依り、その嵩高さに起因して硬化反応時の架橋密度が適切に調整され、加熱硬化時の成形収縮率と熱時弾性率のバランスに優れると考えられる。特に後述するような硬化剤を用いて硬化物を得る際に、硬化反応が良好に進行する観点と、硬化物の架橋密度がより適切な範囲としやすい観点から、t−ブチル基、t-オクチル基等の分岐構造を有するアルキル基であることが好ましく、特にt−ブチル基であることが最も好ましい。 Since the epoxy resin of the present invention has an alkyl group having 4 to 8 carbon atoms as a substituent on the aromatic ring, the crosslink density during the curing reaction is appropriately adjusted due to its bulkiness, and during heat curing. It is considered that the balance between the molding shrinkage rate and the thermal elastic modulus is excellent. In particular, when a cured product is obtained using a curing agent as described later, the t-butyl group and t-octyl are used from the viewpoint that the curing reaction proceeds well and the cross-linking density of the cured product can be easily set in a more appropriate range. It is preferably an alkyl group having a branched structure such as a group, and most preferably a t-butyl group.

また、本発明のエポキシ樹脂における前記構造式(1)と(2)中のRが炭素数4〜8のアルキル基であり、R、Rが水素原子であることが好ましく、特にR、R、Rのいずれか1つまたは2つがt−ブチル基であることが、成形収縮率、硬化物の熱時弾性率が優れる点で好ましく、Rがt−ブチル基でありR、Rが水素原子であることが、より一層好ましいものである。 Further, in the epoxy resin of the present invention, it is preferable that R 1 in the structural formulas (1) and (2) is an alkyl group having 4 to 8 carbon atoms, and R 2 and R 3 are hydrogen atoms, particularly R. It is preferable that any one or two of 1, R 2 and R 3 are t-butyl groups in terms of excellent molding shrinkage and thermal elastic modulus of the cured product, and R 1 is a t-butyl group. It is even more preferable that R 2 and R 3 are hydrogen atoms.

また、本発明のエポキシ樹脂のエポキシ当量は、加熱硬化時の成形収縮率、熱時弾性率のバランスの観点から、245〜330g/eqの範囲であることを必須とするものであるが、この効果がより高まる点から、245〜300g/eqの範囲であることが好ましい。 Further, the epoxy equivalent of the epoxy resin of the present invention is essential to be in the range of 245 to 330 g / eq from the viewpoint of the balance between the molding shrinkage rate at the time of heat curing and the elastic modulus at the time of heating. The range is preferably in the range of 245 to 300 g / eq from the viewpoint of further enhancing the effect.

なお、本発明におけるエポキシ樹脂の構造式(1)のn、及び前記構造式(2)の含有率については、下記の条件によるGPC測定によって計算される。
<GPC測定条件>
測定装置 :東ソー株式会社製「HLC−8320 GPC」、
カラム:東ソー株式会社製ガードカラム「HXL−L」
+東ソー株式会社製「TSK−GEL G2000HXL」
+東ソー株式会社製「TSK−GEL G2000HXL」
+東ソー株式会社製「TSK−GEL G3000HXL」
+東ソー株式会社製「TSK−GEL G4000HXL」
検出器: RI(示差屈折計)
データ処理:東ソー株式会社製「GPCワークステーション EcoSEC−WorkStation」
測定条件: カラム温度 40℃
展開溶媒 テトラヒドロフラン
流速 1.0ml/分
標準 : 前記「GPCワークステーション EcoSEC―WorkStation」の測定マニュアルに準拠して、分子量が既知の下記の単分散ポリスチレンを用いた。
(使用ポリスチレン)
東ソー株式会社製「A−500」
東ソー株式会社製「A−1000」
東ソー株式会社製「A−2500」
東ソー株式会社製「A−5000」
東ソー株式会社製「F−1」
東ソー株式会社製「F−2」
東ソー株式会社製「F−4」
東ソー株式会社製「F−10」
東ソー株式会社製「F−20」
東ソー株式会社製「F−40」
東ソー株式会社製「F−80」
東ソー株式会社製「F−128」
試料 : 樹脂固形分換算で1.0質量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの(50μl)。
The n of the structural formula (1) of the epoxy resin in the present invention and the content of the structural formula (2) are calculated by GPC measurement under the following conditions.
<GPC measurement conditions>
Measuring device: "HLC-8320 GPC" manufactured by Tosoh Corporation,
Column: Guard column "HXL-L" manufactured by Tosoh Corporation
+ "TSK-GEL G2000HXL" manufactured by Tosoh Corporation
+ "TSK-GEL G2000HXL" manufactured by Tosoh Corporation
+ "TSK-GEL G3000HXL" manufactured by Tosoh Corporation
+ "TSK-GEL G4000HXL" manufactured by Tosoh Corporation
Detector: RI (Differential Refractometer)
Data processing: "GPC Workstation EcoSEC-WorkStation" manufactured by Tosoh Corporation
Measurement conditions: Column temperature 40 ° C
Developing solvent tetrahydrofuran
Flow velocity 1.0 ml / min Standard: The following monodisperse polystyrene with a known molecular weight was used in accordance with the measurement manual of the above-mentioned "GPC workstation EcoSEC-WorkStation".
(Polystyrene used)
"A-500" manufactured by Tosoh Corporation
"A-1000" manufactured by Tosoh Corporation
"A-2500" manufactured by Tosoh Corporation
"A-5000" manufactured by Tosoh Corporation
"F-1" manufactured by Tosoh Corporation
"F-2" manufactured by Tosoh Corporation
"F-4" manufactured by Tosoh Corporation
"F-10" manufactured by Tosoh Corporation
"F-20" manufactured by Tosoh Corporation
"F-40" manufactured by Tosoh Corporation
"F-80" manufactured by Tosoh Corporation
"F-128" manufactured by Tosoh Corporation
Sample: A solution of 1.0% by mass in terms of resin solid content in tetrahydrofuran filtered with a microfilter (50 μl).

<エポキシ樹脂の製造方法>
前記のように、本発明のエポキシ樹脂は、前述の構造式(1)(2)で表される化合物から構成される。このようなエポキシ樹脂を得る方法としては、炭素数4〜8のアルキル基を芳香環上の置換基として有するアルキルフェノールのノボラック樹脂を得たのち、これをエポキシ化する方法が工業的な生産性に優れる。
<Epoxy resin manufacturing method>
As described above, the epoxy resin of the present invention is composed of the compounds represented by the above-mentioned structural formulas (1) and (2). As a method for obtaining such an epoxy resin, a method of obtaining an alkylphenol novolak resin having an alkyl group having 4 to 8 carbon atoms as a substituent on the aromatic ring and then epoxidizing the resin is industrially productive. Excellent.

前記炭素数4〜8のアルキル基を芳香環上の置換基として有するアルキルフェノールとしては、例えば、t−ブチルフェノール、ジ−t−ブチルフェノール、t−オクチルフェノールなどが挙げられ、1種のみからなるものであっても、2種以上を混合して用いてもよい。これらの中でも、得られるエポキシ樹脂を用いた硬化性樹脂組成物の加熱収縮率の観点から、より嵩高い構造のアルキル基を有するものであることが好ましく、さらに原料の入手容易性、得られる樹脂組成物の硬化時の特性の観点より、p−t−ブチルフェノール、o−t−ブチルフェノール、2,4−ジ−t−ブチルフェノール、p−t−オクチルフェノールを用いることが好ましく、p−t−ブチルフェノールを用いることが最も好ましい。 Examples of the alkylphenol having an alkyl group having 4 to 8 carbon atoms as a substituent on the aromatic ring include t-butylphenol, di-t-butylphenol, t-octylphenol and the like, and are composed of only one kind. Alternatively, two or more kinds may be mixed and used. Among these, from the viewpoint of the heat shrinkage rate of the curable resin composition using the obtained epoxy resin, it is preferable that the curable resin composition has an alkyl group having a bulkier structure, the raw material is easily available, and the obtained resin is obtained. From the viewpoint of the curing characteristics of the composition, it is preferable to use pt-butylphenol, ot-butylphenol, 2,4-di-t-butylphenol, pt-octylphenol, and pt-butylphenol. Most preferably used.

前記アルキルフェノールのノボラック樹脂を得る方法としては、例えば、アルデヒド類と酸性触媒下50〜180℃の条件にて反応させる方法が挙げられる。 Examples of the method for obtaining the novolak resin of alkylphenol include a method of reacting aldehydes with aldehydes under an acidic catalyst at 50 to 180 ° C.

前記アルデヒド類としては、前述のアルキルフェノールと縮合反応を生じてノボラック型樹脂を形成しうるものであれば良く、例えば、ホルムアルデヒド、トリオキサン、プロピテトラオキシメチレン、ポリオキシメチレン等が挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。中でも、反応性に優れることからホルムアルデヒドを用いることが好ましい。ホルムアルデヒドは水溶液の状態であるホルマリンとして用いても、固形の状態であるパラホルムアルデヒドとして用いても、どちらでも良い。 The aldehydes may be any aldehydes that can form a novolak type resin by undergoing a condensation reaction with the above-mentioned alkylphenols, and examples thereof include formaldehyde, trioxane, propitetraoxymethylene, and polyoxymethylene . Each of these may be used alone, or two or more types may be used in combination. Of these, formaldehyde is preferably used because of its excellent reactivity. Formaldehyde may be used as formalin in an aqueous solution state or as paraformaldehyde in a solid state.

また、前記酸性触媒は、例えば、塩酸、硫酸、リン酸などの無機酸、メタンスルホン酸、パラトルエンスルホン酸、シュウ酸などの有機酸、三フッ化ホウ素、無水塩化アルミニウム、塩化亜鉛などのルイス酸などが挙げられる。これらはそれぞれ単独で用いてもよいし、2種類以上を併用してもよい。 The acidic catalyst includes, for example, inorganic acids such as hydrochloric acid, sulfuric acid and phosphoric acid, organic acids such as methanesulfonic acid, paratoluenesulfonic acid and oxalic acid, and Lewis such as boron trifluoride, aluminum chloride and zinc chloride. Acids and the like can be mentioned. Each of these may be used alone, or two or more types may be used in combination.

ノボラック樹脂を効率よく得る方法としては、例えば、アルキルフェノール中の水酸基1モルに対し、前記アルデヒド類を0.05〜0.40モルの範囲で用い、前記酸性触媒の存在下、50〜180℃の温度条件下で反応させる方法が挙げられる。 As a method for efficiently obtaining a novolak resin, for example, the aldehydes are used in the range of 0.05 to 0.40 mol with respect to 1 mol of the hydroxyl group in the alkylphenol, and the temperature is 50 to 180 ° C. in the presence of the acidic catalyst. Examples thereof include a method of reacting under temperature conditions.

前記アルキルフェノールと前記アルデヒド類との反応は、必要に応じて溶媒中で行っても良い。ここで用いる溶媒は、例えば、水;メタノール、エタノール、プロパノール、乳酸エチル、エチレングリコール、1,2−プロパンジオール、1,3−プロパンジオール、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、1,7−ヘプタンジオール、1,8−オクタンジオール、1,9−ノナンジオール、トリメチレングリコール、ジエチレングリコール、ポリエチレングリコール、グリセリン、2−エトキシエタノール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノペンチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールエチルメチルエーテル、エチレングリコールモノフェニルエーテル、ジエチレングリコールエチルメチルエーテル、プロピレングリコールモノメチルエーテル、1,3−ジオキサン、1,4−ジオキサン、テトラヒドロフラン、エチレングリコールアセテート、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、N−メチルピロリドン、ジメチルホルムアミド、ジメチルスルホキシド等が挙げられる。これらの溶媒は、それぞれ単独で用いても良いし、2種類以上の混合溶媒として用いても良い。 The reaction between the alkylphenol and the aldehydes may be carried out in a solvent, if necessary. The solvent used here is, for example, water; methanol, ethanol, propanol, ethyl lactate, ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, and the like. 1,6-Hexanediol, 1,7-Heptanediol, 1,8-octanediol, 1,9-nonanediol, trimethylene glycol, diethylene glycol, polyethylene glycol, glycerin, 2-ethoxyethanol, ethylene glycol monomethyl ether, ethylene Glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, ethylene glycol monopentyl ether, ethylene glycol dimethyl ether, ethylene glycol ethyl methyl ether, ethylene glycol monophenyl ether, diethylene glycol ethyl methyl ether, propylene glycol monomethyl ether, 1, Examples thereof include 3-dioxane, 1,4-dioxane, tetrahydrofuran, ethylene glycol acetate, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, N-methylpyrrolidone, dimethylformamide, dimethylsulfoxide and the like. Each of these solvents may be used alone or as a mixed solvent of two or more kinds.

反応終了後は、必要に応じて未反応原料や溶媒等を留去する工程、水洗或いは再沈殿等にて精製する工程等を行っても良い。 After completion of the reaction, if necessary, a step of distilling off unreacted raw materials, a solvent, etc., a step of purifying by washing with water, reprecipitation, or the like may be performed.

本発明のエポキシ樹脂の製造方法は、前記のように原料のノボラック樹脂をエピハロヒドリンと反応させてエポキシ化するエポキシ樹脂の製造方法であり、エポキシ化の方法は公知技術を適宜適用することができる。 The method for producing an epoxy resin of the present invention is a method for producing an epoxy resin in which the raw material novolak resin is reacted with epihalohydrin to epoxidize as described above, and a known technique can be appropriately applied to the method for epoxidation.

例えば、エピハロヒドリンは、原料のノボラック樹脂に含まれる水酸基1モルに対し、1〜10モルを添加し、更に、原料の水酸基1モルに対し0.9〜2.0モルの塩基性触媒を一括添加または徐々に添加しながら20〜120℃の温度で0.5〜10時間反応させる方法が挙げられる。この塩基性触媒は固形でもその水溶液を使用してもよく、水溶液を使用する場合は、連続的に添加すると共に、反応混合物中から減圧下、または常圧下、連続的に水及びエピハロヒドリン類を留出せしめ、更に分液して水は除去しエピハロヒドリン類は反応混合物中に連続的に戻す方法でもよい。 For example, for epihalohydrin, 1 to 10 mol is added to 1 mol of the hydroxyl group contained in the raw material novolak resin, and 0.9 to 2.0 mol of the basic catalyst is added all at once to 1 mol of the raw material hydroxyl group. Alternatively, a method of reacting at a temperature of 20 to 120 ° C. for 0.5 to 10 hours with gradual addition can be mentioned. This basic catalyst may be solid or an aqueous solution thereof may be used. When an aqueous solution is used, water and epihalohydrins are continuously added from the reaction mixture under reduced pressure or under normal pressure. It may be dispensed, further separated to remove water, and epihalohydrins may be continuously returned to the reaction mixture.

なお、工業生産を行う際、エポキシ樹脂生産の初バッチでは仕込みに用いるエピハロヒドリン類の全てが新しいものであるが、次バッチ以降は、粗反応生成物から回収されたエピハロヒドリン類と、反応で消費される分で消失する分に相当する新しいエピハロヒドリン類とを併用することが好ましい。この際、グリシドール等、エピクロルヒドリンと水、有機溶剤等との反応により誘導される不純物を含有していても良い。この時、使用するエピハロヒドリンは特に限定されないが、例えば、エピクロルヒドリン、エピブロモヒドリン、β−メチルエピクロルヒドリン等が挙げられる。これらの中でも、工業的に入手が容易なことからエピクロルヒドリンが好ましい。 During industrial production, all of the epihalohydrins used for preparation are new in the first batch of epoxy resin production, but after the next batch, they are consumed in the reaction with the epihalohydrins recovered from the crude reaction product. It is preferable to use in combination with new epihalohydrins corresponding to the amount that disappears in a certain amount. At this time, impurities such as glycidol, which are induced by the reaction of epichlorohydrin with water, an organic solvent, etc., may be contained. At this time, the epichlorohydrin used is not particularly limited, and examples thereof include epichlorohydrin, epibromohydrin, and β-methylepichlorohydrin. Among these, epichlorohydrin is preferable because it is industrially easily available.

また、前記塩基性触媒は、具体的には、アルカリ土類金属水酸化物、アルカリ金属炭酸塩及びアルカリ金属水酸化物等が挙げられる。特にエポキシ樹脂合成反応の触媒活性に優れる点からアルカリ金属水酸化物が好ましく、例えば水酸化ナトリウム、水酸化カリウム等が挙げられる。使用に際しては、これらの塩基性触媒を10質量%〜55質量%程度の水溶液の形態で使用してもよいし、固形の形態で使用しても構わない。また、有機溶媒を併用することにより、エポキシ樹脂の合成における反応速度を高めることができる。このような有機溶媒としては特に限定されないが、例えば、アセトン、メチルエチルケトン等のケトン類、メタノール、エタノール、1−プロピルアルコール、イソプロピルアルコール、1−ブタノール、セカンダリーブタノール、ターシャリーブタノール等のアルコール類、メチルセロソルブ、エチルセロソルブ等のセロソルブ類、テトラヒドロフラン、1、4−ジオキサン、1、3−ジオキサン、ジエトキシエタン等のエーテル類、アセトニトリル、ジメチルスルホキシド、ジメチルホルムアミド等の非プロトン性極性溶媒等が挙げられる。これらの有機溶媒は、それぞれ単独で使用してもよいし、また、極性を調製するために適宜二種以上を併用してもよい。 Specific examples of the basic catalyst include alkaline earth metal hydroxides, alkali metal carbonates and alkali metal hydroxides. In particular, alkali metal hydroxides are preferable from the viewpoint of excellent catalytic activity in the epoxy resin synthesis reaction, and examples thereof include sodium hydroxide and potassium hydroxide. In use, these basic catalysts may be used in the form of an aqueous solution of about 10% by mass to 55% by mass, or may be used in the form of a solid. Further, by using an organic solvent in combination, the reaction rate in the synthesis of the epoxy resin can be increased. Such an organic solvent is not particularly limited, but for example, ketones such as acetone and methyl ethyl ketone, alcohols such as methanol, ethanol, 1-propyl alcohol, isopropyl alcohol, 1-butanol, secondary butanol and tertiary butanol, and methyl. Examples thereof include cellosolves such as cellosolve and ethyl cellosolve, ethers such as tetrahydrofuran, 1,4-dioxane, 1,3-dioxane and diethoxyethane, and aprotonic polar solvents such as acetonitrile, dimethylsulfoxide and dimethylformamide. Each of these organic solvents may be used alone, or two or more kinds may be used in combination as appropriate to adjust the polarity.

続いて、前述のエポキシ化反応の反応物を水洗後、加熱減圧下、蒸留によって未反応のエピハロヒドリンや併用する有機溶媒を留去する。また更に加水分解性ハロゲンの少ないエポキシ樹脂とするために、得られたエポキシ樹脂を再びトルエン、メチルイソブチルケトン、メチルエチルケトンなどの有機溶媒に溶解し、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物の水溶液を加えてさらに反応を行うこともできる。この際、反応速度の向上を目的として、4級アンモニウム塩やクラウンエーテル等の相関移動触媒を存在させてもよい。相関移動触媒を使用する場合のその使用量としては、用いるエポキシ樹脂に対して0.1質量%〜3.0質量%の範囲が好ましい。反応終了後、生成した塩を濾過、水洗などにより除去し、更に、加熱減圧下トルエン、メチルイソブチルケトンなどの溶剤を留去することにより高純度のエポキシ樹脂を得ることができる。 Subsequently, the reaction product of the above-mentioned epoxidation reaction is washed with water, and then the unreacted epihalohydrin and the organic solvent used in combination are distilled off by distillation under heating and reduced pressure. Further, in order to obtain an epoxy resin having less hydrolyzable halogen, the obtained epoxy resin is dissolved again in an organic solvent such as toluene, methyl isobutyl ketone and methyl ethyl ketone, and alkali metal hydroxide such as sodium hydroxide and potassium hydroxide is used. The reaction can be further carried out by adding an aqueous solution of the substance. At this time, a phase transfer catalyst such as a quaternary ammonium salt or a crown ether may be present for the purpose of improving the reaction rate. When the phase transfer catalyst is used, the amount used is preferably in the range of 0.1% by mass to 3.0% by mass with respect to the epoxy resin used. After completion of the reaction, the produced salt is removed by filtration, washing with water, or the like, and further, a solvent such as toluene or methyl isobutyl ketone is distilled off under heating and reduced pressure to obtain a high-purity epoxy resin.

<エポキシ樹脂組成物>
本発明のエポキシ樹脂は、硬化剤(B)を併用できるものである。前記エポキシ樹脂に硬化剤を配合することで、硬化性のエポキシ樹脂組成物を作製することができる。
<Epoxy resin composition>
The epoxy resin of the present invention can be used in combination with a curing agent (B). By blending a curing agent with the epoxy resin, a curable epoxy resin composition can be produced.

ここで用いることのできる硬化剤(B)としては、例えば、アミン系化合物、アミド系化合物、酸無水物系化合物、フェノール系化合物などの各種の公知のエポキシ樹脂用の硬化剤が挙げられる。 Examples of the curing agent (B) that can be used here include various known curing agents for epoxy resins such as amine compounds, amide compounds, acid anhydride compounds, and phenol compounds.

具体的には、アミン系化合物としてはジアミノジフェニルメタン、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルスルホン、イソホロンジアミン、イミダゾ−ル、BF−アミン錯体、グアニジン誘導体等が挙げられ、アミド系化合物としては、ジシアンジアミド、リノレン酸の2量体とエチレンジアミンとより合成されるポリアミド樹脂等が挙げられる。酸無水物系化合物としては、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸等が挙げられる。フェノール系化合物としては、フェノールノボラック樹脂、クレゾールノボラック樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂、ジシクロペンタジエンフェノール付加型樹脂、フェノールアラルキル樹脂(ザイロック樹脂)、ナフトールアラルキル樹脂、トリフェニロールメタン樹脂、テトラフェニロールエタン樹脂、ナフトールノボラック樹脂、ナフトール−フェノール共縮ノボラック樹脂、ナフトール−クレゾール共縮ノボラック樹脂、ビフェニル変性フェノール樹脂(ビスメチレン基でフェノール核が連結された多価フェノール性水酸基含有化合物)、ビフェニル変性ナフトール樹脂(ビスメチレン基でフェノール核が連結された多価ナフトール化合物)、アミノトリアジン変性フェノール樹脂(メラミン、ベンゾグアナミンなどでフェノール核が連結された多価フェノール性水酸基含有化合物)やアルコキシ基含有芳香環変性ノボラック樹脂(ホルムアルデヒドでフェノール核及びアルコキシ基含有芳香環が連結された多価フェノール性水酸基含有化合物)等の多価フェノール性水酸基含有化合物が挙げられる。 Specifically, diaminodiphenylmethane as amine compound, diethylenetriamine, triethylenetetramine, diaminodiphenyl sulfone, isophoronediamine, imidazo - Le, BF 3 - amine complex, guanidine derivatives and the like, Examples of the amide compounds include dicyandiamide , Polyamide resin synthesized by a dimer of linolenic acid and ethylenediamine, and the like. Examples of acid anhydride compounds include phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylnadic anhydride, hexahydrophthalic anhydride, and methylhexahydro. Examples include phthalic anhydride. Examples of phenolic compounds include phenol novolac resin, cresol novolac resin, aromatic hydrocarbon formaldehyde resin-modified phenol resin, dicyclopentadienephenol-added resin, phenol aralkyl resin (Zyroc resin), naphthol aralkyl resin, and triphenylol methane resin. Tetraphenylol ethane resin, naphthol novolac resin, naphthol-phenol co-condensed novolak resin, naphthol-cresol co-condensed novolak resin, biphenyl-modified phenol resin (polyphenolic hydroxyl group-containing compound in which phenol nuclei are linked by bismethylene groups), biphenyl Modified naphthol resin (polyvalent naphthol compound in which phenol nuclei are linked by bismethylene group), aminotriazine-modified phenol resin (polyvalent phenolic hydroxyl group-containing compound in which phenol nuclei are linked by melamine, benzoguanamine, etc.) and alkoxy group-containing aromatic ring Examples thereof include polyhydric phenolic hydroxyl group-containing compounds such as modified novolak resin (polyhydric phenolic hydroxyl group-containing compound in which a phenol nucleus and an alkoxy group-containing aromatic ring are linked with formaldehyde).

更に、本発明のエポキシ樹脂組成物には、本発明のエポキシ樹脂以外のエポキシ樹脂(C)を本発明の効果を損なわない範囲で併用することができる。 Further, an epoxy resin (C) other than the epoxy resin of the present invention can be used in combination with the epoxy resin composition of the present invention as long as the effects of the present invention are not impaired.

前記エポキシ樹脂(C)としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビフェニル型エポキシ樹脂、テトラメチルビフェニル型エポキシ樹脂、ポリヒドロキシナフタレン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、テトラフェニルエタン型エポキシ樹脂、ジシクロペンタジエン−フェノール付加反応型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ナフトール−フェノール共縮ノボラック型エポキシ樹脂、ナフトール−クレゾール共縮ノボラック型エポキシ樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂型エポキシ樹脂、ビフェニル変性ノボラック型エポキシ樹脂等が挙げられる。これらのエポキシ樹脂の中でも、特に難燃性に優れる硬化物が得られる点においては、テトラメチルビフェノール型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、ポリヒドロキシナフタレン型エポキシ樹脂、ノボラック型エポキシ樹脂を用いることが好ましく、誘電特性に優れる硬化物が得られる点においては、ジシクロペンタジエン−フェノール付加反応型エポキシ樹脂が好ましい。また、その他のエポキシ樹脂(C)を併用する場合、本発明のエポキシ樹脂とエポキシ樹脂(C)との合計100質量部に対し、本発明のエポキシ樹脂を10〜90質量部で含むことが、本発明の効果を容易に発現することができる観点から好ましいものである。 Examples of the epoxy resin (C) include bisphenol A type epoxy resin, bisphenol F type epoxy resin, biphenyl type epoxy resin, tetramethylbiphenyl type epoxy resin, polyhydroxynaphthalene type epoxy resin, phenol novolac type epoxy resin, and cresol novolac. Type epoxy resin, triphenylmethane type epoxy resin, tetraphenylethane type epoxy resin, dicyclopentadiene-phenol addition reaction type epoxy resin, phenol aralkyl type epoxy resin, naphthol novolac type epoxy resin, naphthol aralkyl type epoxy resin, naphthol-phenol Examples thereof include co-shrink novolak type epoxy resin, naphthol-cresol co-shrink novolak type epoxy resin, aromatic hydrocarbon formaldehyde resin modified phenol resin type epoxy resin, and biphenyl-modified novolak type epoxy resin. Among these epoxy resins, tetramethylbiphenol type epoxy resin, biphenylaralkyl type epoxy resin, polyhydroxynaphthalene type epoxy resin, and novolac type epoxy resin can be used in terms of obtaining a cured product having particularly excellent flame retardancy. A dicyclopentadiene-phenol addition reaction type epoxy resin is preferable in that a cured product having excellent dielectric properties can be obtained. When the other epoxy resin (C) is used in combination, the epoxy resin of the present invention may be contained in an amount of 10 to 90 parts by mass with respect to a total of 100 parts by mass of the epoxy resin of the present invention and the epoxy resin (C). It is preferable from the viewpoint that the effect of the present invention can be easily exhibited.

本発明のエポキシ樹脂組成物において、本発明のエポキシ樹脂と硬化剤(B)との配合量は、硬化性に優れる観点より、本発明のエポキシ樹脂と必要により併用される前記エポキシ樹脂(C)中のエポキシ基の合計1当量に対して、前記硬化剤(B)中の活性基の合計が0.8〜1.2当量となる割合であることが好ましい。 In the epoxy resin composition of the present invention, the blending amount of the epoxy resin of the present invention and the curing agent (B) is the epoxy resin (C) to be used in combination with the epoxy resin of the present invention as necessary from the viewpoint of excellent curability. It is preferable that the total amount of active groups in the curing agent (B) is 0.8 to 1.2 equivalents with respect to the total amount of 1 equivalent of the epoxy groups contained therein.

また、前記エポキシ樹脂組成物は、その他の熱硬化性樹脂を併用しても良い。 Further, the epoxy resin composition may be used in combination with other thermosetting resins.

その他の熱硬化性樹脂としては、例えば、シアネートエステル樹脂、ベンゾオキサジン構造を有する樹脂、マレイミド化合物、活性エステル樹脂、ビニルベンジル化合物、アクリル化合物、スチレンとマレイン酸無水物の共重合物などが挙げられる。前記した他の熱硬化性樹脂を併用する場合、その使用量は本発明の効果を阻害しなければ特に制限をうけないが、樹脂組成物100質量部中1〜50質量部の範囲であることが好ましい。 Examples of other thermosetting resins include cyanate ester resins, resins having a benzoxazine structure, maleimide compounds, active ester resins, vinylbenzyl compounds, acrylic compounds, copolymers of styrene and maleic acid anhydride, and the like. .. When the other thermosetting resin described above is used in combination, the amount used is not particularly limited as long as the effect of the present invention is not impaired, but it should be in the range of 1 to 50 parts by mass out of 100 parts by mass of the resin composition. Is preferable.

前記シアネートエステル樹脂としては、例えば、ビスフェノールA型シアネートエステル樹脂、ビスフェノールF型シアネートエステル樹脂、ビスフェノールE型シアネートエステル樹脂、ビスフェノールS型シアネートエステル樹脂、ビスフェノールスルフィド型シアネートエステル樹脂、フェニレンエーテル型シアネートエステル樹脂、ナフチレンエーテル型シアネートエステル樹脂、ビフェニル型シアネートエステル樹脂、テトラメチルビフェニル型シアネートエステル樹脂、ポリヒドロキシナフタレン型シアネートエステル樹脂、フェノールノボラック型シアネートエステル樹脂、クレゾールノボラック型シアネートエステル樹脂、トリフェニルメタン型シアネートエステル樹脂、テトラフェニルエタン型シアネートエステル樹脂、ジシクロペンタジエン−フェノール付加反応型シアネートエステル樹脂、フェノールアラルキル型シアネートエステル樹脂、ナフトールノボラック型シアネートエステル樹脂、ナフトールアラルキル型シアネートエステル樹脂、ナフトール−フェノール共縮ノボラック型シアネートエステル樹脂、ナフトール−クレゾール共縮ノボラック型シアネートエステル樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂型シアネートエステル樹脂、ビフェニル変性ノボラック型シアネートエステル樹脂、アントラセン型シアネートエステル樹脂等が挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。 Examples of the cyanate ester resin include bisphenol A type cyanate ester resin, bisphenol F type cyanate ester resin, bisphenol E type cyanate ester resin, bisphenol S type cyanate ester resin, bisphenol sulfide type cyanate ester resin, and phenylene ether type cyanate ester resin. , Naftyrene ether type cyanate ester resin, biphenyl type cyanate ester resin, tetramethylbiphenyl type cyanate ester resin, polyhydroxynaphthalene type cyanate ester resin, phenol novolac type cyanate ester resin, cresol novolac type cyanate ester resin, triphenylmethane type cyanate Ester resin, tetraphenylethane type cyanate ester resin, dicyclopentadiene-phenol addition reaction type cyanate ester resin, phenol aralkyl type cyanate ester resin, naphthol novolac type cyanate ester resin, naphthol aralkyl type cyanate ester resin, naphthol-phenol co-condensed novolak Examples thereof include type cyanate ester resin, naphthol-cresol co-condensed novolak type cyanate ester resin, aromatic hydrocarbon formaldehyde resin modified phenol resin type cyanate ester resin, biphenyl modified novolak type cyanate ester resin, and anthracene type cyanate ester resin. Each of these may be used alone, or two or more types may be used in combination.

これらのシアネートエステル樹脂の中でも、特に耐熱性に優れる硬化物が得られる点においては、ビスフェノールA型シアネートエステル樹脂、ビスフェノールF型シアネートエステル樹脂、ビスフェノールE型シアネートエステル樹脂、ポリヒドロキシナフタレン型シアネートエステル樹脂、ナフチレンエーテル型シアネートエステル樹脂、ノボラック型シアネートエステル樹脂を用いることが好ましく、誘電特性に優れる硬化物が得られる点においては、ジシクロペンタジエン−フェノール付加反応型シアネートエステル樹脂が好ましい。 Among these cyanate ester resins, bisphenol A type cyanate ester resin, bisphenol F type cyanate ester resin, bisphenol E type cyanate ester resin, and polyhydroxynaphthalene type cyanate ester resin are particularly excellent in heat resistance. , Naftylene ether type cyanate ester resin and novolak type cyanate ester resin are preferably used, and dicyclopentadiene-phenol addition reaction type cyanate ester resin is preferable in that a cured product having excellent dielectric properties can be obtained.

ベンゾオキサジン構造を有する樹脂としては、特に制限はないが、例えば、ビスフェノールFとホルマリンとアニリンの反応生成物(F−a型ベンゾオキサジン樹脂)やジアミノジフェニルメタンとホルマリンとフェノールの反応生成物(P−d型ベンゾオキサジン樹脂)、ビスフェノールAとホルマリンとアニリンの反応生成物、ジヒドロキシジフェニルエーテルとホルマリンとアニリンの反応生成物、ジアミノジフェニルエーテルとホルマリンとフェノールの反応生成物、ジシクロペンタジエン−フェノール付加型樹脂とホルマリンとアニリンの反応生成物、フェノールフタレインとホルマリンとアニリンの反応生成物、ジフェニルスルフィドとホルマリンとアニリンの反応生成物などが挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。 The resin having a benzoxazine structure is not particularly limited, but for example, a reaction product of bisphenol F, formalin and aniline (FA type benzoxazine resin) or a reaction product of diaminodiphenylmethane, formalin and phenol (P-). d-type benzoxazine resin), reaction product of bisphenol A, formalin and aniline, reaction product of dihydroxydiphenyl ether, formalin and aniline, reaction product of diaminodiphenyl ether, formalin and phenol, dicyclopentadiene-phenol-added resin and formalin And aniline reaction products, phenolphthalein, formalin and aniline reaction products, diphenylsulfide, formalin and aniline reaction products, and the like. Each of these may be used alone, or two or more types may be used in combination.

前記マレイミド化合物としては、例えば、下記構造式(i)〜(iii)の何れかで表される各種の化合物等が挙げられる。 Examples of the maleimide compound include various compounds represented by any of the following structural formulas (i) to (iii).

Figure 0006874359
(式中Rはm価の有機基であり、α及びβはそれぞれ水素原子、ハロゲン原子、アルキル基、アリール基の何れかであり、sは1以上の整数である。)
Figure 0006874359
(In the formula, R is an m-valent organic group, α and β are any of a hydrogen atom, a halogen atom, an alkyl group, and an aryl group, respectively, and s is an integer of 1 or more.)

Figure 0006874359
Figure 0006874359

(式中Rは水素原子、アルキル基、アリール基、アラルキル基、ハロゲン原子、水酸基、アルコキシ基の何れかであり、sは1〜3の整数、tは繰り返し単位の平均で0〜10である。) (In the formula, R is any of a hydrogen atom, an alkyl group, an aryl group, an aralkyl group, a halogen atom, a hydroxyl group, and an alkoxy group, s is an integer of 1 to 3, and t is an average of 0 to 10 in repeating units. .)

Figure 0006874359
(式中Rは水素原子、アルキル基、アリール基、アラルキル基、ハロゲン原子、水酸基、アルコキシ基の何れかであり、sは1〜3の整数、tは繰り返し単位の平均で0〜10である。)これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。
Figure 0006874359
(In the formula, R is any of a hydrogen atom, an alkyl group, an aryl group, an aralkyl group, a halogen atom, a hydroxyl group, and an alkoxy group, s is an integer of 1 to 3, and t is an average of 0 to 10 in repeating units. .) Each of these may be used alone, or two or more types may be used in combination.

前記活性エステル樹脂としては、特に制限はないが、一般にフェノールエステル類、チオフェノールエステル類、N−ヒドロキシアミンエステル類、複素環ヒドロキシ化合物のエステル類等の反応活性の高いエステル基を1分子中に2個以上有する化合物が好ましく用いられる。前記活性エステル樹脂は、カルボン酸化合物及び/又はチオカルボン酸化合物と、ヒドロキシ化合物及び/又はチオール化合物との縮合反応によって得られるものが好ましい。特に耐熱性向上の観点から、カルボン酸化合物又はそのハライドとヒドロキシ化合物とから得られる活性エステル樹脂が好ましく、カルボン酸化合物又はそのハライドと、フェノール化合物及び/又はナフトール化合物とから得られる活性エステル樹脂がより好ましい。カルボン酸化合物としては、例えば安息香酸、酢酸、コハク酸、マレイン酸、イタコン酸、フタル酸、イソフタル酸、テレフタル酸、ピロメリット酸等、又はそのハライドが挙げられる。フェノール化合物又はナフトール化合物としては、ハイドロキノン、レゾルシン、ビスフェノールA、ビスフェノールF、ビスフェノールS、ジヒドロキシジフェニルエーテル、フェノールフタレイン、メチル化ビスフェノールA、メチル化ビスフェノールF、メチル化ビスフェノールS、フェノール、o−クレゾール、m−クレゾール、p−クレゾール、カテコール、α−ナフトール、β−ナフトール、1,5−ジヒドロキシナフタレン、1,6−ジヒドロキシナフタレン、2,6−ジヒドロキシナフタレン、ジヒドロキシベンゾフェノン、トリヒドロキシベンゾフェノン、テトラヒドロキシベンゾフェノン、フロログルシン、ベンゼントリオール、ジシクロペンタジエン−フェノール付加型樹脂等が挙げられる。 The active ester resin is not particularly limited, but generally contains an ester group having high reactive activity such as phenol esters, thiophenol esters, N-hydroxyamine esters, and esters of heterocyclic hydroxy compounds in one molecule. A compound having two or more is preferably used. The active ester resin is preferably obtained by a condensation reaction between a carboxylic acid compound and / or a thiocarboxylic acid compound and a hydroxy compound and / or a thiol compound. In particular, from the viewpoint of improving heat resistance, an active ester resin obtained from a carboxylic acid compound or a halide thereof and a hydroxy compound is preferable, and an active ester resin obtained from a carboxylic acid compound or a halide thereof and a phenol compound and / or a naphthol compound is preferable. More preferred. Examples of the carboxylic acid compound include benzoic acid, acetic acid, succinic acid, maleic acid, itaconic acid, phthalic acid, isophthalic acid, terephthalic acid, pyromellitic acid and the like, or halides thereof. Examples of the phenol compound or naphthol compound include hydroquinone, resorcin, bisphenol A, bisphenol F, bisphenol S, dihydroxydiphenyl ether, phenol phthalein, methylated bisphenol A, methylated bisphenol F, methylated bisphenol S, phenol, o-cresol, m. -Cresol, p-cresol, catechol, α-naphthol, β-naphthol, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, dihydroxybenzophenol, trihydroxybenzophenone, tetrahydroxybenzophenone, fluoroglusin , Benzintriol, dicyclopentadiene-phenol-added resin and the like.

活性エステル樹脂として、具体的にはジシクロペンタジエン−フェノール付加構造を含む活性エステル系樹脂、ナフタレン構造を含む活性エステル樹脂、フェノールノボラックのアセチル化物である活性エステル樹脂、フェノールノボラックのベンゾイル化物である活性エステル樹脂等が好ましく、なかでもピール強度の向上に優れるという点で、ジシクロペンタジエン−フェノール付加構造を含む活性エステル樹脂、ナフタレン構造を含む活性エステル樹脂がより好ましい。ジシクロペンタジエン−フェノール付加構造を含む活性エステル樹脂として、より具体的には下記一般式(iv)で表される化合物が挙げられる。 Specific examples of the active ester resin include an active ester resin containing a dicyclopentadiene-phenol addition structure, an active ester resin containing a naphthalene structure, an active ester resin which is an acetylated product of phenol novolac, and an activity which is a benzoyl product of phenol novolac. Ester resins and the like are preferable, and among them, an active ester resin containing a dicyclopentadiene-phenol addition structure and an active ester resin containing a naphthalene structure are more preferable in that they are excellent in improving peel strength. Specific examples of the active ester resin containing a dicyclopentadiene-phenol addition structure include compounds represented by the following general formula (iv).

Figure 0006874359
Figure 0006874359

但し、式(iv)中、Rはフェニル基又はナフチル基であり、uは0又は1を表し、nは繰り返し単位の平均で0.05〜2.5である。なお、樹脂組成物の硬化物の誘電正接を低下させ、耐熱性を向上させるという観点から、Rはナフチル基が好ましく、uは0が好ましく、また、nは0.25〜1.5が好ましい。 However, in the formula (iv), R is a phenyl group or a naphthyl group, u represents 0 or 1, and n is an average of 0.05 to 2.5 in repeating units. From the viewpoint of reducing the dielectric loss tangent of the cured product of the resin composition and improving the heat resistance, R is preferably a naphthyl group, u is preferably 0, and n is preferably 0.25 to 1.5. ..

本発明のエポキシ樹脂組成物は、エポキシ樹脂組成物のみでも硬化は進行するが、硬化促進剤を併用してもよい。硬化促進剤としてはイミダゾール、ジメチルアミノピリジンなどの3級アミン化合物;トリフェニルホスフィンなどの燐系化合物;3フッ化ホウ素、3フッ化ホウ素モノエチルアミン錯体などの3フッ化ホウ素アミン錯体;チオジプロピオン酸等の有機酸化合物;チオジフェノールベンズオキサジン、スルホニルベンズオキサジン等のベンズオキサジン化合物;スルホニル化合物等が挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。これら触媒の添加量は、エポキシ樹脂組成物100質量部中0.001〜15質量部の範囲であることが好ましい。 The epoxy resin composition of the present invention can be cured even with the epoxy resin composition alone, but a curing accelerator may be used in combination. As the curing accelerator, tertiary amine compounds such as imidazole and dimethylaminopyridine; phosphorus compounds such as triphenylphosphine; boron trifluoride amine complex such as boron trifluoride and boron trifluoride monoethylamine complex; thiodipropion. Organic acid compounds such as acids; benzoxazine compounds such as thiodiphenol benzoxazine and sulfonylbenzoxazine; sulfonyl compounds and the like can be mentioned. Each of these may be used alone, or two or more types may be used in combination. The amount of these catalysts added is preferably in the range of 0.001 to 15 parts by mass in 100 parts by mass of the epoxy resin composition.

また、本発明のエポキシ樹脂組成物に高い難燃性が求められる用途に用いる場合には、実質的にハロゲン原子を含有しない非ハロゲン系難燃剤を配合してもよい。 Further, when the epoxy resin composition of the present invention is used in an application where high flame retardancy is required, a non-halogen flame retardant which does not substantially contain a halogen atom may be blended.

前記非ハロゲン系難燃剤は、例えば、リン系難燃剤、窒素系難燃剤、シリコーン系難燃剤、無機系難燃剤、有機金属塩系難燃剤等が挙げられ、それらの使用に際しても何等制限されるものではなく、単独で使用しても、同一系の難燃剤を複数用いても良く、また、異なる系の難燃剤を組み合わせて用いることも可能である。 Examples of the non-halogen flame retardant include phosphorus flame retardants, nitrogen flame retardants, silicone flame retardants, inorganic flame retardants, organic metal salt flame retardants, and the like, and their use is also restricted. It may be used alone, a plurality of flame retardants of the same system may be used, and flame retardants of different systems may be used in combination.

前記リン系難燃剤は、無機系、有機系のいずれも使用することができる。無機系化合物としては、例えば、赤リン、リン酸一アンモニウム、リン酸二アンモニウム、リン酸三アンモニウム、ポリリン酸アンモニウム等のリン酸アンモニウム類、リン酸アミド等の無機系含窒素リン化合物が挙げられる。 As the phosphorus-based flame retardant, either an inorganic type or an organic type can be used. Examples of the inorganic compound include ammonium phosphates such as red phosphorus, monoammonium phosphate, diammonium phosphate, triammonium phosphate and ammonium polyphosphate, and inorganic nitrogen-containing phosphorus compounds such as phosphate amide. ..

また、前記赤リンは、加水分解等の防止を目的として表面処理が施されていることが好ましく、表面処理方法としては、例えば、(i)水酸化マグネシウム、水酸化アルミニウム、水酸化亜鉛、水酸化チタン、酸化ビスマス、水酸化ビスマス、硝酸ビスマス又はこれらの混合物等の無機化合物で被覆処理する方法、(ii)水酸化マグネシウム、水酸化アルミニウム、水酸化亜鉛、水酸化チタン等の無機化合物、及びフェノール樹脂等の熱硬化性樹脂の混合物で被覆処理する方法、(iii)水酸化マグネシウム、水酸化アルミニウム、水酸化亜鉛、水酸化チタン等の無機化合物の被膜の上にフェノール樹脂等の熱硬化性樹脂で二重に被覆処理する方法等が挙げられる。 The red phosphorus is preferably surface-treated for the purpose of preventing hydrolysis and the like, and examples of the surface treatment method include (i) magnesium hydroxide, aluminum hydroxide, zinc hydroxide, and water. A method of coating with an inorganic compound such as titanium oxide, bismuth oxide, bismuth hydroxide, bismuth nitrate or a mixture thereof, (ii) inorganic compounds such as magnesium hydroxide, aluminum hydroxide, zinc hydroxide and titanium hydroxide, and Method of coating with a mixture of thermosetting resins such as phenol resin, (iii) Thermocurability of phenol resin or the like on a film of an inorganic compound such as magnesium hydroxide, aluminum hydroxide, zinc hydroxide, titanium hydroxide Examples thereof include a method of double coating with resin.

前記有機リン系化合物は、例えば、リン酸エステル化合物、ホスホン酸化合物、ホスフィン酸化合物、ホスフィンオキシド化合物、ホスホラン化合物、有機系含窒素リン化合物等の汎用有機リン系化合物の他、9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキシド、10−(2,5―ジヒドロオキシフェニル)−10H−9−オキサ−10−ホスファフェナントレン−10−オキシド、10−(2,7−ジヒドロオキシナフチル)−10H−9−オキサ−10−ホスファフェナントレン−10−オキシド等の環状有機リン化合物及びそれをエポキシ樹脂やフェノール樹脂等の化合物と反応させた誘導体等が挙げられる。 The organic phosphorus compounds include, for example, general-purpose organic phosphorus compounds such as phosphoric acid ester compounds, phosphonic acid compounds, phosphinic acid compounds, phosphine oxide compounds, phosphoran compounds, and organic nitrogen-containing phosphorus compounds, as well as 9,10-dihydro. -9-Oxa-10-phosphaphenanthrene-10-oxide, 10- (2,5-dihydrooxyphenyl) -10H-9-oxa-10-phosphaphenanthrene-10-oxide, 10- (2,7-) Examples thereof include cyclic organophosphorus compounds such as dihydrooxynaphthyl) -10H-9-oxa-10-phosphaphenanthrene-10-oxide and derivatives obtained by reacting the cyclic organophosphorus compounds with compounds such as epoxy resins and phenol resins.

これらリン系難燃剤の配合量としては、リン系難燃剤の種類、樹脂組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、非ハロゲン系難燃剤及びその他の充填材や添加剤等全てを配合した樹脂組成物100質量部中、赤リンを非ハロゲン系難燃剤として使用する場合には0.1質量部〜2.0質量部の範囲で配合することが好ましく、有機リン化合物を用いる場合には同様に0.1質量部〜10.0質量部の範囲で配合することが好ましく、0.5質量部〜6.0質量部の範囲で配合することがより好ましい。 The blending amount of these phosphorus-based flame retardants is appropriately selected depending on the type of the phosphorus-based flame retardant, other components of the resin composition, and the desired degree of flame retardancy. For example, a non-halogen flame retardant. When red phosphorus is used as a non-halogen flame retardant, it is blended in the range of 0.1 parts by mass to 2.0 parts by mass in 100 parts by mass of the resin composition containing all of the fillers and other additives. In the same way, when an organic phosphorus compound is used, it is preferably blended in the range of 0.1 parts by mass to 10.0 parts by mass, and blended in the range of 0.5 parts by mass to 6.0 parts by mass. It is more preferable to do so.

また前記リン系難燃剤を使用する場合、該リン系難燃剤にハイドロタルサイト、水酸化マグネシウム、ホウ素化合物、酸化ジルコニウム、黒色染料、炭酸カルシウム、ゼオライト、モリブデン酸亜鉛、活性炭等を併用してもよい。 When the phosphorus-based flame retardant is used, hydrotalcite, magnesium hydroxide, boron compound, zirconium oxide, black dye, calcium carbonate, zeolite, zinc molybdate, activated charcoal, etc. may be used in combination with the phosphorus-based flame retardant. Good.

前記窒素系難燃剤は、例えば、トリアジン化合物、シアヌル酸化合物、イソシアヌル酸化合物、フェノチアジン等が挙げられ、トリアジン化合物、シアヌル酸化合物、イソシアヌル酸化合物が好ましい。 Examples of the nitrogen-based flame retardant include triazine compounds, cyanuric acid compounds, isocyanuric acid compounds, and phenothiazine, and triazine compounds, cyanuric acid compounds, and isocyanuric acid compounds are preferable.

前記トリアジン化合物は、例えば、メラミン、アセトグアナミン、ベンゾグアナミン、メロン、メラム、サクシノグアナミン、エチレンジメラミン、ポリリン酸メラミン、トリグアナミン等の他、例えば、(1)硫酸グアニルメラミン、硫酸メレム、硫酸メラムなどの硫酸アミノトリアジン化合物、(2)フェノール、クレゾール、キシレノール、ブチルフェノール、ノニルフェノール等のフェノール類と、メラミン、ベンゾグアナミン、アセトグアナミン、ホルムグアナミン等のメラミン類及びホルムアルデヒドとの共縮合物、(3)前記(2)の共縮合物とフェノールホルムアルデヒド縮合物等のフェノール樹脂類との混合物、(4)前記(2)、(3)を更に桐油、異性化アマニ油等で変性したもの等が挙げられる。 The triazine compound includes, for example, melamine, acetoguanamine, benzoguanamine, melon, melam, succinoguanamine, ethylenedimelamine, polyphosphate melamine, triguanamine and the like, and for example, (1) guanyl melamine sulfate, melem sulfate, melam sulfate. Aminotriazine sulfate compounds such as (2) Phenols such as phenol, cresol, xylenol, butylphenol and nonylphenol, and melamines such as melamine, benzoguanamine, acetguanamine and formguanamine and formaldehyde cocondensate, (3) Examples thereof include a mixture of the cocondensate of (2) and a phenol resin such as a phenol formaldehyde condensate, and (4) the above (2) and (3) further modified with tung oil, isomerized flaxseed oil and the like.

前記シアヌル酸化合物は、例えば、シアヌル酸、シアヌル酸メラミン等を挙げることができる。 Examples of the cyanuric acid compound include cyanuric acid and melamine cyanuric acid.

前記窒素系難燃剤の配合量としては、窒素系難燃剤の種類、樹脂組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、非ハロゲン系難燃剤及びその他の充填材や添加剤等全てを配合した樹脂組成物100質量部中、0.05〜10質量部の範囲で配合することが好ましく、0.1質量部〜5質量部の範囲で配合することがより好ましい。 The blending amount of the nitrogen-based flame retardant is appropriately selected depending on the type of the nitrogen-based flame retardant, other components of the resin composition, and the desired degree of flame retardancy. For example, a non-halogen flame retardant. And other fillers, additives, etc. are all blended in the range of 0.05 to 10 parts by mass, preferably in the range of 0.1 parts by mass to 5 parts by mass, out of 100 parts by mass of the resin composition. It is more preferable to do so.

また前記窒素系難燃剤を使用する際、金属水酸化物、モリブデン化合物等を併用してもよい。 When using the nitrogen-based flame retardant, a metal hydroxide, a molybdenum compound, or the like may be used in combination.

前記シリコーン系難燃剤は、ケイ素原子を含有する有機化合物であれば特に制限がなく使用でき、例えば、シリコーンオイル、シリコーンゴム、シリコーン樹脂等が挙げられる。前記シリコーン系難燃剤の配合量としては、シリコーン系難燃剤の種類、樹脂組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、非ハロゲン系難燃剤及びその他の充填材や添加剤等全てを配合した樹脂組成物100質量部中、0.05〜20質量部の範囲で配合することが好ましい。また前記シリコーン系難燃剤を使用する際、モリブデン化合物、アルミナ等を併用してもよい。 The silicone-based flame retardant can be used without particular limitation as long as it is an organic compound containing a silicon atom, and examples thereof include silicone oil, silicone rubber, and silicone resin. The blending amount of the silicone flame retardant is appropriately selected depending on the type of the silicone flame retardant, other components of the resin composition, and the desired degree of flame retardancy. For example, a non-halogen flame retardant. It is preferable to blend in the range of 0.05 to 20 parts by mass in 100 parts by mass of the resin composition containing all of the other fillers and additives. Further, when using the silicone flame retardant, a molybdenum compound, alumina or the like may be used in combination.

前記無機系難燃剤は、例えば、金属水酸化物、金属酸化物、金属炭酸塩化合物、金属粉、ホウ素化合物、低融点ガラス等が挙げられる。 Examples of the inorganic flame retardant include metal hydroxides, metal oxides, metal carbonate compounds, metal powders, boron compounds, and low melting point glass.

前記金属水酸化物は、例えば、水酸化アルミニウム、水酸化マグネシウム、ドロマイト、ハイドロタルサイト、水酸化カルシウム、水酸化バリウム、水酸化ジルコニウム等を挙げることができる。 Examples of the metal hydroxide include aluminum hydroxide, magnesium hydroxide, dolomite, hydrotalcite, calcium hydroxide, barium hydroxide, zirconium hydride and the like.

前記金属酸化物は、例えば、モリブデン酸亜鉛、三酸化モリブデン、スズ酸亜鉛、酸化スズ、酸化アルミニウム、酸化鉄、酸化チタン、酸化マンガン、酸化ジルコニウム、酸化亜鉛、酸化モリブデン、酸化コバルト、酸化ビスマス、酸化クロム、酸化ニッケル、酸化銅、酸化タングステン等を挙げることができる。 The metal oxide includes, for example, zinc molybdenum, molybdenum trioxide, zinc tinate, tin oxide, aluminum oxide, iron oxide, titanium oxide, manganese oxide, zirconium oxide, zinc oxide, molybdenum oxide, cobalt oxide, and bismuth oxide. Examples thereof include chromium oxide, nickel oxide, copper oxide, and tungsten oxide.

前記金属炭酸塩化合物は、例えば、炭酸亜鉛、炭酸マグネシウム、炭酸カルシウム、炭酸バリウム、塩基性炭酸マグネシウム、炭酸アルミニウム、炭酸鉄、炭酸コバルト、炭酸チタン等を挙げることができる。 Examples of the metal carbonate compound include zinc carbonate, magnesium carbonate, calcium carbonate, barium carbonate, basic magnesium carbonate, aluminum carbonate, iron carbonate, cobalt carbonate, titanium carbonate and the like.

前記金属粉は、例えば、アルミニウム、鉄、チタン、マンガン、亜鉛、モリブデン、コバルト、ビスマス、クロム、ニッケル、銅、タングステン、スズ等を挙げることができる。 Examples of the metal powder include aluminum, iron, titanium, manganese, zinc, molybdenum, cobalt, bismuth, chromium, nickel, copper, tungsten, tin and the like.

前記ホウ素化合物は、例えば、ホウ酸亜鉛、メタホウ酸亜鉛、メタホウ酸バリウム、ホウ酸、ホウ砂等を挙げることができる。 Examples of the boron compound include zinc borate, zinc metaborate, barium metaborate, boric acid, and borax.

前記低融点ガラスは、例えば、シープリー(ボクスイ・ブラウン社)、水和ガラスSiO−MgO−HO、PbO−B系、ZnO−P−MgO系、P−B−PbO−MgO系、P−Sn−O−F系、PbO−V−TeO系、Al−HO系、ホウ珪酸鉛系等のガラス状化合物を挙げることができる。 The low melting point glass includes, for example, Shipley (Boxy Brown Co., Ltd.), hydrated glass SiO 2 -MgO-H 2 O, PbO-B 2 O 3 system, ZnO-P 2 O 5- MgO system, P 2 O 5 -B 2 O 3- PbO-MgO system, P-Sn-OF system, PbO-V 2 O 5- TeO 2 system, Al 2 O 3- H 2 O system, lead borosilicate glassy compounds, etc. Can be mentioned.

前記無機系難燃剤の配合量としては、無機系難燃剤の種類、樹脂組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、非ハロゲン系難燃剤及びその他の充填材や添加剤等全てを配合した樹脂組成物100質量部中、0.05質量部〜20質量部の範囲で配合することが好ましく、0.5質量部〜15質量部の範囲で配合することがより好ましい。 The blending amount of the inorganic flame retardant is appropriately selected depending on the type of the inorganic flame retardant, other components of the resin composition, and the desired degree of flame retardancy. For example, a non-halogen flame retardant. It is preferable to blend in the range of 0.05 parts by mass to 20 parts by mass, and in the range of 0.5 parts by mass to 15 parts by mass, out of 100 parts by mass of the resin composition containing all of the other fillers and additives. It is more preferable to mix with.

前記有機金属塩系難燃剤は、例えば、フェロセン、アセチルアセトナート金属錯体、有機金属カルボニル化合物、有機コバルト塩化合物、有機スルホン酸金属塩、金属原子と芳香族化合物又は複素環化合物がイオン結合又は配位結合した化合物等が挙げられる。 The organometallic salt-based flame retardant includes, for example, ferrocene, an acetylacetonate metal complex, an organometallic carbonyl compound, an organocobalt salt compound, an organosulfonic acid metal salt, a metal atom and an aromatic compound or a heterocyclic compound in an ionic bond or arrangement. Examples thereof include position-bonded compounds.

前記有機金属塩系難燃剤の配合量としては、有機金属塩系難燃剤の種類、樹脂組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、非ハロゲン系難燃剤及びその他の充填材や添加剤等全てを配合した樹脂組成物100質量部中、0.005質量部〜10質量部の範囲で配合することが好ましい。 The blending amount of the organic metal salt-based flame retardant is appropriately selected depending on the type of the organic metal salt-based flame retardant, other components of the resin composition, and the desired degree of flame retardancy. It is preferable to blend in the range of 0.005 parts by mass to 10 parts by mass in 100 parts by mass of the resin composition containing all of the halogen-based flame retardant and other fillers and additives.

本発明のエポキシ樹脂組成物は、必要に応じて無機充填材を配合することができる。前記無機充填材は、例えば、溶融シリカ、結晶シリカ、アルミナ、窒化珪素、水酸化アルミ等が挙げられる。前記無機充填材の配合量を特に大きくする場合は溶融シリカを用いることが好ましい。前記溶融シリカは破砕状、球状のいずれでも使用可能であるが、溶融シリカの配合量を高め且つ成形材料の溶融粘度の上昇を抑制するためには、球状のものを主に用いる方が好ましい。更に球状シリカの配合量を高めるためには、球状シリカの粒度分布を適当に調整することが好ましい。その充填率は難燃性を考慮して、高い方が好ましく、エポキシ樹脂組成物の全質量に対して20質量%以上が特に好ましい。また導電ペーストなどの用途に使用する場合は、銀粉や銅粉等の導電性充填剤を用いることができる。 The epoxy resin composition of the present invention can be blended with an inorganic filler, if necessary. Examples of the inorganic filler include fused silica, crystalline silica, alumina, silicon nitride, aluminum hydroxide and the like. When the blending amount of the inorganic filler is particularly large, it is preferable to use molten silica. The molten silica can be used in either a crushed form or a spherical shape, but in order to increase the blending amount of the molten silica and suppress an increase in the melt viscosity of the molding material, it is preferable to mainly use a spherical one. Further, in order to increase the blending amount of spherical silica, it is preferable to appropriately adjust the particle size distribution of spherical silica. The filling rate is preferably high in consideration of flame retardancy, and is particularly preferably 20% by mass or more with respect to the total mass of the epoxy resin composition. When used for applications such as conductive paste, a conductive filler such as silver powder or copper powder can be used.

本発明のエポキシ樹脂組成物は、この他、必要に応じて、シランカップリング剤、離型剤、顔料、乳化剤等の種々の配合剤を添加することができる。 In addition to this, various compounding agents such as a silane coupling agent, a mold release agent, a pigment, and an emulsifier can be added to the epoxy resin composition of the present invention, if necessary.

<エポキシ樹脂組成物の用途>
本発明のエポキシ樹脂組成物は、半導体封止材料、半導体装置、プリプレグ、プリント回路基板、ビルドアップ基板、ビルドアップフィルム、繊維強化複合材料、繊維強化樹脂成形品、導電ペースト等に適用することができる。
<Use of epoxy resin composition>
The epoxy resin composition of the present invention can be applied to semiconductor encapsulant materials, semiconductor devices, prepregs, printed circuit boards, build-up substrates, build-up films, fiber-reinforced composite materials, fiber-reinforced resin molded products, conductive pastes, and the like. it can.

1.半導体封止材料
本発明のエポキシ樹脂組成物から半導体封止材料を得る方法としては、前記エポキシ樹脂組成物、前記硬化促進剤、及び無機充填剤等の配合剤とを必要に応じて押出機、ニ−ダ、ロ−ル等を用いて均一になるまで充分に溶融混合する方法が挙げられる。その際、無機充填剤としては、通常、溶融シリカが用いられるが、パワートランジスタ、パワーIC用高熱伝導半導体封止材として用いる場合は、溶融シリカよりも熱伝導率の高い結晶シリカ,アルミナ,窒化ケイ素などの高充填化、または溶融シリカ、結晶性シリカ、アルミナ、窒化ケイ素などを用いるとよい。その充填率はエポキシ樹脂組成物100質量部当たり、無機充填剤を30質量%〜95質量%の範囲で用いることが好ましく、中でも、難燃性や耐湿性や耐半田クラック性の向上、線膨張係数の低下を図るためには、70質量部以上がより好ましく、80質量部以上であることがさらに好ましい。
1. 1. Semiconductor encapsulation material As a method for obtaining a semiconductor encapsulation material from the epoxy resin composition of the present invention, an extruder such as the epoxy resin composition, the curing accelerator, and an inorganic filler can be used as necessary. Examples thereof include a method of sufficiently melting and mixing until the mixture becomes uniform using a feeder, roll or the like. At that time, fused silica is usually used as the inorganic filler, but when used as a high thermal conductivity semiconductor encapsulant for power transistors and power ICs, crystalline silica, alumina, and silicon nitride having higher thermal conductivity than fused silica are used. It is preferable to use high-filling silicon or the like, or use molten silica, crystalline silica, alumina, silicon nitride, or the like. It is preferable to use an inorganic filler in the range of 30% by mass to 95% by mass per 100 parts by mass of the epoxy resin composition, and among them, improvement of flame retardancy, moisture resistance and solder crack resistance, and linear expansion. In order to reduce the coefficient, 70 parts by mass or more is more preferable, and 80 parts by mass or more is further preferable.

2.半導体装置
本発明のエポキシ樹脂組成物から半導体装置を得る方法としては、前記半導体封止材料を注型、或いはトランスファー成形機、射出成形機などを用いて成形し、さらに50〜200℃で2〜10時間の間、加熱する方法が挙げられる。
2. Semiconductor device As a method for obtaining a semiconductor device from the epoxy resin composition of the present invention, the semiconductor encapsulant material is cast or molded using a transfer molding machine, an injection molding machine, or the like, and further at 50 to 200 ° C. for 2 to 2 A method of heating for 10 hours can be mentioned.

3.プリプレグ
本発明のエポキシ樹脂組成物からプリプレグを得る方法としては、有機溶剤を配合してワニス化した硬化性樹脂組成物を、補強基材(紙、ガラス布、ガラス不織布、アラミド紙、アラミド布、ガラスマット、ガラスロービング布など)に含浸したのち、用いた溶剤種に応じた加熱温度、好ましくは50〜170℃で加熱することによって、得る方法が挙げられる。この時用いる樹脂組成物と補強基材の質量割合としては、特に限定されないが、通常、プリプレグ中の樹脂分が20質量%〜60質量%となるように調製することが好ましい。
3. 3. Prepreg As a method for obtaining a prepreg from the epoxy resin composition of the present invention, a curable resin composition obtained by blending an organic solvent to form a varnish is used as a reinforcing base material (paper, glass cloth, glass non-woven fabric, aramid paper, aramid cloth, etc.). A method obtained by impregnating a glass mat, a glass roving cloth, etc.) and then heating at a heating temperature according to the type of the solvent used, preferably 50 to 170 ° C. can be mentioned. The mass ratio of the resin composition and the reinforcing base material used at this time is not particularly limited, but it is usually preferable to prepare the resin content in the prepreg to be 20% by mass to 60% by mass.

ここで用いる有機溶剤としては、メチルエチルケトン、アセトン、ジメチルホルムアミド、メチルイソブチルケトン、メトキシプロパノール、シクロヘキサノン、メチルセロソルブ、エチルジグリコールアセテート、プロピレングリコールモノメチルエーテルアセテート等が挙げられ、その選択や適正な使用量は用途によって適宜選択し得るが、例えば、下記のようにプリプレグからプリント回路基板をさらに製造する場合には、メチルエチルケトン、アセトン、ジメチルホルムアミド等の沸点が160℃以下の極性溶剤を用いることが好ましく、また、不揮発分が40質量%〜80質量%となる割合で用いることが好ましい。 Examples of the organic solvent used here include methyl ethyl ketone, acetone, dimethylformamide, methyl isobutyl ketone, methoxypropanol, cyclohexanone, methyl cellosolve, ethyl diglycol acetate, propylene glycol monomethyl ether acetate and the like. It can be appropriately selected depending on the application, but for example, when further producing a printed circuit board from prepylene as described below, it is preferable to use a polar solvent having a boiling point of 160 ° C. or lower, such as methyl ethyl ketone, acetone, or dimethylformamide. , It is preferable to use the non-volatile content at a ratio of 40% by mass to 80% by mass.

4.プリント回路基板
本発明のエポキシ樹脂組成物からプリント回路基板を得る方法としては、前記プリプレグを、常法により積層し、適宜銅箔を重ねて、1〜10MPaの加圧下に170〜300℃で10分〜3時間、加熱圧着させる方法が挙げられる。
4. Printed circuit board As a method for obtaining a printed circuit board from the epoxy resin composition of the present invention, the prepregs are laminated by a conventional method, copper foils are appropriately laminated, and 10 at 170 to 300 ° C. under a pressure of 1 to 10 MPa. Examples thereof include a method of heat-bonding for minutes to 3 hours.

5.ビルドアップ基板
本発明のエポキシ樹脂組成物からビルドアップ基板を得る方法としては、工程1〜3を経由する方法が挙げられる。工程1では、まず、ゴム、フィラーなどを適宜配合した前記硬化性樹脂組成物を、回路を形成した回路基板にスプレーコーティング法、カーテンコーティング法等を用いて塗布した後、硬化させる。工程2では、必要に応じて、エポキシ樹脂組成物が塗布された回路基板に所定のスルーホール部等の穴あけを行った後、粗化剤により処理し、その表面を湯洗することによって、前記基板に凹凸を形成させ、銅などの金属をめっき処理する。工程3では、工程1〜2の操作を所望に応じて順次繰り返し、樹脂絶縁層及び所定の回路パターンの導体層を交互にビルドアップしてビルドアップ基板を成形する。なお、前記工程において、スルーホール部の穴あけは、最外層の樹脂絶縁層の形成後に行うとよい。また、本発明のビルドアップ基板は、銅箔上で当該樹脂組成物を半硬化させた樹脂付き銅箔を、回路を形成した配線基板上に、170〜300℃で加熱圧着することで、粗化面を形成、メッキ処理の工程を省き、ビルドアップ基板を作製することも可能である。
5. Build-up substrate As a method for obtaining a build-up substrate from the epoxy resin composition of the present invention, a method via steps 1 to 3 can be mentioned. In step 1, first, the curable resin composition in which rubber, a filler and the like are appropriately mixed is applied to a circuit board on which a circuit is formed by a spray coating method, a curtain coating method, or the like, and then cured. In step 2, if necessary, the circuit board coated with the epoxy resin composition is drilled with a predetermined through-hole portion or the like, treated with a roughening agent, and the surface thereof is washed with hot water. Concavities and convexities are formed on the substrate, and a metal such as copper is plated. In step 3, the operations of steps 1 and 2 are sequentially repeated as desired, and the resin insulating layer and the conductor layer having a predetermined circuit pattern are alternately built up to form a build-up substrate. In the above step, the through-hole portion may be drilled after the outermost resin insulating layer is formed. Further, the build-up substrate of the present invention is roughened by heat-pressing a resin-containing copper foil obtained by semi-curing the resin composition on a copper foil onto a wiring board on which a circuit is formed at 170 to 300 ° C. It is also possible to produce a build-up substrate by omitting the steps of forming a chemical surface and plating.

6.ビルドアップフィルム
本発明のエポキシ樹脂組成物からビルドアップフィルムを得る方法としては、例えば、支持フィルム上に硬化性樹脂組成物を塗布したのち、乾燥させて、支持フィルムの上に樹脂組成物層を形成する方法が挙げられる。本発明のエポキシ樹脂組成物をビルドアップフィルムに用いる場合、該フィルムは、真空ラミネート法におけるラミネートの温度条件(通常70℃〜140℃)で軟化し、回路基板のラミネートと同時に、回路基板に存在するビアホール或いはスルーホール内の樹脂充填が可能な流動性(樹脂流れ)を示すことが肝要であり、このような特性を発現するよう前記各成分を配合することが好ましい。
6. Build-up film As a method of obtaining a build-up film from the epoxy resin composition of the present invention, for example, a curable resin composition is applied on a support film, dried, and a resin composition layer is formed on the support film. The method of forming is mentioned. When the epoxy resin composition of the present invention is used as a build-up film, the film is softened under the temperature conditions of lamination (usually 70 ° C. to 140 ° C.) in the vacuum lamination method, and is present on the circuit board at the same time as laminating the circuit board. It is important to show fluidity (resin flow) that allows resin filling in the via hole or through hole, and it is preferable to blend each of the above components so as to exhibit such characteristics.

ここで、回路基板のスルーホールの直径は通常0.1〜0.5mm、深さは通常0.1〜1.2mmであり、通常この範囲で樹脂充填を可能とするのが好ましい。なお回路基板の両面をラミネートする場合はスルーホールの1/2程度充填されることが望ましい。 Here, the diameter of the through hole of the circuit board is usually 0.1 to 0.5 mm, and the depth is usually 0.1 to 1.2 mm, and it is usually preferable to enable resin filling in this range. When laminating both sides of a circuit board, it is desirable to fill about 1/2 of the through holes.

前記したビルドアップフィルムを製造する具体的な方法としては、有機溶剤を配合してワニス化したエポキシ樹脂組成物を調製した後、支持フィルム(Y)の表面に、前記組成物を塗布し、更に加熱、あるいは熱風吹きつけ等により有機溶剤を乾燥してエポキシ樹脂組成物の層(X)を形成する方法が挙げられる。 As a specific method for producing the build-up film described above, an epoxy resin composition which has been varnished by blending an organic solvent is prepared, and then the composition is applied to the surface of the support film (Y), and further. Examples thereof include a method of forming the layer (X) of the epoxy resin composition by drying the organic solvent by heating, blowing hot air, or the like.

ここで用いる有機溶剤としては、例えば、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル、酢酸ブチル、セロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、カルビトールアセテート等の酢酸エステル類、セロソルブ、ブチルカルビトール等のカルビトール類、トルエン、キシレン等の芳香族炭化水素類、ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドン等を用いることが好ましく、また、不揮発分30質量%〜60質量%となる割合で使用することが好ましい。 Examples of the organic solvent used here include ketones such as acetone, methyl ethyl ketone and cyclohexanone, acetates such as ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate and carbitol acetate, cellosolve and butyl carbitol and the like. Carbitols, aromatic hydrocarbons such as toluene and xylene, dimethylformamide, dimethylacetamide, N-methylpyrrolidone and the like are preferably used, and the non-volatile content is 30% by mass to 60% by mass. Is preferable.

なお、形成される前記樹脂組成物の層(X)の厚さは、通常、導体層の厚さ以上とする必要がある。回路基板が有する導体層の厚さは通常5〜70μmの範囲であるので、樹脂組成物層の厚さは10〜100μmの厚みを有するのが好ましい。なお、本発明における前記樹脂組成物の層(X)は、後述する保護フィルムで保護されていてもよい。保護フィルムで保護することにより、樹脂組成物層表面へのゴミ等の付着やキズを防止することができる。 The thickness of the layer (X) of the resin composition to be formed usually needs to be equal to or larger than the thickness of the conductor layer. Since the thickness of the conductor layer of the circuit board is usually in the range of 5 to 70 μm, the thickness of the resin composition layer is preferably 10 to 100 μm. The layer (X) of the resin composition in the present invention may be protected by a protective film described later. By protecting with a protective film, it is possible to prevent dust and the like from adhering to the surface of the resin composition layer and scratches.

前記した支持フィルム及び保護フィルムは、ポリエチレン、ポリプロピレン、ポリ塩化ビニル等のポリオレフィン、ポリエチレンテレフタレート(以下「PET」と略称することがある。)、ポリエチレンナフタレート等のポリエステル、ポリカーボネート、ポリイミド、更には離型紙や銅箔、アルミニウム箔等の金属箔などを挙げることができる。なお、支持フィルム及び保護フィルムはマッド処理、コロナ処理の他、離型処理を施してあってもよい。支持フィルムの厚さは特に限定されないが、通常10〜150μmであり、好ましくは25〜50μmの範囲で用いられる。また保護フィルムの厚さは1〜40μmとするのが好ましい。 The support film and protective film described above include polyolefins such as polyethylene, polypropylene and polyvinyl chloride, polyethylene terephthalate (hereinafter, may be abbreviated as "PET"), polyesters such as polyethylene naphthalate, polycarbonate, polyimide, and further release. Examples include metal foils such as paper patterns, copper foils, and aluminum foils. The support film and the protective film may be subjected to a mold release treatment in addition to the mud treatment and the corona treatment. The thickness of the support film is not particularly limited, but is usually 10 to 150 μm, and is preferably used in the range of 25 to 50 μm. The thickness of the protective film is preferably 1 to 40 μm.

前記した支持フィルム(Y)は、回路基板にラミネートした後に、或いは加熱硬化することにより絶縁層を形成した後に、剥離される。ビルドアップフィルムを構成するエポキシ樹脂組成物層が加熱硬化した後に支持フィルム(Y)を剥離すれば、硬化工程でのゴミ等の付着を防ぐことができる。硬化後に剥離する場合、通常、支持フィルムには予め離型処理が施される。 The support film (Y) described above is peeled off after being laminated on a circuit board or after forming an insulating layer by heat curing. If the support film (Y) is peeled off after the epoxy resin composition layer constituting the build-up film is heat-cured, it is possible to prevent the adhesion of dust and the like in the curing step. When peeling after curing, the support film is usually subjected to a mold release treatment in advance.

なお、前記のようにして得られたビルドアップフィルムから多層プリント回路基板を製造することができる。例えば、前記樹脂組成物の層(X)が保護フィルムで保護されている場合はこれらを剥離した後、前記樹脂組成物の層(X)を回路基板に直接接するように回路基板の片面又は両面に、例えば真空ラミネート法によりラミネートする。ラミネートの方法はバッチ式であってもロールでの連続式であってもよい。また必要により、ラミネートを行う前にビルドアップフィルム及び回路基板を必要により加熱(プレヒート)しておいてもよい。ラミネートの条件は、圧着温度(ラミネート温度)を70〜140℃とすることが好ましく、圧着圧力を1〜11kgf/cm(9.8×10〜107.9×10N/m)とすることが好ましく、空気圧を20mmHg(26.7hPa)以下の減圧下でラミネートすることが好ましい。 A multilayer printed circuit board can be manufactured from the build-up film obtained as described above. For example, when the layer (X) of the resin composition is protected by a protective film, the layers (X) of the resin composition are peeled off, and then one side or both sides of the circuit board are brought into direct contact with the layer (X) of the resin composition. , For example, by the vacuum laminating method. The laminating method may be a batch method or a continuous method using a roll. If necessary, the build-up film and the circuit board may be preheated if necessary before laminating. As for the laminating conditions, the crimping temperature (lamination temperature) is preferably 70 to 140 ° C., and the crimping pressure is 1 to 11 kgf / cm 2 (9.8 × 10 4 to 107.9 × 10 4 N / m 2 ). It is preferable to laminate under a reduced air pressure of 20 mmHg (26.7 hPa) or less.

7.繊維強化複合材料
本発明のエポキシ樹脂組成物から繊維強化複合材料(樹脂が強化繊維に含浸したシート状の中間材料)を得る方法としては、エポキシ樹脂組成物を構成する各成分を均一に混合してワニスを調整し、次いでこれを強化繊維からなる強化基材に含浸した後、重合反応させることにより製造する方法が挙げられる。
7. Fiber Reinforced Composite Material As a method of obtaining a fiber reinforced composite material (sheet-like intermediate material in which the resin is impregnated in the reinforcing fibers) from the epoxy resin composition of the present invention, each component constituting the epoxy resin composition is uniformly mixed. The varnish is prepared, then impregnated with a reinforcing base material made of reinforcing fibers, and then subjected to a polymerization reaction to produce the varnish.

かかる重合反応を行う際の硬化温度は、具体的には、50〜250℃の温度範囲であることが好ましく、特に、50〜100℃で硬化させ、タックフリー状の硬化物にした後、更に、120〜200℃の温度条件で処理することが好ましい。 Specifically, the curing temperature at the time of carrying out such a polymerization reaction is preferably in the temperature range of 50 to 250 ° C., in particular, after curing at 50 to 100 ° C. to obtain a tack-free cured product, further , 120-200 ° C. is preferable.

ここで、強化繊維は、有撚糸、解撚糸、又は無撚糸などいずれでも良いが、解撚糸や無撚糸が、繊維強化プラスチック製部材の成形性と機械強度を両立することから、好ましい。さらに、強化繊維の形態は、繊維方向が一方向に引き揃えたものや、織物が使用できる。織物では、平織り、朱子織りなどから、使用する部位や用途に応じて自由に選択することができる。具体的には、機械強度や耐久性に優れることから、炭素繊維、ガラス繊維、アラミド繊維、ボロン繊維、アルミナ繊維、炭化ケイ素繊維などが挙げられ、これらの2種以上を併用することもできる。これらの中でもとりわけ成形品の強度が良好なものとなる点から炭素繊維が好ましく、かかる、炭素繊維は、ポリアクリロニトリル系、ピッチ系、レーヨン系などの各種のものが使用できる。中でも、容易に高強度の炭素繊維が得られるポリアクリロニトリル系のものが好ましい。ここで、ワニスを強化繊維からなる強化基材に含浸して繊維強化複合材料とする際の強化繊維の使用量は、該繊維強化複合材料中の強化繊維の体積含有率が40%〜85%の範囲となる量であることが好ましい。 Here, the reinforcing fiber may be any of twisted yarn, untwisted yarn, untwisted yarn and the like, but the untwisted yarn and the untwisted yarn are preferable because both the moldability and the mechanical strength of the fiber-reinforced plastic member are compatible. Further, as the form of the reinforcing fiber, one in which the fiber directions are aligned in one direction or a woven fabric can be used. For woven fabrics, plain weaves, satin weaves, and the like can be freely selected according to the part to be used and the intended use. Specific examples thereof include carbon fiber, glass fiber, aramid fiber, boron fiber, alumina fiber, and silicon carbide fiber because of their excellent mechanical strength and durability, and two or more of these can be used in combination. Among these, carbon fibers are particularly preferable from the viewpoint of improving the strength of the molded product, and various carbon fibers such as polyacrylonitrile-based, pitch-based, and rayon-based can be used. Of these, polyacrylonitrile-based ones, which can easily obtain high-strength carbon fibers, are preferable. Here, the amount of the reinforcing fiber used when impregnating the reinforcing base material made of the reinforcing fiber with the varnish to obtain the fiber-reinforced composite material is such that the volume content of the reinforcing fiber in the fiber-reinforced composite material is 40% to 85%. The amount is preferably in the range of.

8.繊維強化樹脂成形品
本発明のエポキシ樹脂組成物から繊維強化成形品(樹脂が強化繊維に含浸したシート状部材が硬化した成形品)を得る方法としては、型に繊維骨材を敷き、前記ワニスを多重積層してゆくハンドレイアップ法やスプレーアップ法、オス型・メス型のいずれかを使用し、強化繊維からなる基材にワニスを含浸させながら積み重ねて成形、圧力を成形物に作用させることのできるフレキシブルな型をかぶせ、気密シールしたものを真空(減圧)成型する真空バッグ法、あらかじめ強化繊維を含有するワニスをシート状にしたものを金型で圧縮成型するSMCプレス法、繊維を敷き詰めた合わせ型に前記ワニスを注入するRTM法などにより、強化繊維に前記ワニスを含浸させたプリプレグを製造し、これを大型のオートクレーブで焼き固める方法などが挙げられる。なお、前記で得られた繊維強化樹脂成形品は、強化繊維とエポキシ樹脂組成物の硬化物とを有する成形品であり、具体的には、繊維強化成形品中の強化繊維の量は、40質量%〜70質量%の範囲であることが好ましく、強度の点から50質量%〜70質量%の範囲であることが特に好ましい。
8. Fiber-reinforced resin molded product As a method of obtaining a fiber-reinforced molded product (molded product in which a sheet-like member impregnated with resin impregnated in reinforcing fibers is cured) from the epoxy resin composition of the present invention, a fiber aggregate is laid on a mold and the varnish is used. Using either the hand lay-up method, the spray-up method, or the male type or the female type, in which multiple layers are laminated, the base material made of reinforcing fibers is impregnated with varnish and stacked to form, and pressure is applied to the molded product. Vacuum bag method in which a flexible mold that can be covered and airtightly sealed is vacuum (decompressed) molded, SMC press method in which a varnish containing reinforcing fibers is previously made into a sheet and compression molded with a mold, fibers Examples thereof include a method of producing a prepreg in which reinforcing fibers are impregnated with the varnish by an RTM method or the like in which the varnish is injected into a spread molding, and then baking the prepreg with a large autoclave. The fiber-reinforced resin molded product obtained above is a molded product having a reinforcing fiber and a cured product of an epoxy resin composition. Specifically, the amount of reinforcing fibers in the fiber-reinforced molded product is 40. It is preferably in the range of mass% to 70% by mass, and particularly preferably in the range of 50% by mass to 70% by mass from the viewpoint of strength.

9.導電ペースト
本発明のエポキシ樹脂組成物から導電ペーストを得る方法としては、例えば、微細導電性粒子を該硬化性樹脂組成物中に分散させる方法が挙げられる。前記導電ペーストは、用いる微細導電性粒子の種類によって、回路接続用ペースト樹脂組成物や異方性導電接着剤とすることができる。
9. Conductive Paste As a method for obtaining a conductive paste from the epoxy resin composition of the present invention, for example, a method of dispersing fine conductive particles in the curable resin composition can be mentioned. The conductive paste can be a paste resin composition for circuit connection or an anisotropic conductive adhesive depending on the type of fine conductive particles used.

次に本発明を実施例、比較例により具体的に説明するが、以下において「部」及び「%」は特に断わりのない限り質量基準である。尚、GPCは以下の条件にて測定した。 Next, the present invention will be specifically described with reference to Examples and Comparative Examples. In the following, "parts" and "%" are based on mass unless otherwise specified. The GPC was measured under the following conditions.

<GPC測定条件>
測定装置 :東ソー株式会社製「HLC−8320 GPC」、
カラム:東ソー株式会社製ガードカラム「HXL−L」
+東ソー株式会社製「TSK−GEL G2000HXL」
+東ソー株式会社製「TSK−GEL G2000HXL」
+東ソー株式会社製「TSK−GEL G3000HXL」
+東ソー株式会社製「TSK−GEL G4000HXL」
検出器: RI(示差屈折計)
データ処理:東ソー株式会社製「GPCワークステーション EcoSEC−WorkStation」
測定条件: カラム温度 40℃
展開溶媒 テトラヒドロフラン
流速 1.0ml/分
標準 : 前記「GPCワークステーション EcoSEC−WorkStation」の測定マニュアルに準拠して、分子量が既知の下記の単分散ポリスチレンを用いた。
(使用ポリスチレン)
東ソー株式会社製「A−500」
東ソー株式会社製「A−1000」
東ソー株式会社製「A−2500」
東ソー株式会社製「A−5000」
東ソー株式会社製「F−1」
東ソー株式会社製「F−2」
東ソー株式会社製「F−4」
東ソー株式会社製「F−10」
東ソー株式会社製「F−20」
東ソー株式会社製「F−40」
東ソー株式会社製「F−80」
東ソー株式会社製「F−128」
試料 : 樹脂固形分換算で1.0質量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの(50μl)。
<GPC measurement conditions>
Measuring device: "HLC-8320 GPC" manufactured by Tosoh Corporation,
Column: Guard column "HXL-L" manufactured by Tosoh Corporation
+ "TSK-GEL G2000HXL" manufactured by Tosoh Corporation
+ "TSK-GEL G2000HXL" manufactured by Tosoh Corporation
+ "TSK-GEL G3000HXL" manufactured by Tosoh Corporation
+ "TSK-GEL G4000HXL" manufactured by Tosoh Corporation
Detector: RI (Differential Refractometer)
Data processing: "GPC Workstation EcoSEC-WorkStation" manufactured by Tosoh Corporation
Measurement conditions: Column temperature 40 ° C
Developing solvent tetrahydrofuran
Flow velocity 1.0 ml / min Standard: The following monodisperse polystyrene with a known molecular weight was used in accordance with the measurement manual of the above-mentioned "GPC workstation EcoSEC-WorkStation".
(Polystyrene used)
"A-500" manufactured by Tosoh Corporation
"A-1000" manufactured by Tosoh Corporation
"A-2500" manufactured by Tosoh Corporation
"A-5000" manufactured by Tosoh Corporation
"F-1" manufactured by Tosoh Corporation
"F-2" manufactured by Tosoh Corporation
"F-4" manufactured by Tosoh Corporation
"F-10" manufactured by Tosoh Corporation
"F-20" manufactured by Tosoh Corporation
"F-40" manufactured by Tosoh Corporation
"F-80" manufactured by Tosoh Corporation
"F-128" manufactured by Tosoh Corporation
Sample: A solution of 1.0% by mass in terms of resin solid content in tetrahydrofuran filtered with a microfilter (50 μl).

実施例1 エポキシ樹脂(A−1)の合成
温度計、滴下ロート、冷却管、分留管、撹拌器を取り付けたフラスコに、p−ターシャリーブチルフェノール900g(6.0モル)、蓚酸18gを仕込み、室温から105℃まで45分で昇温しながら撹拌した。続いて、42質量%ホルマリン水溶液43g(0.6モル)を2時間要して滴下した。滴下終了後、さらに100℃で1時間攪拌し、その後180℃まで3時間で昇温した。反応終了後、反応系内に残った水分と未反応物を加熱減圧下に除去しノボラック樹脂(a−1)を得た。得られたノボラック樹脂(a−1)の水酸基当量は156グラム/当量であった。
Example 1 Synthesis of Epoxy Resin (A-1) 900 g (6.0 mol) of p-terrary butylphenol and 18 g of oxalic acid are charged in a flask equipped with a thermometer, a dropping funnel, a cooling tube, a fractionation tube, and a stirrer. The mixture was stirred while raising the temperature from room temperature to 105 ° C. in 45 minutes. Subsequently, 43 g (0.6 mol) of a 42 mass% formalin aqueous solution was added dropwise over 2 hours. After completion of the dropping, the mixture was further stirred at 100 ° C. for 1 hour, and then the temperature was raised to 180 ° C. in 3 hours. After completion of the reaction, the water remaining in the reaction system and the unreacted material were removed under heating and reduced pressure to obtain a novolak resin (a-1). The hydroxyl group equivalent of the obtained novolak resin (a-1) was 156 g / equivalent.

温度計、冷却管、撹拌器を取り付けたフラスコに窒素ガスパージを施しながらノボラック樹脂(a−1)312g、エピクロルヒドリン1110g(6.0モル)、n−ブタノール330gを仕込み溶解させた。50℃に昇温した後に、20%水酸化ナトリウム水溶液440g(2.20モル)を3時間要して添加し、その後更に50℃で1時間反応させた。反応終了後、150℃減圧下で未反応エピクロルヒドリンを留去した。次に、得られた粗エポキシ樹脂にメチルイソブチルケトン300gとn−ブタノール50gとを加え溶解した。更にこの溶液に10質量%水酸化ナトリウム水溶液15gを添加して80℃で2時間反応させた後に洗浄液のpHが中性となるまで水100gで水洗を3回繰り返した。次いで共沸によって系内を脱水し、精密濾過を経た後に、溶媒を減圧下で留去してエポキシ樹脂(A−1)を得た。得られたエポキシ樹脂のエポキシ当量は256g/eqであった。得られたエポキシ樹脂(A−1)のGPCチャートを図1に示す。エポキシ樹脂(A−1)における構造式(1)中のnの値は0.05であり、構造式(2)で表される化合物の含有率は0.5%であった。 A flask equipped with a thermometer, a cooling tube, and a stirrer was charged with 312 g of novolak resin (a-1), 1110 g (6.0 mol) of epichlorohydrin, and 330 g of n-butanol while purging with nitrogen gas to dissolve them. After the temperature was raised to 50 ° C., 440 g (2.20 mol) of a 20% aqueous sodium hydroxide solution was added over 3 hours, and then the reaction was further carried out at 50 ° C. for 1 hour. After completion of the reaction, unreacted epichlorohydrin was distilled off under reduced pressure at 150 ° C. Next, 300 g of methyl isobutyl ketone and 50 g of n-butanol were added to the obtained crude epoxy resin and dissolved. Further, 15 g of a 10 mass% sodium hydroxide aqueous solution was added to this solution and reacted at 80 ° C. for 2 hours, and then washing with 100 g of water was repeated 3 times until the pH of the washing solution became neutral. Next, the inside of the system was dehydrated by azeotrope, and after undergoing microfiltration, the solvent was distilled off under reduced pressure to obtain an epoxy resin (A-1). The epoxy equivalent of the obtained epoxy resin was 256 g / eq. The GPC chart of the obtained epoxy resin (A-1) is shown in FIG. The value of n in the structural formula (1) of the epoxy resin (A-1) was 0.05 , and the content of the compound represented by the structural formula (2) was 0.5%.

実施例2 エポキシ樹脂(A−2)の合成
温度計、滴下ロート、冷却管、分留管、撹拌器を取り付けたフラスコに、p−ターシャリーブチルフェノール900g(6.0モル)、蓚酸18gを仕込み、室温から98℃まで45分で昇温しながら撹拌した。続いて、42質量%ホルマリン水溶液172g(2.4モル)を2時間要して滴下した。滴下終了後、さらに98℃で12時間攪拌し、その後180℃まで3時間で昇温した。反応終了後、反応系内に残った水分と未反応物を加熱減圧下に除去しノボラック樹脂(a−2)を得た。得られたノボラック樹脂(a−2)の水酸基当量は158グラム/当量であった。
Example 2 Synthesis of Epoxy Resin (A-2) 900 g (6.0 mol) of p-terrary butylphenol and 18 g of oxalic acid are charged in a flask equipped with a thermometer, a dropping funnel, a cooling tube, a fractional tube, and a stirrer. The mixture was stirred while raising the temperature from room temperature to 98 ° C. in 45 minutes. Subsequently, 172 g (2.4 mol) of a 42 mass% formalin aqueous solution was added dropwise over 2 hours. After completion of the dropping, the mixture was further stirred at 98 ° C. for 12 hours, and then the temperature was raised to 180 ° C. in 3 hours. After completion of the reaction, the water remaining in the reaction system and the unreacted material were removed under heating and reduced pressure to obtain a novolak resin (a-2). The hydroxyl group equivalent of the obtained novolak resin (a-2) was 158 g / equivalent.

温度計、冷却管、撹拌器を取り付けたフラスコに窒素ガスパージを施しながらノボラック樹脂(a−2)316g、エピクロルヒドリン1110g(6.0モル)、n−ブタノール330gを仕込み溶解させた。50℃に昇温した後に、20%水酸化ナトリウム水溶液440g(2.20モル)を3時間要して添加し、その後更に50℃で1時間反応させた。反応終了後、150℃減圧下で未反応エピクロルヒドリンを留去した。次に、得られた粗エポキシ樹脂にメチルイソブチルケトン300gとn−ブタノール50gとを加え溶解した。更にこの溶液に10質量%水酸化ナトリウム水溶液15gを添加して80℃で2時間反応させた後に洗浄液のpHが中性となるまで水100gで水洗を3回繰り返した。次いで共沸によって系内を脱水し、精密濾過を経た後に、溶媒を減圧下で留去してエポキシ樹脂(A−2)を得た。得られたエポキシ樹脂のエポキシ当量は298g/eqであった。得られたエポキシ樹脂(A−2)のGPCチャートを図2に示す。エポキシ樹脂(A−2)における構造式(1)中のnの値は1.95、構造式(2)で表される化合物の含有率は1.4%であった。 A flask equipped with a thermometer, a cooling tube, and a stirrer was charged with 316 g of novolak resin (a-2), 1110 g (6.0 mol) of epichlorohydrin, and 330 g of n-butanol while purging with nitrogen gas to dissolve them. After the temperature was raised to 50 ° C., 440 g (2.20 mol) of a 20% aqueous sodium hydroxide solution was added over 3 hours, and then the reaction was further carried out at 50 ° C. for 1 hour. After completion of the reaction, unreacted epichlorohydrin was distilled off under reduced pressure at 150 ° C. Next, 300 g of methyl isobutyl ketone and 50 g of n-butanol were added to the obtained crude epoxy resin and dissolved. Further, 15 g of a 10 mass% sodium hydroxide aqueous solution was added to this solution and reacted at 80 ° C. for 2 hours, and then washing with 100 g of water was repeated 3 times until the pH of the washing solution became neutral. Next, the inside of the system was dehydrated by azeotrope, and after undergoing microfiltration, the solvent was distilled off under reduced pressure to obtain an epoxy resin (A-2). The epoxy equivalent of the obtained epoxy resin was 298 g / eq. The GPC chart of the obtained epoxy resin (A-2) is shown in FIG. The value of n in the structural formula (1) of the epoxy resin (A-2) was 1.95 , and the content of the compound represented by the structural formula (2) was 1.4%.

比較例1 エポキシ樹脂(A’−1)の合成
ノボラック樹脂(a−1)を2,2‘−メチレンビス(4−ターシャリーブチルフェノール)312gとした以外は合成例2と同様にしてエポキシ樹脂(A’−1)を得た。得られたエポキシ樹脂(A’−1)のエポキシ当量は235g/eq、エポキシ樹脂(A’−1)における構造式(1)中のnに相当する値は、構造式(2)で表される化合物の含有率は0%であった。
Comparative Example 1 Synthesis of Epoxy Resin (A'-1) Epoxy Resin (A) was the same as in Synthesis Example 2 except that the novolak resin (a-1) was 2,2'-methylenebis (4-terriary butylphenol) 312 g. '-1) was obtained. The epoxy equivalent of the obtained epoxy resin (A'-1) is 235 g / eq, the value corresponding to n in the structural formula (1) of the epoxy resin (A'-1) is 0 , and it is represented by the structural formula (2). The content of the compound was 0%.

比較例2 エポキシ樹脂(A’−2)の合成
42質量%ホルマリン水溶液を215g(3.0モル)に変更した以外は実施例2と同様にして、エポキシ樹脂(A’−2)を得た。得られたエポキシ樹脂のエポキシ当量は331g/eqであった。エポキシ樹脂(A’−2)における構造式(1)中のnの値は2.10、構造式(2)で表される化合物の含有率は2.4%であった。
Comparative Example 2 Synthesis of Epoxy Resin (A'-2) Epoxy resin (A'-2) was obtained in the same manner as in Example 2 except that the 42 mass% formalin aqueous solution was changed to 215 g (3.0 mol). .. The epoxy equivalent of the obtained epoxy resin was 331 g / eq. The value of n in the structural formula (1) of the epoxy resin (A'-2) was 2.10 , and the content of the compound represented by the structural formula (2) was 2.4%.

<組成物及び硬化物の作製>
下記化合物を表1に示す組成で配合したのち、2本ロールを用いて90℃の温度で5分間溶融混練して目的のエポキシ樹脂組成物を調製した。なお、表1における略号は、下記の化合物を意味している。
・エポキシ樹脂A−1:合成例1で得られたエポキシ樹脂
・エポキシ樹脂A−2:合成例2で得られたエポキシ樹脂
・エポキシ樹脂A’−1:比較合成例1で得られたエポキシ樹脂
・エポキシ樹脂A’−2:比較合成例2で得られたエポキシ樹脂
・硬化剤TD−2131:フェノールノボラック樹脂 水酸基当量:104g/eq(DIC株式会社製)
・TPP:トリフェニルホスフィン
・溶融シリカ:球状シリカ「FB−560」デンカ株式会社製
・シランカップリング剤:γ−グリシドキシトリエトキシキシシラン「KBM−403」信越化学工業株式会社製
・カルナウバワックス:「PEARL WAX No.1−P」デンカ株式会社製
<Preparation of composition and cured product>
After blending the following compounds with the compositions shown in Table 1, the target epoxy resin composition was prepared by melt-kneading at a temperature of 90 ° C. for 5 minutes using two rolls. The abbreviations in Table 1 mean the following compounds.
-Epoxy resin A-1: Epoxy resin obtained in Synthesis Example 1-Epoxy resin A-2: Epoxy resin obtained in Synthesis Example 2-Epoxy resin A'-1: Epoxy resin obtained in Comparative Synthesis Example 1. -Epoxy resin A'-2: Epoxy resin obtained in Comparative Synthesis Example 2-Curing agent TD-2131: Phenolic novolak resin hydroxyl group equivalent: 104 g / eq (manufactured by DIC Co., Ltd.)
・ TPP: Triphenylphosphine ・ Fused silica: Spherical silica "FB-560" manufactured by Denka Co., Ltd. ・ Silane coupling agent: γ-glycidoxytriethoxyxisilane "KBM-403" manufactured by Shinetsu Chemical Industry Co., Ltd. ・ Carnauba wax : "PEARL WAX No.1-P" manufactured by Denka Co., Ltd.

次に、前記で得られた樹脂組成物を粉砕して得られたものを、トランスファー成形機にて、圧力70kg/cm、温度175℃、時間180秒でφ50mm×3(t)mmの円板状に成形し、180℃で5時間さらに硬化した。 Next, the resin composition obtained by pulverizing the above-mentioned resin composition was obtained by using a transfer molding machine at a pressure of 70 kg / cm 2 , a temperature of 175 ° C., and a time of 180 seconds to form a circle of φ50 mm × 3 (t) mm. It was formed into a plate and further cured at 180 ° C. for 5 hours.

<ガラス転移温度、熱時弾性率の測定>
前記で作製した成形物を厚さ0.8mmの硬化物を幅5mm、長さ54mmのサイズに切り出し、これを試験片1とした。この試験片1を粘弾性測定装置(DMA:レオメトリック社製固体粘弾性測定装置「RSAII」、レクタンギュラーテンション法:周波数1Hz、昇温速度3℃/分)を用いて、260℃での貯蔵弾性率を熱時弾性率として測定した。
<Measurement of glass transition temperature and thermal elastic modulus>
A cured product having a thickness of 0.8 mm was cut out to a size of 5 mm in width and 54 mm in length from the molded product produced above, and this was used as a test piece 1. This test piece 1 is stored at 260 ° C. using a viscoelasticity measuring device (DMA: solid viscoelasticity measuring device “RSAII” manufactured by Leometric Co., Ltd., rectangular tension method: frequency 1 Hz, heating rate 3 ° C./min). The rate was measured as the thermal elastic modulus.

<成形時の収縮率の測定>
トランスファー成形機(コータキ精機製、KTS−15−1.5C)を用いて、金型温度150℃、成形圧力9.8MPa、硬化時間600秒の条件下で、樹脂組成物を注入成形して、縦110mm、横12.7mm、厚さ1.6mmの試験片を作製した。その後試験片を175℃で5時間ポストキュアし、金型キャビティの内径寸法と、室温(25℃)での試験片の外径寸法とを測定し、下記式により収縮率を算出した。
収縮率(%)={(金型の内径寸法)−(25℃での硬化物の縦方向の寸法)}/(175℃での金型キャビティの内径寸法)×100(%)
これらの結果を表1に示す。
<Measurement of shrinkage rate during molding>
Using a transfer molding machine (Kotaki Seiki Co., Ltd., KTS-15-1.5C), the resin composition was injection-molded under the conditions of a mold temperature of 150 ° C., a molding pressure of 9.8 MPa, and a curing time of 600 seconds. A test piece having a length of 110 mm, a width of 12.7 mm, and a thickness of 1.6 mm was prepared. After that, the test piece was post-cured at 175 ° C. for 5 hours, the inner diameter of the mold cavity and the outer diameter of the test piece at room temperature (25 ° C.) were measured, and the shrinkage rate was calculated by the following formula.
Shrinkage rate (%) = {(inner diameter dimension of mold)-(longitudinal dimension of cured product at 25 ° C)} / (inner diameter dimension of mold cavity at 175 ° C) x 100 (%)
These results are shown in Table 1.

Figure 0006874359
Figure 0006874359

Claims (13)

下記構造式(1)
Figure 0006874359
〔構造式(1)中、R、R、Rは水素原子または炭素数4〜8のアルキル基であり、少なくともいずれか1つは炭素数4〜8のアルキル基である。Gはグリシジル基であり、nは繰り返す数を示し、平均値で0.01〜2.0であり、繰り返し毎にR、R、Rは同一でも異なっていてもよい。〕と下記構造式(2)
Figure 0006874359
〔構造式(2)中、R、R、Rは水素原子または炭素数4〜8のアルキル基であり、少なくともいずれか1つは炭素数4〜8のアルキル基であり、Gはグリシジル基である。〕を必須成分として含み、前記構造式(2)の含有率がGPC測定における面積比率で0.1〜2.0%であり、且つそのエポキシ当量が245〜330g/eqの範囲であることを特徴とするエポキシ樹脂。
The following structural formula (1)
Figure 0006874359
[In the structural formula (1), R 1 , R 2 , and R 3 are hydrogen atoms or alkyl groups having 4 to 8 carbon atoms, and at least one of them is an alkyl group having 4 to 8 carbon atoms. G is a glycidyl group , n indicates the number of repetitions, and the average value is 0.01 to 2.0, and R 1 , R 2 , and R 3 may be the same or different for each repetition. ] And the following structural formula (2)
Figure 0006874359
[In structural formula (2), R 1 , R 2 , and R 3 are hydrogen atoms or alkyl groups having 4 to 8 carbon atoms, and at least one of them is an alkyl group having 4 to 8 carbon atoms, and G is It is a glycidyl group. ] Hints as essential components, a 0.1% to 2.0% content of an area ratio in GPC measurement of the structural formula (2), and its epoxy equivalent that it is a range of 245~330g / eq Epoxy resin as a feature.
前記構造式(1)と前記構造式(2)中のRが炭素数4〜8のアルキル基であり、R、Rが水素原子である請求項1記載のエポキシ樹脂 The epoxy resin according to claim 1 , wherein R 1 in the structural formula (1) and the structural formula (2) is an alkyl group having 4 to 8 carbon atoms, and R 2 and R 3 are hydrogen atoms. 前記構造式(1)と前記構造式(2)中のRがt−ブチル基であり、R、Rが水素原子である請求項1記載のエポキシ樹脂。 The epoxy resin according to claim 1, wherein R 1 in the structural formula (1) and the structural formula (2) is a t-butyl group, and R 2 and R 3 are hydrogen atoms. 請求項1〜3の何れか1項記載のエポキシ樹脂と、硬化剤(B)とを必須成分とするエポキシ樹脂組成物。 An epoxy resin composition containing the epoxy resin according to any one of claims 1 to 3 and a curing agent (B) as essential components. 更に、請求項1〜3の何れかに記載のエポキシ樹脂以外のエポキシ樹脂(C)を含有する請求項4記載のエポキシ樹脂組成物。 The epoxy resin composition according to claim 4, further comprising an epoxy resin (C) other than the epoxy resin according to any one of claims 1 to 3. 請求項4又は5記載のエポキシ樹脂組成物の硬化物。 A cured product of the epoxy resin composition according to claim 4 or 5. 請求項4又は5記載のエポキシ樹脂組成物と無機充填材とを含有する半導体封止材料。 A semiconductor encapsulating material containing the epoxy resin composition according to claim 4 or 5 and an inorganic filler. 請求項7に記載の半導体封止材料の硬化物を含む半導体装置。 A semiconductor device containing a cured product of the semiconductor encapsulating material according to claim 7. 請求項4又は5記載のエポキシ樹脂組成物と補強基材とを有する含浸基材の半硬化物であるプリプレグ。 A prepreg which is a semi-cured product of an impregnated base material having the epoxy resin composition according to claim 4 or 5 and a reinforcing base material. 請求項4又は5記載のエポキシ樹脂組成物の板状賦形物と銅箔とからなる回路基板。 A circuit board comprising a plate-shaped excipient of the epoxy resin composition according to claim 4 or 5 and a copper foil. 請求項4又は5記載のエポキシ樹脂組成物の硬化物と基材フィルムとからなるビルドアップフィルム。 A build-up film comprising a cured product of the epoxy resin composition according to claim 4 or 5 and a base film. 請求項4又は5記載のエポキシ樹脂組成物と強化繊維とを含有する繊維強化複合材料。 A fiber-reinforced composite material containing the epoxy resin composition according to claim 4 or 5 and reinforcing fibers. 請求項12記載の繊維強化複合材料の硬化物である繊維強化成形品。 A fiber-reinforced molded product which is a cured product of the fiber-reinforced composite material according to claim 12.
JP2016247853A 2016-12-21 2016-12-21 Epoxy resin, epoxy resin composition and cured product thereof Active JP6874359B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016247853A JP6874359B2 (en) 2016-12-21 2016-12-21 Epoxy resin, epoxy resin composition and cured product thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016247853A JP6874359B2 (en) 2016-12-21 2016-12-21 Epoxy resin, epoxy resin composition and cured product thereof

Publications (2)

Publication Number Publication Date
JP2018100362A JP2018100362A (en) 2018-06-28
JP6874359B2 true JP6874359B2 (en) 2021-05-19

Family

ID=62715119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016247853A Active JP6874359B2 (en) 2016-12-21 2016-12-21 Epoxy resin, epoxy resin composition and cured product thereof

Country Status (1)

Country Link
JP (1) JP6874359B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109666129A (en) * 2019-01-07 2019-04-23 淮海工学院 A kind of p-tert-butylphenol formaldehyde epoxy resin and preparation method thereof
CN109762137A (en) * 2019-01-23 2019-05-17 淮海工学院 A kind of synthetic method of high-purity p-tert-butylphenol formaldehyde epoxy resin

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4916766B1 (en) * 1970-05-02 1974-04-24
JPS6383035A (en) * 1986-09-29 1988-04-13 Mitsui Petrochem Ind Ltd Production of trinuclear substituted phenol and composition containing glycidyl ether derivative of trinuclear substituted phenol
JP3447015B2 (en) * 1993-04-23 2003-09-16 三井化学株式会社 Epoxy resin composition
JP3379048B2 (en) * 1993-08-19 2003-02-17 東都化成株式会社 Multifunctional epoxy resin and method for producing the same
JP3661101B2 (en) * 1995-01-23 2005-06-15 東都化成株式会社 Epoxy resin composition
JP3614516B2 (en) * 1995-06-28 2005-01-26 大日本インキ化学工業株式会社 Epoxy resin composition
JP4435791B2 (en) * 2001-11-16 2010-03-24 旭有機材工業株式会社 Method for producing novolac-type phenolic resin and resin-coated sand
CN100480293C (en) * 2002-08-30 2009-04-22 旭有机材工业株式会社 Process for producing phenolic novolak
JP2011074220A (en) * 2009-09-30 2011-04-14 Dic Corp Epoxy resin composition, prepreg and cured product
TWI731986B (en) * 2016-06-29 2021-07-01 日商迪愛生股份有限公司 Phenol novolac resin, curable resin composition and hardened products thereof

Also Published As

Publication number Publication date
JP2018100362A (en) 2018-06-28

Similar Documents

Publication Publication Date Title
JP6660576B2 (en) Epoxy resin, manufacturing method, epoxy resin composition and cured product thereof
JP5904387B1 (en) Epoxy resin, curable resin composition, cured product, semiconductor sealing material, semiconductor device, prepreg, circuit board, buildup film, buildup board, fiber reinforced composite material, and fiber reinforced molded product
US9056990B2 (en) Phosphorus-atom-containing oligomer composition, curable resin composition, cured product thereof, and printed circuit board
JP6260846B2 (en) Epoxy resin, method for producing epoxy resin, curable resin composition and cured product thereof
KR102409661B1 (en) Epoxy resin, manufacturing method, epoxy resin composition and cured product thereof
JP6809200B2 (en) Epoxy resin, curable resin composition and its cured product
JP6874359B2 (en) Epoxy resin, epoxy resin composition and cured product thereof
JP2017105898A (en) Epoxy resin, manufacturing method of epoxy resin, curable resin composition and cured article thereof
JP6828413B2 (en) Phenolic resin, curable resin composition and its cured product
JP7103499B1 (en) Phenolic resin, epoxy resin, curable resin composition, cured product, fiber reinforced composite material, and fiber reinforced resin molded product
JP6809206B2 (en) Epoxy resin, curable resin composition and its cured product
JP7059633B2 (en) Epoxy resin, manufacturing method, epoxy resin composition and its cured product
JP7024227B2 (en) Epoxy resin manufacturing method, epoxy resin, epoxy resin composition and cured product thereof
JP7036235B2 (en) Phenol resin, curable resin composition and its cured product
JP6992932B2 (en) Polyfunctional phenol resin, polyfunctional epoxy resin, curable resin composition containing them and cured product thereof
JP7347118B2 (en) Polyfunctional phenol resin, polyfunctional epoxy resin, curable resin composition containing them, and cured product thereof
JP7192485B2 (en) Xanthene type resin, curable resin composition and cured product thereof
JP6750427B2 (en) Polyfunctional epoxy resin, production method thereof, curable resin composition and cured product thereof

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20180220

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190620

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210405

R151 Written notification of patent or utility model registration

Ref document number: 6874359

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250